
Server-Aided Two-Party Computation

with Simultaneous Corruption

Ignacio Cascudo, Ivan Damg̊ard, Samuel Ranellucci∗

{ignacio,ivan,samuel}@cs.au.dk
Aarhus University

Abstract

We consider secure two-party computation in the client-server model where there are
two adversaries that operate separately but simultaneously, each of them corrupting one of
the parties and a restricted subset of servers that they interact with. We model security
via the local universal composability framework introduced by Canetti and Vald and we
show that information-theoretically secure two-party computation is possible if and only
if there is always at least one server which remains uncorrupted.

∗The authors acknowledge support from the Danish National Research Foundation and The National Science
Foundation of China (under the grant 61361136003) for the Sino-Danish Center for the Theory of Interactive
Computation and from the Center for Research in Foundations of Electronic Markets (CFEM), supported by
the Danish Strategic Research Council.

0

1 Introduction

This paper considers secure computation, where two parties (Alice and Bob) hold inputs and
want to compute an agreed upon function on those inputs in such a way that the intended
output is the only new information released.

More specifically our goal is to implement secure two-party computation with information
theoretic security. It is well-known that this is impossible without assuming either prepro-
cessing, additional auxiliary functionalities, or help from additional parties. The reason why
shooting for unconditional security is nevertheless interesting is that information theoretic
methods are typically computationally much more efficient than the heavy public-key machin-
ery ones needs for the two-party case if no additional help is assumed. In our approach, we
assume that the two parties get help from n servers. This is essentially the client-server model
of MPC introduced in [DI06], with 2 clients and n servers.

The main point where we depart from earlier work in this model is in the way we model
adversarial behaviour. The standard model assumes one adversary who may corrupt one of
the clients and some number of servers, typically some constant fraction of them. If we want
unconditional security, we need to assume an honest majority (or Q2 for general adversary
structures [HM00]).

In this paper, we ask whether we can tolerate more corruptions and still have unconditional
security, if we assume two adversaries, A,B that operate separately, but simultaneously. We
will characterise the capabilities of these adversaries by two anti-monotone families of server
subsets A,B, so-called adversary structures.

We think of these adversary structures as follows: we want to design protocols such that
if you manage to corrupt Alice and a set of servers in A, you have of course broken Alice’s
privacy, but you should not be able to break Bob’s – and vice versa for B.

More concretely, A is allowed to corrupt Alice and a set of servers A ∈ A (it may decide
to not corrupt servers). Corruption may be semi-honest or malicious. Likewise we allow B to
corrupt Bob and a set B ∈ B. We call this the double adversary model. An obvious question
now is how we should define security for a protocol in this model. To this end, one can first
observe that if either A or B decide to not corrupt anyone, we are back in the standard single
adversary model and security means what it usually does. But we also define meaningful
security requirements in the more general case where both adversaries operate at the same
time. Loosely speaking, we require that an adversary should learn as little information as
possible and be unable to affect the result achieved by parties that he did not corrupt. We
will discuss this in more detail in a moment. Our main result gives a positive answer to the
above question: it says that secure computation is possible in our model even in cases where
all but one of the servers has been corrupted by one of the two adversaries, and moreover, this
is the best we can hope for.

Theorem 1.1 (informal). The pair (A,B) is said to be R2 if for any A ∈ A, B ∈ B, A∪B is
not the entire set of servers. Two-party computation is possible in the double adversary model
w.r.t. adversary structures A and B if and only if (A,B) is R2.

The R2 property looks syntactically a bit like the well known Q2 property for a single
adversary structure, introduced by Hirt and Maurer [HM00]1. Q2 is necessary and sufficient
for statistically secure MPC in the single adversary case (assuming a broadcast channel).
Interestingly, however, there are examples of pairs (A,B) that are R2, nevertheless neither A
nor B is in Q2 (we provide an example below).

For the case of threshold adversary structures, where we assume that Alice can corrupt at
most tA servers, and Bob can corrupt at most tB, R2 means that tA + tB < n.

1A is Q2 if for all A,B ∈ A, A ∪B is not the set of all players.

1

However, more general cases may occur as well: assume, for instance, that there is a cost
associated with corrupting each server - which does not have to be the same for all servers.
Now, if both adversaries have a certain budget they can spend, this corresponds to certain
adversary structures containing the sets that they can corrupt. In this case the R2 condition
intuitively says that the joint wealth of the adversaries is limited to some extent.

We can already now observe that one part of the Theorem is easy to show, namely if
(A,B) is not R2 then we cannot hope for an unconditionally secure protocol. This is simply
because a secure protocol for a non-R2 case would imply general 2-party unconditionally
secure computation in the standard model which is well known to be impossible. This follows
by a standard emulation argument: Consider semi-honest corruption and assume we have a
multiparty protocol secure against corruption of Alice as well as server set A by A and Bob as
well as server set B by B, where A ∪B is the full set of servers. Then the entire protocol can
be emulated by two players where one plays for Alice and servers in A while another plays for
Bob and servers in B. This would give us a secure two-party protocol in the standard model.

Techniques and Details We now discuss our security notion. As we said, the corruption
(if any) done by A,B may be semi-honest or malicious, but not all combinations make sense.

• The first case is when B does semi-honest corruption. This means that Bob will follow
the protocol. Then we require that Bob gets correct output, no matter what A does.
Furthermore, we require that A learns a minimal amount of information, which means
that A learns (of course) Alice’s private input, but nothing more, even under malicious
corruption.

• The second case is when B is malicious. Note that we do not put restrictions on the
behaviour of malicious parties, and hence B could choose to send out his entire view to
all players. This means that A would see information from a set in A and Alice’s view
as well, in addition to information from its own corruptions. Therefore, in general, we
cannot hope to keep anything private from A in such a case. But a special case where
we can give a guarantee is when A corrupts no one, since then it will of course learn
nothing more than B.

Conditions symmetric to the above two are required when A is semi-honest, respectively
malicious.

We will not treat the case where both adversaries are malicious: since they can choose
to broadcast everything they know, it does not make sense to consider this as two separate
adversaries.

A technical detail we need to handle is that it may be the case that both adversaries
corrupt the same server. In that case we just assume that both players see the entire view of
the server in question. So, in particular, if A is semi-honest and B is malicious, A can see the
potentially malicious behaviour of B in that server.

In all cases, we formalise the above ideas using the notion of Universal Composability with
local adversaries of Canetti and Vald [CV12]. This allows us to consider separate adversaries
and also to give guarantees for composition. On the other hand, some technical issues arise
with respect to how we define the ideal functionality we implement, see more details within.

For the case of semi-honest adversaries, we obtain a very simple protocol that is polynomial
time (in n) if both A and its dual structure admits polynomial size linear secret sharing
schemes. Our protocol for the malicious case is considerably more involved. The difficulty
comes from the fact that none of the adversary structures may be Q2, as mentioned above, and
this means that we cannot directly use known solutions for verifiable secret sharing to commit
the players to values they hold. Therefore, we cannot make our semi-honest solution be secure
in the standard way. Instead, we use specially engineered linear secret sharings schemes for the

2

two adversary structures to construct a protocol for oblivious transfer (OT) [Rab81, EGL82],
and use the fact that OT is complete for two-party computation [Kil88]. The idea for our
OT protocol is to let each of the servers implement an OT, which may be faulty because of
the corruptions, and we suggest a new technique to make a secure OT from these n imperfect
ones.

In this regard, our notion is similar to that of OT combiners [HKN+05, HIKN08]. In that
model there are also two parties and n servers and where each server is used to implement an
OT. The difference with our model is that the adversary can either only corrupt the sender
and up to ts servers or only corrupt the receiver and up to tr servers.
Our work can be thus seen both as a generalization of OT combiners and also as an extension
of general adversary structures.

2 Q2 structures and R2 pairs of structures

We denote by Pn the set of integers {1, 2, . . . , n}. Furthermore, 2Pn is the family of all subsets
of Pn.

Definition 2.1. An antimonotone (or adversary) structure A ⊆ 2Pn is a family of subsets of
Pn such that: (i) ∅ ∈ A, (ii) A ∈ A, B ⊆ A⇒ B ∈ A.

An adversary structure A is determined by its maximal sets, i.e., all sets S ∈ A such
that for every superset T (S ⊂ T ⊆ Pn), T /∈ A. By abuse of notation when we write
A := {S1, . . . , Sm} we mean that A is the adversary structure with maximal sets S1, . . . , Sm,
i.e., A consists of S1, . . . , Sm and all their subsets.

Definition 2.2. We say that an adversary structure A is Q2 if for all A,B ∈ A, we have
A ∪B 6= Pn.

Definition 2.3. We say that a pair (A,B) of adversary structures is R2 if for all A ∈ A,
B ∈ B, we have A ∪B 6= Pn.

We would like to note that R2 is a generalization of Q2. More precisely, the pair of
adversary structures (A,A) is R2 if and only if A is Q2.

Lemma 2.4. There exist adversary structures A,B such that neither A nor B are Q2, however
the pair (A,B) is R2.

Indeed, consider the following example: n := 4, A := {{1, 2}, {3, 4}}, B := {{1, 3}, {2, 4}}.

Definition 2.5. For an adversary structure A, the dual adversary structure Ā is defined as
follows: A ∈ Ā if and only if Ā 6∈ A, where Ā = Pn \A.

Lemma 2.6. If (A,B) is R2, then B ⊆ Ā.

Indeed, if B ∈ B, then B̄ 6∈ A by R2, and then B ∈ Ā by definition of the dual adversary
structure.

3 Secret sharing

Our protocols make use of secret sharing, a well-known cryptographic primitive introduced by
Shamir [Sha79] and, independently, Blakley [Bla79]. We recall some terminology and results
which will be needed later on. Let S be a secret sharing scheme with n shares, that we index
with the set Pn = {1, . . . , n}.

3

We say that a set A ⊆ Pn is unqualified if the set of shares corresponding to A gives no
information about the secret. Note that the family A ⊆ 2Pn of all unqualified sets of a secret
sharing scheme is an adversary structure. We then say this family is the adversary structure
of S. A set A ⊆ Pn is qualified if the set of shares corresponding to A uniquely determines
the secret. The family of all qualified sets is called the access structure of S. We say that a
secret sharing scheme is perfect if every set A ⊆ Pn is either qualified or unqualified (there
are no sets of shares which give partial information about the secret).

For a secret sharing scheme S, ShareS is a probabilistic algorithm that takes as input s
and outputs a valid sharing for it. We also define ReconstructS , an algorithm that takes as
input a set of pairs {(i, ai) : i ∈ A} where A ⊆ Pn and for every i, ai is an element of the
space of shares corresponding to player i and outputs s if A is a qualified set for S and the
values ai, i ∈ A are part of a valid sharing of the secret s, and outputs ⊥ otherwise (note that
if A is qualified, at most one secret can be consistent with the values {ai : i ∈ A}).

Let F be a finite field. A linear secret sharing scheme S (over F), LSSS for short, is defined
by a sequence of integers `0, `1, . . . , `n ≥ 1 and matrices Mi ∈ F`i×(`0+e) for some integer e ≥ 0.
The space of secrets is then F`0 and the space of the i-th shares is F`i for i = 1, . . . , n; on input
a secret s ∈ F`0 , the sharing algorithm ShareS chooses a uniformly random vector u ∈ Fe and
outputs the shares vi = Mi · (s,u)T ∈ F`i .

Let ` =
∑n

i=1 `i, and let M ∈ F`×(`0+e) be the matrix resulting of stacking the matrices
M1,M2, . . . ,Mn on top of each other, in this order. We use the notation [s,u]S as a shorthand
for M · (s,u)T , which is the concatenation of the shares corresponding to secret s and random-
ness u. When we do not need to make the randomness explicit, then we write [s]S . Moreover,
we say that ` is the complexity of the LSSS. We note that ShareS runs in polynomial time in
`.2 It is easy to see that we can define an algorithm ReconstructS , based on solving systems
of linear equations, that runs in polynomial time in `.

It is a well known result from [ISN87] that every adversary structure is the adversary
structure of a LSSS.

Theorem 3.1. For every finite field F and integer `0 ≥ 1 and for every adversary structure A
there exists a perfect linear secret sharing scheme (LSSS) SA with secrets in F`0 and adversary
structure A.

In general the complexity of the LSSS SA in [ISN87] is exponential in n.
We say that a LSSS is ideal if `i = 1 for all i.3 The complexity of an ideal LSSS is n,

which is smallest possible. Given a field F and an adversary structure A, it is not necessarily
true that there exists an ideal LSSS over F with A as its adversary structure. In fact, there
are families of adversary structures A such that for any finite field F, the smallest complexity
of an LSSS with A as its adversary structure is superpolynomial in n. See [Bei11] for more
information.

4 Security Model

Our model is the client-server model. We have two clients who wish to realize secure com-
putation with the aid of n servers. Each client can corrupt a certain set of servers and its
corruption capability is defined by an adversary structure. In this paper, we ignore the case
where servers are corrupted by an entity which is not one of the players. In our protocol,
we will first consider cases where only one player is malicious and corrupts servers while the
other player is honest and does not corrupt servers. We will prove security of our protocol in

2Technically, we need e to be polynomial in `. But this can be assumed without loss of generality: if e is
not polynomial in ` we can find e′ polynomial in ` and M ′ ∈ F`×(`0+e′) that generate the same LSSS.

3We include the case in which some shares are dummy, i.e., always zero.

4

the Universal Composability (UC) framework, introduced by Canetti [Can01]. We will then
also consider the case where they both are corrupted, one semi-honestly and the other either
in a malicious or semi-honest fashion, and where in addition both may corrupt servers. We
will use the Universal Composability with Local Adversaries framework (abbreviated by Local
Universal Composability or LUC), introduced by Canetti and Vald, to prove security in those
cases.

Universal Composability is based on the simulation paradigm. Roughly, the idea is to
compare the execution of the actual protocol (the real world) with an idealized scenario (the
ideal world) in which the computations are carried out by a trusted third party (the ideal
functionality) which receives inputs from and hands in outputs to the players. The goal
is to show that these two worlds are indistinguishable. In order to formalize this goal, we
introduce a party called the environment Z, whose task is to distinguish between both worlds.
Furthermore, in the ideal world, we introduce a simulator S, its task being to simulate any
action of the adversary in the real protocol and thereby to make the two views indistinguishable
for any environment. More precisely, in the real world execution of protocol π, with the
adversary A and environment Z, the environment provides input and receives output from
both A and π. Call RealA,π,Z the view of Z in this execution. In the ideal world Z provides
input and receives output from S and the ideal functionality F . Call IdealS,F ,Z the view of
Z in the ideal execution.

We can proceed to define what it means for a protocol to be secure.

Definition 4.1. A protocol π UC-implements a functionality F if for every adversary A there
exists a simulator S such that for all environment Z,

RealA,π,Z ≈ IdealS,F ,Z .

The cornerstone of the universal composability framework is the composition theorem,
which works as follows. Denote by π ◦G a protocol π that during its execution makes calls to
an ideal functionality G. The composition proof shows that if πf ◦G securely implements F
and if πg securely implements G then πf ◦πg securely implements F . This provides modularity
in construction of protocols and simplifies proofs dramatically. It is also shown that proving
security against a dummy adversary, one who acts as a communication channel, is sufficient
for proving general security.

Universal Composability as we have described it so far considers a single real-world adver-
sary which corrupts parties and chooses their behaviour to attack the protocol and a single
ideal-world simulator which generates a view consistent for the given real world adversary.
However, this notion does not capture the case where there are more than one “local” adver-
saries which do not work together or more precisely do not share a view of the system. This
means that Universal Composability does not allow us to deal with certain notions of security
such as collusion freeness, anonymity, deniability, confinement or security in game-theoretic
scenarios.

To capture such a notion, Canetti and Vald [CV12] defined the notion of Local Universal
Composability. Roughly speaking, instead of having a single adversary which corrupts partic-
ipants, there are multiple adversaries, each of whom can only corrupt a single participant. In
the ideal world, each adversary will be replaced by a simulator. The simulators can only com-
municate with each other either through the environment or through the ideal functionality.
Local universal composability also considers hybrid models.

Canetti and Vald describe the power of their notion as follows: “If π is a LUC-secure
protocol that implements a trusted party F then each individual entity participating in π affects
each other entity in the system no more than it does so in the ideal execution with F .” A
general composition theorem is provided which allows the replacement of an ideal functionality
with a protocol which implements it. In addition, it is also proven that security with respect

5

to dummy adversaries implies security against a general adversary. Let us denote the parties
as { Pi : i ∈ I }. As mentioned above, to each party Pi corresponds an adversary Ai and a
simulator Si.

Definition 4.2. π LUC implements F if for every PPT A = ∪i∈ĪAi where Ī ⊆ I, there exists
a PPT S = ∪i∈ĪSi such that for any PPT Z, we have that IdealS,F ,Z ≈ RealA,π,Z .

In our case, since we consider the possibility where both players are semi-honest, it must
be the case that the simulators are able to get shares to each other. Since the simulators
can only communicate to each other via the ideal functionality or the environment and the
environment is untrustworthy, it must be the case that these values can be extracted from the
ideal functionality.

5 A protocol for semi-honest adversaries

As a warm-up, we sketch a simple protocol that allows secure computation for semi-honest
adversaries, simultaneously corrupting adversary structures A and B, as long as (A,B) is R2.

We introduce the following notation: for two vectors a = (a1, a2, . . . , an),b = (b1, b2, . . . , bn)
of the same length, we define a ∗b = (a1b1, a2b2, . . . , anbn), their coordinatewise product, and
a⊗ b = (a1b1, a1b2, . . . , a1bn, . . . , anbn), their Kronecker product.

Let SA be a perfect LSSS for adversary structure A and with secrets in a finite field F,
according to Theorem 3.1. It follows from a construction in [CDM00] that from SA we can
build an LSSS S̄A for Ā, and that furthermore, for any secrets s, s′, we have that

[s,u]SA ∗ [s′,v]S̄A = [ss′,u⊗ v]ŜA , (1)

where ŜA is an LSSS determined by SA, in which the set of all players is qualified. Indeed,
for this scheme, the sum of all shares is the secret. Note that in [CDM00], it is assumed that
the adversary structure is Q2, but this assumption is only used there to guarantee that Ā is
contained in A, which we do not need. Equation (1) holds even if A is not Q2. The idea of
the protocol is now as follows: Bob believes that Alice may corrupt a set of servers that is in
A (but nothing more), so he is happy to share a secret among the servers using SA. Alice,
on the other hand, believes that Bob may corrupt a set in B, but by the R2 condition and
Lemma 2.6, we have that B ⊆ Ā, so Alice will be happy to share a secret among the servers
using S̄A. This and equation (1) will imply that we can implement multiplication of a value
from Alice and one from Bob.

We will represent a secret value x ∈ F in the computation in additively shared form: we
will write < x > to denote a pair (xA, xB) with x = xA + xB where Alice holds xA and Bob
holds xB. Usually the pair will be randomly chosen such that the sum is x, but we suppress
the randomness from the notation for simplicity. We define the sum < x > + < y > via
component wise addition to be the pair (xA + yA, xB + yB) and multiplication by a public
constant similarly. Then we trivially have < x > +α < y >=< x+ αy >.

We then define a protocol (see Figure 1) for computing securely an arithmetic circuit over
F; the parties define representations of their inputs and then work their way through the
circuit using the subprotocols for addition and multiplication, as appropriate. In the end the
outputs are revealed.

It is trivial to see that this protocol computes correct results since both parties follow the
protocol. Informally, privacy holds because one party always uses a secret sharing scheme for
which the other party can only corrupt an unqualified set. Furthermore, the set of n values
received by Bob in the Multiplication subprotocol is easily seen to be a set of uniformly random
values that reveal no side information.

6

Semi-honest Secure Protocol.

Input If Alice holds input x, we define < x >= (x, 0), if Bob holds y, we define < y >= (0, y).

Addition Given < a >,< b >, Alice and Bob compute < a > + < b >=< a + b > by local
computation.

Multiplication by constant Given α and < a >, Alice and Bob compute α < a >=< αa > by
local computation.

Multiplication Subprotocol Assuming Alice holds a and Bob holds b, we want to compute a
random representation < ab > without revealing any information on a or b. Alice creates a
set of shares [a,u]S̄A for random u and sends the i-th share to Si. Similarly Bob creates and
distributes [b,v]SA . Finally Alice chooses a random r ∈ F and random r1, ..., rn subject to
r = r1 + ...+ rn, and sends ri to Si.

Let ai, bi be the shares of a, b received by Si. He now computes wi = aibi − ri and sends it
to Bob, who computes

∑
i wi. The final representation is defined to be < ab >= (r,

∑
i wi).

Multiplication Given < x >= (xA, xB), < y >= (yA, yB), we want to compute a representation
< xy >. Execute the above Multiplication subprotocol twice. First, with (a, b) = (xA, yB)
to get < xAyB >= (a1, b1) and second, with (a, b) = (yA, xB) to get < yAxB >= (a2, b2).
Then we define the output to be

< xy >= (xAyA + a1 + a2, xByB + b1 + b2)

Figure 1: Semi-honest Secure Protocol

One might imagine that the semi-honest secure protocol could be made secure against
malicious adversaries in the standard way, i.e., by using verifiable secret sharing to commit
parties to the values they hold and in this way allow them to prove that the protocol was
followed. However, verifiable secret sharing requires (at least) that the adversary structure
used is Q2, and as we have seen this may not satisfied for any of the two adversary structures.
Therefore, we follow a different approach in the following section.

6 The protocol

In this section we present our main oblivious transfer protocol. We assume again that the
adversary structures A and B satisfy that (A,B) is R2.

To simplify the exposition, we first assume that A is the adversary structure of a perfect
ideal linear secret sharing scheme S over the field of two elements F2 = {0, 1}, and later we
give a more general version of our protocol that does not impose this “ideality” requirement
on A.

Let M be the space of messages. Without loss of generality assume M = Fm2 for some
positive integer m. We fix a default message 0 ∈M (for example if we see the elements ofM
as bit strings of certain length, we can take 0 to be the all-zero string).

Given S, we construct two more perfect ideal LSSS that we call S0 and S1, whose space of
secrets isM and which are defined on a set of 2n players indexed by the set Pn,2 := {(i, j) : i ∈
{1, . . . , n}, j ∈ {0, 1}}. These schemes are defined as follows. Let V0 = {[0,u]S : u ∈ Fe2} ⊆ Fn2
be the set of all possible sharings of 0 with the scheme S. That is, v = (v1, . . . , vn) be-
longs to V0 if there exists a sharing of 0 with S, where each player i receives vi. Similarly
let V1 = {[1,u]S : u ∈ Fe2} ⊆ Fn2 be the set of all possible sharings of 1 with S. Now, we
take S0 to be a secret sharing scheme whose minimally qualified sets are exactly the sets
{(1, v1), . . . , (n, vn)} ⊆ Pn,2 with (v1, . . . , vn) ∈ V0. Obviously this means that every set
{(1, w1), . . . , (n,wn)} with (w1, . . . , wn) /∈ V0 is unqualified. Similarly, the minimally qualified

7

sets of S1 are the sets {(1, v1), . . . , (n, vn)} ⊆ Pn,2 with (v1, . . . , vn) ∈ V1. Note that S0,S1 are
guaranteed to exist by Theorem 3.1 and that they do not need to be ideal.

Then we construct the protocol πOT as described in Figure 2.

Oblivious transfer protocol πOT

1. Alice independently creates sharings [m0]S0 = (m
(i,j)
0)i∈{1,...,n},j∈{0,1} and [m1]S1 =

(m
(i,j)
1)i∈{1,...,n},j∈{0,1} for her inputs.

Bob creates a sharing [b]S = (b1, . . . , bn) of his input. Note that each bi ∈ {0, 1} because S
is an ideal scheme.

During the whole protocol, the servers Si will ignore any message that is not of the form
specified by the protocol.

2. Bob sends (Bob-share, i, bi) to server Si.

3. Si sends (ready, i) to Alice.

4. After Alice has received (ready, i) from every server Si, she sends the messages

(Alice-share, i, u0
i , u

1
i) to each server Si where u0

i := m
(i,0)
0 ||m(i,0)

1 and u1
i = m

(i,1)
0 ||m(i,1)

1 .

5. Server Si sends (output, i, ubii) to Bob.

6. If for any i, ubii /∈M2, then Bob outputs 0. Otherwise, Bob parses each ubii as m
(i,bi)
0 ||m(i,bi)

1 .

If b = 0, Bob constructs m0 by applying ReconstructS0({((i, bi),m(i,bi)
0) : i ∈ Pn}).

If b = 1, Bob constructs m1 by applying ReconstructS1({((i, bi),m(i,bi)
1) : i ∈ Pn}).

In any of the cases, if the reconstruction fails, output 0. Otherwise output the reconstructed
mb.

Figure 2: Protocol πOT

In the following we will prove the next theorem.

Theorem 6.1 (informal). If (A,B) is an R2 pair of structures, the protocol πOT is an uncon-
ditionally secure protocol that implements OT between Alice and Bob in the setting above.

Note, first of all, that if Alice and Bob follow the protocol honestly, at the end of the pro-

tocol Bob will have received all values m
(i,bi)
b , i = 1, . . . , n, for some sharing [b]S = (b1, . . . , bn).

Since {(1, b1), . . . , (n, bn)} ∈ Vb, by definition it is a qualified set for Sb and hence Bob has
enough information to reconstruct mb.
We will first show that this protocol implements securely the functionality FOT described in
Figure 3 in the Universal Composability framework. This will serve both as a warm up and a
reference when we prove security in the Local Universal Composability framework.

Functionality FOT

1. On input (transfer, b) from Bob, send (ready) to Alice.

2. On input (send,m0,m1) from Alice, if (transfer, b) has been received previously from Bob,
send (sent,mb) to Bob.

Figure 3: Functionality FOT

8

Theorem 6.2. The protocol πOT UC-implements the functionality FOT .

Proof.
Alice honest, Bob malicious:

The idea of this simulation is to have the simulator extract the environment’s input by
applying the reconstruction procedure of S to the shares bi received from the environment. By
the R2 property, these shares can be consistent with at most one b. If in fact Bob is bound to a
bit b, this is sent to the functionality and the value mb is received and the simulator generates
random values for the shares associated to a random m1−b. Otherwise mb, generates shares
for random m0,m1.

We need two lemmas. The first uses the R2 property to argue that the set of servers
uncorrupted by Bob is qualified in the scheme S and therefore no matter what he sends to
the uncorrupted servers, this can be consistent with at most one possible input.

Lemma 6.3. If (A,B) is an R2 pair of structures, and S is a perfect secret sharing scheme
with A as its adversary structure, then for every B ∈ B, its complement B is qualified in S.

This is obvious since by definition of R2 pair, B /∈ A. Our second lemma will be used to
guarantee the privacy of Alice’s input.

Lemma 6.4. Let m0, m1 be shared independently with S0, S1 respectively. For c = 0, 1, let

m
(i,j)
c be the sharing of mc with Sc. Let B ⊆ {1, . . . , n} and (b′1, . . . , b

′
n) ∈ Fn2 , and define

I ′ = {(i, b′i) : i ∈ B} ∪ {(i, j) : i ∈ B, j ∈ {0, 1}}.
If the set {b′i : i ∈ B} is not part of any sharing [c]S then the values m

(i,j)
0 , m

(i,j)
1 , (i, j) ∈ I ′

give no information about mc. I.e., for any m ∈ M, the values m
(i,j)
c , (i, j) ∈ I ′ have the

same distribution as the values m(i,j), (i, j) ∈ I ′ in a random sharing of m according to Sc.

Proof.
Since the sharings of m0 and m1 are independent, this amounts to proving that the set I ′ is

unqualified for Sc. But if I ′ was qualified for Sc it would contain a set {(1, v1), . . . , (n, vn)} ⊆
Pn,2 with (v1, . . . , vn) ∈ Vc. However then necessarily vi = b′i for all i ∈ B and that would
mean {b′i : i ∈ B} belongs to a sharing [c]S which is a contradiction.

4
We now describe the simulator Sim. We will suppose without loss of generality that cor-

rupted servers act as a dummy adversary. Let B denote the set of corrupted servers.

First, Sim awaits (ready, i) for i ∈ B and that the environment has sent bi for each i ∈ B.
Then Sim executes ReconstructS({(i, bi) : i ∈ B}). If the reconstruction fails then Sim
chooses random messages m̃0, m̃1. If the reconstruction succeeds, let b be its output; then
Sim sends the command (transfer, b) to FOT , receives message (sent,mb) and sets m̃b := mb;
it selects a random message m̃1−b ∈M.

In any case, Sim generates shares for m̃0 using S0 and shares for m̃1 using S1. It creates the

values u0
i := m̃

(i,0)
0 ||m̃(i,0)

1 and u1
i = m̃

(i,1)
0 ||m̃(i,1)

1 . Finally, in parallel Sim sends the following

to the environment: for each i ∈ B, he sends (output, i, ubii) and for each i ∈ B, he sends
(Alice-share, i, ui0, u

i
1).

In order to prove indistinguishability, we should first note that, by Lemma 6.3, the set B
is qualified for S and hence, the values {bi : i ∈ B} cannot be part of both a sharing [0]S and
a sharing [1]S . It is now easy to see, by Lemma 6.4, that the distribution of shares received
by Z in the simulation is indistinguishable from the distribution of shares received in the real
world.

9

Alice corrupt, Bob honest:

The simulation in this case is slightly tricky, since a potential problem of the protocol
is that Alice can generate inconsistent shares which make Bob’s output dependent on his
selections (that is, on the random sharing of his input). We show, perhaps surprisingly, that
this does not affect the security of the protocol. Essentially, the simulator will generate one
sharing for b = 0 and one for b = 1 such that the shares corresponding to the corrupted servers
coincide. The simulator will then construct the value that a receiver would construct for each
of these two sharings and will send these values to the functionality. This results in a view in
the ideal world which is perfectly indistinguishable from the real world, due to the privacy for
the set of corrupted servers.

We will suppose without loss of generality that corrupted servers act as dummy adversary.
We denote by A the set of uncorrupted servers and note that A ∈ A. The simulator works as
follows.

Upon receiving (ready) from the ideal functionality FOT , Sim generates uniformly random
sharings of b = 0 and b′ = 1 in S subject to the only condition that if i ∈ A, then bi = b′i.
Note that this is possible since for any A, it is unqualified for S. Then, in parallel Sim sends
to the environment the message (ready, i) for each i and the message (Bob-share, i, bi) for
each i ∈ A. Sim now awaits that for each i ∈ A, the environment sends u0

i and u1
i and that

for each i ∈ A the environment sends ubii .

If any uji is not an element ofM2, then, Sim does the following: if bi = j, set m0 = 0, and

if b′i = j, set m1 = 0. For the rest of the uji , Sim does the following: Sim parses, for i ∈ A, u0
i

as m
(i,0)
0 ||m(i,0)

1 and u1
i as m

(i,1)
0 ||m(i,1)

1 . Sim also parses, for i ∈ A, ubii as m
(i,bi)
0 ||m(i,b′i)

1 (again,
note bi = b′i for i ∈ A).

If m0 is not already set to 0 then Sim computes m0 = ReconstructS0({((i, bi),m(i,bi)
0) : i ∈

Pn}) and if m1 is not already set to 0, Sim computes m1 = ReconstructS1({((i, b′i),m
(i,b′i)
1) :

i ∈ Pn}). If the reconstruction of m0 (respectively m1) fails, Sim sets m0 = 0 (resp. m1 = 0).
Finally, it sends the command (send,m0,m1) to FOT .

By construction, the shares bi corresponding to the set A of corrupt servers that the
environment receives are indistinguishable from the A-shares in a uniformly random sharing
of b, regardless of whether b = 0 or b = 1. Hence these bi do not allow the receiver to dis-
tinguish the real and ideal world. Now, since after that step there is no further interaction,
it suffices to show that the messages sent to the simulator are indistinguishable from the real
world.

This is the case since the shares have been chosen with the same distribution as Bob would
have and since the simulator reconstructs the messages m0 and m1 in exactly the same way as
Bob would reconstruct mb in the real protocol, if b is his input. Therefore the real and ideal
world are indistinguishable. 4

We note that the simulators given in the proof above run in polynomial time in the max-
imum of the complexities of S0 and S1.

Finally, we remark that the Oblivious Transfer protocol we have presented can easily be
extended to the case where there does not exist an ideal secret sharing scheme for Alice’s
adversary structure.

Theorem 6.5. If (A,B) is an R2 pair of structures, there exists an unconditionally secure
protocol that implements OT between Alice and Bob in the setting above.

10

Proof.
We give a complete description of the protocol in Appendix A. The basic idea is that

instead of using each server as a faulty OT box for a single transfer, Alice and Bob will use
each server multiple times. The number of faulty calls to a server will depend on the size of
the share associated to that server.

More precisely, let SA be a secret sharing scheme with adversary structure A. Bob will
randomly secret share his input with SA. Note that instead of having a single bit associated
to each share, Bob now has a `i-bit string for each server. The i-th server will be used to
execute `i OTs.

We then construct in the same fashion as before two secret-sharing scheme S0,S1 based
on SA so that Alice can share her input in such a way that Bob, by requesting an OT value
for each bit of the share associated to an honest server, can only reconstruct one of the two
secrets.

In this case, we can see that correctness holds. By virtue of the privacy of S, Bob’s value
is private and by virtue of the construction of S0 and S1 Alice’s input is private. 4

7 Local Universal Composability

In this section, we will prove the security of our protocol in the Local Universal Composability
model.

7.1 Oblivious Transfer Functionality

We will denote C = {Malicious,Semi-honest,Honest}. The functionality FLOT will be the
composition of three ideal functionalities: one center box, denoted by FCIOT , and two outer-
boxes, denoted by IHHA and IHHB respectively. The local simulator SimA for A (respectively
SimB for B) will communicate with IHHA (respectively IHHB) only.

Each of the outer boxes will know the level of corruption of both players. IHHA will learn
the level of corruption of Alice directly from the local simulator SimA, while it will learn the
level of corruption of Bob via the functionality FCIOT . The same (but with the roles swapped)
will hold for IHHB.

The goal of the outer boxes is to hide from the local simulators whether the other party is
honest, semi-honest or malicious (we use the acronym HH to denote honesty-hiding). This is
done because having a functionality which would reveal the corruption level of the simulator
would be useless for constructing protocols. This means that the outer boxes must simulate
the case of a semi-honest party when the party in question is honest. A case-by-case (according
to the corruption levels cA and cB) description of FLOT can be found in Appendix B.

We will now argue that this ideal functionality is indeed one that we want to implement
securely. Consider first the usual scenario where one of the players is honest. If both are
honest then the functionality just implements OT as usual. If one of the players is honest and
the other is not, the non-honest side obtains certains shares belonging to a sharing of some
random element (which is therefore not related to the inputs) plus, in the case where Alice is
honest and Bob is semi-honest, part of a sharing of the output, but this is already known.

Now we consider the case where none of the players are honest. In this case, our model
forces us to communicate to the local simulators part of a “real” sharing of the actual inputs
of the other player. This is because the information that the environment will receive from
both SimA and SimB has to be consistent (as it happens to be in the real world). Note that,
however, the sets of received shares give information about at most one of the inputs of Alice,
and are information theoretically independent of the rest of inputs. Also note that, in the

11

Functionality IHHA

• It awaits (corrupt, cA, A) from SimA, where cA ∈ C, and forwards it to FCIOT .
It then awaits (corrupt, cB) from FCIOT .

• If cB 6= Honest or cA = cB = Honest, then act as a communication channel between SimA

and FCIOT .

• Otherwise (if cA 6= Honest and cB = Honest), on input (ready) from FCIOT :

– It selects b′ ∈ {0, 1} uniformly at random and generates a sharing [b′]S = (b′i)i∈Pn
.

– For each i ∈ A it sends (Bob-share, i, b′i) to SimA. For each i /∈ A, it sends (ready, i)
to SimA.

– On receipt of (send,m0,m1) from SimA, it forwards it to FCIOT .

Figure 4: Functionality IHHA

Functionality IHHB

• On input (corrupt, cB , B) from SimB where cB ∈ C, and forwards it to FCIOT . It then
awaits (corrupt, cA).

• If cA 6= Honest or cA = cB = Honest, act as a communication channel between FCIOT and
SimB .

• Otherwise (if cA = Honest and cB 6= Honest):

– It awaits (Bob-share, i, bi) for all i from SimB .

– On receipt of (transfer, b) from SimB , it forwards it to FCIOT .

– On receipt of (sent,mb) from FCIOT , it selects a random m′1−b ∈ M and generates

random sharings [mb]Sb = (m
(i,j)
b)(i,j)∈Pn,2

and [m′1−b]S1−b
= (m′

(i,j)
1−b)(i,j)∈Pn,2

.

It creates the concatenations uji , (i, j) ∈ Pn,2 as it would happen in the protocol, i.e.,

uji = m
(i,j)
b ||m′(i,j)

1−b if b = 0 and uji = m′
(i,j)
1−b ||m

(i,j)
b if b = 1).

For each i ∈ B, it sends (Alice-share, i, u0
i , u

1
i) to SimB and for each i 6∈ B, it sends

(output, i, ubii) to SimB .

Figure 5: Functionality IHHB

malicious case, more shares are leaked to the non-malicious side, but this is ok because we
cannot guarantee privacy for the malicious player.

Theorem 7.1. πOT LUC-implements FLOT .

We now describe how each of the local simulators works. Later on, we will show the
indistinguishability between the real world and the ideal world with these simulators.

7.2 Simulator

7.2.1 Description of SimA

• First, the simulator awaits (corrupt, cA, A) and forwards it to IHHA. It also takes note
of this tuple.

• If cA = Honest, it awaits (ready) from the functionality and forwards it to the environ-
ment. It then awaits (send,m0,m1) from the environment and sends it to IHHA and
ignores any other message.

12

Functionality FCIOT

• On input (corrupt, cA, A) from IHHA, where cA ∈ C:
The ideal functionality checks that A ∈ A. If cA = Honest, it also checks that A = ∅. If
some of these checks fails, then it ignores further commands.

Otherwise, it stores (cA, A).

• On input (corrupt, cB , B) from IHHB, where cB ∈ C:
The ideal functionality checks that B ∈ B. If cB = Honest, it also checks that B = ∅. If
some of these checks fails, then it ignores further commands.

Otherwise, it stores (cB , B).

• The ideal functionality sends (corrupt, cA) to IHHB and (corrupt, cB) to IHHA.

• On input (transfer, b) from IHHB, send (ready) to IHHA.
On input (send,m0,m1) from IHHA, if (transfer, b) has been received previously from
IHHB, send (sent,mb) to IHHB.

• If cA = Semi-honest:
On command (Bob-share, i, bi) from IHHB: if i ∈ A it sends (Bob-share, i, bi) to IHHA;
otherwise, it sends (ready, i) to IHHA.

• If cB = Semi-honest:
On command (Alice-share, i, u0

i , u
1
i) from IHHA: if i ∈ B, it sends (Alice-share, i, u0

i , u
1
i)

to IHHB; otherwise, it sends (output, i, ubii) to IHHB.

• If cA = Malicious:
Any command from IHHA is directly forwarded to IHHB.

• If cB = Malicious:
Any command from IHHB is directly forwarded to IHHA.

Figure 6: Functionality FCIOT

• If cA = Semi-honest, on receiving a share bi or a message (ready, i) from IHHA, it
forwards them to the environment. It also forwards any other message from IHHA that
contains and index i with i ∈ A to the environment4. It then awaits the message
(send,m0,m1) from the environment. It sends the message (send, m0, m1) to IHHA.
It then generates the values {(u0

i , u
1
i)} from (m0,m1) as in the protocol. It sends these

values to the environment and it sends the messages (Alice-share, i, u0
i , u

1
i) to IHHA

for all i.

• If cA = Malicious, during its whole interaction with the environment, on reception of
messages from the environment it checks that they contain a unique index i correspond-
ing to a server. For each message, if this does not happen or if i /∈ A (unless for messages
of the form (Alice-share, i, u0

i , u
1
i)), the message is ignored. Otherwise, it is forwarded

to IHHA
5. On reception of messages from IHHA, it forwards them to the environment.

On reception of the shares of bi for i ∈ A from IHHA, it also constructs sharings [0]S :=
(c1, . . . , cn), [1]S := (d1, . . . , dn) consistent with the received bi’s (i.e., ci = di = bi for
i ∈ A).
On reception of the values {uji : (i, j) ∈ Pn,2} from the environment, it also constructs

m0 = ReconstructS0({((i, ci),m(i,ci)
0) : i ∈ Pn}) andm1 = ReconstructS1({((i, di),m(i,di)

1) :

4Note this captures the situation where a malicious B sends arbitrary messages to servers with i ∈ A ∩ B,
since A will see those messages in the real protocol.

5This captures the fact that in the real protocol, a malicious A can only deviate from the protocol by
interacting with a server Si either arbitrarily, in the case i ∈ A, or by sending messages to them, in the case
i /∈ A; however, in the latter case all messages which are not of the form (Alice-share, i, u0

i , u
1
i) will be ignored.

13

i ∈ Pn}). If the reconstruction of m0 (respectively m1) fails, Sim sets m0 = 0 (resp.
m1 = 0). Now it sends the command (send, m0, m1) to IHHA.

Note that in the case that Bob is honest, the local simulator SimB for Bob will output
the value that was generated by SimA, otherwise SimB will reconstruct a message based
on the shares received via FLOT .

7.2.2 Description of SimB

• First, the simulator awaits (corrupt, cB, B), notes that value and forwards it to IHHB.

• If cB = Honest, it sends (transfer, b) to IHHB and forwards the response (sent,mb) to
the environment.

• If cB = Semi-honest, it awaits input (transfer, b). It forwards it to IHHB. It then
selects a random sharing [b]S = (bi)i∈Pn . It sends the bi to the environment. It sends
messages (Bob-share, i, bi) to IHHB for every i. On receiving (Alice-share, i, u0

i , u
1
i)

for i ∈ B and (output, i, ubii) for i /∈ B from IHHB it forwards these to the environment.
It reconstructs a message mb from the received shares as in the protocol. Finally it
forwards this message to the environment.

• If cB = Malicious, during the whole interaction with the environment, on reception
of messages from the environment it checks that they contain a unique index i corre-
sponding to a server. For each message, if this does not happen or if i /∈ B (unless
for messages of the form (Bob-share, i, bi)), the message is ignored. Otherwise, it is
forwarded to IHHB. On reception of messages from IHHA, it forwards them to the envi-
ronment. The simulator awaits that the environment has sent (Bob-share, i, bi) to each
i ∈ B. On receiving (Alice-share, i, u0

i , u
1
i) for i ∈ B and (output, i, ubii) for i /∈ B

from IHHB it forwards these to the environment. It reconstructs a message mb from the
received shares as in the protocol. Finally it forwards this message to the environment.

7.3 Indistinguishability

First we argue that the case where one of the players is honest reduces to the universal
composability proof. Say Alice is honest. Then, the idea is that the functionality FCIOT (the
“inner” part of FLOT) is basically the same as the functionality FOT in Section 6, except that it
sends some extra messages to the honest side. However, these messages are ignored by IHHA.
Moreover, the composition of SimB and IHHB acts as the simulator for the UC proof in the
case of an honest Alice. If Bob is honest, the same holds by swapping A and B.

As for the cases where both Alice and Bob are corrupted (respectively by A and B), as
we have said, we are assuming that A and B are not both malicious, and thus one of them is
semi-honest. Say for the moment that A is semi-honest. If we compare this with the situation
where Alice is honest, and Bob has the same level of corruption, here we need to take into
account that, in the real world, Z will additionally receive from A the information of the
servers Si with i ∈ A, and all information held by Alice, and all this information is consistent
with what it receives from B. We need to show that this needs to be the case also in the
simulation. However, note that by design, the ideal functionality transfers the appropiate
parts of the sharings created by SimB to SimA. Moreover, if B is malicious it also sends any
other potential information that goes through the servers corrupted by A.

The environment then receives from each of the simulators the sharings created by them-
selves as well as the shares received from the other simulator via the functionality. This
implies that the information received by Z in both sides is also consistent in the ideal world.
Moreover, it is indistinguishable from the view in the real world. This follows by the same
arguments as above. Again, the case of a semi-honest Bob (and corrupted Alice) is the same.

14

References

[Bei11] Amos Beimel. Secret-Sharing Schemes: A Survey. In IWCC, pages 11–46, 2011.

[Bla79] George Blakley. Safeguarding cryptographic keys. In Proceedings of the 1979
AFIPS National Computer Conference, volume 48, page 313317, June 1979.

[Can01] Ran Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In Foundations of Computer Science, 2001. Proceedings. 42nd IEEE
Symposium on, pages 136–145. IEEE, 2001.

[CDM00] Ronald Cramer, Ivan Damg̊ard, and Ueli M. Maurer. General Secure Multi-party
Computation from any Linear Secret-Sharing Scheme. In Bart Preneel, editor,
EUROCRYPT, volume 1807 of Lecture Notes in Computer Science, pages 316–
334. Springer, 2000.

[CV12] Ran Canetti and Margarita Vald. Universally Composable Security with Local
Adversaries. In SCN, pages 281–301, 2012.

[DI06] Ivan Damg̊ard and Yuval Ishai. Scalable Secure Multiparty Computation. In
Cynthia Dwork, editor, CRYPTO, volume 4117 of Lecture Notes in Computer
Science, pages 501–520. Springer, 2006.

[EGL82] Shimon Even, Oded Goldreich, and Abraham Lempel. A randomized protocol for
signing contracts. In Advances in Cryptology: Proceedings of CRYPTO ’82, Santa
Barbara, California, USA, August 23-25, 1982., pages 205–210, 1982.

[HIKN08] Danny Harnik, Yuval Ishai, Eyal Kushilevitz, and Jesper Buus Nielsen. Ot-
combiners via secure computation. In Theory of Cryptography, pages 393–411.
Springer, 2008.

[HKN+05] Danny Harnik, Joe Kilian, Moni Naor, Omer Reingold, and Alon Rosen. On robust
combiners for oblivious transfer and other primitives. In Advances in Cryptology–
EUROCRYPT 2005, pages 96–113. Springer, 2005.

[HM00] Martin Hirt and Ueli M. Maurer. Player Simulation and General Adversary Struc-
tures in Perfect Multiparty Computation. J. Cryptology, 13(1):31–60, 2000.

[IKO+11] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, Manoj Prabhakaran, Amit Sahai,
and Jürg Wullschleger. Constant-rate oblivious transfer from noisy channels. In
Phillip Rogaway, editor, Advances in Cryptology - CRYPTO 2011 - 31st Annual
Cryptology Conference, Santa Barbara, CA, USA, August 14-18, 2011. Proceed-
ings, volume 6841 of Lecture Notes in Computer Science, pages 667–684. Springer,
2011.

[ISN87] Mitsuru Ito, Akira Saito, and Takao Nishizeki. Secret sharing schemes realizing
general access structures. In Proc. IEEE GlobeCom ’87 Tokyo, pages 99–102, 1987.

[Kil88] Joe Kilian. Founding cryptography on oblivious transfer. In Proceedings of the
20th Annual ACM Symposium on Theory of Computing, May 2-4, 1988, Chicago,
Illinois, USA, pages 20–31, 1988.

[Rab81] Michael Rabin. How to Exchange Secrets with Oblivious Transfer. Technical
report, Aiken Computation Lab, Harvard University, 1981.

[Sha79] Adi Shamir. How to share a secret. Communications of the ACM, 22:612–613,
1979.

15

A Protocol for general A
We show the general version of the protocol πOT from Section 6, when the adversary structure
A corrupted by A is not necessarily the adversary structure of an ideal LSSS.

Let S be a perfect secret sharing scheme with adversary structure A, whose existence is
guaranteed by Theorem 3.1 but which is not guaranteed to be ideal. For i = 1, . . . , n the i-th
share of S belongs to the vector space Ui = {0, 1}`i for some integer `i ≥ 1. Let ` =

∑n
i=1 `i

the complexity of S. Let V0, V1 ⊆ U1 × · · · × Un the sets of all possible sharings of 0 and 1
respectively. We can think of the elements of V0 and V1 as k-bit strings, and we index their
coordinates by pairs (i, k) where the (i, k)-th coordinate of a sharing is the k-th bit of the i-th
share.

As before we construct two perfect secret sharing schemes that we call S0 and S1. These
are now secret sharing schemes with 2` shares each and the set of shares will be indexed by

Pn,2 := {(i, k, j) : i = 1, . . . , n, k = 1, . . . , `i, j = 0, 1}.

We define the access structure Γ0 of S0 as follows. The minimally qualified sets are exactly
the sets {(1, 1, v(1,1)), (1, 2, v(1,2)) . . . , (n, kn, v(n,kn))} ⊆ Pn,2 with (v(1,1), v(1,2), . . . , v(n,kn)) ∈
V0. Similarly, the access structure Γ1 of S1 has as minimally qualified sets those of the form
{(1, 1, v(1,1)), (1, 2, v(1,2)) . . . , (n, kn, v(n,kn))} ⊆ Pn,2 with (v(1,1), v(1,2), . . . , v(n,kn)) ∈ V1.

Again S0,S1 are guaranteed to exist by Theorem 3.1. and these do not need to be ideal.
In fact, shares may be exponentially large in k. Note that k itself may be exponential in n.

Oblivious transfer protocol πOT (non-ideal S case)

1. Alice independently creates sharings [m0]S0 = (m
(i,ki,j)
0)i∈{1,...,n},ki∈{1,...,`i},j∈{0,1} and

[m1]S1 = (m
(i,ki,j)
1)i∈{1,...,n},ki∈{1,...,`i},j∈{0,1} for her inputs.

Bob creates a sharing [b]S = (b(i,ki))i∈{1,...,n},ki∈{1,...,`i} of his input, where each b(i,ki) ∈
{0, 1}.

2. Bob sends (Bob-share, i, bi) to server Si, where bi = (b(i,1), . . . , b(i,`i)).

3. Si sends (ready, i) to Alice.

4. After Alice has received (ready, i) from every server Si, she sends the messages

(Alice-share, i, (uki,j
i)ki∈{1,...,`i},j∈{0,1}) to each server Si where uki,j

i := m
(i,ki,j)
0 ||m(i,ki,j)

1 .

5. Server Si sends (output, i, (u
ki,b(i,ki)

i)ki∈{1,...,`i}) to Bob.

6. If for any i, u
ki,b(i,ki)

i /∈ M2, then Bob outputs 0. Otherwise, Bob parses each u
ki,b(i,ki)

i as

m
(i,ki,b(i,ki)

)

0 ||m(i,ki,b(i,ki)
)

1 .

If b = 0, Bob constructs m0 by applying ReconstructS0({((i, ki, b(i,ki)),m
(i,ki,b(i,ki)

)

0) : i ∈
Pn, ki ∈ {1, . . . , `i}).
If b = 1, Bob constructs m1 by applying ReconstructS1({((i, ki, b(i,ki)),m

(i,ki,b(i,ki)
)

1) : i ∈
Pn, ki ∈ {1, . . . , `i}).
In any of the cases, if the reconstruction fails, output 0. Otherwise output the reconstructed
mb.

Figure 7: Protocol πOT

16

B Description of FL
OT by cases

We describe the functionality FLOT (the composition of IHHA, FCIOT and IHHB) case-by-case,
according to the level of corruption of Alice and Bob.

In every case, the functionality receives (corrupt, cA, A) and (corrupt, cB, B) from the
local simulators.

1. Case HH (cA = cB = Honest).
It works exactly as FOT .

2. Case HS (cA = Honest, cB = Semi-honest).
It awaits (Bob-share, i, bi) for all i ∈ Pn.
On input (transfer, b) from SimB, it sends (ready) to SimA.
On input (send,m0,m1) from SimA the functionality generates a random messagem′1−b ∈
M and random sharings [mb]Sb and [m′1−b]S1−b

. It creates values uji = m
(i,j)
0 ||m′(i,j)1 (if

b = 0) or uji = m′
(i,j)
0 ||m(i,j)

1 (if b = 1).

It sends, to SimB, the messages (Alice-share, i, u0
i , u

1
i) for i ∈ B and (output, i, ubii)

for i /∈ B.

3. Case SH (cA = Semi-honest, cB = Honest).
On input (transfer, b) from SimB, it generates shares b′i for a random bit b′ and sends
to SimA the messages (Bob-share, i, b′i) for all i ∈ A and (ready, i) for all i /∈ A.

On input (send,m0,m1) from SimA, it sends (sent,mb) to SimB.

4. Case SS (cA = Semi-honest, cB = Semi-honest).
The functionality awaits, for all i ∈ Pn, the messages (Bob-share, i, bi) from SimB.

It sends to SimA the messages (Bob-share, i, bi) for all i ∈ A and (ready, i) for all i /∈ A.

The functionality awaits, for all i ∈ Pn, the messages (Alice-share, i, u0
i , u

1
i).

It sends, to SimB, the messages (Alice-share, i, u0
i , u

1
i) for i ∈ B and (output, i, ubii)

for i /∈ B.

5. Case HM (cA = Honest, cB = Malicious).
The functionality acts exactly the same as in the HS case.

6. Case MH (cA = Malicious, cB = Honest).
The functionality acts exactly the same as in the SH case.

7. Case SM (cA = Semi-honest, cB = Malicious).
The functionality acts the same as in the SS case except that all messages received from
SimB are sent to SimA.

8. Case MS (cA = Malicious, cB = Semi-honest).
The functionality acts the same as in the SS case except that all messages received from
SimA are sent to SimB.

17

