
Simulation-Based Secure Functional Encryption in

the Random Oracle Model∗

Vincenzo Iovino1 Karol Żebrowski2

1 University of Warsaw, vincenzo.iovino@crypto.edu.pl
2 University of Warsaw, kz277580@students.mimuw.edu.pl

Abstract

In recent years, there has been great interest in Functional Encryption (FE), a gener-
alization of traditional encryption where a token enables a user to learn a specific function
of the encrypted data and nothing else. One of the main lines of research in the area has
consisted in studying the security notions for FE and their achievability. This study was
initiated by [Boneh et al. – TCC’11, O’Neill – ePrint’10] where it was first shown that for
FE the indistinguishability-based (IND) security notion is not sufficient in the sense that
there are FE schemes that are provably IND-Secure but concretely insecure. For this rea-
son, researchers investigated the achievability of Simulation-based (SIM) security, a stronger
notion of security. Unfortunately, the above-mentioned works and others [e.g., Agrawal et
al. – CRYPTO’13] have shown strong impossibility results for SIM-Security. One way to
overcome these impossibility results was first suggested in the work of Boneh et al. where
it was shown how to construct, in the Random Oracle (RO) model, SIM-Secure FE for re-
stricted functionalities and was asked the generalization to more complex functionalities as
a challenging problem in the area. Subsequently, [De Caro et al. – CRYPTO’13] proposed
a candidate construction of SIM-Secure FE for all circuits in the RO model assuming the
existence of an IND-Secure FE scheme for circuits with RO gates. This means that the
functionality has to depend on the RO, thus it is not fixed in advance as in the standard
definitions of FE. Moreover, to our knowledge there are no proposed candidate IND-Secure
FE schemes for circuits with RO gates and they seem unlikely to exist. In this paper, we
propose the first constructions of SIM-Secure FE schemes in the RO model that overcome
the current impossibility results in different settings. We can do that because we resort to
the two following models:

• In the public-key setting we assume a bound q on the number of queries but this bound
only affects the running-times of our encryption and decryption procedures. We stress
that our FE schemes in this model are SIM-Secure and have ciphertexts and tokens of
constant-size, whereas in the standard model, the current SIM-Secure FE schemes for
general functionalities [De Caro et al., Gorbunov et al. – CRYPTO’12] have ciphertexts
and tokens of size growing as the number of queries.

• In the symmetric-key setting we assume a timestamp on both ciphertexts and tokens.
This is reasonable because in the symmetric-key setting, there is only one user that
encrypts and generates tokens. In this model, we provide FE schemes with short
ciphertexts and tokens that are SIM-Secure against adversaries asking an unbounded
number of queries.

Both results also assume the RO model, but not functionalities with RO gates and rely on
extractability obfuscation w.r.t. distributional auxiliary input [Boyle et al. – TCC’14] (and
other standard primitives) secure only in the standard model.

Keywords: Functional Encryption, Random Oracle Model, Simulation-Based Security, Ob-
fuscation.

∗This work is an extended abstract of the Master’s Thesis of the second author.

Contents

1 Introduction 1

2 Definitions 6
2.1 Functional Encryption . 6
2.2 Multi-Input Functional Encryption . 6
2.3 Collision-Resistant Indistinguishability Security for MI-FE 7
2.4 Extractability obfuscation w.r.t. distributional auxiliary input 8

3 Our Transformations 9
3.1 (q1, qc, poly)-SIM-Security . 9

3.1.1 Trapdoor Machines . 9
3.1.2 RO-based Transformation . 10

3.2 (q1, qc, q2)-SIM-Security with short tokens . 17
3.3 (poly, poly, poly)-SIM-Security in the Timestamp model 18
3.4 (q1, qc, q2)-SIM-Security with short tokens . 18
3.5 (poly, poly, poly)-SIM-Security in the Timestamp model 19

4 Constructions of CRIND-Secure MI-FE from eO 20

A Standard Notions 27
A.1 Collision-resistant Hash Functions . 27
A.2 Symmetric-key encryption . 27

B Functional Signature Schemes 27

C FE and its IND-Security 29

D MI-FE and its IND-Security 31

Update. This version of the paper differs from the previous one in that we are now able to
base the security only on extractability obfuscation w.r.t. to distributional auxiliary input (cf.
Remark 2.9) and we removed the stronger assumption and the construction based on it.

1 Introduction

Functional Encryption (FE) is a sophisticated type of encryption that allows to finely control
the amount of information that is revealed by a ciphertext. Unlike in the case of classical
cryptosystems, a general study of the security of FE did not appear initially. Instead, progres-
sively more expressive forms of FE were constructed in a series of works (see, e.g., [BDOP04,
BW07, KSW08, LOS+10, OT12, Wat12]) that adopted indistinguishability-based (IND) notions
of security culminating in the breakthrough of Garg et al. [GGH+13]. The study of simulation-
based (SIM) notions of security for functional encryption were initiated only recently by Boneh,
Sahai, and Waters [BSW11] and O’Neill [O’N10]. Quite interestingly, they show there exists
clearly insecure FE schemes for certain functionalities that are nonetheless deemed secure by
IND-Security, whereas these schemes do not meet the stronger notion of SIM-Security. For this
reason, researchers have started a further theoretical study of FE that includes either negative
results showing SIM-Security is not always achievable [BSW11, BO13, AGVW13] or alternative
models overcoming the impossibility results [CI13, AAB+13]. On the positive direction, Boneh
et al. [BSW11] showed the existence of SIM-Secure FE schemes in the Random Oracle (RO, in
short) model for restricted functionalities (i.e., Attribute-based Encryption), and at the same
time they left as a challenging problem the construction of FE for more sophisticated function-
alities that satisfy SIM-Security in the RO model. Along this line, De Caro et al. [DIJ+13]
showed how to overcome all known impossibility results assuming the existence of IND-Secure
schemes for circuits with random oracle gates. This is a very strong assumption for which we
do not known any candidate scheme and their existence seems unlikely1. Furthermore, their
scheme incurs in the following theoretical problem. First of all, recall that in a FE system for
functionality F : K × X → Σ, defined over key space K, message space X and output space
Σ, for every key k ∈ K, the owner of the master secret key Msk associated with master public
key Pk can generate a secret key Tokk that allows the computation of F (k, x) from a ciphertext
of x computed under master public key Pk. Thus, in a standard FE scheme the functionality
is fixed in advance, and the scheme should allow to compute over encrypted data accordingly
to this functionality. Instead, in the scheme for the RO model of De Caro et al. [DIJ+13], the
functionality does depend on the RO, and thus, even their implicit definition of functionality
and FE scheme is not standard. Therefore, their scheme is not satisfactory. This leads to the
main question that we study in this work:

Can we achieve standard FE schemes in the (conventional) Programmable RO model
from reasonable assumptions?

Our results answer affirmatively to this question demonstrating the existence of SIM-Secure
schemes in the RO model with short parameters. Recall that the impossibility result of [AGVW13]
shows that in a SIM-Secure FE scheme, the size of the ciphertexts has to grow as the number
of token queries (see also [GVW12a]). Furthermore, De Caro and Iovino [CI13] also showed a
similar impossibility result, namely that (for the standard model) in a adaptively SIM-Secure
FE scheme, the size of the tokens has to grow as the number of the ciphertext queries. On the

1This issue was first noticed by several researchers [AGK+13] and personally communicated by Jonathan Katz
to the authors of the work [DIJ+13].

1

other hand, our results also provide schemes for the RO model that are SIM-Secure but where
the size of the tokens and the ciphertexts is constant2. Before presenting our positive results in
more detail, we prefer to first sketch our techniques so to highlight the technical problems that
led to our constructions and models.

Our techniques. We recall (a simplified version of) the transformation of De Caro et al.
[DIJ+13] to bootstrap an IND-Secure scheme for Boolean circuits to a SIM-Secure scheme for
the same functionality. For sake of simplicity we focus on the non-adaptive setting, specifically
on SIM-Security against adversaries asking q non-adaptive queries. The idea of their transfor-
mation is to replace the original circuit with a “trapdoor” one that the simulator can use to
program the output in some way. The approach was inspired by the FLS paradigm introduced
by Feige, Lapidot and Shamir [FLS90] to obtain zero-knowledge proof systems from witness
indistinguishable proof systems. In the transformed scheme, they put additional “slots” in the
plaintexts and secret keys that will only be used by the simulator. A plaintext has 2 + 2q slots
and a secret key will have one. In the plaintext, the first slot is the actual message m and the
second slot will be a bit flag indicating whether the ciphertext is in trapdoor mode. and the last
2q slots will be q pairs (ri, zi), where ri is a random string and zi is a programmed string. These
2q slots are used to handle q non-adaptive queries. On the other hand, in a secret key for circuit
C, the slot is a random string r, that will be equal to one of the ri in the challenge ciphertext.
For evaluation, if the ciphertext is not in trapdoor mode (flag = 0) then the new circuit simply
evaluates the original circuit C of the message m. If the ciphertext is in trapdoor mode, if r = ri
for some i ∈ [q] then the transformed circuit outputs zi. A natural approach to shorten the size
of the ciphertexts in the RO model would be the following. Recall that a Multi-Input FE (MI-
FE) scheme [GGG+14, GKL+13, GGJS13] is a FE over multiple ciphertexts. Let our starting
scheme be a MI-FE over 2-inputs. Then, instead of encoding the slots (ri, zi)’s in the ciphertext,
we could add to the ciphertext a tag tagc (that is, the encryption would consist of a ciphertext
plus the tag in clear) such that the simulator can program the RO on this point to output the
values (ri, zi)’s. Now the ciphertext would consist of only a short ciphertext ct and the short
tag tagc. At decryption time, we could “decompress“ tagc to get some string y, encrypt it with
the public-key of the of the MI-FE scheme to produce ct2 and finally feed ct1 and ct2 to the
multi-input token. Then, the simulator could program the RO so to output the values (ri, zi)’s
on the point tagc. The functionality would be thus modified so that, in trapdoor mode, the
output would be taken by the values (ri, zi)’s (specifically, choosing the values zi corresponding
to the string ri in the token). Therefore, any token applied to the simulated ciphertext (that
is in trapdoor mode) should decrypt the same output as the real ciphertext would do. This
simple approach incurs in more problems, the most serious being that the adversary could feed
the multi-input token with a different ciphertext that does not correspond to RO(tagc), thus
detecting whether the first ciphertext is in normal or trapdoor mode. In fact, notice that in
normal mode the second ciphertext does not affect the final output, whereas in trapdoor mode,
the output only depends on the second ciphertext fed to the multi-input token. Another problem
here is that RO(tagc) should not contain the values (ri, zi)’s in clear, but this is easily solved
by letting RO(tagc) be an encryption of them and putting the corresponding secret-key in the
first ciphertext. So, the main question is:

2Specifically, in our main transformation the size of the tokens is constant if we employ a collision-resistant
hash function of variable-length, otherwise their size only depends on the encoding of the value and thus can be
sub-logarithmic. Similarly, for the timestamp model of Section 3.5, both tokens and ciphertexts need to encode
a temporal index that being a number at most equal to the number of queries issued by any PPT adversary,
will be at most super-logarithmic, and thus can be encoded with a string of poly-logarithmic size. For simplicity,
henceforth, we will claim that our constructions have tokens of constant size omitting to specify this detail.

2

How can we force the adversary to feed the 2-inputs token with a second ciphertext
that encrypts RO(tagc)?

Notice that in the case of FE schemes that support functionalities with RO gates, this can
be easily done by defining a new functionality that first tests whether the second input equals
RO(tagc), but in the “pure“ RO model this solution can not applied. Our patch is to add a new
slot h of short size in the first ciphertext. Such value h is set to the hash ofRO(tagc) with respect
to a Collision-Resistant Hash Function (CRHF) Hash, i.e., h = Hash(RO(tagc)). Furthermore,
we modify the transformed functionality so that it first checks whether Hash(RO(tagc) = h. If
this test fails, the functionality outputs an error ⊥. The intuition is that with this modification,
the adversary is now forced to use a second ciphertext that encrypts RO(tagc) since otherwise
it gets ⊥ on both real or simulated ciphertext, and so, under the IND-Security of the MI-
FE scheme, it seems that the adversary can not tell apart a real ciphertext from a simulated
ciphertext. Unfortunately, we are not able to prove the security of this transformation assuming
only the standard notion of IND-Security for MI-FE. In fact, notice that there ever exist second
inputs for the modified functionality that distinguish whether the first input has the flag set to
normal or trapdoor mode, namely inputs that correspond to collisions of Hash with respect to
h and RO(tagc). That is, any another second ciphertext that encrypt a value y 6= RO(tagc)
such that Hash(y) = h allows to distinguish whether the first ciphertext is in normal or trapdoor
mode. Furthermore, it is not possible to make direct use of the security of the CRHF. The
problem is that the definition of (2-inputs) MI-FE is too strong in that it requests the adversary
to output two challenge message pairs (x0, y) and (x1, y) such that for any function f for which
the adversary asked a query f(x0, ·) = f(x1, ·). In our case, this does not hold: there exists a set
of collisions C such that for any z ∈ C, Hash(z) = h and f(x0, z) 6= f(x1, z). However, notice
that it seems difficult for the adversary to find such collisions. Moreover, we point out that the
property that the ciphertext must have short size forbids us to use standard techniques already
used in literature.

Our assumptions and CRIND-Security. For these reasons, we need to extend the notion
of MI-FE to what we call collision-resistant indistinguishability (CRIND, in short)3. In Section 4
we provide an instantiation of this primitive from extractability obfuscation w.r.t. distributional
auxiliary input [BCP14] (cf. Remark 2.9 where we point out how it is possible to weaken the
assumption to avoid recent implausibility results regarding this kind of assumptions). We think
that this definition can be of independent interest since it is more tailored for the applicability
of MI-FE to other primitives. We are aware that other possibilities to overcome our problem
would be either to directly modify our transformation or to modify existing construction of
MI-FE to satisfy this property, and thus avoiding the repeated use of obfuscation and NIZKs
that we do. Nevertheless, we prefer to follow a modular approach to the aim of obtaining
clear and simple constructions. Similar considerations also hold for the construction of CRIND-
Secure MI-FE schemes and we leave to future research the generalization of this primitive and
its construction from weaker assumptions. The reader may have noticed that the security
of the second ciphertext guaranteed by the underlying MI-FE is not necessary. That is, our
transformation would work even assuming 2-inputs MI-FE systems that take the second input
in clear. In fact, CRIND-Security does not imply IND-Security for MI-FE schemes but this
suffices for our scopes. Roughly speaking, in CRIND-Security the security is quantified only

3Maybe, a better name would have been “differing-inputs indistinguishability“ but we do not adopt this name
to not overlap with differing-inputs obfuscation and because it recalls the reason to advocate this stronger notion
for our transformations.

3

with respect to valid adversaries4, where an adversary is considered valid if it only submits
challenges m0,m1 and asks a set of queries K that satisfy some “hardness“ property called
collision-resistance compatibility, namely that it is difficult to find a second input m2 such that
F (k,m0,m2) 6= F (k,m1,m2) for some k ∈ K. Since in the reductions to CRIND-Security it
is not generally possible to directly check the hardness of (K,m0,m1), the definition dictates
(1) the existence of an efficient checker algorithm that approves only (but possibly not all)
valid triples (K,m0,m1) (i.e., the checker can detect efficiently if a triple is collision-resistant
compatible) and (2) that an adversary is valid if it only asks triples approved by the checker. We
defer the details of the definition to Section 2.3. Next, in a security reduction to CRIND-Security
(i.e., when we need to prove the indistinguishability of two hybrid experiments assuming the
CRIND-Security), the main task is to define an appropriate checker and prove that triples that
are not collision-resistant compatible are rejected by it. This is usually done by checking that
messages and keys satisfy an appropriate format. For instance, in the above case, the checker will
check whether the machine (corresponding to the token) uses as sub-routine the specified CRHF
and that the challenge messages and such machine have the right format. The construction of
CRIND-Secure schemes follows the lines of the construction of fully IND-Secure FE schemes of
Boyle et al. Namely, the encryption of the first input m1 will be an obfuscation of a machine that
has embedded m1 and a verification key for a signature scheme and takes as input a signature
of a machine M and a second input m2 and (1) checks the validity of the signature and (2) if
such test passes outputs M(m1,m2). For the same resonas of Boyle et al. we need to resort to
functional signatures. Details along with a broader overview can be found in Section 4.

The above presentation is an oversimplification that skips some minor details and the modi-
fications necessary to handle adaptive token queries and many ciphertext queries. We defer the
reader to the Sections 3.1 and 3.4 for more details.

Our models and results. The reader may have noticed that the output of RO has to be
“big“, i.e., its size depends on the number of queries. Of course, we could assume that its range
has constant size and replace a single invocation of the RO with range of size > q with many
invocation of a RO with range of constant size, but also in this case the running-time of the
encryption and decryption procedures would have to depend on the number of queries. Notice
that it is easy to observe that the previous impossibility result of Agrawal et al. [AGVW13]
also applies to the RO model since we can not “compress“ a PRF also given as auxiliary input
an information of some fixed size generated from the RO. Here, it comes the novelty of our
approach. All the parameters of our SIM-Secure public-key FE scheme (including ciphertexts
and tokens) have constant size but the cost of the “expansion“ is moved from the length of
ciphertexts and tokens to the running-time of the encryption and decryption procedures. That
is, our SIM-Secure public-key FE scheme stills depends on q in the setup and running-time, but
the size of the ciphertexts and tokens is constant. The results we achieve can be summarized as
follows:

• (q1, qc, poly)-SIM-Security with ciphertext of constant size and tokens of size qc. That
is, SIM-Security against adversaries asking bounded non-adaptive token queries, bounded
ciphertext queries, and unbounded adaptive token queries. In this case the size of the
ciphertexts is constant but the size of the tokens grows as the number of ciphertext queries
(and thus is constant in the case of 1 ciphertext query). This is known to be impossible in
the standard model due to the impossibility of Agrawal et al. [AGVW13] (precisely this
impossibility does not rule out the existence of schemes that satisfy this notion of security

4We can recast IND-Security in a similar way by defining valid adversaries that only ask queries and challenges
satisfying the compatibility property.

4

but it rules out the existence of schemes that satisfy both this notion of security and have
short ciphertexts). Moreover, in this case the encryption and decryption procedures have
running-times depending on q1.

• (q1.qc, q2)-SIM-Security with both ciphertexts and tokens of constant size. That is, SIM-
Security against adversaries asking bounded token (both non-adaptive and adaptive) and
ciphertext queries but with both ciphertext and token of constant size. In the standard
model this is known to be impossible due to the impossibility result of De Caro and
Iovino [CI13] for SIM-Security against adversaries asking unbounded ciphertext queries
and bounded adaptive token queries (this impossibility is essentially an adaptation of the
impossibility of Agrawal et al. [AGVW13]). In this case, the encryption and decryption
procedures have running-times depending on max{q1, qc, q2}.

• We show how to remove the afore-mentioned limitation in a variant of the symmetric-key
model where ciphertexts and tokens are tagged with a timestamp that imposes an order on
their generation (i.e., the i-th token/ciphertext generated in the system is tagged with the
value i). We remark that this model is reasonable because in the symmetric-key setting,
the user that set-up the system is the same entity that generates tokens and ciphertexts as
well. Moreover, most of the notable applications of FE are for the symmetric-key setting
(e.g., to cloud computing, where a client delegates her encrypted data to a server and later
can send tokens to the server to compute specific functions of her choice). We defer the
reader to Section 3.5 for more details.

In the above presentation we skipped another technical issue that our approach faces. Specifi-
cally, in the Boolean circuit model, the token size would be at least as big as the total size of the
bits encrypted in all ciphertext, thus of size dependent of q. Notice that this would already be an
improvement with respect to the known bounded FE schemes for Boolean circuits of Gorbunov
et al. [GVW12b]. However, for the sake of providing constructions with optimal parameters
we work in the Turing Machine model of computation, though for all our results except that
of Section 3.5 it is possible to provide slightly different constructions in the circuit model that
improve the current results for the standard model.5

The optimality and the soundness of our results. As hinted before, SIM-Security in the
RO model with a constant number of RO calls is impossible to achieve. It is easy to see that
SIM-Security in the standard model but for schemes with procedures of running-time dependent
on the number of queries is impossible as well. Thus, our results are optimal. Anyway, one
could object that whether we instantiate the RO with any concrete hash function, the resulting
scheme is not “SIM-Secure“ due to the impossibility results. This problem is also shared with
the constructions for the RO model of De Caro et al. [DIJ+13] and Boneh et al. [BSW11].
What does it mean? What the impossibility results say is that there are adversaries for which
there exists no simulator though we do not know any concrete attacks on these schemes. This
is different from the counter-examples of Canetti et al. [CGH98] where they were presented
signature schemes provably secure in the RO model but concretely insecure when instantiated
with any hash function. In our view, this could merely mean that general definitions of SIM-
Security are too strong. Along this direction, the works of De Caro and Iovino [CI13] and
Agrawal et al. [AAB+13] provide another way to overcome this limitation.

5The main focus of the work of Goldwasser et al. [GGJS13] is for the circuit model but they sketch how to
extend it to the Turing Machine model. Similar considerations hold for the schemes of Gordon et al. [GKL+13].
Further details will be given in the Master’s Thesis of the second author.

5

2 Definitions

A negligible function negl(k) is a function that is smaller than the inverse of any polynomial in
k. If D is a probability distribution, the writing “x ← D” means that x is chosen according
to D. If D is a finite set, the writing “x ← D” means that x is chosen according to uniform
probability on D. If q > 0 is an integer then [q] denotes the set {1, . . . , q}. All algorithms,
unless explicitly noted, are probabilistic polynomial time and all adversaries are modeled by
non-uniform polynomial time algorithms. If B is an algorithm and A is an algorithm with
access to an oracle then AB denotes the execution of A with oracle access to B. If a and b are
arbitrary strings, then a||b denotes the string representing their delimited concatenation.

Building blocks. In Appendix B we recall the notion of functional signature schemes; in
Appendix A.1 the notion of collision-resistant hash function; and in Appendix A.2 the notion
of symmetric-key encryption.

2.1 Functional Encryption

Functional encryption schemes are encryption schemes for which the owner of the master secret
can compute restricted keys, called tokens, that allow to compute a functionality on the plaintext
associated with a ciphertext. We start by defining the notion of a functionality.

Definition 2.1 [Functionality] A functionality F is a function F : K ×M → Σ where K is the
key space, M is the message space and Σ is the output space.

In this work, our FE schemes are for the following functionality6.

Definition 2.2 [p-TM Functionality] 7 The p-TM functionality for polynomial p() has key space
K equals to the set of all Turing machines M , which satisfy the condition: the running time of
M on any input m is exactly p(|m|) (depends only on the input length). The message space
M is the set {0, 1}∗. For M ∈ K and m ∈ M , we have p-TM(M,m)= M(m), In this work, for
simplicity we assume that the output space is {0, 1}.

Remark 2.3 In case of a scheme with input-specific run time (cf. Definition C.1), we also
require that the functionality outputs the run time of machine M on m along with the output
of the computation M(m). We will only use schemes with input specific run time in Section 3.5.
For the other applications bounded time is sufficient.

The definition of a FE scheme can be found in Appendix C. In Appendix C we recall the
standard definition of indistinguishability-based and simulation-based security for functional
encryption.

2.2 Multi-Input Functional Encryption

Multi-input functional encryption is analogous to functional encryption except that the func-
tionality takes multiple inputs as argument. We recall the definition of multi-input func-
tionalities and MI-FE in Appendix D. In Appendix D we recall the standard definition of
indistinguishability-based security for multi-input functional encryption. In particular we would
like to draw the attention of the reader on the definition D.2.

6As said in the introduction, it is possible to resort to the circuit model at cost of having slightly different
constructions and tokens of longer size.

7This functionality was only implicitly assumed in Goldwasser et al. [GKP+13] and other works but not
formally defined.

6

Remark 2.4 We would like to remark that in this work we do not need to assume IND-Secure
MI-FE schemes since we will construct CRIND-SecureMI-FE that suffice for our scopes. Specif-
ically, for our purposes the underlying CRIND-Secure MI-FE scheme that we use could have an
encryption procedure that encrypts the second input outputting it in clear. Alternatively, we
could have defined a new primitive with its security. Instead, to avoid to introduce new syntax,
we construct and use schemes that formally follow the syntax of MI-FE (with its correctness)
but assuming a different and incomparable security notion for them.

2.3 Collision-Resistant Indistinguishability Security for MI-FE

As we mentioned in the construction overview sketched in Section 1, we need a different notion
of MI-FE security. Here, we consider only the 2-inputs case, since this is suited for our main
transformation but it is straightforward to extend it to the n-ary case.

Furthermore, in Section 4 we will show how to construct a CRIND-Secure MI-FE scheme
from extractability obfuscation w.r.t. distributional auxiliary input [BCP14] (cf. Remark 2.9).
We presented an informal discussion of the definition in Section 1. We now present the formal
definition.

The collision-resistant indistinguishability-based notion of security for a multi-input func-
tional encryption scheme MI-FE = (Setup,KeyGen,Enc,Eval) for functionality F defined over
(K,M) is formalized by means of the following experiment CRINDMI-FE

A with an adversary
A = (A0,A1). Below, we present the definition for only one message; it is easy to see the
definition extends naturally for multiple messages.

CRINDMI-FE
A (1λ)

1. (Mpk,Msk)← MI-FE.Setup(1λ);

2. r
R← {0, 1}λ;

3. (x0, x1, st)← AMI-FE.KeyGen(Msk,·)
0 (Mpk, r) where we require that |x0| = |x1|;

4. b
R← {0, 1};

5. Ct1 ← MI-FE.Encrypt(Ek1, (xb||r));

6. b′ ← AMI-FE.KeyGen(Msk,·)
1 (Mpk,Ct1, st);

7. Output: (b = b′).

We make the following additional requirements:

• Collision-resistance compatibility. Let K denote a set of keys. We say that a pair of
messages x0 and x1 is collision-resistant compatible with K if it holds that: any PPT
algorithm B given the security parameter 1λ and (r, x0, x1) for r uniformly distributed
in {0, 1}λ, can find y satisfying inequality F (k, (x0||r), y) 6= F (k, (x1||r), y) with at most

negligible (in λ) probability, where probability is taken over r
R← {0, 1}λ and the random

coins of B.

• Efficient checkability. We assume that there exist efficient checker algorithm Checker,
which takes as input (k, x0, x1) and outputs false if x0 and x1 are not collision-resistant
compatible with {k} (i.e., the singleton set containing the key k).

7

• Validity. We say that an adversary A in the above game is valid with respect to a checker
Checker with efficient checkability if during the execution of the above game, A outputs
challenge messages x0 and x1 of the same length and asks a set of queries K in the key
space of the functionality such that for any k ∈ K, Checker(x0, x1, k) = true (i.e., the
adversary only asks queries and challenges approved by the checker).

The advantage of a valid adversary A in the above game is defined as

AdvMI-FE,IND
A (1λ) = Prob[CRINDMI-FE

A (1λ) = 1]− 1/2

Definition 2.5 We say that a 2-inputs MI-FE scheme is collision-resistant indistinguishably
secure (CRIND-Secure, in short) if for any checker Checker satisfying efficient checkability, it
holds that all PPT adversaries A valid with respect to Checker have at most negligible advantage
in the above game.

Remark 2.6 It can appear that the existence of this Checker is unlikely since it is not possible
to check the condition directly. Anyway, for large classes of functionalities this is possible effi-
ciently. For instance, in our case the trapdoor machines have a specified format that includes
a sub-routine for the CRHF Hash. The checker must only be able to check that this subroutine
equals the code of Hash and that the trapdoor machine and the messages have the right for-
mat. For machines and messages that satisfy these checks, the condition of collision-resistance
compatibility is guaranteed.

Remark 2.7 We stress that CRIND-Security does not imply IND-Security for MI-FE but we
do not need this. In fact, notice that for our applications the second input could be in clear.
We also point out that the notion of CRIND-Security could be generalized so to have as special
case IND-Security but to not overburden the presentation we do not do this and defer it to the
Master’s Thesis of the second author.

2.4 Extractability obfuscation w.r.t. distributional auxiliary input

Boyl et al. [BCP14] defined obfuscators secure against general distributional auxiliary input.
We recall their definition (cf. Remark 2.9).

Definition 2.8 A uniform PPT machine eO is an extractability obfuscator w.r.t. (general)
distributional auiliary input for the class of Turing Machines {Mλ}λ∈N if it satisfies the following
properties:

• (Correctness): For all security parameter λ, all M ∈M, all inputs x, we have

Pr
[
M ′(x) = M(x) : M ′ ← eO(1λ,M)

]
= 1.

• (Polynomial slowdown): There exist a universal polynomial p such that for any machine
M , we have |M ′| ≤ p(|M |) for all M ′ = eO(1λ,M) under all random coins.

• (Security): For every non-uniform PPT adversary A, non-negligible function b(λ), and
efficiently sampleable distribution D over Mλ ×Mλ × {0, 1}?, there exists a non-uniform
PPT extractor E and non-negligible function c(λ) such that for every λ ∈ N, it holds with
non-negligible probability over (M0,M1, z)← D(1λ) that:
If Pr

[
b ∈ {0, 1} : M ′ ← eO(1λ,Mb) : A(1λ,M ′,M0,M1, z) = b

]
≥ 1

2 + b(λ),
then Pr

[
w ← E(1λ,M0,M1, z) : M0(w) 6= M1(w)

]
≥ c(λ)

8

We remark that in the above definition the extractor E may depend on the the adversary A and
the distribution D.

Remark 2.9 We remark that our definition departs from that of Boyle et al. in which we also
consider adversaries winning with non-negligible advantage and not only noticeable advantage.
In light of the recent “implausibility“ results on extractability obfuscation with auxiliary input
[GGHW13, BP13], we would like to point out that our results can be based on a weaker as-
sumption defined with respect to a specific distribution D(1λ,B) that also takes a second input
representing the code of an adversary. Then, the previous security property would be stated
with respect to fixed distributions and allowing the distribution to takes as input the same ad-
versary A of the first quantifier. It is straightforward to see that the scheme of Section 4 can
be based on this variant of eO since the distribution D constructed there only needs the code
of the adversary.

3 Our Transformations

3.1 (q1, qc, poly)-SIM-Security

In this section, we show that assuming a CRIND-Secure (in the standard model) MI-FE scheme
for p-TM2 (2-inputs Turing machines with run time equal to a polynomial p) for any polynomial
p, it is possible to construct a SIM-Secure functional encryption scheme in the RO model for
functionality p-TM for any polynomial p. Moreover, this is possible also for FE schemes with
input-specific run time. The resulting scheme is secure for a bounded number of messages
and non-adaptive token queries, and unbounded number of adaptive key queries. Moreover,
it enjoys ciphertexts and tokens of size not growing with the number of non-adaptive queries,
overcoming the impossibility result of Agrawal et al. [AGVW13] for the standard model. In
Section 4 we will show how to construct a CRIND-Secure MI-FE from extractability obfuscation
w.r.t. distributional auxiliary input [BCP14] (cf. Remark 2.9).

3.1.1 Trapdoor Machines

The idea of our transformations is to replace the original machine with a “trapdoor” one that
the simulator can use to program the output in some way. This approach is inspired by the FLS
paradigm introduced by Feige, Lapidot and Shamir [FLS90] to obtain zero-knowledge proof
systems from witness indistinguishable proof systems. Below we present the construction of
trapdoor machine, which works in standard model.

Definition 3.1 [Trapdoor Machine] Fix q > 0. Let M be a Turing machine with one input. Let
SE = (SE.Enc, SE.Dec) be a symmetric-key encryption scheme with key-space {0, 1}λ, message-
space {0, 1}λ+1, and ciphertext-space {0, 1}ν . We require for simplicity that SE has pseudo-
random ciphertexts (see Appendix A.2) and can encrypt messages of variable length (at most
λ + 1). Let Hash : {0, 1}λ × {0, 1}q·ν → {0, 1}λ be a collision resistant hash function 8. For
tagk = (idk, c) ∈ {0, 1}λ+ν define the corresponding trapdoor machine Trap[M,Hash, SE]tagk on
two inputs as follows:

8For sake of simplicity as Hash key we will use a random string of length λ, instead of key generated by Gen.
Alternatively, we could feed the Gen algorithm with this randomness.

9

Machine Trap[M,Hash,SE]tagk(m′, R)
(m, flag, sk, h, kH)← m′

If Hash(kH, R) 6= h then return ⊥
If flag = 0 then return M(m)
(idk, c)← tagk
(R1, . . . , Rq)← R
For i = 1, . . . , q do

(idk
′, v)← SE.Dec(sk,Ri)

If idk
′ = idk then return v

return SE.Dec(sk, c)

3.1.2 RO-based Transformation

Overview. In Section 1 we sketched a simplified version of our transformation. Here, we
present an overview with more details. The idea is to put additional “slots” in the plaintexts
and secret keys that will only be used by the simulator. A plaintext contains five slots and
a secret key contains two slots. In the plaintext, the first slot is the actual message m. The
second slot is a bit flag indicating whether the ciphertext is in trapdoor mode. The third slot
is a random key sk used by SE scheme, the fourth slot is a hash h of RO(tagc) (computed with
respect to a CRHF) attached to the ciphertext and finally the fifth slot contains a hash function
key kH.

In the secret key, the first slot encodes the actual machine M and the second slot is a random
tag tagk = (idk, c). Slot idk is used by simulator to identify pre-challenge tokens and c is used to
convey programmed output value in post-challenge tokens. For evaluation, if the ciphertext is
not in trapdoor mode (i.e., flag = 0) then the functionality simply evaluates the original machine
M of the message m. If the ciphertext is in trapdoor mode, depending on the nature of the
secret key (non-adaptive or adaptive), for tagk = (idk, c), if idk = idki for some i ∈ [q], then the
functionality outputs vi, otherwise it outputs SE.Dec(sk, c).

For sake of simplicity we assume that TM functionality, for which our scheme is constructed,
has output space {0, 1}. The construction can be easily extended to work for any TM function-
ality with bounded output length.

Definition 3.2 [RO-Based Transformation] Let p() be any polynomial. Let SE = (SE.Enc,SE.Dec)
be a symmetric-key encryption scheme with key-space {0, 1}λ, message-space {0, 1}λ+1, and
ciphertext-space {0, 1}ν . We require for simplicity that SE has pseudo-random ciphertexts (see
Appendix A.2) and can encrypt messages of variable length (at most λ+1). Let Hash : {0, 1}λ×
{0, 1}q·ν → {0, 1}λ be a collision-resistant hash function (not modeled as a random oracle). As-
suming that the running time of machine M equals exactly p(|m|) on input m, the running time
of trapdoor machine Trap[M,Hash, SE]tagk is bounded by some polynomial p′(·) (cf. Remarks
3.3 and 3.5) Let MI-FE = (MI-FE.Setup,MI-FE.Enc,MI-FE.KeyGen,MI-FE.Eval) be a multi-input
functional encryption scheme for the functionality p′-TM2.

In our construction we assume that the output length of the programmable random oracle
RO equals q · ν (cf. Remark 3.6).

We define a new (single-input) functional encryption scheme
SimFE[Hash, SE] = (Setup,KeyGen,Enc,Eval) for functionality p-TM as follows.

• Setup(1λ): runs (Mpk,Msk) ← MI-FE.Setup(1λ) and chooses random r
R← {0, 1}λ and

returns a pair (Mpk, r) as public key Pk and Msk as master secret key.

10

• Enc(Pk,m): on input Pk = (Ek1,Ek2, r) and m ∈ {0, 1}∗, the algorithm chooses random

sk
R← {0, 1}λ, tagc

R← {0, 1}λ and sets kH = r, then it takesm′ = (m, 0, sk,Hash(kH,RO(tagc), kH),
computes c← MI-FE.Enc(Ek1,m

′) and returns a pair (c, tagc) as its own output.

• KeyGen(Msk,M): on input Msk and a machine M , the algorithm chooses random idk
R←

{0, 1}λ, c
R← {0, 1}νand returns (Tok, tagk) where

Tok← MI-FE.KeyGen(Msk,Trap[M,Hash,SE]tagk) and tagk = (idk, c).

• Eval(Pk,Ct, Tok): on input Pk = (Ek1,Ek2, r), Ct = (c, tagc) and Tok = (Tok′, tagk), com-
putes c′ = MI-FE.Enc(Ek2,RO(tagc)) and returns the output MI-FE.Eval(Tok′, c, c′).

Remark 3.3 Efficiency and extensions. The above scheme has ciphertexts of constant size
and token of constant size and as we will show it satisfies (q1, 1, poly)-SIM-Security. It can be
upgraded to support (q1, qc, poly)-SIM-Security at the cost of having tokens of size depending
on qc. As in De Caro et al. [DIJ+13], this can be done by replacing c in the token with qc
values to program the answers to the qc challenge ciphertexts but we omit details. We remark
that the bound q1 does not affect the value p because p is polynomial in the length of the input
messages and not on the security parameter and this fact rules out the problem that p′ would
have to be set to a value > max{q1, qc} to allow the machine to read the inputs. Moreover,
the transformation would need to take as input such bounds q1, qc (cf. Remark C.7) but for
simplicity we omitted such details.

Remark 3.4 If the underlying scheme has input specific run time (cf. Definition C.1) then we
are able to provide a modified construction, with input-specific run time as well. Note that in
this case the simulator receives the run time of any queried machine on the challenge message
(cf. Remark 2.3), since the functionality returns it along with the output of the computation.
Therefore the simulator can program not only the desired output value, but could also eventually
extend the run time of the trapdoor machine.

Remark 3.5 Actually we should use a machine that has running time depending only on input
lengths (cf. Definition D.2), expressed as a polynomial. Therefore, in practice instead of M ′ =
Trap[M,Hash,SE]tagk we would take a machine that runs M ′ and then extends the running-time
to the desired value p′(·). To not overburden the presentation we omit this detail.

Remark 3.6 Alternatively, instead of using and program RO at one input tagc and having
output proportionally long to q, we could program it at q inputs (tagc, 1), . . . , (tagc, q). This
way we could avoid the correlation between q and RO output length. However, for simplicity
we resort to the first option.

Theorem 3.7 Suppose MI-FE is CRIND-Secure in the standard model. Then SimFE is (q, 1, poly)-
SIM-Secure (cf. Remark C.5) in the random oracle model. Furthermore, this can be extended
to (q1, qc, poly)-SIM-Security as discussed in remark 3.3 and if MI-FE satisfies the properties of
succinctness and input-specific time, so SimFE does.

Security proof overview. We conduct the security proof of our construction by a standard
hybrid argument. To move from real world experiment to ideal one we use the following hybrid
experiments:

• The first hybrid experiment corresponds to the real experiment.

11

• The second hybrid experiment is identical to the previous one except that the random
oracle is programmed at point tagc so to output the encryption of the desired output values
on pre-challenge queries, and post-challenge queries are answered with tokens that have
embedded appropriate encrypted output values. Moreover, all these values are encrypted
using the underlying SE scheme with a randomly chosen secret-key sk′. Notice that in this
experiment the secret-key sk′ is uncorrelated to the secret-key sk embedded in ciphertext.

• The third hybrid experiment is identical to the previous one except that the ciphertext
contains the same secret-key sk′ used to program the RO.

• In last step we switch the flag slot in the ciphertext to 1 indicating the trapdoor mode.
At the same time we change the content of message slot m to 0|m|. This is necessary due
to the fact that simulator only knows the challenge message length, but not the message
itself.

One can reduce the security of first two hybrids to the ciphertext pseudo-randomness of SE
scheme and to the IND-Security of underlying MI-FE scheme. The proof in these cases is pretty
straightforward.

One could be tempted to reduce the indistinguishability of security of last two hybrids relies
on both collision resistance of used hash function and IND-Security on MI-FE. However, the
security reduction is not obvious. The adversary could recognize the simulation by finding a
string R different from RO(tagc) for which Hash(kH, R) = Hash(kH,RO(tagc)), and applying the
evaluation algorithm to this value as second input to TM2. The output of evaluation algorithm
in this case would be different than expected. Although the adversary would contradict the
collision resistance of Hash, we are not able to construct algorithm based on that adversary,
which breaks the hash function security.

Therefore we need to rely on the CRIND-Security of MI-FE. Moreover, for completeness we
will only assume CRIND-Security and never IND-Security.

Proof: Suppose that there is an adversary A = (A0,A1) against SimFE that outputs at most 1
message, q = q(λ) pre-challenge and p = p(λ) post-challenge token queries. Note that here p is
an unbounded polynomial, not fixed a priori, but q is fixed a priori. We construct a simulator
Sim = (Sim0,Sim1) as follows (note that simulator can program the random oracle RO).

• Let m be the challenge message output by A0.

Sim0 receives as input the message length |m|, the public parameter Pk = (Ek1,Ek2, r),
the q non-adaptive key queries M1, . . . ,Mq made by A0, along with the values z1 =
M1(m), . . . , zq = Mq(m) and the tokens (Tok1, tagk1), . . . , (Tokq, tagkq) generated by KeyGen
to answer A0’s non-adaptive token queries, where tagki = (idki, ci). Sim0 proceeds as fol-
lows.

The simulator chooses random sk
R← {0, 1}λ and sets kH = r, and stores them in the state

st′.

For each 1 ≤ i ≤ q, the simulator computes Ri = SE.Enc(sk, (idki, zi)) and concatenates
the encryptions as R = R1|| . . . ||Rq.

The simulator chooses random tagc ∈ {0, 1}λ and programs random oracle output by
setting RO(tagc) = R.

Sim0 computes Ct← MI-FE.Enc(Ek1, (0
|m|, 1, sk,Hash(kH, R), kH)) and outputs pair (Ct, tagc).

12

• Sim1 answers the adaptive query for circuit Mj for j = 1, . . . , p, by having on input the
master secret key Msk and zj = Mj(m), in the following way.

Sim1 takes secret key sk stored in the state and encrypts the value c← SE.Enc(sk, zj) and
chooses random idk.

Sim1 outputs the pair (MI-FE.KeyGen(Msk,Trap[Mj ,Hash,SE]tagkj), tagkj), where tagkj =
(idk, c).

We now prove that Sim is a good simulator, which means that for all PPT adversaries A =
(A0,A1), RealExpSimFE,A and IdealExpSimFE,A

Sim are computationally indistinguishable. Recall that,
in the random oracle model, these views include all queries made to the random oracle and the
responses.

This is proved via a sequence of hybrid experiments as follows.

• Hybrid HA0 : This is the real experiment RealExpSimFE,A.

• Hybrid HA1 : This is the real experiment RealExpSimFE,A, except that at the beginning of

the experiment an additional random secret key sk′
R← {0, 1}λ is chosen and the output of

random oracle at point tagc is programmed as follows. Let tagk1 = (idk1, c1), . . . , tagkq =
(idkq, cq) be tags of the tokens returned to adversary at pre-challenge stage. Random
oracle is programmed at point tagc as follows:

RO(tagc) = SE.Enc(sk′, (idk1,M1(m)))|| . . . ||SE.Enc(sk′, (idkq,Mq(m)))

Additionally, the A1’s key queries for any machine M are answered with tokens, containing
tags tagk computed as tagk = (idk,SE.Enc(sk′,M(m))). Notice that instead in the previous
hybrid experiment tagk is computed as tagk = (idk, c) for random idk and c.

• Hybrid HA2 : We change the way the secret key sk′ is chosen. Namely, instead of setting it
at random we set sk′ = sk, where sk is the same secret key encrypted in the third slot of
the MI-FE ciphertext. In this experiment random oracle is programmed at point tagc as
follows:

RO(tagc) = SE.Enc(sk, (idk1,M1(m)))|| . . . ||SE.Enc(sk, (idkq,Mq(m)))

• Hybrid HA3 : In this experiment, we change the response to the challenge message m.
Instead of taking m′ = (m, 0, sk,Hash(kH,RO(tagc)), kH), we set
m′ = (0|m|, 1, sk,Hash(kH,RO(tagc)), kH). Then we compute c← MI-FE.Enc(Ek1,m

′) and

return a pair (c, tagc). This is the ideal experiment IdealExpSimFE,A
Sim .

We now show that the relevant distinguishing probabilities between adjacent hybrids are negli-
gible, which completes the proof.

Hybrid HA0 to Hybrid HA1 : This transition reduces to the ciphertext pseudo-randomness of the
underlying SE scheme (See Appendix A.2). For sake of contradiction, suppose there exists a
distinguisher D that distinguishes with non-negligible probability the output distribution of HA0
and HA1 . Then, A and D can be used to construct a successful adversary B that breaks the
ciphertext pseudo-randomness of SE playing against its oracle (that is either Encrypt or O, see
Appendix A.2). Specifically, B does the following.

13

• B runs SimFE.Setup honestly obtaining a pair (Pk,Msk) and runs A0(Pk).

A0’s key queries for machines M1, . . . ,Mq are answered honestly by running
SimFE.KeyGen(Msk,Mi). Let the tags attached to the returned tokens be
tagk1 = (idk1, c1), . . . , tagkq = (idkq, cq).

B simulates answers to A0’s random oracle queries. For any input query it responses with
random string and stores the output value for following queries.

Eventually, A0 outputs challenge message m and the state st.

B asks its oracle for encryption of pairs (idk1,M1(m)), . . . , (idkq,Mq(m)) getting responses
c1, . . . , cq. Then B chooses honestly random tagc for encryption and programs the sim-
ulated RO by setting RO(tagc) = c1|| . . . ||cq. B computes the challenge ciphertext Ct
honestly, except that the responded ciphertext tag is tagc.

• B runsA1 with Ct, Pk and state st. For anyA1’s key query for machineM , B asks its oracle
encryption of M(m) getting response c. Then it chooses random idk and responses A1’s
query with MI-FE.KeyGen(Msk,Trap[M,Hash, SE]tagk), where tagk = (idk, c). A1 eventually
outputs α.

• B runs distinguisher D on input (Pk,m, α) and outputs his guess as its own.

A asks RO for tagc before the challenge with negligible probability. Now notice that if this
event does not happen, then if the oracle of B returns truly random strings in response to B’s
queries then the view of A is exactly the view in HA0 and if the oracle returns encryptions of
queried values then the view of A is exactly the view in HA1 . Hence B breaks the ciphertext
pseudo-randomness of SE with non-negligible probability.

Hybrid HA1 to Hybrid HA2 : The indistinguishability of these two hybrid experiments reduces to
CRIND-Security of the starting MI-FE scheme with respect to some checker Checker to be defined
later. For sake of contradiction, suppose there exists a distinguisher D that distinguishes with
non-negligible probability the output distribution of HA1 and HA2 . Then, A and D can be used
to construct a successful CRIND adversary B for MI-FE with respect to some checker Checker
that we will define later. Specifically, B = (B0,B1) does the following.

• B0 on input the public parameters Mpk generated by MI-FE.Setup, and random r runs A0

on input public key Pk = (Mpk, r).

Then, B0 answers any A0’s token query Mi by using its oracle MI-FE.KeyGen(Msk, ·) as
follows: B0 chooses a random tagki = (idki, ci) and outputs the pair (Toki, tagki) where
Toki = MI-FE.KeyGen(Msk,Trap[Mi,Hash,SE]tagki).

Eventually, A0 outputs message m and the state st, which are stored in B0 state.

Then B0 chooses random sk and sets kH = r, encrypts Ci ← SE.Enc(sk, (idki,Mi(m)))
and programs the random oracle by setting RO(tagc) = C1|| . . . ||Cq.

It also chooses random sk′ and outputs two challenge messages: (m, 0, sk, h) and (m, 0, sk′, h)
where h = Hash(kH,RO(tagc)). B1 receives as input encryption of one of challenge mes-
sages concatenated with kH = r.

• B1 on input key Mpk, a ciphertext Ct1 and the state st, runs A1 on the input (Pk =
(Mpk, r),Ct1, st).

14

B1 answers A1’s adaptive queries for machine M by using its oracle MI-FE.KeyGen(Msk, ·)
as follows: chooses a random idk, computes c ← SE.Enc(sk,M(m)), sets tagk = (idk, c)
and outputs the pair (Tok, tagk) where Tok = MI-FE.KeyGen(Msk,Trap[M,Hash, SE]tagk).

Eventually, A1 outputs α, then B1 invokes D on input (Pk = (Mpk, r),m, α) and returns
D’s guess as its own.

Notice that if the challenger returns encryption of (m, 0, sk′, h, kH) then the view of A is the
same as in HA1 , and if the challenger returns encryption of (m, 0, sk, h, kH) then the view of A
is the same as in HA2 . Hence, if D distinguishes these two cases then B guesses the right bit
in the game of the CRIND-security of MI-FE, since sk = sk′ only with negligible probability. It
remains to prove the following claim.

Claim 3.8 There exists an efficient checker Checker that satisfies the property required in the
definition of CRIND-Security and B is valid with respect to Checker (cf. remark 2.6).

Notice that the trapdoor machines have a specified format that includes a sub-routine for a
CRHF Hash. The checker must only check that this subroutine equals the code of Hash and that
the trapdoor machine and the messages have the right format, specifically that the machine has
the format of our trapdoor machines with the right sub-routine Hash and that both messages has
flag set to normal mode and contain the same hash value h. Note that if this format is guaranteed,
then the evaluations of Trap[Mi,Hash,SE]tagki are equal for any second argument. For machines
and messages that satisfy these checks, the condition of collision-resistance compatibility is
guaranteed and the checker will output true, otherwise it will output false. As a consequence, if
the the inputs m0,m1 and M to the checker do not satisfy the property of collision-resistance
compatibility, it follows that the machine M or the messages can not have the required format,
and thus the checker will output false, as it was to prove. Furthermore, by construction, the
trapdoor machines queried by B make the Checker always output true.

Hybrid HA2 to Hybrid HA3 : The indistinguishability of these two hybrids reduces to the CRIND-
Security (with respect to some checker Checker with efficient checkability) of the underlying
MI-FE scheme. For sake of contradiction, suppose there exists an adversary D that distinguishes
with non-negligible probability the output distributions of HA2 and HA3 . Then, A and D can be
used to construct a successful adversary B against the CRIND-Security of MI-FE with respect to
a checker Checker that we will define later. Specifically, B = (B0,B1) does the following.

• B0 on input the public parameters Mpk generated by MI-FE.Setup and random r, runs A0

on input (Mpk, r).

Then, B0 answers any A0’s token query Mi by using its oracle MI-FE.KeyGen(Msk, ·) as
follows: B0 chooses a random tagki = (idki, ci) and outputs the pair (Toki, tagki) where
Toki = MI-FE.KeyGen(Msk,Trap[Mi,Hash, SE]tagki).

Eventually, A0 outputs message m and the state st, which are stored in B0 state.

Then B0 sets kH = r, chooses random sk, encrypts Ci ← SE.Enc(sk, (idki,Mi(m))) and
programs the random oracle as

RO(tagc) = C1|| . . . ||Cq

B0 outputs a pair of challenge messages: m′0 = (m, 0, sk, h) and m′1 = (0|m|, 1, sk, h) where
h = Hash(kH,RO(tagc)). Note that B1 receives as input encryption of one of challenge

15

messages concatenated with kH = r, i.e., receives an encryption of mb = (m′b||kH) for
randomly chosen b ∈ {0, 1}.

• B1 on input key Mpk, a ciphertext Ct1 and the state st, runs A1 on the input (Pk =
(Mpk, r),Ct1, st).

B1 answers A1’s adaptive queries for machine M by using its oracle MI-FE.KeyGen(Msk, ·)
as follows: chooses a random idk, computes c ← SE.Enc(sk,M(m)), sets tagk = (idk, c)
and outputs the pair (Tok, tagk) where Tok = MI-FE.KeyGen(Msk,Trap[M,Hash, SE]tagk).

Eventually, A1 outputs α, then B1 invokes D on input (Pk = (Mpk, r),m, α) and returns
D’s guess as its own.

If the challenger returns an encryption of m0 = (m′0||kH) then the view of A is the same as
in HA2 , else if the challenger returns an encryption of m1 = (m′1||kH) then the view of A is
the same as in HA3 . Hence, if D distinguishes these two cases then B makes the right guess
in the game of the CRIND-Security of MI-FE. Moreover, the challenges satisfy the requirement
of collision-resistance compatibility in the definition CRIND-Security definition because for any
queried trapdoor machine Trap, finding second argument R such that

Trap(m0 = (m′0||kH), R) 6= Trap(m′1 = (m1||kH), R)

implies finding R 6= RO(tagc) such that Hash(kH, R) = Hash(kH,RO(tagc)). It is easy to see
that this contradicts the security of the collision-resistance hash function Hash, because kH is
chosen at random, and therefore will occur with negligible probability. This is proven in the
following claim.

It remains to prove the following claim.

Claim 3.9 Let K denote the entire set of key queries made by adversary B. Then, w.v.h.p.,
the challenge messages m′0 and m′1 chosen by B must be collision-resistant compatible with K.

Suppose toward a contradiction that this does not hold. Then there exists an adversary E that
breaks the security of Hash. Such adversary E receives kH and generates the trapdoor machine
Trap along with m0 and m1 as described before, in particular setting the value h in both mes-
sages to Hash(kH,RO(tagc)). Suppose that E outputs a messages R such that Trap(m0, R) 6=
Trap(m1, R). By definition of Trap, m0 and m1, it holds that either Trap(m0, R) = Trap(m1, R) =
⊥ or Trap(m0, R) 6= ⊥ and Trap(m1, R) 6= ⊥. By definition of Trap, this implies that R is
such that Hash(kH, R) = h. Moreover, by construction it holds that Trap(m0,RO(tagc)) =
Trap(m1,RO(tagc)). Therefore, R 6= RO(tagc) and Hash(kH, R) = Hash(kH,RO(tagc)), contra-
dicting the security of Hash.

Claim 3.10 There exists an efficient checker Checker that satisfies the property required in the
definition of CRIND-Security and B is valid with respect to Checker (cf. remark 2.6).

Notice that the trapdoor machines have a specified format that includes a sub-routine for a
CRHF Hash. The checker must only check that this subroutine equals the code of Hash and
that the trapdoor machine and the messages have the right format, specifically that the machine
has the format of our trapdoor machines with the right sub-routine Hash and that one of the
messages has flag set to normal mode and the other one has flag set to trapdoor mode and
both messages have the same hash value h and same secret-key sk. For machines and messages
that satisfy these checks, the condition of collision-resistance compatibility is guaranteed and

16

the checker will output true, otherwise it will output false. As a consequence, if the the inputs
m0,m1 and M to the checker do not satisfy the property of collision-resistance compatibility,
it follows that the machine M or the messages can not have the required format, and thus
the checker will output false, as it was to prove. Furthermore, by construction, the trapdoor
machines queried by B make the Checker always output true.

Remark 3.11 The reader may have noticed that the security of the second ciphertext guaran-
teed by the underlying MI-FE is not necessary. That is, our transformation would work even
assuming 2-inputs MI-FE systems that take the second input in clear. Moreover, the theorem
would hold even assuming a MI-FE scheme CRIND-Secure only with respect to adversaries asking
bounded non-adaptive and ciphertext queries and unbounded adaptive queries, and satisfying
the same efficiency requirements. This holds for the transformation of Section 3.4 as well.

3.2 (q1, qc, q2)-SIM-Security with short tokens

The previous transformation suffers from the problem that the size of the tokens grows as the
number of ciphertext queries qc. In this Section we show how to achieve (q1, qc, q2)-SIM-Security.
Notice that in the standard model constructions satisfying this level of security like the scheme
of Gorbunov et al. [GVW12b] have short ciphertexts and tokens. Moreover, De Caro and Iovino
[CI13] showed an impossibility result for this setting. Our transformation assumes a 3-inputs
MI-FE scheme (CRIND-Secure in the standard model). The resulting scheme is (q1, qc, q2)-SIM-
Secure according to the definition with simulated setup (cf. Remark C.6). The idea is very
similar to the transformation presented in Section 3.1.

Sketch of the transformation. The tokens will be symmetrical to the the ciphertexts.
Specifically, a token in our scheme consists of a token T for a 2-inputs MI-FE scheme and a
tag tagk with the following changes. The token T has an additional slot containing the hash of
RO(tagk) and an identifier idt and the ciphertext has a additional slot containing an identifier
idc. In normal mode both identifiers are set to random strings. In the simulated experiment, the
identifiers will be ciphertexts encrypted with the same secret-key used in the other slot of the
ciphertext. Let us denote by id′t and id′c the values encrypted in idt and idc. In trapdoor mode,
the functionality checks whether id′c > id′t. In such case the functionality works as before taking
the output from the RO programmed at point RO(tagk). Instead, if id′c < id′t, the functionality
takes the output from RO(tagc). In both normal and trapdoor mode, the functionality checks
whether both hash values are correct (that is, it checks whether the hash value in the token equals
the hash of RO(tagk) and that the hash value in the ciphertext equals the hash of RO(tagc))
and if one of the tests does not pass, the functionality returns error. During the simulation,
these identifiers will contain a temporal index increasing over time (that is the i-th token or
ciphertext will contain an identifier that encrypts i). Notice that since we need to simulate
tokens (to set the identifiers to the encryption of the correct timestamp), we need to weaken the
security to allow simulated setup (cf. Remark C.6).

The token T of our MI-FE scheme is for a machine Trap that takes 3 inputs: the message
(extended as usual with the additional slots), and two random strings Rc and Rk, which are
used to decrypt in trapdoor mode, and works in the obvious way by executing Trap on the three
inputs. Finally, in the simulated experiment, the RO is programmed to output a fixed number
max q1, qc, q2 of ciphertexts, value that is proportional to the running-times of the procedures as
well.

17

Security. The security proof is identical to that of our main transformation with few changes.
We first need to switch the slot of the identifiers in both ciphertexts and tokens to be encryption
of the the temporal index. Then we proceed as before.

3.3 (poly, poly, poly)-SIM-Security in the Timestamp model

We recall that the any known impossibility results in the standard model also apply to the
symmetric-key setting. In this Section we show how to achieve unbounded SIM-Security in the
RO in a variant of the symmetric-key setting that we call the timestamp model. Moreover, our
scheme enjoys ciphertexts and tokens of constant size. The timestamp model is identical to the
symmetric-key mode except for the following changes:

• Encryption and key generation procedure also take as input a temporal index or timestamp.
The security of this index is not required. The security experiments are identical to those
of the symmetric-key model except that the queries are answered by providing tokens and
ciphertexts with increasing temporal index (the exact value does not matter until they are
ordered in order of invocation). Roughly speaking, this is equivalent to saying that the
procedures are stateful. Notice that in the symmetric-key model, this change has no cost
since the user who set-up the system can keep the value of the current timestamp and
guarantee that ciphertexts and tokens are generated with timestamps of increasing order.

• For simplicity, we also assume that there is a decryption key. Precisely, the evaluation
algorithm takes as input a token, a ciphertext and a decryption key. It is easy to see that
this decryption key can be removed at the cost of including it in any token or ciphertext.

Sketch of the transformation. With this changes in mind it is easy to modify the scheme
of Section 3.4 to satisfy (poly, poly, poly)-SIM-Security in the RO model. Precisely, the slots for
the identifiers will contain the temporal index in clear9. In the scheme, the tags will be such
that the (both non-programmed and programmed) RO on these input will output a string of
size proportional to i, where i is the temporal index. This can be done by assuming that the RO
outputs a single bit and invoking it many times. That is, instead of computing RO(tagc), the
procedures will compute RO(tagc||j) for j = i, . . . ,m where m is the needed size. For simplicity,
henceforth, we assume that the RO outputs strings of variable-length. As byproduct, we need
to program the RO on the tag tagc (resp. tagk) of a ciphertext (resp. token) with timestamp
i to only output i ciphertexts. Thus, we do not need to fix in advance any bound, which was
the only limitation of the previous transformations. Notice that the evaluation algorithm needs
to encrypt the output of RO(tagc) and RO(tagk) and this is done by using the encryption keys
Ek2 and Ek2 for the second and third input. This is the reason because we assume that there is
a decryption key that in this scheme consists of the pair (Ek2,Ek3).

Security. The security proof is identical to that of the transformation of Section 3.4 with
further simplifications due to the fact that we do not need to have the temporal index encrypted.
We first need to switch the slot of the identifiers in both ciphertext and tokens to be encryption
of the the temporal index. Then the proof proceeds as before.

3.4 (q1, qc, q2)-SIM-Security with short tokens

The previous transformation suffers from the problem that the size of the tokens grows as the
number of ciphertext queries qc. In this Section we show how to achieve (q1, qc, q2)-SIM-Security.

9We stress that we could also assume that the temporal index is appended in clear to the final ciphertext.

18

Notice that in the standard model constructions satisfying this level of security like the scheme
of Gorbunov et al. [GVW12b] have short ciphertexts and tokens. Moreover, De Caro and Iovino
[CI13] showed an impossibility result for this setting. Our transformation assumes a 3-inputs
MI-FE scheme (CRIND-Secure in the standard model). The resulting scheme is (q1, qc, q2)-SIM-
Secure according to the definition with simulated setup (cf. Remark C.6). The idea is very
similar to the transformation presented in Section 3.1.

Sketch of the transformation. The tokens will be symmetrical to the the ciphertexts.
Specifically, a token in our scheme consists of a token T for a 2-inputs MI-FE scheme and a
tag tagk with the following changes. The token T has an additional slot containing the hash of
RO(tagk) and an identifier idt and the ciphertext has a additional slot containing an identifier
idc. In normal mode both identifiers are set to random strings. In the simulated experiment, the
identifiers will be ciphertexts encrypted with the same secret-key used in the other slot of the
ciphertext. Let us denote by id′t and id′c the values encrypted in idt and idc. In trapdoor mode,
the functionality checks whether id′c > id′t. In such case the functionality works as before taking
the output from the RO programmed at point RO(tagk). Instead, if id′c < id′t, the functionality
takes the output from RO(tagc). In both normal and trapdoor mode, the functionality checks
whether both hash values are correct (that is, it checks whether the hash value in the token equals
the hash of RO(tagk) and that the hash value in the ciphertext equals the hash of RO(tagc))
and if one of the tests does not pass, the functionality returns error. During the simulation,
these identifiers will contain a temporal index increasing over time (that is the i-th token or
ciphertext will contain an identifier that encrypts i). Notice that since we need to simulate
tokens (to set the identifiers to the encryption of the correct timestamp), we need to weaken the
security to allow simulated setup (cf. Remark C.6).

The token T of our MI-FE scheme is for a machine Trap that takes 3 inputs: the message
(extended as usual with the additional slots), and two random strings Rc and Rk, which are
used to decrypt in trapdoor mode, and works in the obvious way by executing Trap on the three
inputs. Finally, in the simulated experiment, the RO is programmed to output a fixed number
max q1, qc, q2 of ciphertexts, value that is proportional to the running-times of the procedures as
well.

Security. The security proof is identical to that of our main transformation with few changes.
We first need to switch the slot of the identifiers in both ciphertexts and tokens to be encryption
of the the temporal index. Then we proceed as before.

3.5 (poly, poly, poly)-SIM-Security in the Timestamp model

We recall that the any known impossibility results in the standard model also apply to the
symmetric-key setting. In this Section we show how to achieve unbounded SIM-Security in the
RO in a variant of the symmetric-key setting that we call the timestamp model. Moreover, our
scheme enjoys ciphertexts and tokens of constant size. The timestamp model is identical to the
symmetric-key mode except for the following changes:

• Encryption and key generation procedure also take as input a temporal index or timestamp.
The security of this index is not required. The security experiments are identical to those
of the symmetric-key model except that the queries are answered by providing tokens and
ciphertexts with increasing temporal index (the exact value does not matter until they are
ordered in order of invocation). Roughly speaking, this is equivalent to saying that the
procedures are stateful. Notice that in the symmetric-key model, this change has no cost
since the user who set-up the system can keep the value of the current timestamp and
guarantee that ciphertexts and tokens are generated with timestamps of increasing order.

19

• For simplicity, we also assume that there is a decryption key. Precisely, the evaluation
algorithm takes as input a token, a ciphertext and a decryption key. It is easy to see that
this decryption key can be removed at the cost of including it in any token or ciphertext.

Sketch of the transformation. With this changes in mind it is easy to modify the scheme
of Section 3.4 to satisfy (poly, poly, poly)-SIM-Security in the RO model. Precisely, the slots for
the identifiers will contain the temporal index in clear10. In the scheme, the tags will be such
that the (both non-programmed and programmed) RO on these input will output a string of
size proportional to i, where i is the temporal index. This can be done by assuming that the RO
outputs a single bit and invoking it many times. That is, instead of computing RO(tagc), the
procedures will compute RO(tagc||j) for j = i, . . . ,m where m is the needed size. For simplicity,
henceforth, we assume that the RO outputs strings of variable-length. As byproduct, we need
to program the RO on the tag tagc (resp. tagk) of a ciphertext (resp. token) with timestamp
i to only output i ciphertexts. Thus, we do not need to fix in advance any bound, which was
the only limitation of the previous transformations. Notice that the evaluation algorithm needs
to encrypt the output of RO(tagc) and RO(tagk) and this is done by using the encryption keys
Ek2 and Ek2 for the second and third input. This is the reason because we assume that there is
a decryption key that in this scheme consists of the pair (Ek2,Ek3).

Security. The security proof is identical to that of the transformation of Section 3.4 with
further simplifications due to the fact that we do not need to have the temporal index encrypted.
We first need to switch the slot of the identifiers in both ciphertext and tokens to be encryption
of the the temporal index. Then the proof proceeds as before.

4 Constructions of CRIND-Secure MI-FE from eO

Overview. In order to achieve CRIND-security of MI-FE (as defined in Section 2.3), we make
use of the following ideas inspired by the construction of fully IND-Secure FE of Boyle et al.
[BCP14]. We assume a functional signature scheme FS [BGI13]. Namely, our encryption pro-
cedure takes as input the first input m1 and produces an obfuscation of a machine that has
embedded m1 and takes as input a second message m2 and a functional signature for some
function f and (1) verifies the signature and (2) outputs f(m1,m2). Roughly speaking, we
want prevent the adversary to be able to find distinguishing inputs. To this scope, we need
to forbid the adversary from evaluating the machine on functions for which it did not see a
signature. For the same reasons as in Boyle et al. it is not possible to use a standard signature
scheme. This is because, the adversary A against eO needs to produce a view to the adversary B
against CRIND-Security, and in particular to simulate the post-challenge tokens. To that aim, A
would need to receive an auxiliary input z containing the signing key of the traditional signature
scheme but in this case an extractor with access to z could easily find a distinguishing input.
As in Boyle et al. we resort to functional signatures. We recall their ideas. In the scheme, they
put a a functional signing key that allows to sign any function. In the security proof, they use
the property of function privacy to show that the original experiment is computationally indis-
tinguishable to an experiment where the post-challenge queries are answered with respect to a
restricted signing key for the Boolean predicate that is verified on all and only the machines T
for which T (m0) = T (m1), where m0 and m1 are the challenges chosen by the adversary against
IND-Security. Thus, putting this restricted signing key in the auxiliary distribution does not
hurt of the security since an extractor can not make use of it to find a distinguishing input. In

10We stress that we could also assume that the temporal index is appended in clear to the final ciphertext.

20

the case of CRIND-Security, it is not longer true that T (m0) = T (m1) but we will invoke the
properties of the checker and we set the Boolean predicate to one that is verified for all machines
T approved by the checker with respect to the challenges, i.e., such that Checker(T,m0,m1) = 1.
Then, by the property of the checker and valid adversaries, it follows that for any machine T
for which the valid adversary asked a query, it is difficult to find a second input m2 such that
T (m0,m2) 6= T (m1,m2). Thus, the existence of an extractor for our distribution would contra-
dict the hypothesis that the adversary is valid and only asked queries for machines and challenges
satisfying the collision-resistance compatibility. Precisely, we have the following transformation.

Definition 4.1 [eO-Based Transformation]
Let eO be an extractability obfuscator w.r.t. distributional auxiliary input (cf. Remark 2.9).
Let FS = (FS.Setup,FE.KeyGen,FS.Sign,FS.Verify) be a signature scheme.

For any message m1 and verification key vk of FS, let us define a machine Mm1 (where for
simplicity we omit the other parameters in subscript) that takes two inputs, a signature σT of
machine T and a message m2, and performs the following:

• The machine verifies the signature σT according to vk, and if it is an invalid signature, it
returns ⊥;

• The machine returns T (m1,m2).

We define a new 2-inputs functional encryption scheme
CRFE[eO,FS] = (Setup,KeyGen,Enc,Eval) for functionality TM2 as follows11

• Setup(1λ): chooses a pair (msk, vk)← FS.Setup(1λ) and generates a key sk1 ← FS.KeyGen(msk, 1)
that allows signing all messages (i.e., for the always-accepting predicate 1(T) = T ∀ T).
It sets Ek1 = Ek2 = vk and outputs Mpk = Ek1 and Msk = (sk1, vk).

• Enc(Ek,m): depending on whether Ek is an encryption key for first or second input:

– if Ek = Ek1 then outputs eO(Mm) where Mm is defined as above with respect to m
and vk (recall that for simiplicity we omit the subscript for vk).

– if Ek = Ek2 then outputs the message m in clear (recall that we are not interested
in the security of the second input and we adopted the formalism of multi-input FE
to avoid the need of a new syntax and for sake of generality, e.g., providing in future
constructions that satisfy both IND-Security and CRIND-Security).

• KeyGen(Msk, T): on input Msk = (sk1, vk) and a machine T , the algorithm generates a
signature on T via σT ← Signature.Sign(sk1,T) and outputs token σT .

• Eval(Mpk,Ct1,Ct2, Tok): on input Mpk = vk, Ct1 which is an obfuscated machine Mm1 ,
Ct2 = m2, Tok = σT , runs machine Mm1 with the other inputs as arguments, and returns
the machine output as its own.

Correctness. It is easy to see that the scheme satisfies correctness assuming the correctness
of eO and FS.

We now analyze the security of the constructed scheme. The reader is encouraged to compare
this with the proof of fully IND-Secure (single-input) FE of Boyle et al. that is very similar except
for few changes.

11For simplicity, henceforth we omit to specify whether the functionality is with respect to machine of fixed
time or input-specific. Both cases can be taken in account with small changes.

21

Theorem 4.2 If eO is an extractable obfuscator w.r.t. distributional auxiliary input, FS is an
unforgeable functional signature scheme with function privacy, then, for any Checker satisfying
the requirement of the CRIND-Security, it holds that CRFE[eO,FS] is CRIND-Secure. Further-
more such scheme satisfies input-specific run time and assuming that FS is also succinct, so
CRFE does.

Proof: We define the following hybrids. Let q(λ) be a bound on the number of post-challenge
token queries asked by B in any execution with security parameter 1λ. Such bound exists because
B is a PPT algorithm.

• Hybrid HB0 : This is the real experiment CRIND
CRFE[eO,FS]
B .

• Hybrid HBi , i = 0, . . . , q : Same as the previous hybrid, except that the first i post-
challenge token queries are answered with respect to a restricted signing key skC for
the Boolean predicate C that allows one to sign exactly Turing machines T for which
Checker(T,m0,m1) = 1. (This is one of the differences with the proof of Boyle et al.
wherein, being the scope to prove IND-Security, the signing key is for a predicate that
allows one to sign exactly the machines T for which T (m0) = T (m1). This is not pos-
sible in our case, but we make use of the definition of valid adversary that dictates that
such adversary will only make queries for machines approved by the checker.). Specif-
ically, at the beginning of the game the challenger generates a restricted signing key
skC ← FS.KeyGen(Msk,C). The pre-challenge queries are answered using the standard
signing key sk1 as in hybrid H0. The first i post-challenge token queries are answered
using the restricted key skC, that is a token query for machine T is answered with
σT ← FS.Sign(skC,T). All remaining token queries are anwered using the standard key
sk1.

Claim 4.3 For i = 1, . . . , q, the advantage of B in guessing the bit b in hybrid HBi is equal to
the advantage of B in guessing the bit b in hybrid HBi−1 up to a negligible factor.

We prove the claim by using the function privacy property of FS. Namely, for any i ∈ [q],
consider the following adversary Apriv(1

λ) against function privacy of FS.

• Aipriv is given keys (vk,msk)← FS.Setup(1λ) from the function privacy challenger.

• Aipriv submits the all-accepting function 1 as the first of its two challenge functions, and
receives a corresponding signing key sk1 ← FS.KeyGen(msk, 1).

• Aipriv simulates interaction with B. First, it forwards vk to B as the public-key and chooses

a random string r ∈ {0, 1}λ. For each token query T made by B, it generates a signature
on T using key sk1.

• Aipriv At some point B outputs a pair of messages m0,m1. Aipriv generates a challenge
ciphertext in the CRIND-Security game by sampling a random bit b and encrypting (mb||r)
and sending it to B.

• Aipriv submits as its second challenge function C (as defined above). It receives a corre-
sponding signing key skC ← FS.KeyGen(msk,PC).

22

• Aipriv now simulates interaction with B as follows.

For the first i − 1 post-challenge token queries T made by B, Aipriv generates a signature

using key skC, i.e., σT ← FS.Sign(skC,T). For B’s i-th post-challenge query, Aipriv submits
the pair of preimages (T, T) to the function privacy challenger (note that 1(T) = C(T) =
T) since, being B a valid adversary, it only asks queries T such that Checker(T,m0,m1) =
1), and receives a signature σT generated either using key sk1 or key skC. Aipriv generates
the remaining post-challenge queries of B using key sk1.

• Eventually B outputs a bit b′. If b′ = b is a correct guess, then Aipriv outputs function 1;
otherwise, it outputs function C.

Note that if the function privacy challenger selected the function 1, then Aipriv perfectly simulates

hybrid HBi−1, otherwise it perfectly simulates hybrid HBi . Thus, the advantage of Aipriv is exactly

the difference in guessing the bit b in the two hybrids, HBi and HBi−1 and the claim follows from
the function privacy property.

Next, we define the following distribution D depending on B.

• D(1λ) gets r
R← {0, 1}λ, samples a key pair (vk,msk ← FS.Setup(1λ) and generates the

signing key for the all-accepting function 1 by sk1 ← FS.KeyGen(msk, 1).

• Using sk1 and vk, D simulates the action of B in experiment HBq up to the point in which
B outputs a pair of challenge messages m1,m1. Denote by viewB the current view of B up
to this point of the simulation.

• D generates a signing key skC for the function C as defined above and machines Mm0||r
and Mm1||r as defined above (recall that as usual we omit to specify the subscript relative
to vk).

• D outputs the tuple (Mm0||r,Mm1||r, z = (viewB, skC)).

We now can construct an adversary A(1λ,M ′,M0,M1, z) against the security of eO.

• A takes as input the security parameter 1λ, an obfuscation M ′ of machine Mb for randomly
chosen bit b, two machines M0 and M1, and auxiliary input z = (viewB, skC).

• Using viewB, A returns B to the state of execution as in the corresponding earlier simulation
during the D sampling process.

• Simulate the challenge ciphertex to B as M ′. For each subsequent token query M made
by B, A answers it by producing a signature on M using skC.

• Eventually, B outputs a bit b′ for the challenge ciphertext that A returns as its own guess.

Note that the interaction with the adversary B in sampling from D is precisely a simulation in
hybrid HBq up to the point in which B outputs the challenge messages,and the interaction with B
made by A is precisely a simulation of the remaining steps in hybrid HBq . We are assuming that
the advantage of B in hybrid H i

q is≥ b(λ) for some non-negligible function b(λ). Thus, A’s advan-
tage in guessing the bit b on which it is challenged upon is some non-negligible function (where
probability is taken over the output of D). By the security of eO this implies a corresponding

23

PPT extractor E and a non-negligible function c(λ) such that with non-negligible probability over
the output (M0,M1, z) of D it holds that Pr

[
w ← E(1λ,M0,M1, z) : M0(w) 6= M1(w)

]
≥ c(λ).

We now show that such PPT extractor can not exist.

Claim 4.4 There can not exist a PPT extractor as above.

Suppose toward a contradiction that there exists such extractor that outputs a signature σA
for some machine A , and a second input m2 that distinguishes Mm0||r from Mm1||r. We note
that any signature output by the extractor must be a valid signature for a machine A for
which the adversary asked a query. This follows from the unforgeability of FS. From this fact,
and from the fact that the checker approved the triple (A,m0,m1), it follows that m0 and m1

are collision-resistant compatible with {A}. Therefore, this adversary can be used to break
the collision-resistance compatibility with respect to m0 and m1 and {A}, contradicting the
hypothesis.

It is trivial to see that the claim on input-specific run time holds if the the scheme is used with
Turing machines of input-specific run time and that the claim on the succinctness follows easily
from our construction and the succinctness of FS. This concludes the proof.

References

[AAB+13] Shashank Agrawal, Shweta Agrawal, Saikrishna Badrinarayanan, Abishek Kumara-
subramanian, Manoj Prabhakaran, and Amit Sahai. Function private functional en-
cryption and property preserving encryption : New definitions and positive results.
Cryptology ePrint Archive, Report 2013/744, 2013. http://eprint.iacr.org/.

[AGK+13] Daniel Apon, Dov Gordon, Jonathan Katz, Feng-Hao Liu, Hong-Sheng Zhou, and
Elaine Shi. Personal Communication, July 2013.

[AGVW13] Shweta Agrawal, Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee.
Functional encryption: New perspectives and lower bounds. In CRYPTO (2), pages
500–518, 2013.

[BCP14] Elette Boyle, Kai-Min Chung, and Rafael Pass. On extractability obfuscation.
In Yehuda Lindell, editor, Theory of Cryptography - 11th Theory of Cryptography
Conference, TCC 2014, San Diego, CA, USA, February 24-26, 2014. Proceedings,
volume 8349 of Lecture Notes in Computer Science, pages 52–73. Springer, 2014.

[BDOP04] Dan Boneh, Giovanni Di Crescenzo, Rafail Ostrovsky, and Giuseppe Persiano. Pub-
lic key encryption with keyword search. In Christian Cachin and Jan Camenisch,
editors, Advances in Cryptology – EUROCRYPT 2004, volume 3027 of Lecture
Notes in Computer Science, pages 506–522, Interlaken, Switzerland, May 2–6, 2004.
Springer, Berlin, Germany.

[BGI13] Elette Boyle, Shafi Goldwasser, and Ioana Ivan. Functional signatures and pseudo-
random functions. IACR Cryptology ePrint Archive, 2013:401, 2013.

[BO13] Mihir Bellare and Adam O’Neill. Semantically-secure functional encryption: Possi-
bility results, impossibility results and the quest for a general definition. In Cryp-
tology and Network Security - 12th International Conference, CANS 2013, Paraty,
Brazil, November 20-22. 2013. Proceedings, pages 218–234, 2013.

24

http://eprint.iacr.org/

[BP13] Elette Boyle and Rafael Pass. Limits of extractability assumptions with dis-
tributional auxiliary input. Cryptology ePrint Archive, Report 2013/703, 2013.
http://eprint.iacr.org/.

[BSW11] Dan Boneh, Amit Sahai, and Brent Waters. Functional encryption: Definitions
and challenges. In Yuval Ishai, editor, TCC 2011: 8th Theory of Cryptography
Conference, volume 6597 of Lecture Notes in Computer Science, pages 253–273,
Providence, RI, USA, March 28–30, 2011. Springer, Berlin, Germany.

[BW07] Dan Boneh and Brent Waters. Conjunctive, subset, and range queries on encrypted
data. In Salil P. Vadhan, editor, TCC 2007: 4th Theory of Cryptography Conference,
volume 4392 of Lecture Notes in Computer Science, pages 535–554, Amsterdam, The
Netherlands, February 21–24, 2007. Springer, Berlin, Germany.

[CG13] Ran Canetti and Juan A. Garay, editors. Advances in Cryptology - CRYPTO 2013 -
33rd Annual Cryptology Conference, Santa Barbara, CA, USA, August 18-22, 2013.
Proceedings, Part II, volume 8043 of Lecture Notes in Computer Science. Springer,
2013.

[CGH98] Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle methodology,
revisited (preliminary version). In 30th Annual ACM Symposium on Theory of
Computing, pages 209–218, Dallas, Texas, USA, May 23–26, 1998. ACM Press.

[CI13] Angelo De Caro and Vincenzo Iovino. On the power of rewinding simulators in
functional encryption. IACR Cryptology ePrint Archive, 2013:752, 2013.

[DIJ+13] Angelo De Caro, Vincenzo Iovino, Abhishek Jain, Adam O’Neill, Omer Paneth, and
Giuseppe Persiano. On the achievability of simulation-based security for functional
encryption. In Canetti and Garay [CG13], pages 519–535.

[FLS90] Uriel Feige, Dror Lapidot, and Adi Shamir. Multiple non-interactive zero knowledge
proofs based on a single random string (extended abstract). In 31st Annual Sym-
posium on Foundations of Computer Science, St. Louis, Missouri, USA, October
22-24, 1990, Volume I, pages 308–317. IEEE Computer Society, 1990.

[GGG+14] Shafi Goldwasser, S. Dov Gordon, Vipul Goyal, Abhishek Jain, Jonathan Katz,
Feng-Hao Liu, Amit Sahai, Elaine Shi, and Hong-Sheng Zhou. Multi-input func-
tional encryption. In Phong Q. Nguyen and Elisabeth Oswald, editors, Advances
in Cryptology - EUROCRYPT 2014 - 33rd Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Copenhagen, Denmark, May
11-15, 2014. Proceedings, volume 8441 of Lecture Notes in Computer Science, pages
578–602. Springer, 2014.

[GGH+13] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent
Waters. Candidate indistinguishability obfuscation and functional encryption for
all circuits. In 54th Annual IEEE Symposium on Foundations of Computer Sci-
ence, FOCS 2013, 26-29 October, 2013, Berkeley, CA, USA, pages 40–49. IEEE
Computer Society, 2013.

[GGHW13] Sanjam Garg, Craig Gentry, Shai Halevi, and Daniel Wichs. On the implausibility of
differing-inputs obfuscation and extractable witness encryption with auxiliary input.
Cryptology ePrint Archive, Report 2013/860, 2013. http://eprint.iacr.org/.

25

http://eprint.iacr.org/
http://eprint.iacr.org/

[GGJS13] Shafi Goldwasser, Vipul Goyal, Abhishek Jain, and Amit Sahai. Multi-input func-
tional encryption. Cryptology ePrint Archive, Report 2013/727, 2013. http:

//eprint.iacr.org/.

[GKL+13] S. Dov Gordon, Jonathan Katz, Feng-Hao Liu, Elaine Shi, and Hong-Sheng Zhou.
Multi-input functional encryption. IACR Cryptology ePrint Archive, 2013:774, 2013.

[GKP+13] Shafi Goldwasser, Yael Tauman Kalai, Raluca A. Popa, Vinod Vaikuntanathan, and
Nickolai Zeldovich. How to run turing machines on encrypted data. In Canetti and
Garay [CG13], pages 536–553.

[GVW12a] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Functional encryption
with bounded collusions via multi-party computation. In Reihaneh Safavi-Naini
and Ran Canetti, editors, Advances in Cryptology – CRYPTO 2012, volume 7417
of Lecture Notes in Computer Science, pages 162–179, Santa Barbara, CA, USA,
August 19–23, 2012. Springer, Berlin, Germany.

[GVW12b] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Functional encryption
with bounded collusions via multi-party computation. In Reihaneh Safavi-Naini and
Ran Canetti, editors, CRYPTO, volume 7417 of Lecture Notes in Computer Science,
pages 162–179. Springer, 2012.

[KSW08] Jonathan Katz, Amit Sahai, and Brent Waters. Predicate encryption supporting
disjunctions, polynomial equations, and inner products. In Nigel P. Smart, editor,
Advances in Cryptology – EUROCRYPT 2008, volume 4965 of Lecture Notes in
Computer Science, pages 146–162, Istanbul, Turkey, April 13–17, 2008. Springer,
Berlin, Germany.

[LOS+10] Allison B. Lewko, Tatsuaki Okamoto, Amit Sahai, Katsuyuki Takashima, and Brent
Waters. Fully secure functional encryption: Attribute-based encryption and (hier-
archical) inner product encryption. In Henri Gilbert, editor, Advances in Cryptology
– EUROCRYPT 2010, volume 6110 of Lecture Notes in Computer Science, pages
62–91, French Riviera, May 30 – June 3, 2010. Springer, Berlin, Germany.

[O’N10] Adam O’Neill. Definitional issues in functional encryption. Cryptology ePrint
Archive, Report 2010/556, 2010. http://eprint.iacr.org/.

[OT12] Tatsuaki Okamoto and Katsuyuki Takashima. Adaptively attribute-hiding (hierar-
chical) inner product encryption. In David Pointcheval and Thomas Johansson, ed-
itors, Advances in Cryptology – EUROCRYPT 2012, volume 7237 of Lecture Notes
in Computer Science, pages 591–608, Cambridge, UK, April 15–19, 2012. Springer,
Berlin, Germany.

[Wat12] Brent Waters. Functional encryption for regular languages. In Reihaneh Safavi-
Naini and Ran Canetti, editors, Advances in Cryptology – CRYPTO 2012, volume
7417 of Lecture Notes in Computer Science, pages 218–235, Santa Barbara, CA,
USA, August 19–23, 2012. Springer, Berlin, Germany.

[Wee09] Hoeteck Wee. Zero knowledge in the random oracle model, revisited. In Mitsuru
Matsui, editor, Advances in Cryptology – ASIACRYPT 2009, volume 5912 of Lecture
Notes in Computer Science, pages 417–434, Tokyo, Japan, December 6–10, 2009.
Springer, Berlin, Germany.

26

http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/

A Standard Notions

A.1 Collision-resistant Hash Functions

Definition A.1 [Collision-resistant Hash Functions] We say that a pair of PPT algorithms
(Gen,Hash) is collision-resistant hash function (CRHF in short) if:

• Gen(1λ) outputs a key s.

• There exists some polynomial l(λ) such that Hash on input 1λ and x ∈ {0, 1}? outputs a
string y ∈ {0, 1}l(λ). If H(s, ·) is only defined for inputs x of length l′(λ), where l′(λ) > l(λ),
we say that (Gen,Hash) is a fixed-length collision-resistant hash function for inputs of
length l′.

• It holds that for any PPT adversary A the probability of winning in the following game
is negligible in λ:

1. s← Gen(1λ);

2. (x0, x1)← A(1λ, s);

3. Output: A wins iff Hash(s, x0) = Hash(s, x1) and x0 6= x1.

A.2 Symmetric-key encryption

Definition A.2 [Symmetric-Key Encryption Scheme] A symmetric-key encryption scheme with
key-space {0, 1}s, message-space {0, 1}µ, and ciphertext-space {0, 1}ν is a pair of probabilistic
algorithms (Enc,Dec), such that Enc : {0, 1}s × {0, 1}µ → {0, 1}ν , Dec : {0, 1}s × {0, 1}ν →
{0, 1}µ, and for every key K ∈ {0, 1}s and every message M,

Pr [Dec(K,Enc(K,M)) = M] = 1

where the probability is taken over the randomness of the algorithms.

Definition A.3 [Ciphertext Pseudo-randomness] A symmetric-key encryption scheme (Enc,Dec)
has pseudo-random ciphertexts if for every ppt adversary A we have that the following quantity
is negligible in s:∣∣∣Pr

[
AEnc(K,·) = 1 | K ← {0, 1}s

]
− Pr

[
AO(1s,·) = 1

]∣∣∣ ≤ negl(s) ,

where O(1s, ·) is a randomized oracle that on input message M returns a string independently
and uniformly chosen in {0, 1}ν(s).

B Functional Signature Schemes

Definition B.1 [Functional Signatures]
A functional signature scheme for a message space M, and function family F = {f : Df →

M} consists of algorithms (FS.Setup,FS.KeyGen,FS.Sign,FS.Verify):

• FS.Setup(1λ) → (msk,mvk): the setup algorithm takes as input the security parameter
and outputs the master signing key and master verification key.

27

• FS.KeyGen(msk, f) → skf : the KeyGen algorithm takes as input the master signing key
and a function f ∈ F (represented as a Boolean circuit), and outputs a signing key for f .

• FS.Sign(f, skf ,m) → (f(m), σ): the signing algorithm takes as input the signing key for a
function f ∈ F and an input m ∈ Df , and outputs f(m) and a signature of f(m).

• FS.Verify(mvk,m∗, σ)→ {0, 1}: the verification algorithm takes as input the master verifi-
cation key mvk, a message m and a signature and outputs 1 if the signature is valid.

We say that FS is a functional signature scheme for unbounded-length messages if M = {0, 1}∗.
We require the following conditions to hold:

Correctness: For all f ∈ F and m ∈ Df holds
(msk,mvk)← FS.Setup(1λ), skf ← FS.KeyGen(msk, f), (m∗, σ)← FS.Sign(f, skf ,m)
=⇒ FS.Verify(mvk,m∗, σ) = 1.

Unforgeability: The scheme is unforgeable if the advantage of any PPT algorithm A in the
following game is negligible:

• The challenger generates (msk,mvk)← FS.Setup(1λ), and gives mvk to A

• The adversary is allowed to query a key generation oracle Okey, and a signing oracle
Osign, that share a dictionary indexed by tuples (f, i), whose entries are signing keys:
skif ← FS.KeyGen(msk, f). This dictionary keeps track of the keys that have been previously
generated during the unforgeability game. The oracles are defined as follows:

– Okey(f, i):
∗ if there exists an entry for the key (f, i) in the dictionary, then output the corre-

sponding skif .

∗ otherwise, sample a fresh key skif ← FS.KeyGen(msk, f), add an entry (f, i)→ skif
to the dictionary, and output skif .

– Osign(f, i,m):

∗ if there exists an entry for the key (f, i) in the dictionary, then generate a signa-
ture on f(m) using this key: σ ← FS.Sign(f, skif ,m).

∗ otherwise, sample a fresh key skif ← FS.KeyGen(msk, f), add an entry (f, i) →
skif to the dictionary, and generate a signature on f(m) using this key: σ ←
FS.Sign(f, skif ,m).

• The adversary wins if it can produce (m∗, σ) such that

– FS.Verify(mvk,m∗, σ) = 1.

– there does not exist m such that m∗ = f(m) for any f which was sent as a query to
the Okey oracle.

– there does not exist a (f,m) pair such that (f,m) was a query to the Osign oracle
and m∗ = f(m).

Function privacy: Intuitively, we require the distribution of signatures on a message m′

generated via different keys skf to be computationally indistinguishable, even given the secret
keys and master signing key. Namely, the advantage of any PPT adversary in the following
game is negligible:

28

• The challenger honestly generates a key pair (msk,mvk) ← FS.Setup(1λ) and gives both
values to the adversary. (Note wlog this includes the randomness used in generation).

• The adversary chooses a function f0 and receives an (honestly generated) secret key skf0 ←
FS.KeyGen(msk, f0).

• The adversary chooses a second function f1 for which |f0| = |f1| (where padding can be
used if there is a known upper bound) and receives an (honestly generated) secret key
skf1 ← FS.KeyGen(msk, f1).

• The adversary chooses a pair of values (m0,m1) for which |m0| = |m1| and f0(m0) =
f1(m1).

• The challenger selects a random bit b
R← {0, 1} and generates a signature on the image

message m′ = f0(m0) = f1(m1) using secret key skfb , and gives the resulting signature
σ ← FS.Sign(skfb ,mb) to the adversary.

• The adversary outputs bit b′, and wins the game if b′ = b.

Succinctness: The size of a signature σ ← FS.Sign(skf ,m) is bounded by a polynomial in
security parameter λ, and the size of the output |f(m)|. In particular, it is independent of |m|,
the size of the input to the function, and |f |, the size of a description of the function f .

C FE and its IND-Security

Let us now define the notion of a functional encryption scheme FE for a functionality F .

Definition C.1 [Functional Encryption Scheme] A functional encryption scheme FE for func-
tionality F is a tuple FE = (Setup,KeyGen,Enc,Eval) of 4 algorithms with the following syntax:

1. Setup(1λ) outputs public and master secret keys (Pk,Msk) for security parameter λ.

2. KeyGen(Msk, k), on input a master secret key Msk and key k ∈ K outputs token Tok.

3. Enc(Pk,m), on input public key Pk and plaintext m ∈M outputs ciphertext Ct;

4. Eval(Pk,Ct, Tok) outputs y ∈ Σ ∪ {⊥}.

In addition we make the following correctness requirement: for all (Pk,Msk) ← Setup(1λ),
all k ∈ K and m ∈ M , for Tok ← KeyGen(Msk, k) and Ct ← Enc(Pk,m), we have that
Eval(Pk,Ct, Tok) = F (k,m) whenever F (k,m) 6= ⊥, except with negligible probability. (See [BO13]
for a discussion about this condition.)

We consider also the following two properties of FE schemes for Turing machines.

• Succinctness: A FE scheme for p-TM is said to be succinct if the ciphertexts have size
polynomial in the security parameter and in the message size but independent on p (except
for poly-logarithmic factors), and the tokens generated using KeyGen for machine M have
size q(λ, |M |), where q is a polynomial and |M | is the size of the Turing machine, but
independent on p (except for poly-logarithmic factors).

• Input-specific running-time: A FE scheme is said to have input-specific run time if the de-
cryption algorithm on input token Tok for machine M and encryption of message m, takes
time p(λ, time(M,m)). Moreover, in this case the scheme is a for a different functionality
(that also outputs the time of the computation) changed in the obvious way.

29

Indistinguishability-based security. The indistinguishability-based notion of security for
functional encryption scheme
FE = (Setup,KeyGen,Enc,Eval) for functionality F defined over (K,M) is formalized by means
of the following game INDFE

A between an adversary A = (A0,A1) and a challenger C. Below, we
present the definition for only one message; it is easy to see the definition extends naturally for
multiple messages.

INDFE
A (1λ)

1. C generates (Pk,Msk)← Setup(1λ) and runs A0 on input Pk;

2. A0 submits queries for keys ki ∈ K for i = 1, . . . , q1 and, for each such query, C
computes Toki = FE.KeyGen(Msk, ki) and sends it to A0.

When A0 stops, it outputs two challenge plaintexts m0,m1 ∈M satisfying |m0| =
|m1| and its internal state st.

3. C picks b ∈ {0, 1} at random, computes the challenge ciphertext Ct = Enc(Pk,mb)
and sends Ct to A1 that resumes its computation from state st.

4. A1 submits queries for keys ki ∈ K for i = q1 + 1, . . . , q and, for each such query,
C computes Toki = KeyGen(Msk, ki) and sends it to A1.

5. When A1 stops, it outputs b′.

6. Output: if b = b′, m0 and m1 are of the same length, and F (ki,m0) = F (ki,m1)
for i = 1 . . . , q, then output 1 else output 0.

The advantage of adversary A in the above game is defined as

AdvFE,INDA (1λ) = Prob[INDFE
A (1λ) = 1]− 1/2

Definition C.2 We say that FE is indistinguishably secure (IND security, for short) if all prob-
abilistic polynomial-time adversaries A have at most negligible advantage in the above game.

Simulation-based security In this section, we give a simulation-based security definition for
FE similar to the one given by Boneh, Sahai and Waters [BSW11]. For simplicity of exposition,
below, we present the definition for only one message; it is easy to see the definition extends
naturally for multiple messages.

Definition C.3 [Simulation-Based security] A functional encryption scheme FE = (Setup,KeyGen,
Enc,Eval) for functionality F defined over (K,M) is simulation-secure (SIM security, for short)
if there exists a simulator algorithm Sim = (Sim0,Sim1) such that for all adversary algorithms
A = (A0,A1) the outputs of the following two experiments are computationally indistinguish-
able.

30

RealExpFE,A(1λ)

(Pk,Msk)← FE.Setup(1λ);

(m, st)← AFE.KeyGen(Msk,·)
0 (Pk);

Ct← Enc(Pk,m);

α← AFE.KeyGen(Msk,·)
1 (Pk,Ct, st);

Output: (Pk,m, α)

IdealExpFE,A
Sim (1λ)

(Pk,Msk)← FE.Setup(1λ);

(m, st)← AFE.KeyGen(Msk,·)
0 (Pk);

(Ct, st′)← Sim0(Pk, |m|, {ki, Tokki , F (ki,m)}, τ);

α← AO(·)1 (Pk,Ct, st);
Output: (Pk,m, α)

Here, {ki} correspond to the token queries of the adversary. Further, oracle O(·) is the second
stage of the simulator, namely algorithm Sim1(Msk, st′, ·, ·). Algorithm Sim1 receives as third
argument a key kj for which the adversary queries a token, and as fourth argument the output
value F (kj ,m). Further, note that the simulator algorithm Sim1 is stateful in that after each
invocation, it updates the state st′ which is carried over to its next invocation.

Remark C.4 [Random Oracle Model] In the random oracle model, the output of the real
experiment includes the queries made by any algorithm to the random oracle and the responses.
In the ideal experiment, the simulator handles all such queries and the output of the experiment
includes the queries and responses (given by the simulator) as well. This can be formalized as
done in the context of Zero-Knowledge by Wee [Wee09].

Remark C.5 [(q1, qc, q2)-SIM — Bounded messages and queries] To make the definition more
precise, we define (q1, qc, q2)-SIM security, where q1 = q1(λ), qc = qc(λ), q2 = q2(λ) are poly-
nomials that are fixed a priori, as follows. In this definition, we require that SIM-security as
define above holds for adversaries A where A0 makes at most q1 queries and outputs message
vectors containing at most qc messages, and furthermore A1 makes at most q2 queries. In the
case that a parameter is an unbounded polynomial we use the notation poly. Thus, for ex-
ample, (q1, qc, poly)-SIM security means that the adversary in the security definition makes a
q1-bounded number of non-adaptive key derivation queries but an unbounded number of adap-
tive key-derivation queries, and outputs a qc-bounded message vector. We call a FE scheme
bounded if it achieves (q1, qc, q2)-SIM-Security in which one of the parameters q1, qc, q2 is not
poly.

Remark C.6 [Simulated Setup] The above follows the security definition of [GVW12a] in that
in the ideal experiment, the setup and non-adaptive key derivation queries are handled honestly
(not by the simulator). More generally, we could have an algorithm Sim.Setup in place of
FE.Setup in the ideal experiment; that is, the parameters of the ideal experiment could be
generated by the simulator. In this setting the non-adaptive queries are handled by the simulator
as well. We assume this slightly weaker security definition definition in Section Section 3.4.

Remark C.7 Actually, the syntax of a bounded FE scheme should take in account the param-
eters q1, qc, q2, that is the setup should take as input such parameters but for simplicity we omit
these details.

D MI-FE and its IND-Security

Let us define a multi-input functional encryption (MI-FE) scheme by means of an `-ary func-
tionality.

31

Definition D.1 [`-ary Functionality] A functionality F = is a family of functions F : K×X` →
Σ where K is the key space, X is the message space and Σ is the output space.

In this work, our main focus will be on the following functionality.

Definition D.2 [p-TM` Functionality]12 The p-TMl functionality for a polynomial p() has key
space K equals to the set of all l-input Turing Machines, which run time depends only on the
inputs lengths |m1|, . . . , |m`| and equals p(|m1|+ · · ·+ |m`|). Message space M is the set {0, 1}∗.
For M ∈ K and m1, . . . ,ml ∈M , we have TMl(M,m1, . . . ,ml) = M(m1, . . . ,ml).

Remark D.3 We recall that the work of Goldwasser et al. [GGJS13] on MI-FE focuses on the
circuit model but therein it is also sketched how to extend the results to the Turing Machine
model. Similar considerations hold for the schemes of Gordon et al. [GKL+13] as well. Further
details will be given in the Master’s Thesis of the second author. Moreover, as we point out
several times in this work, for our results we do not need MI-FE that are IND-Secure but only
CRIND-Secure ones (see Section 2.3) for which we will provide direct constructions.

Definition D.4 [Multi-Input Functional Encryption Scheme] A multi-input functional encryp-
tion (MI-FE, in short) scheme for `-ary functionality F defined over (K,X) is a tuple MI-FE =
(Setup,KeyGen,Enc,Eval) of 4 algorithms with the following syntax:

1. Setup(1λ) outputs master public key consisting of ` encryption keys Ek1, . . . ,Ekl and master
secret key (Mpk,Msk) for security parameter λ.

2. KeyGen(Msk, k), on input a master secret key Msk and key k ∈ Kn outputs token Tok.

3. Enc(Ek, x), on input encryption key Ek ∈ Mpk and message x ∈ X outputs ciphertext Ct.

In the case where all of the encryption keys Eki are the same, we assume that each ci-
phertext Ct has an associated label i to denote that the encrypted plaintext constitutes an
i-th input to the functionality. For convenience of notation, we omit the labels from the
explicit description of the ciphertexts. In particular, note that when Eki’s are distinct, the
index of the encryption key Eki used to compute Ct implicitly denotes that the plaintext
encrypted in Ct constitutes an i-th input to the functionality, and thus no explicit label is
necessary.

4. Eval(Mpk, Tokk,Ct1, . . . ,Ct`) on input master public key Mpk, secret key for key k and `
ciphertexts Ct1, . . . ,Ct`, outputs y ∈ Σ ∪ {⊥}.

In addition we make the following correctness requirement: for all k ∈ K and all (x1, . . . , x`) ∈
X`:

Pr

[
(Mpk = (Ek1, . . . ,Ek`),Msk)← Setup(1λ); Tokk ← KeyGen(Msk, k);

Eval(Mpk, Tokk,Encrypt(Ek1, x1), . . . ,Encrypt(Ek`, x`)) 6= F (k, x1, ..., x`)

]
= negl(λ) ,

where the probability is taken over the coins of Setup,KeyGen and Encrypt.

We consider also the following two properties of MI-FE schemes for Turing machines.

12This functionality was only implicitly assumed in Goldwasser et al. [GGJS13] and other works but not formally
defined.

32

• Succinctness: A MI-FE scheme for p-TM is said to be succinct if the ciphertexts have size
polynomial in the security parameter and in the size of the messages but independent on p
(except for poly-logarithmic factors), and the tokens generated using KeyGen for machine
M have size q(λ, |M |), where q is a polynomial and |M | is the size of the Turing machine,
but independent on p (except for poly-logarithmic factors).

• Input-specific running-time: A MI-FE scheme is said to have input-specific run time if
the decryption algorithm on input token Tok for machine M and encryptions of messages
m1, . . . ,m`, takes time poly(λ, time(M,m1, . . . ,m`)). Moreover, in this case the scheme is
a for a different functionality (that also outputs the time of the computation) changed in
the obvious way.

We point out that in this paper we do not need to assume IND-Secure MI-FE schemes but only
CRIND-Secure ones (see Section 2.3). For completeness we recall the definition of IND-Security
for MI-FE schemes.

IND-Security of MI-FE. The indistinguishability-based notion of security for a multi-input
functional encryption scheme [GGG+14, GKL+13, GGJS13] MI-FE = (Setup,KeyGen,Enc,Eval)
for an `-ary functionality F defined over (K,M `) is formalized by means of the following exper-
iment INDMI-FE

A with an adversary A = (A0,A1). Below, we present the definition for only one
message; it is easy to see the definition extends naturally for multiple messages.

INDMI-FE
A (1λ)

1. (Mpk,Msk)← MI-FE.Setup(1λ)

2. (X0, X1, st0)← AMI-FE.KeyGen(Msk,·)
0 (1λ,Pk) where Xb = (xb1, . . . , x

b
`) and we require

that |x0i | = |x1i | for every i;

3. b
R← {0, 1};

4. Cti ← MI-FE.Encrypt(Eki, x
b
i) for i ∈ {1, . . . , `};

5. b′ ← AMI-FE.KeyGen(Msk,·)
1 (st0, (Ct1, . . . ,Ct`));

6. Output: (b = b′).

In above game we make following additional requirement:

• Let K denote the entire set of key queries made by adversary A. Then, the challenge
vectors X0 and X1 chosen by A0 must be compatible with K. This means that for every
i ∈ {1, . . . , `} and k ∈ K, it holds that F (k, ·, . . . , ·, x0i , ·, . . . , ·) = F (k, ·, . . . , ·, x1i , ·, . . . , ·).

The advantage of adversary A in the above game is defined as

AdvMI-FE,IND
A (1λ) = Prob[INDMI-FE

A (1λ) = 1]− 1/2

Definition D.5 We say that MI-FE is indistinguishably secure (IND security, for short) if all
probabilistic polynomial-time adversaries A have at most negligible advantage in the above
game.

33

	Introduction
	Definitions
	Functional Encryption
	Multi-Input Functional Encryption
	Collision-Resistant Indistinguishability Security for MI-FE
	Extractability obfuscation w.r.t. distributional auxiliary input

	Our Transformations
	(q1,qc,poly)-SIM-Security
	Trapdoor Machines
	RO-based Transformation

	(q1,qc,q2)-SIM-Security with short tokens
	(poly,poly,poly)-SIM-Security in the Timestamp model
	(q1,qc,q2)-SIM-Security with short tokens
	(poly,poly,poly)-SIM-Security in the Timestamp model

	Constructions of CRIND-Secure MI-FE from eO
	Standard Notions
	Collision-resistant Hash Functions
	Symmetric-key encryption

	Functional Signature Schemes
	FE and its IND-Security
	MI-FE and its IND-Security

