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Abstract. We investigate the security of the family of MQQ public key cryptosystems using multivari-
ate quadratic quasigroups (MQQ). These cryptosystems show especially good performance properties.
In particular, the MQQ-SIG signature scheme is the fastest scheme in the ECRYPT benchmarking of
cryptographic systems (eBACS). We show that both the signature scheme MQQ-SIG and the encryption
scheme MQQ-ENC, although using different types of MQQs, share a common algebraic structure that
introduces a weakness in both schemes. We use this weakness to mount a successful polynomial time
key-recovery attack. Our key-recovery attack finds an equivalent key using the idea of so-called good keys
that reveals the structure gradually. In the process we need to solve a MinRank problem that, because of
the structure, can be solved in polynomial-time assuming some mild algebraic assumptions. We highlight
that our theoretical results work in characteristic 2 which is known to be the most difficult case to address
in theory for MinRank attacks. Also, we emphasize that our attack works without any restriction on the
number of polynomials removed from the public-key, that is, using the minus modifier. This was not the
case for previous MinRank like-attacks againstMQ schemes. From a practical point of view, we are able
to break an MQQ-SIG instance of 80 bits security in less than 2 days, and one of the more conservative
MQQ-ENC instances of 128 bits security in little bit over 9 days. Altogether, our attack shows that it is
very hard to design a secure public key scheme based on an easily invertible MQQ structure.
Keywords. MQ cryptography, MQQ cryptosystems, Equivalent keys, Good keys, MinRank, Gröbner
bases

1 Introduction

Multivariate quadratic (MQ) public key schemes are cryptosystems based on the NP-hard problem of
solving polynomial systems of quadratic equations over finite fields, also known as theMQ-problem.
Until the mid 2000’s, MQ cryptography was developing very rapidly, producing many interesting
and versatile design ideas such as C∗ [1], HFE [2], SFLASH [3], UOV [4], TTM [5], TTS [6]. However,
many of them were soon successfully cryptanalysed, and the biggest surprise was probably the break
of SFLASH in 2007 [7], shortly after it was chosen by the NESSIE European Consortium [8] as one
of the three recommended public key signature schemes. As a consequence, the confidence in MQ
cryptosystems declined, and as a result, did the research in this area as well.
Now, several years later, it seems that there have emerged new important reasons for renewal of the
interest in MQ cryptography. First, in the past two years, the algorithms for solving the Discrete
Logarithm (DL) problem underwent an extraordinary development (for instance, but not limited to
[9]). The confidence in the hardness of the DL problem has been seriously rocked, and finding an
algorithm that will show that this problem is in fact easy does not look as impossible as previously
believed. Consequently, the mid and long term security of an array of cryptosystems based on the
hardness of the DL problem over various groups is no longer clear. Second, two of the most important
standardization bodies in the world, NIST and ETSI have recently started initiatives for developing
cryptographic standards not based on number theory, with a particular focus on primitives resistant
to quantum algorithms [10,11].



A common characteristic for allMQ schemes is the construction of the public key as P = T ◦ F ◦ S
where F is some easily invertible quadratic mapping, masked by two bijective affine transformations
S and T . A consequence of these construction is that some specific properties of the secret-key
can be recovered on the public-key. In particular, one of the most important characteristic of MQ
schemes that allows a successful key-recovery is connected to unexpected high rank defect on the
matrices associated to the public-key. The attacks on TTM [12], STS [13,14], Rainbow [15], HFE
and MultiHFE [16,17,18,19] are all in essence based on the problem of finding a low rank linear
combination of matrices, known as MinRank in cryptography [20]. This problem is NP-hard [20] and
was used to design a zero-knowledge authentication scheme [21]. Although NP-hard, the instances
of MinRank arising from MQ schemes are often easy, thus providing a powerful tool for finding
equivalent keys in canonical form.

1.1 Our Contribution

In this paper, we are concerned with the security analysis of a particular family ofMQ (Multivariate
Quadratic) cryptosystems, namely the MQQ schemes proposed in 2008 [22]. In these schemes the
secret mapping F is derived from multivariate quadratic quasigroups (MQQ), which makes the
inversion of F especially efficient. A message-recovery attack was proposed in [23], and later in [24],
it was proven that a direct attack [23] can be done in polynomial-time. In [25], the authors proposed
a signature scheme, called MQQ-SIG, based on the same idea and secure against direct attacks, as
well as claimed to be CMA secure. They made heavy use of the minus modifier, known from HFE-[2],
to repair MQQ. Finally, in [26] the authors proposed an enhanced variant of the MQQ encryption
scheme, called MQQ-ENC. The MQQ-SIG signature scheme is the fastest scheme in signing in the
ECRYPT Benchmarking of Cryptographic Systems (eBACS) SUPERCOP [27], and is therefore very
appealing for practical use.
We show in this paper that this family of designs has a fundamental weakness which allows us to
mount an efficient key-recovery attack on all known constructions based on MQQ. More precisely,
we can recover a key-equivalent to the secret-key by solving simultaneous instances of MinRank
(Theorem 3) problems which due to the structure of the schemes can be solved in polynomial-time.
To do so, we first assume that the field is not to big. That is to say, we assume that q = O(n) which is
indeed the case for most of the parameters proposed so far for MQQ cryptosystems. Of independent
interest, we show that the simultaneous MinRank problem is equivalent to a rectangular MinRank
(Corollary 1) problem.
For the complexity of our attack, we summarize the first result below:

Theorem 1. Let ω, 2 ≤ ω < 3 be the linear algebra constant. Let P = T ◦ F ◦ S be the public
mapping of MQQ-SIG or MQQ-ENC consisting of n − r polynomials in n variables over Fq (with
Char(Fq) = 2). F is a set of quadratic polynomials derived from multivariate quadratic quasigroups
(MQQ), while S and T are invertible matrices used to mask the structure of F . Then, the last columns
of S and T (up to equivalence) can be recovered in O(nω). More generally, a key equivalent to the
secret-key in MQQ-SIG or MQQ-ENC can be found by solving n− r MinRank instances with N − r
matrices from FN×(N−r)q where N, r+ 2 ≤ N ≤ n− 1. If q = O(n) then each MinRank can be solved
in polynomial-time assuming a mild regularity condition on the public-matrices. Under this condition
and assuming q = O(n), we can recover a key equivalent to the secret-key in

O(nω+3),with probability 1− 1/q.

The genericity assumption required in the previous result is that the rank defect in the skew-
symmetric matrices derived from the public polynomials is not too big a constant. We have im-
plemented our attack in practice and verified that this assumption is reasonable. We highlight that
our theoretical results work in characteristic 2 which is known to be the most difficult case to address
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in theory [17,18,19] for MinRank attacks. Also, we emphasize that our attack works without any re-
striction on the number of polynomials removed from the public-key (the minus modifier). This was
not the case for previous MinRank like-attacks against MQ schemes.

If we relax the condition on the size of q, we can still bound the complexity (although, we require a
slightly stronger assumption).

Theorem 2 (informal version of Theorem 5). Let ω, 2 ≤ ω < 3 be the linear algebra constant.
Let P = T ◦F◦S be the public mapping of MQQ-SIG or MQQ-ENC consisting of n−r polynomials in
n variables over Fq (with Char(Fq) = 2). Assuming that the kernels of the skew-symmetric matrices
derived from the public-key behave as random subspaces and a genericity condition on the MinRank
modeling, then we can then recover a key-equivalent to the secret-key in

O
(
n3ω+1

)
,with probability

(
1− 1

q

)(
1− 1

qn−3

)
. (1)

The assumption used in Theorem 2 means that we can restrict our attention to a sub-system of our
modeling of the simultaneous MinRank (Theorem 3) such that the sub-system is bi-linear with a
block of variables of constant size. If the sub-system behaves as a generic affine bi-linear system, this
implies that maximum degree reached during a Gröbner basis computation is constant [28]. This is
what we observed in practice.

Indeed, in order to verify our assumptions and the correctness of the attack, we implemented the at-
tack in Magma (Version 2.19-10 [29]). The codes have been provided with the submission. The results
obtained confirm the computed theoretical complexity. Using the implementation, we demonstrated
that our attack is very efficient by practically breaking instances with recommended parameters.
For example, we recovered an equivalent key for MQQ-SIG 160, of claimed security of O(280) in
248 operations, i.e. in less than 2 days. Similarly, for MQQ-ENC 128 defined over F4 with claimed
security of O(2128), we recovered an equivalent key in 250.6 operations which took a little bit over 9
days. We also emphasize that the practical results obtained, almost perfectly match the theoretical
complexity bound (1) derived in Section 7.1.

Altogether, our attack shows that it is very hard to design a secure scheme based on an easily
invertible MQQ structure. It seems that using MQQs successfully in futureMQ designs may require
deep insight from quasigroup theory, in order to obtain the necessary security while preserving the
attractive performance level.

1.2 Organization of the Paper

The paper is organized as follows. In Sect. 2 we present the necessary preliminaries about MQ
cryptosystems. We also recall the MinRank problem and the known tools for solving it, as well as
the concepts of equivalent keys and good keys. In Sect. 3 we describe the cryptosystems from the
MQQ family, and in Sec. 4 we uncover the algebraic structure that the two systems, MQQ-SIG and
MQQ-ENC share, and that shows the weaknesses of the cryptosystems. Sect. 5 is devoted to the
presentation of the main idea behind our key recovery attack on both MQQ-ENC and MQQ-SIG.
We further point out the difference in the attack in odd and even characteristic fields, and present
the necessary modifications of the attack for even characteristic fields. As a result of the analysis,
in Sect. 6 we conclude that the problem of finding good keys can be modeled as a special instance
of MinRank for rectangular matrices. The complexity analysis of our attack is given in Sect. 7. We
conclude the paper in Sect. 8.
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2 Preliminaries

2.1 Basic Notations

Throughout this paper, Fq will denote the finite field of q elements. First, we briefly recall the general
principle of MQ public key cryptosystems. This will allow to fix some notations. The public key of
a MQ cryptosystem is usually given by a multivariate quadratic map P : Fnq → Fmq , that is

P(x1, . . . , xn) :=


p1(x1, . . . , xn) =

∑
1≤i≤j≤ñ

γ
(1)
ij xixj +

n∑
i=1

β̃
(1)
i xi + α̃(1)

...
pm(x1, . . . , xn) =

∑
1≤i≤j≤ñ

γ
(m)
ij xixj +

n∑
i=1

β̃
(m)
i xi + α̃(m)


for some coefficients γ̃

(s)
ij , β̃

(s)
i , and α̃(s) ∈ Fq.

In our attack, we will see that w.l.o.g. we can restrict our attention to the homogeneous components
of highest degree, i.e. to the quadratic components. Classically, a quadratic form can be written as

ps(x1, . . . , xn) :=
∑

1≤i≤j≤n
γ̃
(s)
ij xixj = xᵀP(s)x, where x = (x1, . . . , xn)ᵀ and P(s) is an n × n matrix

describing the degree-2 homogeneous component of ps. The public key P is obtained by obfuscating
a structured central map F : x ∈ Fnq →

(
f1(x), . . . , fm(x)

)
∈ Fmq . We denote by F(s) a (n×n) matrix

describing the homogeneous quadratic part of fs. In order to hide the structured central map, we
choose two secret linear 1 transformations S, T ∈ GLn(Fq) and define the public key as P := T ◦F ◦S.

Remark 1. It is known that the matrix of a quadratic form is constructed differently depending on the

parity of the field characteristic. In odd characteristic, P(s) is a symmetric matrix, i.e. P
(s)
ij := γ̃

(s)
ij /2

for i 6= j and P
(s)
ii := γ̃

(s)
ii . Over fields Fq of characteristic 2, we cannot choose P(s) in this manner,

since (γ̃ij + γ̃ji)xixj = 2γ̃ijxixj = 0 for i 6= j. Instead, let P̃(s) be the upper-triangular representation

of ps, i.e. P̃
(s)
ij = γ̃

(s)
ij for i ≤ j. The symmetric form is obtained by P(s) := P̃(s) + P̃(s)ᵀ . In this case

only the upper-triangular part represents the according polynomial, and all elements on the diagonal
are zero. This implies that for x, y ∈ Fnq the symmetric bilinear form xᵀP(s)y is alternating and has
even rank.

2.2 The MinRank Problem

The problem of finding a low rank linear combination of matrices is a basic linear algebra problem [20]
known as MinRank in cryptography [21]. The MinRank problem over a finite field Fq is as follows.
MinRank (MR)
Input: n,m, r, k ∈ N, where n < m and M0,M1, . . . ,Mk ∈Mn×m(Fq).
Question: Find – if any – a k-tuple (λ1, . . . , λk) ∈ Fkq such that: Rank

(∑k
i=1 λiMi −M0

)
6 r.

In Appendix A, we review some known techniques for solving MinRank.

2.3 Good Keys

Our attack relies on so-called equivalent keys introduced by Wolf and Preneel [31,32]. We briefly
recall below the concept of equivalent keys, and then present good keys which are at the core of our
attack.
1 Note that S and T can actually be chosen to be affine. We restrict ourselves to linear secrets for the sake of simplicity.

However, we mention that the attack can be simply adapted to work in the affine case (see [16,30]).
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Let F = {f1, . . . , fm} ⊂ Fmq [x1, . . . , xn]. For k, 1 ≤ k ≤ m, we denote by I(k) ⊆ {xixj | 1 ≤ i ≤ j ≤
n} a subset of the degree-2 monomials. We define by F∣∣

I
= {f1

∣∣
I(1)

, . . . , fm
∣∣
I(m)
} where fk

∣∣
I(k)

:=∑
xixj∈I(k)

γ
(k)
ij xixj is the restriction of fk to I(k).

Definition 1. Let (F , S, T ) and (F ′, S′, T ′) be in Fq[x1, . . . , xn]m ×GLn(Fq)×GLm(Fq).
We say that (F , S, T ) and (F ′, S′, T ′) are equivalent keys, denoted by (F , S, T ) ' (F ,′ S′, T ′), if and

only if (T ◦ F ◦ S = T ′ ◦ F ′ ◦ S′) ∧
(
F∣∣

I
= F ′∣∣

I

)
, that is, F and F ′ share the same structure when

restricted to a fixed set I = {I(1), . . . , I(m)}.

Since the relation ' given by Definition 1 is an equivalence relation [31], the set of all keys S, T can
be partitioned into several equivalence classes. For a large fraction of all equivalence classes, we can
find special representatives S′ and T ′ with fixed entries at certain values.

For ease of notation, let S := S−1 and T := T−1. Obviously P = T ◦F ◦S, implies that F = T ◦P ◦S.
This leads to the equality below on the quadratic forms:

F(k) = S
ᵀ

 n∑
j=1

tkjP
(j)

S, ∀k, 1 ≤ k ≤ m. (2)

The corresponding system of equations is as follows:

F
(k)
ij =

n∑
x=1

n∑
y=1

n∑
z=1

P(x)
yz tkxsyiszj . (3)

Due to the structure of the secret mapping F, we know that certain coefficients in F(i) are system-
atically zero. This allows then to obtain cubic equations on the components of S and T . In general,
the system of equations has too many variables for being solved efficiently in this form.

The concept of equivalent keys allows to reduce the number of variables by introducing two linear
maps (Σ,Ω) ∈ GLm(Fq) × GLn(Fq) such that P = T ◦ Σ−1 ◦ Σ ◦ F ◦ Ω ◦ Ω−1 ◦ S. If F and
F ′ := Σ ◦ F ◦ Ω share the same structure (cf. Def. 1), then T ′ := TΣ−1 and S′ = Ω−1S will
be equivalent keys. Depending on Σ and Ω we can define a canonical form of the secret-keys and
typically fix large parts of T and S (see [31,33,32]). We note that it may happen that such a canonical
key does not exist. For example, the Unbalanced Oil and Vinegar Scheme has such an equivalent key
with probability roughly 1− 1/q [34].

The idea of good keys [14] is to further decrease the number of unknowns or unfixed coefficients in
(S′, T ′). Here, we do not aim to preserve all the zero coefficients of F , but just some of them. This way,
we have more freedom to choose Σ and Ω and thus further reduce the number of variables. On the
other hand, we can generate less equations. Finding the best trade-off is not obvious and strongly
depends on the underlying structure of F . Formally, we define good keys through the following
definition.

Definition 2 ([14]). Let (F , S, T ), and (F ′, S′, T ′) be in Fq[x1, . . . , xn]m×GLn(Fq)×GLm(Fq). Let
I = {I(1), . . . , I(m)} and J = {J (1), . . . , J (m)} such that J (k) ( I(k) for all k, 1 ≤ k ≤ m with at least
one J (k) 6= ∅. We shall say that (F ′, S′, T ′) ∈ Fq[x1, . . . , xn]m × GLn(Fq) × GLm(Fq) is a good key
for (F , S, T ) if and only if: (

T ◦ F ◦S = T ′ ◦ F ′ ◦S′
)
∧
(
F∣∣

J
= F ′∣∣

J

)
.

5



3 MQQ Cryptosystems

The Multivariate Quadratic Quasigroup (MQQ) scheme was proposed in 2008 [22]. The underlying
idea is to use bijective multivariate quadratic maps, obtained through the existence of left and right
inverses in some quasigroup, in order to build the trapdoor map F .

Definition 3. Let Q be a set and q : Q×Q→ Q be a binary operation on Q. We call (Q, q) a left
(resp. right) quasigroup if

∀u, v ∈ Q,∃!x, y ∈ Q : q(u, x) = v (resp. q(y, u) = v).

If (Q, q) is both left and right quasigroup, then we simply call it a quasigroup.

Clearly, q defines a bijective map if we fix some u ∈ Q. Hence, we can define two inverse operations
q\(u, v) = x and q/(v, u) = y, called left and right parastrophe, respectively. A multivariate quadratic
quasigroup (MQQ) is a special quasigroup, that can be described through a multivariate quadratic
map over some finite field Fq. In [22] F2 is used to built such MQQs of order 2d, with parameter
d = 5 and bilinear maps q. The central map F was constructed using a so called quasigroup string
transformation of the MQQs, in order to scale the number of variables.

Definition 4. Let Q := Fdq and qi : Q×Q→ Q be such that (Q, qi) forms a quasigroup for 1 ≤ i ≤ `
and some parameter ` which allows to scale the scheme later on. We fix some element u ∈ Q, call it
leader and define F : F `dq → F `dq through

(f1, . . . , fd ) := q1(u, x1),
(fd+1, . . . , f2d) := q2(x1, x2),

...
...

(f(`−1)d+1, . . . , f`d) := q`(x`−1, x`).

In order to find pre-images of F , we use the corresponding left-parastrophe operations of q1, . . . , q`.
In addition, the authors of [22] used the Dobbertin bijection to deal with the linear part of F that
comes from q1(u, x1) for some fixed u ∈ Q and the fact that they chose bilinear maps qi.

Unfortunately this trapdoor provided a lot of structure so the MQQ encryption scheme was broken
by a direct attack on the public key [23]. Faugère et al. showed in [24] that the degree of regularity
of the equations generated by the pubic key can be bounded from above by a small constant. Thus,
the complexity of a direct Gröebner basis attack is polynomial.

3.1 MQQ-SIG Signature Scheme

Recently in [25] a signature scheme was proposed, called MQQ-SIG, which is based on the same
idea but makes heavy use of the minus modifier, known from HFE-[2]. MQQ-SIG does not use
the Dobbertin bijection and the construction of the quasigroup is different and given by the map
q : Fd2×Fd2 → Fd2: q(x, y) := B · (I +A0) ·B2 · y +B ·B1 · x+ c, (4)

where x = (x1, x2, . . . , xd)
ᵀ, y = (y1, y2, . . . , yd)

ᵀ, and c ∈ Fd2 and B1, B2, B ∈ GLd(F2) are arbitrary.
The matrix A0 is a d × d block matrix A0 = [ 0 U1 ·B1 · x U2 ·B1 · x . . . Ud−1 ·B1 · x ] ,
where Ui, i ∈ {1, . . . d − 1} are upper triangular matrices over F2 having all elements 0 except the
elements in the rows from {1, . . . , i} that are strictly above the main diagonal.
A key feature of the MQQ-SIG scheme is the application of the minus modifier. In particular, n/2
of the equations are removed in the public key P, in order to prevent direct algebraic and MinRank
attacks. Therefore, we obtain a signature expansion of factor two for messages of length n/2. Further
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the public key is rather large, since it is defined over F2. In order to reduce the size of the public key
the designers decided to split the message in two and sign it using twice the same trapdoor function.
The proposed parameters are n ∈ {160, 192, 224, 256} for the trapdoor function for security levels of
280, 296, 2112, 2128 binary operations respectively, and d = 8 for the order 2d of the quasigroup.

3.2 MQQ-ENC Encryption Scheme

The encryption scheme MQQ-ENC was recently proposed in [26], and it follows the same line of
design as its predecessors. Again, the internal mapping F is a quasigroups string transformation and
the affine secrets S and T are built from two circulant matrices. The minus modifier is used again,
but since it is an encryption scheme, only a small fixed number r of polynomials is removed. This
destroys the bijectivity of P, so to enable correct decryption a universal hash function is used, and
decryption is performed by going through all possible pre-images of P. Compared to its predecessors,
MQQ-ENC can be defined over any small field Fpk and instead of bilinear quasigroups, the authors
used more general left quasigroups, i.e. mappings that are bijections only in the second variable.

Lemma 1 ([35]). Let p be prime and k > 0 be an integer. For all s, 1 ≤ s ≤ d, we define the
component qs ∈ Fpk [x1, . . . , xd, y1, . . . , yd] by:

qs := ps(ys) +
∑

1≤i,j≤d
α
(s)
i,j xixj +

∑
s<i,j≤d

β
(s)
i,j yiyj +

∑
1≤i≤d,s<j≤d

γ
(s)
i,j xiyj +

∑
1≤i≤d

δ
(s)
i xi +

∑
s<i≤d

ε
(s)
i yi + η(s),(5)

where ps(ys) ∈ {a(s)ys, a(s)y2s} for even p, and ps(ys) = a(s)ys for odd p, for some a(s) 6= 0.
The function q = (q1, q2, . . . , qd) : F2d

pk
→ Fd

pk
as defined in (5) defines a left multivariate quadratic

quasigroup (LMQQ) (Fd
pk
, q) of order pkd.

Lemma 2. Let (Fd
pk
, q) be an LMQQ as defined by Lemma 1. Let D and Dy be d × d nonsingular

matrices and c, cy vectors of dimension d over Fpk . Then q̂(x, y) := D · q(x,Dy · y + cy) + c is again

an LMQQ of order pkd. We say that q̂ is linearly isotopic to q.

The recommended values for the parameters n, k, r, d, p for a security level of 2128 are d = 8, p = 2
and (n, k, r) ∈ {(256, 1, 8), (128, 2, 4), (64, 4, 4), (32, 8, 1)}.

4 The Algebraic Structure of MQQ-ENC and MQQ-SIG

We explain the algebraic structure that both MQQ-ENC and MQQ-SIG share. This is the weaknesses
that we are going to exploit to mount our attack.
First of all, we note that the trapdoor of MQQ-SIG can be seen as a very special case of MQQ-
ENC when defined over F2. Indeed, the quasigroup string transformation only makes use of the left
translation (the bijection in the second variable) of a quasigroup q, i.e. the additional bijectivity in
the first variable is unnecessary. Thus, we can regard the MQQs used in MQQ-SIG as left quasigroups
without loss of generality. Even more, it can be shown (cf. proposition 1) that the MQQs used in
MQQ-SIG are linearly isotopic to quasigroups that can be represented in the form given in Lemma 1,
with some additional constrains on the coefficients.

Proposition 1 ([35]). Let (Fd2, q̂) be a quasigroup used in MQQ-SIG. Then q̂ can be represented
by q̂(x, y) = B · q(B1 · x,B2 · y) + c for some invertible matrices B,B1, B2, a vector c, and q =
(q1, q2, . . . , qd) with

qs(x1, . . . , xd, y1, . . . , yd) = xs + ys +
∑

s<i,j≤d
γ
(s)
i,j xiyj +

∑
s<i≤d

δ
(s)
i xi +

∑
s<i≤d

ε
(s)
i yi + η(s),

for all 1 ≤ s ≤ d and coefficients γ
(s)
i,j , δ

(s)
i , ε

(s)
i , η(s) ∈ Fpk .
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In the sequel, we will investigate the more general trapdoor of MQQ-ENC, since all the properties
of MQQ-ENC apply to MQQ-SIG as well. In order to avoid redundancy and to provide a clear
and simple algebraic description, we exploit the following simplification. In the central map F the
authors used LMQQs constructed through Lemma 2, and not directly LMQQs from Lemma 1. This
was done to mask the otherwise triangular structure of the LMQQs from Lemma 1. However, the
linear isotopy, can actually be absorbed by S and T . First of all, as we are only considering quadratic
coefficients later on, we can safely ignore cy and c. Further, the linear transformation D can be
absorbed by T , i.e. instead of using q̂ and the original T , we work with q and T · (In

d
⊗ D), with

⊗ the matrix tensor product of the n
d dimensional identity matrix and D. The same holds for the

transformation of variables S. Instead of working with q and the original transformation S, we work
with (In

d
⊗ D−1y ) · S and q̃(x1, x2) := q(D−1y x1, x2). As there is no structure hidden in the first

component of q, all the systematical zeros in q̃ and q equal and thus we can assume a central map
F with q according to Lemma 1. Writing the quadratic part of qs = xᵀQ(s)x in its quadratic form
with x = (x1, . . . , xd, y1, . . . , yd)

ᵀ, we can illustrate the matrix Q(s) by Figure 1.

Q(s) =

x y︷ ︸︸ ︷ ︷ ︸︸ ︷

d d− s

Fig. 1. The quadratic form Q(s) of
qs. Gray parts denote arbitrary values,
whereas white parts denote systematic ze-
ros.

· · ·

· · ·

· · ·

...
...

...
...

f1 fd+1 f2d+1

f2 fd+2 f2d+2

fd f2d f3d

fn−d+1

fn−d+2

fn

Fig. 2. Matrices of the quadratic forms of the central map F of MQQ-
ENC. Gray parts denote some arbitrary values, whereas white parts
denote systematical zeros.

Note that both in odd and even characteristic, the coefficient of y2s does not occur in Q(s). In odd
characteristic, ps(ys) = a(s)ys, i.e. it is always linear. For characteristic 2, we have either ps(ys) =
a(s)ys or ps(ys) = a(s)y2s , but nevertheless, it is again always linear, and the representation of Q(s) has
systematic zeros on the main diagonal. The central polynomials fs (Definition 4), with s, 1 ≤ s ≤ m
are illustrated in Figure 2.

Another simplification can be made regarding the secret affine transformations S and T . First of all,
we neglect linear terms, as we do not use them and they also never interfere with the coefficients of
quadratic monomials. Thus we can assume S and T to be linear transformations. Note that using
coefficients of linear terms could only speed up the attack, as long as they are not all chosen uniformly
at random. Second, in [26] as well as in [25], the authors did not choose S and T purely at random
but as a combination of two circulant matrices. This structure was meant to reduce the key size and
speed up the decryption process. We note that we do not use this special structure to speed up our
attack. As we are recovering (In

d
⊗ D−1y ) · S instead of S and T · (In

d
⊗ D) instead of T , for some

randomly chosen D and Dy, we lose most of the structure anyway. Therefore we assume to recover
some random matrices in the sequel. Note that this gives a worst case complexity of our attack.
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5 Key-Recovery Attack

In this part, we present an efficient algebraic key-recovery attack on MQQ-ENC and MQQ-SIG. To
do so, we combine a MinRank attack and good keys in order to recover the columns of S and T .

5.1 High Level Description of the Attack

Remark 2. From now on for better readability, but without loss of generality, we assume the change
of variables: xn−id+j 7→ xn−id+d−j+1. (This corresponds to moving the white bands in Fig. 1 to the
lower right corner.)

Our attack is performed in n − r − 1 steps, and in each Step N, N ∈ {n, . . . r + 2}, we remove the
variable xN from all but the first of the public polynomials P. This is done by finding a good key
(S
′
N , T

′
N ) of a particular form. At the end of each step, we remove the first polynomial form P, since,

at this point, that is the only polynomial that contains the variable xN and repeat the procedure
with the rest of the polynomials. Thus, at each Step N w.l.o.g. we can assume that the size of all
public matrices is N . After n − r − 1 steps, we obtain the equivalent key S

′
= S

′
n ◦ · · · ◦ S

′
r+2 and

T
′
= T

′
r+2 ◦ · · · ◦ T

′
n. We can summarize the steps of our attack in Alg. 1.

Algorithm 1 High Level Description of the Key-Recovery Attack
Input: n− r public polynomials P in n variables.

for N := n down to r + 2 do
Consider that all public polynomials involve ≤ N variables.

Step N :
Find a good key (S

′
N , T

′
N ).

Transform the public key as P ← T
′
N ◦ P ◦ S

′
N , and if N < n remove the first polynomial from P.

end for;

Output: The equivalent key S
′

= S
′
n ◦ · · · ◦ S

′
r+2 and T

′
= T

′
r+2 ◦ · · · ◦ T

′
n.

5.2 Detailed Description of the Attack

We describe in this part the steps performed in Algorithm 1. We consider first the case N = n which
is a bit different from the others steps.

Step n = N . How to recover a linear component of the secret-key. Let P be the n − r
public polynomials in n variables of an MQQ scheme. From now on, we denote by P(1), . . . ,P(n−r)

the corresponding public matrices. As explained, the public-key is constructed as P = T ◦ F ◦ S
where F is a set of quadratic polynomials constructed as in Section 3 and S and T are two bijective
linear maps used to mask the structure of P. We denote by F(1), . . . ,F(n) the quadratic forms of F .

We explain how to recover one column of the secret transformation S using good keys. This corre-
sponds to the first step performed Algorithm 1 and will allow to remove the variable xn. Recall from
Subsection 2.3 that we are looking for two linear maps (Σ,Ω) ∈ GLm(Fq)×GLn(Fq) such that

P = T ◦Σ−1 ◦Σ ◦ F ◦Ω ◦Ω−1 ◦ S.

and F ′ := Σ ◦ F ◦ Ω preserves some of the structure of F (cf. def. 2). Then T ′ := TΣ−1 and
S′ = Ω−1S will be good keys.

A crucial observation for MQQ-ENC is that the central polynomials fi, do not contain the monomials
xnxi for any i, 1 ≤ i < n. This means that we preserve some structure even if we choose Σ = T

9



and thus a good key T ′ = I. In order to preserve the corresponding systematic zero coefficients, Ω
is allowed to map every variable to every variable, except xn. We can then choose the good key S′,
or more precisely S

′
:= S′−1 = SΩ, to be of the form given in Figure 3.

S ·Ω =

n− 1 1

· Ω(1) 0

n− 1 1

=

n− 1 1

= S
′
.

Fig. 3. Unique transformation Ω to obtain the good key S
′
.

Obviously, a good key S
′

– according to Figure 3 – almost always exists. We can choose the first
n − 1 columns of Ω equal to the first n − 1 columns of S. However, there is a small probability for
Ω to not be invertible, in which case, a good key does not exist.

Lemma 3. If Snn = 0, then a good key S
′

as given in Figure 3 does not exist.

Proof. Due to the structure of Ω in Figure 3, we have SnnΩnn = S
′
nn. Thus, Snn = 0 implies that

S
′
nn = 0 and S

′
can not be invertible. ut

Remark 3. To guarantee that a good key as in Figure 3 exists with high probability, we can randomize
the public quadratic forms P(1), . . . ,P(m) with a random invertible matrix Srand ∈ GLn(Fq). That

is, we construct a new equivalent set of public polynomials P
(i)
rand:

P
(i)
rand := Sᵀ

randP
(i)Srand = (SSrand)

ᵀ

 n∑
j=1

tijF
(j)

SSrand.

Since S`` = 0 holds with probability 1/q, the average number of randomizations to obtain a nonzero
entry at position (`, `) is q/(q− 1). From now on, we will always assume that – up to randomization
– good keys as in Figure 3 exist.

Using a good key T
′
= I and S

′
as in Figure 3, the algebraic system (3) can be rewritten as:

F
′(k)
ij =

n∑
y=1

n∑
z=1

P(k)
yz s
′
yis
′
zj .

We constructed F ′ := Σ ◦ F ◦Ω such that the monomial xnxi does not appear for any i, 1 ≤ i < n.
This yields:

F
′(k)
n,j = 0, for all k, 1 ≤ k ≤ m, and j, 1 ≤ j < n.

Also, for all j 6= n, we have that s′zj = 0 for z 6= j and s′jj = 1 due to the structure of S
′
. This yields

a system of m(n− 1) linear equations in (n− 1) variables (since s′n,n = 1), given by

n∑
y=1

P
(k)
yj s
′
y,n = 0, for all k, 1 ≤ k ≤ m, and j, 1 ≤ j < n.

After solving the system, we obtain the good key S′. We can then transform the public polynomials
P with the change of variables S

′
x, i.e.:

P ◦ S′ = T ◦Σ−1 ◦Σ ◦ F ◦Ω ◦Ω−1 ◦ S ◦ S′ = F ′.

From the previous discussion, the transformed public polynomials P ◦S′ do not contain the variable
xn in any of the quadratic terms.

10



Remark 4. To ease the notation, we continue to denote the obtained transformed polynomials and
their matrix representations as before (we regard P ◦ S′ as being the public P). Since we removed
the variable xn, we can consider that now the dimension of the public matrices P(i) is n − 1. We
explain now how to remove the variables xn−1, xn−2 . . . down to xr+2.

Step N ∈ {n−1, . . . , r+2} – Using MinRank to recover the entire secret key. We assume
that the dimension of all public matrices P(i) is N ∈ {n − 1, . . . , r + 2}. Observe that the variable
xN occurs in at most one polynomial of the central map F , namely fN (cf. Figure 2). This suggests
to find a linear combination of two public polynomials, w.l.o.g. p1 and pk, with k, 1 < k ≤ m such
that xN no longer occurs, so we want to find λ ∈ Fq such that:

P(k) + λP(1) = Sᵀ

N−1∑
j=1

(tkj + λtkj)F
(j)

S. (6)

To recover such linear combination, we exploit the fact that the rank is invariant under a bijective
linear transformation of variables, i.e. for all k, Rank(P(k)) = Rank(SᵀP(k)S). Thus, we can use the
rank as distinguisher to recover parts of T . More precisely, we need to solve the following MinRank
instance:

Find λ ∈ Fq such that Rank
(
P(k) + λP(1)

)
< N. (7)

The good key (S
′
N , T

′
N ) given in Fig. 4 is a solution of (7). Indeed, using the two public polynomials

P(1),P(k) and thanks to (3), we obtain the following system of N − 1 quadratic equations in N − 1
variables:

F
′(k)
ij =

N∑
y=1

N∑
z=1

(
P(k)
yz + λP(1)

yz

)
s′yis

′
zj .

By construction, F
′(k)
N,j = 0 for all j, 1 ≤ j < N . Also, for all j < N and z 6= j we have that s′zj = 0

and s′jj = 1. This gives

N∑
y = 1

(
P

(k)
yj + λP

(1)
yj

)
s′y,N = 0, for all j, 1 ≤ j < n. (8)

Applying the same reasoning for all of the public matrices P(k), 1 < k ≤ N − r + 1 we obtain the

S
′
N =

N−1 1

, T
′
N =

N−r−11

.

Fig. 4. The good key (S
′
N , T

′
N ).

good key (S
′
N , T

′
N ). The correctness of the procedure follows from the next theorem.

Theorem 3. Let N be the number of variables in the N − r + 1 public polynomials of MQQ-ENC
(or MQQ-SIG) during step N ∈ {n − 1, . . . , r + 2}. Let s′ = (s′1,N , s

′
2,N , . . . , s

′
N−1,N , 1) and t

′
=

(1, t
′
2,1, t

′
3,1, . . . , t

′
N−r+1,1) be unknown vectors. Thus, it holds that (s′0, t

′
0) is a solution of:

s′
(
P(k) + t

′
k1P

(1)
)

= 01×N , ∀k, 1 < k ≤ N − r + 1 (9)
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if and only if (S
′
N , T

′
N ) is a good key for MQQ-ENC (respectively MQQ-SIG), where S

′
N is obtained

from the identity matrix IN by replacing the last column with s′0, and T
′
N is obtained from the identity

matrix IN by replacing the first column with t
′
0.

Proof. From (2), we have that:

F′(k) = S
′ᵀ
N

(
P(k) + t

′
k1P

(1)
)
S
′
N , ∀k, 1 < k ≤ N − r + 1, or equivalently :

F
′(k)
ij =

N∑
y=1

N∑
z=1

(
P(k)
yz + t

′
k1P

(1)
yz

)
s′yis

′
zj ,∀1 < k ≤ N − r + 1.

Thus, if (S
′
N , T

′
N ) is a good key then F

′(k)
iN = 0 (or equivalently F

′(k)
Ni = 0) for every 1 ≤ i < N .

By construction, for every 1 ≤ i < N , s′yi = 0, for all y 6= i, and s′ii = 1. Hence, (S
′
N , T

′
N ) is

a good key if and only if for every i, k s.t. 1 ≤ i < N and 1 < k ≤ N − r + 1 it holds that:
N∑
z=1

(
P

(k)
iz + t

′
k1P

(1)
iz

)
s′z,N = 0. The last system is equivalent to (9), so the claim follows. ut

Remark 5. Note that Theorem 3 can be applied to Step n as well. In this case it is known that
t
′
k1 = 0, so instead of a system of quadratic equations we obtain a system of linear equations as

explained in the the previous part. So, step n = N is actually just an easier sub-case of the others
steps.

6 Modeling Good Keys as MinRank for Rectangular Matrices

Theorem 3 shows that the problem of finding a good key is equivalent to finding the intersection
of the kernels of some linear combinations of the public matrices. This can be nicely modeled as a
special instance of the MinRank problem for rectangular matrices.

Corollary 1. Let N , s′ and t
′

be as in Thm. 3. Let P = [P(2)|P(3)| . . . |P(N−r+1)]N×N(N−r) and

Pi = [0| . . . |0|P(1)|0| . . . |0]N×N(N−r) be block matrices, where P(1) is the i-th block in Pi. It holds

that finding a good key (S
′
N , T

′
N ) of the form given in Thm. 3 for MQQ-ENC (or MQQ-SIG) is

equivalent to solving the MinRank instance defined below:

Find t
′
2,1, . . . , t

′
N−r+1,1 ∈ Fq such that Rank

(
P +

N−r+1∑
k=2

t
′
k1Pk

)
< N. (10)

Proof. Using the Kipnis-Shamir modeling, the MinRank instance (10) can be expressed exactly as
the system of equations (9). The claim follows from Thm. 3. ut

We now summarize our key-recovery attack in Algorithm 2 for MQQ-ENC and MQQ-SIG based on
the results from Theorem 3, Remark 5 and Corollary 1.

7 Complexity of the Key-Recovery Attack

In this part, we show that the complexity of our attack is polynomial. To so do, we present a
complexity analysis of the Algo. 2. We also present experimental results which confirm our theoretical
results.
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Algorithm 2 Key Recovery
Input: n− r public polynomials P in n variables.

for N := n down to r + 2 do
Consider the dimension of all public matrices P(i) to be N . If N = n, set b = 0, otherwise set b = 1.

Step Rectangular MinRank(N):
Let s′ = (s′1,N , s

′
2,N , . . . , s

′
N−1,N , 1) and t

′
= (t

′
2,1, t

′
3,1, . . . , t

′
N−r+b,1) be unknown vectors.

Find a good key (S
′
N , T

′
N ) by solving the system (9) in (s′, t

′
):

s′
(
P +

N−r+b∑
k=2

t
′
k1Pk

)
= 01×N(N−r),where if b = 0, then t

′
= (0, 0, . . . , 0);

for P = [P(2)|P(3)| . . . |P(N−r+1)]1×N(N−r) and Pi = [0| . . . |0|P(1)|0| . . . |0]1×N(N−r)

with P(1) being the i-th block in Pi.
Transform the public key: P ← T

′
N ◦ P ◦ S

′
N ,

If b = 1 remove the first polynomial from P (P now contains N − r polynomials).
end for;

Output: The equivalent keys S
′

= S
′
n ◦ · · · ◦ S

′
r+2 and T

′
= T

′
r+2 ◦ · · · ◦ T

′
n.

7.1 Theoretical Complexity

The goal of this part is to bound the complexity of solving the algebraic equations (9) arising at
each step of Alg. 2. As we will see from the experimental results (Section 7.2), it appears that the
system (9) can be solved efficiently in practice. In particular, the maximum degree reached during
the Gröbner basis computation is bounded by a small constant, 3. We will now theoretically explain
this fact.
A strategy for bounding the complexity of solving (9) is to consider a subset of the equations. In
particular, the equations of (9) derived from a given k, 1 < k ≤ N − r + 1 correspond to a Kipnis-
Shamir modeling of the MinRank problem (7). To give intuition, we consider a pair of matrices(
P(1),P(k)

)
such that P(1) is invertible. Setting P∗ = P(k)

(
P(1)

)−1
, we obtain that (7) is equivalent

to:
Find λ ∈ Fq such that Det(P∗ − λIN ) = 0. (11)

We can compute the roots of the characteristic polynomial, which are the eigenvalues of P∗ − λIN ,
and the corresponding eigenvectors. All such pairs will vanish the k-th equation of (9). We can then
substitute each possible possible eigenvector in the others equations and solve the linear system
involving the remaining unknowns. We have found a part of the secret-key as soon as the linear
system is consistent. However, the complexity of this approach will depend on the multiplicity of
the eigenvalues. If all the roots of (11) are simple, then the approach described, allows to solve the
system (9) in polynomial-time.

Remark 6. In characteristic 2, the previous discussion does not directly apply since the matrix repre-
sentation of a public polynomial has always an even rank (cf. Remark 1). In particular, the situation
is as follows:

– When N is even, the rank of the skew-symmetric matrices P(1) and P(k) is ≤ N . A drop of the
rank will likely yield Rank

(
P(k) + λP(1)

)
= N −2. In this case, we can expect that the MinRank

problem has unique solution λ. For this λ, the dimension of Ker
(
P(k) + λP(1)

)
is 2 (in this case,

(11) would have a root of multiplicity > 1). Since s′N,N = 1 in (8), we obtain q solutions for the

good key S
′
N .

– For odd N , the rank of the matrices P(1) and P(k) is ≤ N − 1, which means that (7) is satisfied
for any λ. In this case, since s′N,N = 1, for each λ ∈ Fq we get a unique solution for the good key

S
′
N if the rank defect is minimum, just one.
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To analyse the complexity of this simple approach, we introduce:

Definition 5. Let Fq be a field of characteristic 2 and (A,B) ∈ FNq × FNq be a pencil [36] of skew-
symmetric matrices. We shall say that the pencil is generic if for all λ0 ∈ Fq,Ker (A+ λ0B) is of
dimension ≥ 2 if N is even and ≥ 1 otherwise.

If N is odd, a generic pencil (A,B) means that the pencil is always of maximal possible rank. If N
is even, the pencil is generic if the rank defect, if any, is minimal, just one.

Remark 7. For the parameter sets of the MQQ cryptosystems, we can assume with high probability

that the pencils from the public matrices are generic. Indeed, let λ(q, n) =

n∏
i=1

(
1− 1/qi

)
. be the

probability that a n × n matrix over Fq is invertible. It is known from [37] (and recalled in [38,
Section 10]) that the probability that a skew-symmetric matrix is of maximal rank (n − 1) when n

is odd is Prodd = λ(q,n)
λ(q2,(n−1)/2)

1
1−1/q and the probability that it is of rank ≥ n − 2 when n is even

is: Preven = λ(q,n)
λ(q2,(n−1)/2)

(
1 + qn−1

qn−2(q2−1)(q−1)

)
. Having this in mind, we get that the probability that

the pencils in question are generic is Prqodd or Prqeven, depending on the parity of n. In either case,
for the parameter sets of MQQ-ENC and MQQ-SIG (as in Section 7.2), it can be checked that the
a probability is bigger than 0.7.

We first assume that the field q is not to big, typically q = O(n). This is indeed the case for most of
the parameters proposed so far for MQQ cryptosystems.

Theorem 4. Let N ∈ {n− 1, . . . , r+ 2} and let Fq be a field of characteristic 2 such that q = O(n).
Let P(1), . . . ,P(N−r+1) ∈ FN×Nq be the skew-symmetric matrices occurring in Algorithm 2 at step

Rectangular MinRank(N). If there exists i0, 2 ≤ i0 ≤ (N − r + 1) such that the pencil (P(1),P(i0))
is generic, then, the system (9) of Theorem 3 can be solved with probability 1 − 1/q in O(nω+2)
operations, where 2 ≤ ω < 3 is the linear algebra constant. In total, and under the assumptions,
there exists an algorithm which recovers a key equivalent to the secret-key in O

(
nω+3

)
with probability

1− 1/q.

The proof can be found in Appendix B. Theorem 4 can be extended even if we assume that there
exists a pencil of matrices for which the rank defect is small, that is a constant. More generally, for
arbitrary q and N , we show that we can get a complexity which is independent of the field size and
polynomial in the number of variables. More precisely, the following result holds (proof in Appendix
B).

Theorem 5. Let Fq be an arbitrary field of characteristic 2 and let N ∈ {n − 1, . . . , r + 2}. We
assume that the system (9) of Theorem 3 is not harder to solve than a generic affine bi-linear system
(Theorem 7). Let the matrices P(1), . . . ,P(N−r+1) ∈ FN×Nq be as in Algorithm 2. If there exist

i0, i1 ∈ {2, . . . , (N − r + 1)} such that the pencils (P(1),P(i0)), and (P(1),P(i1)) are generic, and if
we assume that the corresponding kernels behave like random, then, for all N ∈ {n − 1, . . . , r + 2},
the system (9) of Theorem 3 can be solved in

O(N3ω), with 2 ≤ ω < 3 the linear algebra constant.

In total, and under the assumptions, there exists an algorithm which recovers a key equivalent to the
secret-key in O(n3ω+1) field operations with probability

(
1− 1

q

)(
1− 1

qn−3

)
.
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7.2 Experimental Results

For the parameter sets proposed for MQQ-ENC [26] and MQQ-SIG [25] the results from Theorem 5
lead to the complexities given in Table 1 and Table 2. They have been calculated using the more
precise formula C(n, r, q) =

∑n−1
N=r+2

(
N+4
3

)ω
.

Table 1. Theoretical complexities, in terms of field
operations, of the key recovery attack on MQQ-ENC
compared to the original decryption algorithm. All of
the parameters are for claimed security of O(2128).

2k k n r d Decryption Key Recovery

2 1 256 8 8 225 256.3

4 2 128 4 8 223 248.2

16 4 64 2 8 221 240.3

256 8 32 1 8 220 232.5

Table 2. Theoretical complexities, in terms of field op-
erations, of the key recovery attack on MQQ-SIG com-
pared to the claimed security level.

Security Level n d Key Recovery

280 160 8 250.8

296 192 8 252.9

2112 224 8 254.7

2128 256 8 256.2

We have implemented the attack in Magma (Version 2.19-10 [29]) on a workstation with 32 cores
based on Intel Xeon 2.27GHz, with 1TB of RAM memory. The results of the practical attack are
summarized in Table 3 and Table 4. From the tables, we can see that all our experiments, for both
MQQ-ENC, and MQQ-SIG, confirmed that the maximum degree reached during the Gröbner basis
computation (dmax) of the system (9) is 3, consistent with Theorem 4. Furthermore, the results are
almost a perfect match with the theoretical calculations of Theorem 5.

Table 3. Results of the practical attack on MQQ-ENC.

2k k n r d Key
Recovery

Key Recovery
Practical

Theoretical cycles sec dmax

2 1 64 8 8 240.3 243.4 5421 3

2 1 96 8 8 244.9 247.8 111844 3

4 2 64 4 8 240.3 243.7 6978 3

4 2 96 4 8 244.9 247.8 109258 3

4 2 128 4 8 248.2 250.6 787214 3

16 4 32 2 8 232.5 234.7 14 3

16 4 48 2 8 237.0 238.9 251 3

16 4 64 2 8 240.3 241.6 1783 3

Table 4. Results of the practical attack on MQQ-SIG.

n r d Key
Recovery

Key Recovery
Practical

Theoretical cycles sec dmax

64 32 8 240.3 240.1 560 3

96 48 8 244.9 243.2 4822 3

128 64 8 248.2 246.0 34376 3

160 80 8 250.8 248.0 120882 3

8 Conclusion

Mounting a successful key recovery attack against MQQ-ENC and MQQ-SIG using good keys, we
have yet again shown that MinRank is a fundamental problem in MQ cryptography. We have
however also shown that it is necessary to take into account the parity of the characteristic of the
field when using MinRank to reveal the good key. Because of the different representation of quadratic
polynomials over fields of characteristic 2, the attack, otherwise valid over odd characteristic fields,
can not be directly applied. Interestingly, this has often been overlooked in the literature. By unveiling
the pitfalls in the attack of the MQQ schemes arising from the even characteristic of the field, our
analysis shows that the same modification is necessary when attacking similar MQ schemes over
fields of characteristic 2 using MinRank.
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A The MinRank problem

The MinRank problem over a finite field Fq is defined as follows.
MinRank (MR)
Input: n,m, r, k ∈ N, where n < m and M0,M1, . . . ,Mk ∈Mn×m(Fq).
Question: Find – if any – a k-tuple (λ1, . . . , λk) ∈ Fkq such that:

Rank

(
k∑
i=1

λiMi −M0

)
6 r.

Kipnis and Shamir [39] proposed to model the MinRank problem as a multivariate polynomial

system of equations. The basic idea of the modeling is that the matrix
(∑k

i=1 λiMi −M0

)
has rank

≤ r if and only if there exists a set of n − r independent vectors in its left kernel. Writing this set
as a matrix in echelon form, yields a system of n (n− r) equations in r (n− r) + k variables given in
matrix form: 1 x1,1 . . . x1,r

. . .
...

...
1 xn−r,1 . . . xn−r,r

 ·( k∑
i=1

λiMi −M0

)
= 0n×n. (12)

Note that, over a finite field, the set of unknown independent vectors can be written in such a
systematic form with high probability. Initially, relinearization [39] was used to solve this algebraic
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system. The authors of [40] proposed instead to use Gröbner bases tools to solve this system. In
addition, [40] noticed that the system has a specific structure: it is formed by bilinear equations [28].

We recall the complexity of the F5 algorithm for computing a grevlex Gröbner basis of a polynomial
system as given in [41,42].

Theorem 6. The complexity of computing a Gröbner basis of a zero-dimensional (i.e. with a finite
number of solutions in the algebraic closure of the coefficient field) polynomial system of m equations
in n variables with F5 is

O
(
m ·

(
n+ dreg
dreg

)ω)
,

where dreg is the degree of regularity of the ideal and 2 6 ω 6 3 the linear algebra constant.

Informally, dreg is the maximum degree reached during a Gröbner basis computation. It has to be
noticed that if the degree of regularity does not depend on the number of variables, the complexity
then becomes polynomial in n.

From Theorem 6, we can see that in order to estimate the complexity of finding the MinRank solution
with this modeling, we need a good estimate of the degree of regularity of the system (12). Using
the fact that (12) is an affine bilinear system, the following tight bound can be appropriately used
for the purpose.

Theorem 7 ([28]). Let X and Y be two blocks of variables of sizes nX and nY respectively. We
shall say f ∈ K[X,Y ] is bilinear if f(αX, β Y ) = αβ f(X,Y ) for all (α, β) ∈ K×K. For the grevlex
ordering, the degree of regularity of a generic affine bilinear zero-dimensional system over K[X,Y ]
is upper bounded by

dreg ≤ min(nX , nY ) + 1.

In particular, this result implies that computing the Gröbner basis of generic affine bilinear zero-
dimensional system with min(nX , nY ) ∈ O(1) can be done in polynomial-time.

B Complexity Theorems Proofs

B.1 Proof of Theorem 4.

Proof. Without loss of generality, we can assume that i0 = 2 (up to re-ordering the equations).
Let λ2 be a root of the degree-N univariate polynomial Det

(
P(2) +X ·P(1)

)
. We denote by K2 =

Ker
(
P(2) + λ2P

(1)
)

the corresponding kernel.

We first assume that N is odd. By the genericity assumption, we know that K2 is of dimension one.
Since s′N,N = 1 in (8), each K2 yields an unique s2

′ (stated differently, s2
′ is the vector generating

K2 in a systematic basis). There is at most q = O(n) distinct values for s2
′. We then plug each s2

′

in (9) which reduces then to a system of linear equation in the t
′
. We know that there is at least one

s2
′ which leads to a consistent system. If N < n is odd, we can then solve (9) in O(nω+1).

When N is even, the situation is very similar. The only difference is that K2 is of dimension 2. Since
s′N,N = 1 in (8), each K2 yields q = O(n) distinct s2

′. There is at most N < n distinct values for s2
′.

As before, we plug each possible s2
′ in (9) which yields a system of linear equation in the t

′
. Thus,

if N is even, we can then solve (9) in O(nω+2).

Note that because of Lemma 3, the system will give a solution with probability q−1
q , so we need to

randomize the public polynomials on average q
q−1 times.

The whole procedure needs to be repeated for every N starting from n− 1 down to r+ 2. Note that
in the first iteration, when N = n, we actually solve only a linear system of equations. ut
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B.2 Proof of Theorem 5.

Proof. Denote by
(
n
k

)
q

= (qn−1)(qn−q)...(qn−qk−1)
(qk−1)(qk−q)...(qk−qk−1)

the Gaussian binomial coefficient, that gives the

number of k-dimensional subspaces of an n-dimensional vector space.
The main idea of the proof is to show that in (9) it is enough to consider only two coordinates of t

′
in

order to get a unique solution for s′ with overwhelming probability. Namely, it is enough to consider
only the equations corresponding to i0 = 2, i1 = 3 (w.l.o.g. up to reordering of equations):

s′
(
P(2) + t

′
21P

(1)
)

= 01×N , (13)

s′
(
P(3) + t

′
31P

(1)
)

= 01×N . (14)

For odd N , for both i ∈ {2, 3} we have that Dim(Ker(P(i)+λP(1))) = 1 for every λ ∈ Fq. Denote the
set {Ker(P(2) +λP(1))|λ ∈ Fq} by R2, and the set {Ker(P(3) +λP(1))|λ ∈ Fq} by R3. We know that,
if there exists a good key, it will be a vector in the vector space that is the intersection R2 ∩R3. The
probability that the intersection contains another vector space by chance is |R1| · |R2|/

(
N
1

)
q
≈ q(3−N),

which is very small for big enough N . Similarly, for even N , there exist λ2, λ3 such that for both
i ∈ {2, 3}, Dim(Ker(P(i) +λiP

(1))) = 2. Now, if a good key exists, it will be in the intersection of the
kernels and all other elements in the intersection will be linearly dependent of the good key. Hence,
in this case the probability that we get a solution of the system that is not a good key is the same
as the probability that the two kernels coincide, which equals 1/

(
N
2

)
q
≈ q(4−2N). This again is very

small. Thus, in total, with probability of 1− 1
qN−3 it is enough to use only the Equations (13) and

(14).
The task now reduces to solving a bilinear system of bidegree (1, 1), over Fq[t

′
i0,1, t

′
i1,1, s

′
1,N , . . . , s

′
N−1,N ].

From Theorem 7, such system can be solved in O
((

N+4
3

)ω)
.

Again because of Lemma 3, we need to randomize the public polynomials on average q
q−1 times. The

step of solving the system (9) needs to be repeated for every N starting from n − 1 down to r + 2.
Note that, when N = n, we actually solve only a linear system of equations, which is of smaller
complexity.
In total, asymptotically, since we have O(n) steps of complexity O(

(
n+4
3

)ω
), we obtain the total

complexity of the attack. ut
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