
Search-and-compute on Encrypted Data

Jung Hee Cheon1, Miran Kim1, and Myungsun Kim2

1 Department of Mathematical Sciences, Seoul National University
{jhcheon,alfks500}@snu.ac.kr

2 Department of Information Security, The University of Suwon
msunkim@suwon.ac.kr

Abstract. Private query processing on encrypted databases allows users to obtain data from encrypted
databases in such a way that the user’s sensitive data will be protected from exposure. Given an encrypted
database, the users typically submit queries similar to the following examples:
– How many employees in an organization make over $100,000?
– What is the average age of factory workers suffering from leukemia?

Answering the above questions requires one to search and then compute over the encrypted databases
in sequence. In the case of privately processing queries with only one of these operations, many efficient
solutions have been developed using a special-purpose encryption scheme (e.g., searchable encryption). In
this paper, we are interested in efficiently processing queries that need to perform both operations on fully
encrypted databases. One immediate solution is to use several special-purpose encryption schemes at the
same time, but this approach is associated with a high computational cost for maintaining multiple encryp-
tion contexts. The other solution is to use a privacy homomorphism (or fully homomorphic encryption)
scheme. However, no secure solutions have been developed that meet the efficiency requirements.
In this work, we construct a unified framework so as to efficiently and privately process queries with “search”
and “compute” operations. To this end, the first part of our work involves devising some underlying circuits
as primitives for queries on encrypted data. Second, we apply two optimization techniques to improve the
efficiency of the circuit primitives. One technique is to exploit SIMD techniques to accelerate their basic
operations. In contrast to general SIMD approaches, our SIMD implementation can be applied even when
one basic operation is executed. The other technique is to take a large integer ring (e.g., Z2t) as a message
space instead of a binary field. Even for an integer of k bits with k ą t, addition can be performed
with degree 1 circuits with lazy carry operations. As a result, search queries including a conjunctive or
disjunctive query on encrypted databases of N tuples with µ-bit attributes require OpN logµq homomorphic
operations with depth Oplogµq circuits. Search-and-compute queries, such as a conjunctive query with
aggregate functions in the same conditions, are processed using OpµNq homomorphic operations with
at most depth Oplogµ logNq circuits. Further, we can process search-and-compute queries using only
OpN logµq homomorphic operations with depth Oplogµq circuits, even in the large domain. Finally, we
present various experiments by varying the parameters, such as the query type and the number of tuples.

Keywords: encrypted databases, private query processing, homomorphic encryption.

1 Introduction

Privacy homomorphism is an important notion for encrypting clear data while allowing one to carry
out operations on encrypted data without decryption. The concept was first introduced by Rivest et
al. [29], and much later, Feigenbaum and Merritt’s question [16] affirmed the concept: Is there an
encryption function Ep¨q such that both Epx`yq and Epx ¨yq are easy to compute from Epxq and Epyq?
Since then, there have been a substantial number of studies concerned with solving this problem.
However, there had been very little progress made in determining whether such efficient and secure
encryption schemes exist until 2009, when Craig Gentry demonstrated the possibility of constructing
such an encryption scheme [18].

2

Roughly speaking, Gentry’s scheme allows anyone to compute Epfpx1, . . . , xN qq from a collection
of encrypted data Epx1q, . . . ,EpxN q for any computable function f without knowing the actual data.
He called this technique a fully homomorphic encryption (FHE) scheme.

While the use of Gentry’s scheme and other FHE schemes (e.g., [35,8,7]) allows us to securely
evaluate any function in a theoretical sense, the evaluation cost is still far from being practical for
many functions. Moreover, the complexity for several important functions has not been determined.
Among the important functions, we restrict our interest to a set of functions for databases, which
raises the following question: Given a set of fully encrypted databases, can we construct a set of
efficient functions to process queries over the encrypted databases? If so, what is the computational
cost of the functions?

Although this question is the starting point of this work, to facilitate a better understanding of
the approach, we describe the motivation for our work from a different perspective. Ultimately, the
two perspectives share a common outcome, i.e., fully homomorphic encryption. Currently, perhaps
the simplest way to search for records satisfying a particular condition over encrypted databases is via
searchable encryption (e.g., [34,4,3]). However, privately processing sum and avg aggregation queries
in the same condition is performed using homomorphic encryption (e.g., [15,27] and [6]). Thus, the
private processing of a query that includes both matching conditions and aggregate operations requires
the use of two distinct encryption techniques in parallel, i.e., searchable encryption and homomorphic
encryption. We should note that simultaneously maintaining multiple cryptosystems is fairly expensive.

This observation leads to the natural question: Can we construct a solution to efficiently address
such a database query without maintaining multiple contexts of encryption?

At first glance, FHE schemes seem to perfectly fit the problem of processing queries on encrypted
databases with a single encryption context. However, further research on this topic reveals that there
exists no solutions for expressing and processing various queries on fully encrypted databases in an
efficient way.

1.1 Our Results

Our main results are as follows:

– A unified framework for private query processing: We provide a common platform so that
database users may work on a single underlying cryptosystem, represent their query as a function in
a conceptually simpler manner, and efficiently carry out the function on fully encrypted databases.

– Optimizing circuits and their applications to compact expressions of queries: The foun-
dation of our simple framework is a set of optimized circuits: equality, greater-than comparison and
integer addition. We call these circuit primitives. Our optimizations of circuit primitives have been
taken in such a way as to minimize the circuit depth and the number of homomorphic operations.
To do this, we make extensive use of single-instruction-multiple-data (SIMD) techniques to move
data across plaintext slots. An automorphism operation on ciphertexts allows such a movement
in the plaintext slots without additional cost. In particular, our SIMD implementations have an
important difference compared with a general SIMD strategy. In general, SIMD technology allows
for basic operations to be performed on several data elements in parallel. However, this does not
make the basic operations themselves run faster. On the contrary, our proposal works on packed
ciphertexts of several data elements and thus enables one to improve the efficiency of the basic op-

3

erations of circuit primitives. Furthermore, we find that all circuit primitives have Oplogµq depth
for µ-bit data.
We then express more complicated queries by a composition of the optimized circuit primitives. The
resulting query functions are conceptually simpler than other representations of database queries
and are compact in the sense that retrieval queries require at most Oplogµ logNq depth. Here, N
means the number of tuples of µ-bit attributes in a table.

– Further improvements in the performance of query processing: FHE schemes usually use
Z2 as a message space so that their encryption algorithm encodes an input message into a bit
string and then encrypts each bit into a ciphertext. While our circuit primitives efficiently work
on bit encryptions, we can achieve further improvements by adopting a large integer ring (e.g.,
Z2t), especially in the case of computing on encrypted numeric-data. Even for an integer of k bits
with k ą t, addition can be performed with degree 1 circuits by processing lazy carry operations.
Although this rectification requires us to amend our circuit primitives, we can again preserve their
optimality by SIMD operations. In other words, search-and-compute queries can be processed with
only Oplogµq-depth circuits.

– Comprehensive experiments: We conduct comprehensive experiments for evaluating the per-
formance of various queries expressed by our techniques from a theoretical as well as practical
perspective. We first analyze the computational complexity of each type of query. For example,
a function representing a conjunctive search query with τ matching conditions over N -block en-
crypted databases has OpτN logµq computation complexity. Then, we implement these queries
using Halevi-Shoup’s library and Shoup’s NTL library to verify the correctness and performance
of the query.

1.2 A High-level Overview of Our Approach

Figure 1 graphically illustrates the high-level architecture of our approach.

query Q

PSnC Pre/post-Processor

SWHE pk, sk

PSnC Processor

SWHE

Q̄˚

pk

transformed
retrieve/modify

query Q̄

Encrypted DB

table ¨ ¨ ¨
...

Fig. 1: Our PSnC Framework

Assuming a database consisting of N blocks, i.e., R1 ‖ R2 ‖ ¨ ¨ ¨ ‖ RN , to encrypt the record Ri, a
DB user prepares a pair of public/private keys ppk, skq for an FHE scheme and publishes the public

4

key to a DB server. The DB users store their encrypted records R̄i “ EpkpRiq for 1 ď i ď N in the
same way as normal write queries (e.g., using the insert-into statement). We use an efficient variant
of an FHE scheme: a somewhat homomorphic encryption (SWHE) scheme (we will discuss the SWHE
scheme later).

Suppose that the user wants to submit a retrieval queryQ to the DB server. Before being submitted,
the query Q needs to be properly pre-processed so that all clear messages, such as constant values,
are encrypted under the public key pk. We denote this transformed query by Q̄.

Upon receiving Q̄, the DB server compiles it into Q̄˚ by applying our techniques. The readers
can consider a dedicated module for performing this task.3 Hereafter, we call the module a Private
Search-and-compute (PSnC) processor. Next, the DB server homomorphically evaluates Q̄˚ over the
fully encrypted databases and returns the resulting ciphertexts to the user.

The DB user can decrypt the output using his private key sk while learning no additional data
except for the records satisfying the where conditions.

For example, consider the following typical retrieval query Qu:

select Aj1 , Aj2 , Aj3
from R
where Aj0 “ α;

(Qu)

The PSnC preprocessor outputs Q̄u with ᾱ “ Epkpαq in place of α. The DB server transforms Q̄u into
Q̄˚u by invoking its PSnC processor, where Q̄˚u is written in the following form:

equal
´

Ā
piq
j0
, ᾱ

¯

¨

´

Ā
piq
j1
, Ā
piq
j2
, Ā
piq
j3

¯

(Q̄˚u)

where equalpx̄, ȳq is one of our circuit primitives that outputs an encryption of 1 if x “ y; otherwise, an

encryption of 0; “ ¨” means homomorphic multiplication of ciphertexts, and Ā
piq
j denotes an encryption

of the j-th attribute value of the i-th tuple in the table. In this way, the DB server can process other
involved queries without knowing the data.

1.3 Closely Related Work

A few results closely related to our work can be found in the literature. First, Lauter et al. in [24]
showed how to privately compute avg and var functions using a variant of Brakerski et al.’s SWHE
scheme [9]. They encode an integer as a polynomial with binary coefficients over ZtrXs{xXn ` 1y for
sufficiently large t. Rather than directly computing the variables of the encrypted data, they compute
the sum and the sum of squares of the ciphertexts and obtain the result with one division operation
after decryption. However, their work only focused on applying homomorphic encryption to compute
aggregate functions in query statements. Thus, it is not clear how to address their where clauses in a
private manner.

Recently, Boneh et al. [5] proposed a way to privately process the where clause in a select

statement and produce a set of matching indices. Their solution allows the where clause to involve
conjunctive and disjunctive conditions. Their technique uses private set intersection together with

3 Alternatively, one may imagine that Q̄˚ transformed by the DB user directly is sent to the DB server. However,
considering optimization and performance, we believe that the better choice involves the module becoming part of the
DBMS.

5

homomorphic encryption. Their basic idea is as follows. Suppose that a DB server holds a database

consisting of N tuples with d attributes, i.e.,
!

A
p1q
1 , . . . , A

pNq
d

)

. Let us denote vij as the attribute

value of A
piq
j in the i-th tuple. The DB server considers the DB as a multivariate polynomial Dpx, yq

satisfying Dpi, jq “ vij for each i, j. For a where clause having Aj “ αj , a DB user prepares a query
polynomial Qpyq such that Qpjq “ αj for all 1 ď j ď s, where αj is a constant value. When the
DB user submits its encrypted polynomial Q̄pyq, the DB server computes Rpx, yq “ Dpx, yq ´ Q̄pyq,
obtains Rjpxq “ Rpx, jq for each 1 ď j ď s by evaluating Rpx, yq at j, and sends all Rjpxq to the DB
user after randomizing the polynomial. Upon receiving tR1pxq, . . . , Rspxqu, the DB user decrypts and
evaluates each polynomial Rjpxq at each tuple. If Rjpiq “ 0 for all j, the tuple index i implies that
the i-th tuple is what the user wants.

However, their scheme has the following drawbacks: (1) their scheme only allows conjunctive and
disjunctive conditions. Namely, the DB user cannot make a query that contains general comparison
operators, such as ă,ď,ą, and ě; (2) the equality test is restricted to comparisons with a constant
value; and (3) the DB users must revisit the DB server to obtain a list of real tuples because they
only know the indices of those tuples. In conclusion, the query type supposed by their scheme is fairly
constrained.

Our work differs in several ways from prior efforts. First, our solution can privately process the
select clause and the where clause all at once. Second, our solution supports a wide range of query
types–from simple search queries to join queries. In particular, our solution allows the DB users to
express rich conditions, including ă,ď,ą,ě, and ăą. More detailed survey results are provided in
Section 7.

The remainder of the paper is structured as follows. In Section 2, we briefly review the BGV-
type homomorphic encryption scheme. In Section 3, we construct the optimized circuits for expressing
queries. Then, in Section 4, we show how to construct database queries having search and/or compute
operations using our circuit primitives. Section 5 presents our optimization techniques for further
improvements in performance, and Section 6 shows the experimental evaluations of our constructions.

2 Preliminaries

In this section, we recall the concept of homomorphic encryption and focus on describing the BGV-type
cryptosystem [7,20], which is our underlying encryption scheme. In what follows, we give a description
of the security model that our constructions assume.

2.1 Homomorphic Encryption (HE)

A homomorphic encryption (HE) scheme HE “ pKg,E,D,Evq is a quadruple of probabilistic polynomial-
time algorithms that proceeds as follows:

– ppk, ek, skq Ð Kgp1κq: The algorithm takes as input the security parameter κ and outputs a public
encryption key pk, a public evaluation key ek and a secret decryption key sk.

– c Ð Epkpx; γq: The algorithm takes the public key pk, a single-bit message x P t0, 1u and a
randomizer γ and outputs a ciphertext c. When no confusion may arise, we occasionally omit the
randomizer γ.

– x Ð Dskpcq: The algorithm takes the secret key sk and a ciphertext c and outputs a message
x P t0, 1u.

6

– cf Ð Evekpf ; c1, . . . , ckq: The algorithm takes the evaluation key ek, a function f : t0, 1uk Ñ t0, 1u
and a set of k ciphertexts c1, . . . , ck and outputs a ciphertext cf .

We assume that f will be represented by an arithmetic circuit over Z2, with the addition and multi-
plication gates.

We say that an HE scheme HE “ pKg,E,D,Evq is homomorphic if for any set of inputs px1, . . . , xkq,
for every positive polynomial p and for all sufficiently large κ, it holds that

Pr rDsk pEvekpf ; c1, . . . , ckqq ‰ fpx1, . . . , xkqs “
1

ppκq

where ci “ Epkpxiq for 1 ď i ď k.
Although homomorphic cryptosystems (e.g., [18,35,9,7,25]) allow us to homomorphically evaluate

any arithmetic circuit without decryption, the noise of the resulting ciphertext grows during homo-
morphic evaluation, slightly with addition but substantially with multiplication. Two techniques are
used for noise management: One is bootstrapping, which makes the ciphertext noise free by evaluating
the decryption circuit homomorphically by the decryption key. The other is modulus switching, which
scales down a ciphertext during every multiplication operation and reduces the noise by its scaling fac-
tor. The bootstrapping technique allows us to utilize an FHE scheme [19,10] at the cost of a significant
degradation in performance. By contrast, Although a modulus-switching technique supports limited
operations, this is more efficient for supporting low-degree homomorphic computations on encrypted
data. This is called somewhat homomorphic encryption (SWHE).

The BGV SWHE Scheme Our solutions are implemented with an efficient variant of the Brakerski-
Gentry-Vaikuntanathan (BGV) cryptosystem using a modulus-switching technique. We first review an
SWHE version of a BGV FHE scheme [7] based on ring learning with errors (RLWE) problems [20].

Let us denote the reduction of the integer x modulo q into the interval p´q{2, q{2s X Z by rxsq.
For a security parameter κ, we choose an m P Z that defines the m-th cyclotomic polynomial ΦmpXq.
For a polynomial ring A “ ZrXs{xΦmpXqy, we set the message space to At :“ A{tA for some fixed
t ě 2 and the ciphertext space to Aq :“ A{qA for an integer q. Then, all the ciphertexts are treated
as vectors of elements in Aq.

In this scheme, homomorphic addition is performed by simple component-wise addition of the
ciphertexts, and homomorphic multiplication is performed using a tensor product over Aq. One could
use a key-switching technique to convert the product ciphertext into the refreshed ciphertext. Moreover,
one chooses a chain of moduli q0 ă q1 ă ¨ ¨ ¨ ă qL “ q whereby the SWHE scheme can evaluate a
depth-L arithmetic circuit. Modulus switching down during homomorphic computation implies that
when we reach the smallest modulus q0, we can no longer compute on ciphertexts. Here, the depth
of an arithmetic circuit under an SWHE scheme means the number of reduced moduli in the circuit
being evaluated homomorphically.

To formally describe their scheme, we need to introduce extra notation for denoting distributions
as follows:

– Uq: This is the uniform distribution over pZ{qZqφpmq.
– dGqpσ2q: This is the discrete Gaussian that draws a real φpmq-vector according to the normal

distribution N p0, σ2qφpmq, rounds the real vector to the nearest integer vector, and produces the
integer-vector-reduced modulo q.

7

– T pρq: For a real value ρ P r0, 1s, this distribution outputs a vector in t0,˘1uφpmq with probability
ρ{2 for each `1 and ´1 and probability 1´ ρ for each 0.

– Hphq: For an integer h ď φpmq, this distribution uniformly outputs a vector at random from
t0,˘1uφpmq such that the number of non-zero entries is h.

Finally, we denote by a � D, choosing a P A according to the distribution D. Considering these
notations, we describe an RLWE-based SWHE scheme of the BGV cryptosystem.

– pa, b; sq Ð Kgp1κ, h, σ, qLq: The algorithm Kg chooses s � Hphq, a � UqL and e � dGqLpσ2q. It
then calculates b “ ra ¨ s` 2esqL and sets the secret key sk “ s and the public key pk “ pa, bq.

– c Ð Epkpxq: To encrypt a message x P t0, 1u, the algorithm chooses v � T p1{2q and pe0, e1q �
dGqLpσ2q and outputs the ciphertext c “ pc0, c1q by computing

pc0, c1q “ px, 0q ` pbv ` 2e0, av ` 2e1q mod qL.

In practice, we use c “ ppc0, c1q, t, ηq to represent a normal ciphertext with its level t and the noise
magnitude η. Note that the initial ciphertext for a message is in level L.

– x Ð Dskpcq: Given a ciphertext c “ ppc0, c1q, t, ηq, the algorithm outputs x “ rc0 ´ s ¨ c1sqt as a
corresponding plaintext.

– cf Ð Evekpf ; c, c1q. The algorithm first determines whether c and c1 have the same level. If not,
it brings both ciphertexts to the same level by reducing the larger one modulo the smaller of the
two moduli, e.g., t̃.

Specifically, assume c “ ppc0, c1q, t, ηq and c1 “ ppc10, c
1
1q, t

1, η1q are the two ciphertexts of the
messages x and x1, respectively. Then, if the function f is an addition over ciphertexts, the algorithm
outputs

c` “ pprc0 ` c
1
0sqt̃ , rc1 ` c

1
1sqt̃q, t̃, η ` η

1q,

which is considered to be an encryption of x`x1. If f is a multiplication over ciphertexts, it outputs

cˆ “ prc0c
1
0sqt̃ , rc0c

1
1 ` c1c

1
0, sqt̃ , rc1c

1
1sqt̃q, t̃, η ¨ η

1q.

Another very useful homomorphic operation allowed in the BGV-typed cryptosystem is the auto-
morphism X ÞÑ Xg for some g P Z˚m because we can perform a cyclic rotation on the plaintext slots,
in particular, without increasing the noise of the ciphertexts.

SIMD Technique In general, FHE (and SWHE) schemes encrypt small plaintexts (e.g., Z2) into
large ciphertexts (e.g., Zq for q " 2). Thus, provided that a ciphertext is able to contain a number
of independent plaintexts, we can use memory space far more efficiently. Smart and Vercauteren [32]
first mentioned that choosing appropriate parameters in some FHE schemes enables the FHE schemes
to support SIMD operations on finite fields of characteristic two. Their key observation was that the
plaintext space A2 can be considered as a vector of plaintext slots by the polynomial CRT (Chinese
remainder theorem). Then, addition and multiplication in A2 are performed in the same way as
component-wise addition and multiplication of the vector of slots. In particular, because there is no
need for the values in the slots to be only bits, we can use them to represent elements in Z2r . We
recommend that the readers review the original reference [33] for more details.

8

2.2 Security Model

We will consider the following threat model. First, we assume that an SQL server is semi-honest.
Thus, it should follow all specifications of our scheme. However, an adversary is allowed to access all
databases maintained by a corrupted SQL server. Moreover, a corrupted DBA may become such an
attacker. It is fairly plausible for an attacker to legally login to the SQL server, to make an illegal copy
of interesting data, and to hand it over to any malicious buyer. Therefore, the DB server should learn
nothing about a query beyond what is explicitly revealed (e.g., the number of tuples).

Second, we assume that a DB user is also semi-honest but is not allowed to collude with an SQL
server. Some corrupted DB users can create an illegal copy of sensitive data; however, the volume of
illegally copied data leaked at any given time is assumed to be negligible. The DB user should not be
given access to data that are not part of the query result.

To formulate our security model, we follow Boneh et al.’s security definition [5]. Specifically, the
dishonest DB server should not be able to distinguish between Q̄0 and Q̄1, where two transformed
queries Q̄0 and Q̄1 have the same syntactical form. Moreover, the adversarial DB user should not be
able to distinguish two encrypted DBs ĎDB0 and ĎDB1 for every fixed query Q and for all pairs of DBs
pDB0,DB1q such that QpĎDB0q “ QpĎDB1q.

3 Circuit Primitives

We devise three primitives, equality, comparison, and integer addition circuits, by which queries are
represented compactly. We focus on a method of optimizing these circuits with respect to the depth
and required homomorphic operations. To do this, we make use of SIMD operations along with an
automorphism operation.

As mentioned before, computing on two encrypted data may appear both at the where clauses
and at the select clauses. Hence, we should prepare an equality-test circuit and a greater-than
comparison circuit for the former and an addition circuit for the latter. When input messages are
decomposed and encrypted in a bitwise manner, the encryption x̄ of a message x “ xµ´1 ¨ ¨ ¨x1x0

means tx̄0, x̄1, . . . , x̄µ´1u, where xi P t0, 1u.
We use “+” to denote homomorphic addition and A to denote the number of homomorphic addi-

tions. Similarly, for homomorphic multiplication, we use “ ¨ ” and M. For two integers a ď b, we use
ra, bs to denote the set ta, a` 1, . . . , bu.

3.1 Equality Circuit

For two µ-bit integers x and y, we define an arithmetic circuit for the equality test as follows:

equalpx̄, ȳq “

µ´1
ź

i“0

p1` x̄i ` ȳiq . (1)

The output of equalp¨, ¨q is 1̄ in the case of equality and 0̄ otherwise.
In the bit-sliced implementation, we assume that one ciphertext is used per bit; therefore, we

have 2µ ciphertexts in total for evaluating the equality test. Instead of regular multiplication, if we
multiply each term after forming a binary-tree structure, the depth of the equal circuit becomes logµ.
Specifically, the algorithm requires two homomorphic additions for computing 1` x̄i ` ȳi and that µ
ciphertexts be multiplied by each other while consuming logµ depth.

9

Optimizations Our optimizations are focused on minimizing the number of homomorphic operations,
especially for homomorphic multiplication. We apply the optimization technique below to the other
two circuits.

As mentioned above, as shown by Smart and Vercauteren [32], we can pack each bit xi into a single
ciphertext. Rather than x̄ “ tx̄0, . . . , x̄µ´1u, we consider the ciphertext x̄ as follows:

x̄ “ x̄0 x̄1 ¨ ¨ ¨ x̄µ´1

Next, we expand the right-hand side of Equation (1) and rearrange each term so as to fit in well
with the SIMD executions. Then, we repeatedly apply SIMD operations to a vector of SIMD words.
This is the key to reducing the number of homomorphic multiplications from µ ´ 1 to logµ. For
example, one SIMD homomorphic multiplication can be depicted as in Fig. 2, denoting by x̄piq the
vector obtained by applying the rotation-by-i to each element in x̄. Namely, we implement a single
automorphism X ÞÑ Xgi for some element g P Z˚m of order µ in the original group Z˚m and the quotient
group Z˚m{x2y.

x̄ “ x̄0 x̄1 ¨ ¨ ¨ x̄µ´1

¨

x̄p2q “ x̄µ´2 x̄µ´1 ¨ ¨ ¨ x̄µ´3

q
x̄0 ¨ x̄µ´2 x̄1 ¨ x̄µ´1 ¨ ¨ ¨ x̄µ´1 ¨ x̄µ´3

Fig. 2: A Sample Step Illustrating SIMD Execution

Due to space limitations, we have omitted a detailed description of an application of the SIMD
operations. We provide a better description of the complexity in Table 1.

3.2 Greater-than Comparison Circuit

For two unsigned µ-bit integers, the circuit comppx̄, ȳq outputs 0̄ if x ě y and 1̄ otherwise. This
operation can be recursively defined as follows:

comppx̄, ȳq “ c̄µ´1, (2)

where c̄i “ p1` x̄iq ¨ ȳi ` p1` x̄i ` ȳiq ¨ c̄i´1 for i ě 1 with an initial value c̄0 “ p1` x̄0q ¨ ȳ0.

Optimizations As the first step of optimization, we express Equation (2) in the following closed form

c̄µ´1 “ p1` x̄µ´1q ¨ ȳµ´1 `

µ´2
ÿ

i“0

p1` x̄iq ¨ ȳi ¨ di`1di`2 ¨ ¨ ¨ dµ´1,

where dj “ p1` x̄j ` ȳjq. Because it has degree µ` 1, we can deduce that the depth of the circuit is
logpµ` 1q. Next, it is easy to see that a naive construction of the circuit incurs Opµ2q homomorphic
multiplications.

10

The key observation is that the closed form is expressed by a sum of products of p1 ` x̄iq ¨ ȳi
and p1 ` x̄i ` ȳiq terms for i P r0, µ ´ 1s. We are able to compute p1 ` x̄iq ¨ ȳi for all i using only 1
homomorphic multiplication due to the use of the SIMD technique. Now, we have to compute

śµ´1
k“i dk

for each i P r1, µ´ 1s. As mentioned above, a naive method incurs Opµ2q, but using SIMD operations
requires one to perform only 2µ ´ 4 homomorphic multiplications, consuming logµ depth. Finally,
we need to multiply p1 ` x̄iq ¨ ȳi by the result of the above computation, which also incurs only 1
homomorphic multiplication. Thus, the total number of homomorphic multiplications equals 2µ´ 2.

Remark 1 We can address the signed numbers by slightly modifying the circuit. Assume that we
place a sign bit in the leftmost position of a value (e.g., 0 for a positive number and 1 for a negative
number) and use the two’s complement system. Then, for two µ-bit values x and y, comppx̄, ȳq “
c̄µ´1 ` x̄µ´1 ` ȳµ´1. It is clear that the case of two positive numbers corresponds to x̄µ´1 “ ȳµ´1 “ 0̄.

3.3 Integer Addition Circuit

Suppose that for two µ-bit integers x and y and for an integer ν ą µ, we construct two ν-bit integers
by padding zeros on the left. Then, a size-ν full-adder faddν is recursively defined as follows:

faddν px̄, ȳq “ ps̄0, s̄1, ¨ ¨ ¨ , s̄ν´1q

where a sum s̄i “ x̄i ` ȳi ` c̄i´1 and a carry-out c̄i “ px̄i ¨ ȳiq ` ppx̄i ` ȳiq ¨ c̄i´1q for i P r1, ν ´ 1s with
initial values s̄0 “ x̄0 ` ȳ0 and c̄0 “ x̄0 ¨ ȳ0. The main reason for considering such a large full-adder is
to cover SQL aggregate functions with many additions.

Optimizations Our strategy for optimization is the same as above. Namely, we express each sum and
carry in the closed form and find a way to minimize the number of homomorphic operations using
SIMD and automorphism operations. As a result, s̄i’s are written as follows:

s̄i “ x̄i ` ȳi `
i´1
ÿ

j“0

tij

where tij “ px̄j ¨ ȳjq
ś

j`1ďkďi´1 px̄k ` ȳkq for j ă i ´ 1 and ti,i´1 “ x̄i´1 ¨ ȳi´1. When i “ ν ´ 1 and
j “ 0, because ν ´ 2 homomorphic multiplications are required, we see that the circuit has logpν ´ 2q
depth. However, we need to perform an additional multiplication by x̄j ¨ ȳj . Thus, the total depth
amounts to logpν ´ 2q ` 1. As before, the use of SIMD and parallelism by automorphism allows us
to evaluate the integer addition circuit with only 3ν ´ 5 homomorphic multiplications, while a naive

method requires
pν3 ´ 3ν2 ` 8νq

6
homomorphic multiplications. Due to space limitations, we omit the

details of the calculation of the counts.

4 Search-and-compute on Encrypted Data

In this section, we show how to efficiently perform queries with both basic operations (i.e., search and
compute operations) on encrypted data using the circuit primitives. To this end, we first describe our
techniques in a general setting and then show how our ideas are applied to database applications.

11

Table 1: Complexity of Circuit Primitives

Circuits Complexity

Depth:
equal logµ

comp 1` logµ

fadd 1` log pν ´ 2q

Comp.;
equal 2A` plogµqM

comp pµ` 1` logµqA` p2µ´ 2qM

fadd νA` p3ν ´ 5qM

:Depth: The number of levels for homomorphic evaluations

;Comp.: Computational complexity during homomorphic evaluations

4.1 General-Purpose Search-and-Compute

We begin by describing our basic idea for performing a search operation over encrypted data. We
assume that a collection of data is partitioned into N µ-bit items denoted by x1 ‖ ¨ ¨ ¨ ‖ xN and that
the data have been encrypted and stored in the form of x̄1 ‖ ¨ ¨ ¨ ‖ x̄N . In addition, for an SWHE
scheme pKg,E,D,Evq, the key pair ppk, skq Ð Kgp1κq determines its ciphertext space denoted by Cpk.

For a predicate ϕ on Cpk, a search on encrypted data outputs x̄i if ϕpx̄iq “ 1̄ and 0̄ otherwise. More
formally, let ϕ : Cpk Ñ t0̄, 1̄u be a predicate on encrypted data. Then, we say that Sϕ : CNpk Ñ CNpk is a
search on the encrypted data and define Sϕpx̄1, . . . , x̄N q :“ pϕpx̄1q ¨ x̄1, . . . , ϕpx̄N q ¨ x̄N q.

We then extend this operation to a more general operation on encrypted data, i.e., search-and-
compute on encrypted data, as follows. Let F : CNpk Ñ Cpk be an arithmetic function on encryptions.

Then, for restricted search Sϕ : CNpk Ñ CNpk, we say that pF ˝Sϕqpx̄1, . . . , x̄N q is search-and-compute on
encryptions.

Further, we measure the efficiency of the search-and-compute operations on encrypted data in
Theorem 1. The theorem states that if we can perform a search on encrypted data restricted by ϕ, which
specifies only the equality operator, then the search queries on encrypted data require Np2A` logµMq
homomorphic operations in total. In general, it is not difficult to construct an involved search on
encrypted data by composing two circuit primitives–equal and comp. If a predicate ϕ allows one to
specify all the comparison operators in the set tă,ď,ą,ě,‰u, then we can perform Sϕpx̄1, . . . , x̄N q
with OpµNq homomorphic multiplications.

Theorem 1 Let ϕ, Cpk, and x̄1, . . . , x̄N be defined as above. Let Mpϕq and MpF q be the total number
of homomorphic multiplications for ϕ and F , respectively. Then, we can perform pF ˝Sϕqpx̄1, . . . , x̄N q
with OpNpMpϕqq`MpF qq homomorphic operations. Specifically, we can perform a search on encrypted
data restricted by ϕ using at most OpNpMpϕqqq homomorphic operations.

Proof. Because homomorphic multiplication dominates the performance of the operation, we might
only count it. Because a predicate ϕ requires OpMpϕqq homomorphic operations, we see that Sϕ requires
OpNpMpϕqqq homomorphic operations to compute the predicate N times. Then, the operation uses
OpMpF qq homomorphic operations to evaluate an arithmetic function F on encrypted data. Therefore,
we can conclude that the total computation complexity of search-and-compute on encryptions is
OpNpMpϕqq `MpF qq. In particular, if we consider the search on encrypted data, F can be considered

12

to be the identity map. Therefore, we can perform a search on encrypted data restricted by ϕ using
at most OpNpMpϕqqq homomorphic operations.

Security Secrecy against a semi-honest DB server is ensured because encrypted data cannot be leaked
due to the semantic security of our underlying SWHE scheme. Secrecy against a semi-honest DB user
follows because the result of queries expressed by our circuit primitives is equivalent to 0̄ if specified
conditions do not hold; therefore, the resulting ciphertext is equal to 0̄. This implies that the evaluated
ciphertexts do not leak anything else except for the number of unsatisfied tuples.

4.2 Applications to Encrypted Databases

We denote RpA1, . . . , Adq as a relation schema R of degree d consisting of attributes A1, . . . , Ad, and

we denote by Āj the corresponding encrypted attribute. As mentioned above, we use A
piq
j to denote

the j-th attribute value of the i-th tuple, and for convenience, we assume that each attribute value
has a length of µ bits.

Search Queries

Simple Selection Queries Consider a simple retrieval query as follows:

select Aj1 , . . . , Ajs
from R
where Aj0 “ α;

(Q.1)

where α is a constant value and s ď d, j0 P r1, ds.
An efficient construction of (Q.1) using our equal circuit is as follows:

equal
´

Ā
piq
j0
, ᾱ

¯

¨

´

Ā
piq
j1
, . . . , Ā

piq
js

¯

(Q̄˚.1)

for each i P r1, N s. It follows from Theorem 1 that the construction (Q̄˚.1) has the complexity evalu-
ation given in Table 2.

Conjunctive & Disjunctive Queries The query (Q.1) is extended by adding one or more conjunctive
or disjunctive conditions to the where clause. Consider a conjunctive query as follows:

select Aj1 , . . . , Ajs
from R
where Aj11 “ α1 and ¨ ¨ ¨ and Aj1τ “ ατ ;

(Q.2)

The query (Q.2) is expressed as the following: For each i P r1, N s,

τ
ź

k“1

equal
´

Ā
piq
j1k
, ᾱk

¯

¨

´

Ā
piq
j1
, . . . , Ā

piq
js

¯

. (Q̄˚.2)

A disjunctive query whose logical connectives are all ors is also efficiently evaluated by the following
expression: For each i P r1, N s,

˜

1`
τ
ź

k“1

´

equal
´

Ā
piq
j1k
, ᾱk

¯

` 1
¯

¸

¨

´

Ā
piq
j1
, . . . , Ā

piq
js

¯

.

13

Denoting by τ the number of connectives, (Q̄˚.2) additionally requires log τ in depth to compute the
multiplications among the τ equality tests in comparison with (Q̄˚.1). Note that in general, τ ! N .
Table 2 reports the complexity analysis.

Table 2: Complexity of Search Queries

Queries Complexity

Depth
(Q̄˚.1) 1` logµ

(Q̄˚.2) 1` logµ` log τ

Comp.
(Q̄˚.1) 2NA`N p1` logµqM

(Q̄˚.2) 2τNA` τN p1` logµqM

Search-and-compute Queries We continue presenting important real constructions as an extension
of Theorem 1, in which F is one of the built-in SQL aggregate functions–sum, avg, count and max. We
begin with the case F “ sum.

Note that in contrast to Lauter et al.’s approach [24], because our plaintext space is Z2, we should
be careful when addressing search-and-compute queries.

Search-and-sum Query Consider the following sum query:

select sumpAj1q
from R
where Aj0 “ α;

(Q.3)

As mentioned above, due to our plaintext space being Z2, repeatedly applying simple homomorphic
additions does not ensure correctness. This is the motivation for our integer addition circuit (See
Section 3.3). Now, we can efficiently perform (Q.3), expressed as follows:

faddµ`logN

´

equal
´

Ā
piq
j0
, ᾱ

¯

¨ Ā
piq
j1

¯

. (Q̄˚.3)

Because the result of the search-and-sum query is less than 2µN , it suffices to use a full adder
of size ν “ µ ` logN for adding all the values. Using our optimized equality circuit, (Q̄˚.3) requires
N equality tests in total and N homomorphic multiplications for each result of the test. Thus, the
total computation cost is p2N ` νpN ´ 1qqA ` pN p1` logµq ` pN ´ 1q p3ν ´ 5qM with the depth
1` logµ` logN p1` logpν ´ 2qq based on Theorem 2 below.

Theorem 2 Let |R| denote the cardinality of a set of tuples from a relation schema R. Suppose that
all the keyword attributes in the where clause and the numeric attributes in the select clause have
}kwd} bits and }num} bits, respectively. Then, a search-and-sum query can be processed with the depth

1` rlogp}kwd}qs` rlog |R|s ¨ p1` rlog p}num} ` rlog |R|s´ 2qsq .

Proof. The query (Q̄˚.3) consumes 1` rlogp}kwd}qs levels to compute all the equality tests. Then, it
performs p|R| ´ 1q full-adder operations on the results, each of which is of size p}num} ` rlog |R|sq and
which consumes p1` rlog p}num} ` rlog |R|s´ 2qsq levels.

14

Thus, if |R| “ 103, }kwd} “ 10, and }num} “ 30, the number of levels consumed by this query is
approximately 75.

Search-and-Count Query We observe that search-and-count queries can be processed in a similar
manner.

For example, assume a search-and-count query with countp˚q in place of sumpAj1q in (Q.3). The
query can also be efficiently processed by

faddlogN

´

equal
´

Ā
piq
j0
, ᾱ

¯¯

.

Note that the output of search-and-count queries is less than N .

Search-and-Avg Query To process a search-and-compute query with the avg aggregate function, it
suffices to compute search-and-sum queries because an average can be obtained using one division
after decryption.

Search-and-Max(Min) Query It is clear that one can obtain the max (or min) aggregate function by
repeatedly applying the comp circuit primitive.

5 Performance Improvements

Due to the benefits of combining SIMD and automorphism operations, we can achieve the three opti-
mized circuit primitives in Section 3. However, there is still room to further improve the performance
of the circuit primitives. Our strategies are composed of three interrelated parts: Switch the message
space Z2 into Zt, adapt the circuit primitives (in Section 3) to Zt, and fine-tune the circuit primitives
using SIMD operations again.

5.1 Larger Message Spaces with Lazy Carry Processing

Lauter et al. [24] presented a comparison of two message-encoding techniques: bit-wise encoding and
integer encoding. The former method (i.e., the message space is Z2) encrypts messages in a bit-by-
bit manner, whereas the latter encrypts them as elements of Zt for sufficiently large t. The primary
advantage of using Z2 is that two comparison operations are very cheap. In contrast, running an integer
addition circuit on encrypted data is expensive (see Table 3) with respect to the running time.

One of the important motivations of using such a large message space is that the bit length of
keyword attributes (e.g., ď 20 bits) in the where clause is generally smaller than that of numeric-type
attributes (e.g., ě 30 bits) in the select clause. Therefore, it would be of substantial benefit to take
the message domain as an integer ring if one can quite efficiently evaluate the addition circuit with
much lesser depth.

Specifically, if we represent a numeric-type attribute A in the radix 2ω, then we have
ÿ

i

Apiq “
ÿ

k

ÿ

i

rApiqsk ¨ p2
ωqk;

therefore, it suffices to compute
ř

irA
piqsk over the integers. Assuming that the plaintext modulus t

is sufficiently large, we are able to perform addition without overflow in Zt. We should note that we
only have to process carry operations after computing each of them over the large integer ring.

15

To verify the performance gained by integer encoding, we report the running time of each circuit
primitive in Table 3: equality, great-than comparison, and integer addition. We conducted experiments
over 102 ciphertexts, and we measured the average running times of equality circuits and comparison
circuits for 10-bit keywords. In addition, we performed homomorphic addition over 30-bit integers.
Consequently, we observed the drastic performance improvement in the operation. We suspect that
integer encoding yields more benefits in performing search-and-compute queries because aggregate
functions extensively rely on addition.

Table 3: Running-time Comparisons in Z2 and Z214

Message Space
equal comp add

(10-bits) (10-bits) (30-bits)

Z2 2.2621 ms 8.5906 ms 228.5180 ms

Z214 208.6543 ms 307.5200 ms 0.0004 ms

5.2 Calibrating Circuit Primitives

It is clear that the use of a different message space results in modifications of our circuit primitives.
Before discussing our modifications in detail, we need to determine some lower bounds of depth for
homomorphic multiplication as a function of t. We have two types of homomorphic multiplications:
multiplying a ciphertext either by another ciphertext or by a known constant. We formally state this
in Theorem 3.

Theorem 3 Suppose that the native message space of the BGV cryptosystem is a large integer ring
Zt and that a chain of moduli is defined by a set of primes of roughly the same size, p0, ¨ ¨ ¨ , pL, that
is, the i-th modulus qi is defined as qi “

śi
k“0 pk. For simplicity, assume that p is the size of the pks.

Let us denote by σ the standard deviation in our RLWE instance and by H the Hamming weight of the
secret key. For i ď j, let c and c1 be normal ciphertexts at level i and j, respectively. Then, the depth,
denoted by d̃, for multiplying c and c1 is the smallest nonnegative integer that satisfies the following
inequality:

t2 ¨ φpmq ¨ p1`Hq ¨ prq´1
i stq

2 ă 6p2¨d̃.

In addition, the depth, denoted by d̃c, for multiplying c by a constant is the smallest nonnegative integer
for which the following inequality holds:

φpmq ¨ pt{2q2 ă p2¨d̃c .

Proof. Before multiplying two ciphertexts, we set their noise magnitude to be smaller than the pre-set
constant B “ t2φpmqp1`Hq{12 by modulus switching. That is, while the noise is larger than B, it is
scaled down by the next prime. Therefore, c becomes a ciphertext with a prime set tp0, . . . , piu and
has the dominant noise term B. Similarly, c1 also becomes a ciphertext with a prime set tp0, . . . , pju,
but if necessary, additional modulus-switching operations are required to bring c1 to the same level

16

i as c. Subsequently, we obtain a tensor product of the ciphertexts, and the result has the following
noise magnitude:

2 ¨B ¨B ¨ prqi
´1stq

2

Next, the scale-down is performed by removing small primes pk’s from the current prime-set of the ten-
sored ciphertext; we say that ∆ is the product of the removed primes. We then have 2B2prqi

´1stq
2{∆2 ă

B. By assumption, it may be considered that ∆ “ pd̃, which means that d̃ is the smallest nonnegative
integer that the following inequality satisfies

2Bprq´1
i stq

2 ă p2¨d̃.

We now consider the case in which c is multiplied by a constant. As above, we may assume that it
initially has small noise magnitude B by modulus-switching. Then the size of the constant is multiplied
by its noise, i.e., the result has approximately the same noise estimate as B ¨ φpmq ¨ pt{2q2. Thus, we
see that d̃c is the smallest nonnegative integer that satisfies the inequality φpmq ¨ pt{2q2 ă p2¨d̃c . This
completes the proof.

As a concrete example, we have d̃ “ 2 and d̃c “ 1 in Z214 with the assumption that σ “ 3.2,
H “ 64, and m “ 13981.

We now describe a basic idea that underlies our modifications. It is well known that for x, y P t0, 1u,
the following properties hold:

x‘ y “ x` y ´ 2 ¨ x ¨ y and x^ y “ x ¨ y,

where `, ´, and ¨ are arithmetic operations over integers. Based on this observation, our equality test
can be rewritten as follows:

equalpx̄, ȳq “

µ´1
ź

i“0

p1´ x̄i ´ ȳi ` 2 ¨ x̄i ¨ ȳiq .

We then see that with only a small extra cost, we can construct a new arithmetic circuit for an equality
test working on Zt. We report the additional cost in Table 4.

Next, consider the comp circuit on Zt. Recall that the closed form of c̄µ´1 is (with slight modifica-
tion)

c̄µ´1 “ p1´ x̄µ´1q ¨ ȳµ´1 `

µ´2
ÿ

i“0

p1´ x̄iq ¨ ȳi ¨ pdi`1di`2 ¨ ¨ ¨ dµ´1q.

Rather than dj “ p1 ` x̄j ` ȳjq, we set dj “ p1 ` 2 ¨ x̄j ¨ ȳj ´ ȳj ´ x̄jq ¨ p1 ` 2 ¨ x̄j ¨ ȳj ´ 2ȳjq. Table 4
shows the new complexity introduced by this modification.

5.3 SIMD-based Fine Tuning

We do not need to describe the details of SIMD operations in FHE cryptosystems. However, our
experiments in Section 6 widely make use of SIMD operations, and several notations related to them
are newly presented for discussion. Thus, we add a short description to facilitate a better understanding
of our experiments. The reader can refer to [33] for the details.

17

Table 4: Complexity of Circuit Primitives over Zt
Circuits Complexity

Depth
equal p1` logµq d̃` d̃c

comp p3` logµq d̃` d̃c

Comp.
equal 3A` p2` logµqM

comp p4` µ` logµqA` 2µM

In our implementation, plaintexts are elements of A2r obtained by setting t “ 2r for a small
positive integer r. The polynomial ΦmpXq mod 2r factors into ` irreducible factors, each of degree
δ, e.g., ΦmpXq “

ś`
j“1 FjpXq. Then, each factor corresponds to a plaintext slot. In other words, we

consider the `-copies of the space Z2r as the plaintext slots. This enables us to directly embed our
messages as elements of Z2r into each slot. As a result, we can process ` messages a single ciphertext
at a time.

As in Section 3, we again apply this technique to the devised circuit primitives to reduce the
required depth of each circuit and the number of homomorphic operations. Compared with the result
of [24], a sum of encryptions of 100 numeric data (all 128-bit data) only requires approximately 0.227
milliseconds, which is 100 times faster.

5.4 Efficiency Results

The remainder of this section reports on the new complexity results from using the new message
space Zt. We measured the complexities of only search-and-sum and -count queries. Table 5 shows the
complexity of a search-and-sum query, and Table 6 shows that of a search-and-count query.

Table 5: Complexity of Search-and-sum Queries

Search Complexity

Depth

equal p2` logµq d̃` d̃c

conjτ p2` logµ` log τq d̃` d̃c

comp p4` logµq d̃` d̃c

Comp.

equal p4N ´ 1qA`N p3` logµqM

conjτ pp3τ ` 1qN ´ 1qA` τN p3` logµqM

comp pN pµ` 5` logµq ´ 1qA`N p2µ` 1qM

6 Experimental Results

This section demonstrates the performance of query processing expressed by our optimized circuit
primitives. The essential goal of the experiments in this section is to verify the efficiency of our solution
in terms of performance. Thus, we reported the experimental results for each query. We performed a

18

Table 6: Complexity of Search-and-count Queries

Search Complexity

Depth

equal p1` logµq d̃` d̃c

conjτ p1` logµ` log τq d̃` d̃c

comp p3` logµq d̃` d̃c

Comp.

equal p4N ´ 1qA`N p2` logµqM

conjτ pp3τ ` 1qN ´ 1qA` τN p2` logµqM

comp pN pµ` 5` logµq ´ 1qA` 2µNM

somewhat fair comparison with the prior related works in [24,5], although each work is fairly different
from its underlying SWHE scheme and experimental settings.

All experiments reported in our paper were performed on a machine with an Intel Xeon 2.3 GHz
processor with 192 GB of main memory running a Linux 3.2.0 operating system. All methods were
implemented using the GCC compiler version 4.2.1. In our experiments, we used a variant of a BGV-
type SWHE scheme [20] with Shoup’s NTL library [30] and Shoup-Halevi’s HE library [31]. Throughout
this section, when we measured the average running times, we excluded computing times used in data
encryption and decryption.

6.1 Adjusting the Parameters

Without a loss of generality, we assume that the bit length of keyword attributes in the where clause
is 10-bit and that of numeric-type attributes in the select clause is 30-bit. The keyword attributes
are expressed in a bit-by-bit manner, and each bit is an element of Z2r . In addition, numeric-type
attributes are expressed by the radix 2ω but are still in the same space Z2r .

We begin by observing the following relation among the parameters. At this point, we consider the
selectivity of a selection condition, which means the fraction of tuples that satisfies the condition, and
we denote it by ε.

Theorem 4 Let A be a numeric-type attribute. For a positive integer ω ě 1, suppose that each at-
tribute is written as A “

ř

krAsk ¨ p2
ωq
k with 0 ď rAsk ă 2ω. Then, to process a search-and-sum query,

one can take a plaintext modulus with

r “ Θpω ` logpε ¨Nqq.

Similarly, for a search-and-count query, it suffices to choose the parameter r so that r “ Θplogpε ¨Nqq.

Proof. The goal of the theorem is to provide a bound for the size of a plaintext modulus; therefore,
we simply omit an overhead bar for all variables. Let us denote by ϕ a predicate on encrypted data
and by A˚ a keyword attribute. Then, a search-and-sum query can be written as

ÿ

i

SϕpA
˚, αq ¨Apiq “

ÿ

k

˜

ÿ

i

SϕpA
˚, αq ¨ rApiqsk

¸

¨ p2ωqk.

19

We then have that
ÿ

i

SϕpA
˚, αq ¨ rApiqsk ă 2ω

ÿ

i

SϕpA
˚, αq “ 2ω ¨ pεNq.

Thus, for a database with N records, it is sufficient to choose r such that

2ω ¨ pεNq ď 2r.

Note, the larger we make the plaintext modulus 2r, the more noise there is in the ciphertexts and thus
the faster we consume the ciphertext level. Therefore, it appears that ω ` logpεNq is the tight bound
for the parameter r.

Because a search-and-count query does not need to consider a specific attribute, we immediately
know that

ř

i SϕpA
˚, αq “ εN ă 2r.

One may wonder why Sϕp¨, . . .q does not take multiple keyword attributes in the proof. Because we
consider the selectivity ratio, it does not need to do so. In our experiments, we varied the selectivity
ratio from 5 to 40% and plotted the average running time of queries over a database with N “ 102, 103,
and 104 tuples.

6.2 Experiments for Search

We measured the running time per query while varying the number of numeric-type attributes. We
take the ring modulus m “ 8191, and each of the ciphertexts has 630 plaintext slots. For N “ 1, the
experiment of (Q̄˚.1) query is given in the top three rows of Table 7 and that of (Q̄˚.2) is in the bottom
three rows in Table 7, where s is the number of attributes, L is the number of ciphertext moduli, and
Comm. means the communication cost.

Table 7: Performance of (Q̄˚.1) and (Q̄˚.2)

Message Space τ L s Timing Comm.

Z2 1 6

5 0.38 s 53.99 KB

10 0.76 s 107.97 KB

20 1.51 s 215.95 KB

Z2 4
7

5 2.04 s 73.48 KB

10 4.09 s 146.96 KB

20 8.17 s 293.93 KB

6.3 Experiments for Search-and-compute

We conducted a series of additional experiments to measure performance of search-and-compute
queries. Because each of the ciphertexts can hold ` plaintext slots of elements in Z2r and because
a numeric-type attribute with a length of 30 bits is encoded into ω̃ (“ r30{ logp2ωqs “ r30{ωs) slots,
we can process ˜̀ (“ t`{ω̃u) attributes per ciphertext.

At first glance, a larger ω seems to be better. However, if ω is too large, by Theorem 4, a plaintext
modulus 2r becomes large. This results in an increased depth of circuits. Therefore, we need to choose
a sufficiently large ω whereby the resulting plaintext space is not too large.

20

Experiments for Search-and-sum We divided our experiment into four cases: (1) Single equality,
(2) Multiple equality, (3) Single comparison, and (4) Multiple comparison.

Case I: Single equality This case contains one equality test in the where clause. We chose a plaintext
space so that the number of plaintext slots is divisible by 10. Then, the entire keyword attribute is
packed in only one ciphertext. Further, we take the ring modulus m whereby there exists g P Z˚m that
has order 10 in the original group Z˚m and in the quotient group Z˚m{x2y. Then, there is a Frobenius
automorphism of cyclic right shift over those 10 plaintext bits. We used m “ 13981 so that each of
the ciphertexts holds 600 plaintext slots. We report this experimental result in Table 8.

Table 8: Experiments for Case I (Q̄˚.3)

N ε Message Space Radix L Timing Comm.

102 ă 16% Z214
210 14 3.69s 3.47KB

ă 32% Z215 15 3.89s 3.75KB

103 ď 6%
Z216

210

15
38.78s 3.75KB

ď 25% 28 51.64s 5.01KB

104

ď 10%

Z216

26

15

681.05s 6.25KB

ď 20% 25 817.26s 7.50KB

ď 40% 24 1089.68s 10.03KB

Case II: Multiple equality This case contains two or more equality tests in the where clause (i.e.,
τ ě 2). We performed experiments for τ “ 2 and τ “ 4. When τ “ 2, we used m “ 13981 as before.
For the τ “ 4 case, we chose m “ 20485 to support more multiplications than before. Similarly, each
ciphertext holds 640 plaintext slots. Compared with queries in the conjunctive form, disjunctive-formed
queries require more addition operations. However, both of them require the same depth; therefore,
their running times are not significantly different from each other.

Each result is presented in Table 9 and Table 10 (the 6th column of each table consists of two parts:
The left part is for conjunctive-formed queries, and the right part is for disjunctive-formed ones.)

Table 9: Experiments for Case II (τ “ 2)

N ε Message Space Radix L Timing Comm.

102 ă 16% Z214
210 16 4.81s 4.84s 3.68KB

ă 32% Z215 17 5.12s 5.26s 3.98KB

103 ď 6%
Z216

210

17
51.63s 52.14s 3.98KB

ď 25% 28 68.83s 69.52s 5.31KB

104

ď 10%

Z216

26

17

913.18s 926.11s 6.64KB

ď 20% 25 1095.81s 1111.33s 7.97KB

ď 40% 24 1261.08s 1481.77s 10.63KB

21

Table 10: Experiments for Case II (τ “ 4)

N ε Message Space Radix L Timing Comm.

102 ă 16% Z214
210 18 9.79s 9.86s 5.09KB

ă 32% Z215 19 10.24s 10.28s 5.44KB

103 ď 6%
Z216

210

19
101.86s 105.15s 5.44KB

ď 25% 28 135.59s 139.97s 7.24KB

104

ď 10% Z216 26 19 1788.19s 1800.84s 9.05KB

ď 20% Z217 26 20 1850.70s 1864.36s 9.05KB

ď 40% Z217 25 20 2234.81s 2251.30s 10.93KB

Case III: Single comparison This case contains one greater-than comparison in the where clause. For
the experiments, we used m “ 20485 in the case of L “ 20, but in all other experiments, we used
m “ 13981. We report the experimental results in Table 11.

Table 11: Experiments for Case III

N ε Message Space Radix L Timing Comm.

102 ă 16%
Z214

210

17
9.98s 3.71KB

ă 32% 29 13.31s 4.94KB

103 ď 6%
Z214

28

17
133.12s 4.94KB

ď 25% 26 166.40s 6.18KB

104

ď 10% Z214 24 17 2805.97s 9.88KB

ď 20% Z217 26 20 3116.66s 10.66KB

ď 40% Z217 25 20 3763.51s 12.88KB

We observed that the results for Case IV are very similar to those for Case II. Thus, due to space
limitations, we omitted the Case IV experimental results.

For a better comparison, in Figure 3, we graphically depict the experimental results described
above, while the selectivity ratio ε is fixed at 10%.

Experiments for Search-and-count The experiments for search-and-count can also be divided
into four cases as performed above. In these experiment, the plaintext modulus m “ 13981 was used;
therefore, each of the ciphertexts holds 600 plaintext slots. Table 12 shows the case with a single
equality condition, Table 13 shows that with τ “ 4, and Table 14 shows that with a single comparison
condition.

Finally, we summarize the above experiments using the graph presented in Figure 4, where we
have also fixed the selectivity ratio at 10%.

22

0 0.2 0.4 0.6 0.8 1

¨104

0

1,000

2,000

3,000

Number of tuples (N)

Q
u
er

y
R

u
n
n
in

g
T

im
e

(s
ec

o
n
d
s) Case I

Case II (τ “ 2)

Case II (τ “ 4)

Case III

Fig. 3: Experimental Results for Search-and-sum

Table 12: Experiments using Single Equality

N ε Message Space L Timing Comm.

102 ă 8% Z23 7 5.66s 0.73KB

ă 32% Z25 8 7.34s 1.00KB

103 ď 6% Z26 10 84.59s 0.93KB

ď 25% Z28 11 90.89s 1.03KB

104
ď 40% Z212 12 961.84s 1.12KB

Table 13: Experiments for Multiple Equality (τ “ 4)

N ε Message Space L Timing Comm.

102 ă 8% Z23 9 131.35s 132.14s 0.91KB

ă 32% Z25 10 142.28s 144.13s 1.03KB

103 ď 6% Z26 12 1718.08s 1741.13s 1.22KB

ď 25% Z28 15 2184.16s 2178.22s 1.23KB

104
ď 40% Z212 16 21870.80s 22195.40s 1.25KB

6.4 Handling Join Query

In this section,we design the join queries within the search-and-compute paradigm. For this purpose,
suppose that we have the other relation SpB1, . . . , Beq consisting of M tuples. For simplicity, we assume
that N ěM .

23

Table 14: Experiments using Single Comparison

N ε Message Space L Timing Comm.

102 ă 8% Z23 8 17.10s 0.82KB

ă 32% Z25 9 19.24s 0.91KB

103 ď 6% Z26 11 224.04s 0.93KB

ď 25% Z28 15 311.84s 1.25KB

104
ď 40% Z212 15 3029.05s 1.25KB

0 0.2 0.4 0.6 0.8 1

¨104

0

0.5

1

1.5

2

¨104

Number of tuples (N)

Q
u
er

y
R

u
n
n
in

g
T

im
e

(s
ec

o
n
d
s)

Singe equality

Multiple equality (τ “ 2)

Multiple equality (τ “ 4)

Single comparison

Fig. 4: Experimental Results for Search-and-count

First, we consider a simple join query as follows:

select r.Aj1 , . . . , r.Ajs , s.Bj11 , . . . , s.Bj1s1
from R as r,S as s
where r.Ajk “ s.Bj1

k1
;

(Q.4)

This type of query is expressed and efficiently processed using only the equality circuit. Specifically,
for each i P r1, N s, i1 P r1,M s, the query (Q.4) is expressed as

equal
´

r.Ā
piq
jk
, s.B̄

pi1q
j1
k1

¯

¨

´

r.Ā
piq
j1
, s.B̄

pi1q
j11
, . . .

¯

(Q̄˚.4)

For fixed i and i1, we suppose that each numeric-type attribute is packed in only one ciphertext.
Then, the only difference from (Q̄˚.1) is that (Q̄˚.4) requires two homomorphic multiplications by
the result of search operations; thus, we need to perform NM equality tests in total. Hence, the
depth of circuit needed to process (Q̄˚.4) is 1` logµ, and the computation complexity is p2NMqA`
NM p2` logµqM. In addition, a join query with τ conjunctive conditions needs to perform τNM
equality tests; therefore, the required depth is p1` logµ` log τq.

24

Next, we consider an advanced join query demanding search-and-compute operations. For the sake
of readability, we consider a join query with two aggregate functions and a simple condition as follows.

select sumpr.Ajq, countp˚q
from R as r,S as s
where r.Ajk “ s.Bj1

k1
;

(Q.5)

We can express the query (Q.5) in a manner similar to that used in Section 4.2. Assuming
sumpr.Ajq ă 2µNM , we use a full adder of size ν “ µ ` log pNMq. By contrast, the result of
countp˚q ă NM , and it suffices to use a full adder of size log pNMq. Thus, one candidate of cir-
cuit construction for (Q.5) is as follows:

faddµ`logNM

´

equal
´

r.Ā
piq
jk
, s.B̄

pi1q
j1
k1

¯

¨ r.Ā
piq
j

¯

,

faddlogNM

´

equal
´

r.Ā
piq
jk
, s.B̄

pi1q
j1
k1

¯¯

.
(Q̄˚.5)

With respect to sumpr.Ajq, this is the same as (Q̄˚.3), except for the number of operands for
additions. Therefore, the depth for evaluation amounts to

1` logµ` logpNMq p1` logpν ´ 2qq ,

and the computation complexity is

p2NM ` νpNM ´ 1qqA` pNM p1` logµq ` pNM ´ 1q p3ν ´ 5qqM.

We remark that it is straightforward to extend this approach to a join query with two or more
aggregate functions in the select clause.

Finally, we performed some experiments for join queries. We measured the average running time
for processing a single equality test while varying N,M from 10 to 102 and fixing s “ s1 “ 5. Table 15
reports the experimental results for (Q̄˚.4). As N and M increase, the running time of the algorithm
grows linearly. Table 16 shows the experimental results for (Q̄˚.5), assuming the selectivity ratio is
fixed at 10%. Because the experiments of (Q̄˚.4) are implemented for more numeric-type attributes
than those for (Q̄˚.5), the query takes longer to perform.

Table 15: Experiments for (Q̄˚.4)

τ “ 1 and s “ s1 “ 5

N “M “ 10 N “ 102,M “ 10 N “M “ 102

42.75 s 423.86 s 4210.53 s

Table 16: Experiments for (Q̄˚.5)

τ “ s “ 1

N “M “ 10 N “ 102,M “ 10 N “M “ 102

3.79 s 50.84 s 680.27 s

25

7 Literature Review

There have been a number of studies with similar goals, as mentioned in Section 1.3. In this section,
we present a brief overview of these studies.

We begin with a study on private information retrieval (PIR) primitives. PIR enables a DB user
to retrieve a tuple from a DB [11] without revealing which tuple the DB user is retrieving, and with
the communication complexity lower than OpNq. However, because the DB user may learn additional
bits of information in addition to the originally requested tuples, PIR does not ensure the privacy of
the DB server. This issue has been resolved in [21], but in turn, a DB user is required to provide an
index of tuples that they would like to obtain. Sometimes, the DB user may not have any information
on the index.

The next important research topic is searchable encryption (SE) [34,13,14]. These techniques allow
a DB user to encrypt and store their data on a DB server in combination with block ciphers and
stream ciphers. Later, the DB user can search for a specific keyword by submitting a trapdoor without
revealing keywords and original data. Boneh et al. in [4] generalized this into the public-key setting.
Using SE as a primitive, Yang et al. [36] proposed a scheme to privately process a conjunctive query.

There are different research areas focused on realizing private query processing. Hacigümüs et
al. [22] tried to support general DB queries in a private manner. Hore et al. [23] claimed their schemes
can support range queries that maintain privacy. However, they later were found to reveal the under-
lying data distributions. Olumofin and Goldbeg [26] extended PIR into SQL-enabled PIR to privately
process general DB queries. They focused on ensuring query privacy but did not consider the pri-
vacy of databases. Other works, such as [28,12], assumed that there is a set of mutually trusted and
host participants. Ge and Zdonik considered the same security model [17]. Their scheme is, however,
restricted to aggregate queries. Ada Popa et al.’s CryptDB [1] processed general types of database
queries using layers of different encryption schemes: deterministic encryption for equality condition
queries, order-preserving encryption for range queries, and homomorphic encryption for aggregate
queries. The disadvantage of their work is that in the long run, it downgrades to the lowest level of
data privacy provided by the weakest encryption scheme. For example, it may enable one to determine
the data order. Recently, TrustedDB [2] achieved the goal by placing the DB engine and all sensitive
data processing inside a secure co-processor.

References

1. R. Ada Popa, C. Redfield, N. Zeldovich, and H. Balakrishnan. CryptDB: protecting confidentiality with encrypted
query processing. In T. Wobber and P. Druschel, editors, SOSP, pages 85–100, 2011.

2. S. Bajaj and R. Sion. TrustedDB: a trusted hardware based database with privacy and data confidentiality. In
T. Sellis, R. Miller, A. Kementsietsidis, and Y. Velegrakis, editors, SIGMOD, pages 205–216, 2011.

3. M. Bellare, A. Boldyreva, and A. O’Neill. Deterministic and efficiently searchable encryption. In A. Menezes, editor,
Advances in Cryptology-Crypto, LNCS 4622, pages 535–552, 2007.

4. D. Boneh, G. Di Crescenzo, R. Ostrovsky, and G. Persiano. Public key encryption with keyword search. In C. Cachin
and J. Camenisch, editors, Advances in Cryptology-Eurocrypt, LNCS 3027, pages 506–522, 2004.

5. D. Boneh, C. Gentry, S. Halevi, F. Wang, and D. Wu. Private database queries using somewhat homomorphic
encryption. In M. Jacobson Jr., M. Locasto, P. Mohassel, and eihaneh Safavi-Naini, editors, ACNS, LNCS 7954,
pages 102–118, 2013.

6. D. Boneh, E.-J. Goh, and K. Nissim. Evaluating 2-DNF formulas on ciphertexts. In J. Kilian, editor, TCC, LNCS
3378, pages 325–341, 2005.

7. Z. Brakerski, C. Gentry, and V. Vaikuntanathan. (Leveled) fully homomorphic encryption without bootstrapping.
In S. Goldwasser, editor, ITCS, pages 309–325, 2012.

26

8. Z. Brakerski and V. Vaikuntanathan. Efficient fully homomorphic encryption from (standard) LWE. In R. Ostrovsky,
editor, FOCS, pages 97–106, 2011.

9. Z. Brakerski and V. Vaikuntanathan. Fully homomorphic encryption from ring-LWE and security for key dependent
messages. In P. Rogaway, editor, Advances in Cryptology-Crypto, LNCS 6841, pages 505–524, 2011.

10. J. H. Cheon, J.-S. Coron, J. Kim, M. S. Lee, T. Lepoint, M. Tibouchi, and A. Yun. Batch fully homomorphic
encryption over the integers. In T. Johansson and P. Q. Nguyen, editors, Advances in Cryptology-Eurocrypt, LNCS
7881, pages 315–335, 2013.

11. B. Chor, E. Kushilevitz, O. Goldreich, and M. Sudan. Private information retrieval. Journal of the ACM, 45(6):965–
981, 1998.

12. S. Chow, J. Lee, and L. Subramanian. Two-party computation model for privacy-preserving queries over distributed
databases. In NDSS, 2009.

13. R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky. Searchable symmetric encryption: improved definitions and
efficient constructions. In A. Juels, R. Wright, and S. De Capitani di Vimercati, editors, ACM Conference on
Computer and Communications Security, pages 79–88, 2006.

14. R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky. Searchable symmetric encryption: Improved definitions and
efficient constructions. Journal of Computer Security, 19(5):895–934, 2011.

15. T. El Gamal. A public key cryptosystem and a signature scheme based on discrete logarithms. In G. R. Blakley and
D. Chaum, editors, Advances in Cryptology-Crypto, LNCS 196, pages 10–18, 1984.

16. J. Feigenbaum and M. Merritt. Open questions, talk abstracts, and summary of discussions. DIMACS Series in
Discrete Mathematics and Theoretical Computer Science, 2:1–45, 1991.

17. T. Ge and S. Zdonik. Answering aggregation queries in a secure system model. In C. Koch, J. Gehrke, M. Garofalakis,
D. Srivastava, K. Aberer, A. Deshpande, D. Florescu, C. Y. Chan, V. Ganti, C.-C. Kanne, W. Klas, and E. Neuhold,
editors, VLDB, pages 519–530, 2007.

18. C. Gentry. Fully homomorphic encryption using ideal lattices. In M. Mitzenmacher, editor, STOC, pages 169–178,
2009.

19. C. Gentry and S. Halevi. Implementing Gentry’s fully-homomorphic encryption scheme. In K. Paterson, editor,
Advances in Cryptology-Eurocrypt, LNCS 6632, pages 129–148, 2011.

20. C. Gentry, S. Halevi, and N. Smart. Homomorphic evaluation of the AES circuit. In R. Safavi-Naini and R. Canetti,
editors, Advances in Cryptology-Crypto, LNCS 7417, pages 850–867, 2012.

21. Y. Gertner, Y. Ishai, E. Kushilevitz, and T. Malkin. Protecting data privacy in private information retrieval schemes.
In J. Vitter, editor, STOC, pages 151–160, 1998.

22. B. I. Hakan Hacigümüs, C. Li, and S. Mehrotra. Executing sql over encrypted data in the database-service-provider
model. In M. Franklin, B. Moon, and A. Ailamaki, editors, SIGMOD, pages 216–227, 2002.

23. B. Hore, S. Mehrotra, and G. Tsudik. A privacy-preserving index for range queries. In VLDB, pages 720–731, 2004.
24. K. Lauter, M. Naehrig, and V. Vaikuntanathan. Can homomorphic encryption be practical? In C. Cachin and

T. Ristenpart, editors, CCSW, pages 113–124, 2011.
25. A. Lopez-Alt, E. Tromer, and V. Vaikuntanathan. On-the-fly multiparty computation on the cloud via multikey

fully homomorphic encryption. In H. Karloff and T. Pitassi, editors, STOC, pages 1219–1234, 2012.
26. F. Olumofin and I. Goldberg. Privacy-preserving queries over relational databases. In M. Atallah and N. Hopper,

editors, Privacy Enhancing Technologies, LNCS 6205, pages 75–92, 2010.
27. P. Paillier. Public-key cryptosystems based on composite degree residuosity classes. In J. Stern, editor, Advances in

Cryptology-Eurocrypt, LNCS 1592, pages 223–238, 1999.
28. M. Raykova, B. Vo, S. Bellovin, and T. Malkin. Secure anonymous database search. In R. Sion and D. Song, editors,

CCSW, pages 115–126, 2009.
29. R. Rivest, L. Adleman, and M. Dertouzos. On data banks and privacy homomorphisms. Foundations of Secure

Computation, pages 165–179, 1978.
30. V. Shoup. NTL: A library for doing number theory. In http://www.shoup.net/ntl/, 2009.
31. V. Shoup and S. Halevi. Design and implementation of a homomorphic-encryption library. Technical report, IBM

Technical Report, 2013.
32. N. Smart and F. Vercauteren. Fully homomorphic SIMD operations. IACR Cryptology ePrint Archive, 2011(133),

2011.
33. N. Smart and F. Vercauteren. Fully homomorphic SIMD operations. Des. Codes Cryptography, 71(1):57–81, 2014.
34. D. Song, D. Wagner, and A. Perrig. Practical techniques for searching on encrypted data. In IEEE Symposium on

Security and Privacy, pages 44–55, 2000.
35. M. van Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan. Fully homomorphic encryption over the integers. In

H. Gilbert, editor, Advances in Cryptology-Eurocrypt, LNCS 6110, pages 24–43, 2010.

27

36. Z. Yang, S. Zhong, and R. Wright. Privacy-preserving queries on encrypted data. In D. Gollmann, J. Meier, and
A. Sabelfeld, editors, ESORICS, LNCS 4189, pages 479–495, 2006.

	Search-and-compute on Encrypted Data

