
A New Method for Decomposition in the
Jacobian of Small Genus Hyperelliptic Curves

Palash Sarkar and Shashank Singh

Applied Statistics Unit
Indian Statistical Institute

palash@isical.ac.in, sha2nk.singh@gmail.com

Abstract. Decomposing a divisor over a suitable factor basis in the
Jacobian of a hyperelliptic curve is a crucial step in an index calculus
algorithm for the discrete log problem in the Jacobian. For small genus
curves, in the year 2000, Gaudry had proposed a suitable factor basis
and a decomposition method. In this work, we provide a new method
for decomposition over the same factor basis. The advantage of the new
method is that it admits a sieving technique which removes smoothness
checking of polynomials required in Gaudry’s method. Also, the total
number of additions in the Jacobian required by the new method is less
than that required by Gaudry’s method. The new method itself is quite
simple and we present some example decompositions and timing results
of our implementation of the method using Magma.

1 Introduction

Elliptic curve cryptography was independently introduced by Koblitz [11] and
Miller [14] and was soon followed by hyperelliptic curve (HEC) cryptography
which was introduced by Koblitz [12]. For hyperelliptic curves, cryptography
is carried out in a suitable large subgroup of the Jacobian. A fundamental as-
sumption required for HEC based cryptography to be secure is that the discrete
logarithm problem (DLP) in the Jacobian should be computationally hard.

In the last few decades, the main approach to tackling DLP in different cryp-
tographic groups has been the use of index calculus algorithms. The structure
of such algorithms identifies a factor base which consists of a small subset of el-
ements of the group and a method to decompose elements of the group over the
factor base. Any such decomposition gives rise to a relation among the element
that is decomposed and some of the elements of the factor base. After obtaining
sufficiently many relations, sparse linear algebra techniques are used to recover
the discrete logs of the factor base elements. From this, it is possible to obtain
the discrete log of a target element either directly or by a further computation.
The main task in designing an index calculus algorithm is to identify a factor
basis and a method for decomposition over the factor basis and if applicable, a
method to calculate the discrete log of the target element.

The first index calculus algorithm for hyperelliptic curves was introduced
in [1]. For large genus curve, this provided a sub-exponential time algorithm for



DLP in the Jacobian of such curves. Later developments along this line have
been reported in [5, 3, 4, 19].

The index calculus algorithm also works for small genus curves but, the
running time is no longer sub-exponential. Even so, it can be better than the
running time of the Pollard’s rho algorithm. This was described by Gaudry in [7].
The work is important and provided a practical DLP algorithm for small genus
curves. It was used to solve some HEC-DLP challenges. Subsequently, variants
of this algorithm called the large prime variant [17] and the double large prime
variant [9] were introduced to improve the asymptotic efficiency.

Suppose C : y2 = f(x) is a HEC where f(x) is a polynomial in IFq[x].
The notation JC(IFq) denotes the Jacobian of C restricted to the set of divisors
which have representations in IFq. Gaudry’s algorithm works over JC(IFq) by
defining a factor basis and a method of decomposing a divisor over the factor
basis. Nagao [15] proposed a decomposition method for curves C defined over
IFqn where n ≥ 2. Subsequently, Joux and Vitse [10] proposed a modification
of Nagao’s method for such curves and combined this method with the Weil
descent method [6, 8, 2] to solve DLP for certain elliptic curves defined over IFp6
for p to be a 25-bit prime.

Our contributions: We consider small genus hyperelliptic curves. For such
curves, Gaudry’s method [7] is presently the only known practical algorithm for
solving the DLP on the Jacobian of such curves. This method has three parts:
identification of a factor basis, a method for decomposition and the linear algebra
step.

In this work, we provide a new method for decomposition. The factor basis
remains the same as in Gaudry’s method and also the linear algebra step re-
mains unchanged. Our main contribution is to show an alternative method for
decomposing divisors over the factor basis proposed by Gaudry. The advantage
of the alternative method is that it allows to apply a sieving technique to elim-
inate the smoothness checking of polynomials required in Gaudry’s method of
decomposition. The sieving technique that we use is based on the technique used
by Joux and Vitse [10] for quadratic extension fields. On the flip side, a relative
disadvantage of the new method is that a decomposition is obtained in about
(g+ 1)! trials whereas in Gaudry’s method a decomposition is obtained in about
g! trials.

We have implemented the new decomposition method in Magma and re-
port some experimental results and timings. Comparison of timings to Gaudry’s
method is currently ongoing work. Initial results, however, indicate that the new
method compares favourably to Gaudry’s method.

2 Notation

We mention a few notation on hyperelliptic curves. Basic description on hyper-
elliptic curves can be found in [13]. We will consider the underlying field K to be
of characteristic greater than 2 and so a curve C will be given by the equation



C : y2 = f(x), where f(x) is in K[x]. If L is an extension of K, then the set of
all L-rational points of C will be denoted as C(L). The notation JC denotes the
Jacobian of C and JL(C) denotes the subset of J(C) consisting of all divisors of
C which have a representation over L. Reduced divisors having representations
in JL(C) will be denoted by their Mumford representation, i.e., a divisor D will
be written as D = (u(x), v(x)) where u(x), v(x) ∈ L[x], deg(v) < deg(v) ≤ g
and u(x) divides v2(x)− f(x).

3 Index Calculus Algorithms

Let G = 〈g〉 be a cyclic group and h be an element of G. The DLP in G is to
compute i such that h = gi. An index calculus algorithm to solve DLP in G has
several steps. The first step is to identify a factor basis which is a subset of G. The
second step consists of identifying relations between the elements of the factor
basis. These relations can be converted into linear relations between the discrete
logs of the elements of the factor basis. The system of linear equations which
arises is exteremly sparse and is solved using either the Lanczos or the block
Wiedemann algorithm. This step provides the discrete logs of the elements of
the factor basis. The third step is to decompose the target element over the factor
basis. With the discrete logs of factor basis elements already known, the discrete
log of the target element is obtained. For some algorithms, the relation collection
step itself ensures that relations are obtained between the target element and the
elements of the factor basis. In such cases, the discrete log of the target element
is obtained immediately after the linear algebra step.

For hyperelliptic curves, the DLP problem is defined over JC(K). Elements
of the Jacobian are divisors. To implement index calculus algorithms over JC(K)
two things are required. First, one has to identify a set of divisors as the factor
basis and second, it is required to have a method to decompose a divisor in JC(K)
over the factor basis. Each such decomposition provides a relation among the
divisors in the factor basis. Note that it is not required to be able to decompose
every divisor in JC(K) over the factor basis. It is only required to generate
enough relations so that it is possible to obtain the discrete logs of the elements
in the factor basis.

In the next few subsections, we briefly recall some of the developments in
index calculus algorithms for hyperelliptic curves which are relevant to our work.

3.1 Adleman-DeMarrais-Huang Decomposition [1]

The general description of the algorithm is in terms of function fields. Here we
provide a description that applies to the Jacobian of a hyperelliptic curve.

Let IFq be a finite field of characteristic greater than 2 and assume that a
curve C of genus g is given by an equation of the form y2 = f(x) where the
degree of f(x) is 2g + 1. For a smoothness bound S, a divisor over IFq is said
to be S-smooth if all its points are defined over an extension IFqk with k ≤ S.



Equivalently, D = div(u(x), v(x)) is S-smooth if and only if the irreducible
factors of u(x) have degrees at most equal to S.

A divisor div(u(x), v(x)) is said to be prime if u(x) is irreducible. Further,
a divisor div(u(x), v(x)) is equal to

∑
div(ui(x), vi(x)) where ui(x) are the ir-

reducible factors of u(x) and for suitable polynomials vi(x). For a smoothness
bound S, the factor basis is defined to be the following set:

FB = {D ∈ JC(K) : D is prime and is of degree at most S}. (1)

Relations among the elements of the factor basis are obtained in the following
manner. Consider a polynomial function G(x, y) = λ(x) + yµ(x) in K[C]. Since
G is a rational function, div(G) is (a representative of) the additive identity of
the Jacobian of the curve and we write div(G) = 0. The degree of G(x, y) is the
degree of its norm which is N(G) = λ2(x) − f(x)µ2(x). If N(G) is S-smooth,
then a decomposition is obtained.

In the above approach, the check on N(G) to be S-smooth can be avoided
using a sieving technique due to Flassenberg and Paulus [5]. This is based on
the following fact: a polynomial ρ(x) divides λ2(x) − f(x)µ2(x) if and only if
ρ(x) divides λ21(x) − f(x)µ2

1(x) where λ1(x) = λ(x) + r(x)ρ(x) and µ1(x) =
µ(x) + s(x)ρ(x) for any polynomials r(x) and s(x). This was originally proposed
over odd characteristic fields. A later work [19] modified it to work over even
characteristic fields.

3.2 Gaudry’s Decomposition [7]

Gaudry provided a method for decomposition in the Jacobian JC(IFq) of a curve
C : y2 = f(x), with f(x) ∈ IFq[x]. The factor basis is defined to be of the
following form:

FB = {D ∈ JC(IFq) : D = (P )− (∞), P ∈ C(IFq)}. (2)

Given D1 and D2 in JC(IFq), the task is to compute logD1
D2. For integers

a1, a2, consider the divisor a1D1 + a2D2 given by its reduced representation
div(u(x), v(x)). Suppose u(x) factors into linear terms over IFq. If α is a root of
u(x), then the point Pα = (α, v(α)) is on the curve and it is possible to write

div(u(x), v(x)) =
∑
α

((Pα)− (∞)).

This shows that a1D1+a2D2 can be written as a sum of the factor basis elements
which is a desired decomposition. Since the degree of u(x) is g, we expect to
obtain a decomposition in about g! trials. Each decomposition consists of g
points of the factor base along with the elements D1 and D2.

Each row of the resulting system of linear equations has g+2 non-zero entries.
Since the elements D1 and D2 are part of the factor base, solving the system of
linear equations directly provides the desired discrete log. The third step of the
index calculus algorithm is not required.



Direct computation of a1D1 + a2D2 requires two scalar multiplications and
an addition in the Jacobian of the curve. This computation can be reduced by
generating the integers a1 and a2 using a random walk where the two scalar
multiplications and the addition can be replaced with only one addition.

Obtaining q decompositions requires about qg! trials and linear algebra re-
quires O(q2) time. So, the overall complexity is O(qg!+ q2) which for a fixed g is
O(q2). More precisely, the O(q2) complexity holds if g! is O(q). The size of the
Jacobian is about qg. For qg around 2160, the relation g! is around q for g ≤ 9.
We refer to [7] for the details.

3.3 Nagao [15] and Joux-Vitse [10] Decomposition

Nagao proposed a method for decomposing a divisor D in JC(IFqn) for n ≥ 2.
The factor base is the following:

FB = {D ∈ JC(IFqn) : D = (P )− (∞), P ∈ C(IFqn), x(P ) ∈ IFq}. (3)

Given a divisor D in JC(IFqn), the method involves using the Riemann-Roch
theorem to set up a system of ng(n − 1) nonlinear equations in as many vari-
ables. Solution of this system yields a polynomial of degree ng over IFq. If the
polynomial is smooth over IFq, then a decomposition of D over the factor base
is obtained.

In a later work, Joux and Vitse [10] modified this system to obtain a de-
composition method for the identity element of JC(IFqn) with n ≥ 2. Their
decomposition method consists of several steps. In an initial phase, they set up
a system of n(n− 1)g+ 2(n− 1) nonlinear equations in n(n− 1)g+ 2n variables.
This system is solved to obtain a LEX Grobner basis where two of the variables
are undetermined. In the second phase, these two variables are varied over IFq
and for different combination of values of these two variables a much simpler sys-
tem of equations is solved. The solution provides a polynomial of degree ng + 2
which is then checked for smoothness. If smoothness is achieved, then a decom-
position is obtained. In the case of n = 2, Joux and Vitse provide an interesting
sieving technique to provide significant practical speed-up. Further, they also
point out that their sieving technique can be very easily used to obtain relations
with double large primes [9]. We discuss this issue in more details later.

In Nagao’s method, the number of equations and variables is ng(n− 1). So,
for n = 1 this is a vacuous system and the decomposition method does not
apply. Similarly, for the Joux-Vitse method the number of equations is n(n −
1)g+ 2(n− 1) and again for n = 1 the system is vacuous and the decomposition
method does not apply. Perhaps, it is for this reason that both these papers have
the constraint n ≥ 2.

Gaudry’s method applied to IFqn will result in a factor basis of size qn,
whereas in Nagao’s approach and also in the Joux-Vitse decomposition, the
factor basis will be of size q. This will lead to faster linear algebra provided the
decomposition can be carried out. On the other hand, Gaudry’s method will be
applicable when the underlying field is IFq with q a prime, whereas, as mentioned
above, Nagao’s and the Joux-Vitse methods will not apply to this case.



4 A New Decomposition Method

Let IFq be the field of q elements. We consider the characteristic of q to be greater
than 2, but, the method described below can be modified to work even for the
characteristic 2 case. Let C : y2 = f(x) with f(x) ∈ IFq[x], be a hyperelliptic
curve of genus g and we consider divisors in JC(IFq). The factor base remains
the same as that in Gaudry’s algorithm i.e., the factor base is given by (2).

SupposeD is a reduced non-degenerate divisor. We writeD = div(u(x),−v(x))
and −D = (u(x), v(x)) with degx(u) = g. The x-coordinates of the points on
C determining D are the roots of u(x); suppose these are δ1, . . . δg, then the
corresponding y-coordinates are given by −v(δ1), . . . ,−v(δg). The y-coordinates
of −D are v(δ1), . . . , v(δg). So, −D =

∑
i(Qi) − g(∞) where Qi = (δi, v(δi)).

Note that the δ’s are not necessarily over IFq; the divisor D is in JC(IFq) if and
only if u(x) is in IFq[x].

Given D = (u(x),−v(x)) and an element λ0 in IFq, define a bivariate poly-
nomial G(x, y) as follows:

G(x, y) = u(x)λ0 − (y − v(x)). (4)

The parameter λ0 plays an important role in obtaining decompositions. By its
definition, we have G(δi, v(δi)) = 0 for i = 1, . . . , g, i.e., the points determining
−D are also zeros of G(x, y). This polynomial has more zeros on C and our aim
is to find them. So, we wish to look for common solution to G(x, y) = 0 and the
curve equation y2 = f(x). Eliminating y between these two equations we obtain
the equation S(x) = 0 where S(x) is as follows:

S(x) = (u(x)λ0 + v(x))2 − f(x).

From the propery of the Mumford representation, u(x) divides v2(x)− f(x) and
so S(x)/u(x) is also a polynomial. We define

H(x) = S(x)/u(x) = ((u(x)λ0 + v(x))2 − f(x))/u(x).

Since u(x) is of degree g, deg(v) < deg(u) and the degree of f(x) is 2g + 1, the
degree of S(x) is 2g + 1. So, the degree of H(x) is g + 1.

Suppose H(x) is smooth over IFq and its roots are α1, . . . , αg+1 and further
assume that these roots are distinct from the roots of u(x). Define βj = u(αj)λ0+
v(αj), i = 1, . . . , g + 1, i.e., βj is the value for y when G(αj , y) = 0 is solved for
y. Further, since αj is a root of S(x), we have f(αj) = (u(αj)λ0 + v(αj))

2 = β2
j .

So, Pj = (αj , βj) are zeros of both G(x, y) and y2 − f(x). Further, since the
α’s are distinct from the δ’s, the Pj ’s are distinct from the Qi’s. Note that
deg(G(x, y)) = 2g + 1 and so the Qi’s and the Pj ’s together account for all the
zeros of G(x, y). So, we can write:

div(G) = −D +

g+1∑
i=1

(Pi)− (g + 1)(∞)

= −D +

g+1∑
i=1

((Pi)− (∞)).



Since G(x, y) is a polynomial (and hence a rational) function, its divisor div(G)
is a representative of the identity of JC(IFq). From this, we can write:

D =

g+1∑
i=1

((Pi)− (∞))

where x(Pi) is in IFq. This gives the decomposition of D over the factor base.
Since the degree of H(x) is g + 1, we expect the smoothness condition to

be attained in about (g + 1)! trials. There is only one control variable, namely
λ0, which ranges over IFq. So, we expect to obtain about q/(g + 1)! relations by
varying λ0. This does not provide sufficient number of relations to complete the
linear algebra step. Additional control variables can be obtained as discussed
below.

As in Gaudry’s method suppose D1 and D2 are given and the requirement is
to compute logD1

D2. For integers a1 and a2, set D = a1D1 +a2D2 and consider
the decomposition of D. For each such D, by randomly varying λ0 it is possible
to obtain q/(g + 1)! relations. The variables a1 and a2 provide two additional
control variables leading to q2 possible divisors each of which provides about
q/(g+1)! relations. So, we will obtain sufficiently many relations if q2 > (g+1)!.

To generate the successive D’s, we adopt the following procedure. First fix a1
to 0 and vary a2 over its q possible values; then increment a1 and again vary a2
over its q possible values and so on. By this method, the cost of generating the
next D from the present one is exactly one addition in JC(IFq). We will require
about (g+1)! such D’s and the total cost of generating all these divisors will also
be about (g + 1)! additions. The amortised cost per relation is then (g + 1)!/q
additions in JC(IFq). If the values of q and g are such that q > (g + 1)!, then it
is sufficient to set a1 to 0 and consider only decompositions of D = a2D2.

The main cost is the (g + 1)! trials required to obtain a single relation.
Each such trial consists of obtaining H(x) (of degree g + 1) and checking it for
smoothness. So, the cost of obtaining a single relation is the smoothness check
of (g + 1)! polynomials each of degree g + 1. We next show how to use sieving
to avoid this smoothness checking.

4.1 Sieving to Improve Efficiency

We adapt the sieving method proposed by Joux and Vitse in [10] for quadratic
extensions to the present case. Write S(x, λ0) = (u(x)λ0 + v(x))2 − f(x) and
H(x, λ0) = ((u(x)λ0 + v(x))2 − f(x))/u(x) to denote the dependence of S and
H on λ0. For a fixed λ0, suppose α is such that u(α) 6= 0 but, S(α, λ0) is equal
to 0. Then such an α is a root of H(x, λ0). It is possible that H(x, λ0) and u(x)
have a common root, but, we will not be interested in such H(x, λ0).

The different possible divisors D are generated from the given divisors D1

and D2 as described above. For each such divisor D = div(u(x),−v(x)), the
sieving step is performed as follows. We use an array ctr[0, . . . , q − 1] of length
q. Each entry of ctr is initialised to 0. For the divisor D, the sieving step runs



over all the elements of IFq. For each α ∈ IFq, such that u(α) 6= 0, consider the
polynomial S(α, λ0) which is quadratic in λ0. Here we are considering λ0 as a
variable. We wish to solve the equation S(α, λ0) = 0 for λ0. The solutions are
the following:

−v(α)± (f(α))1/2

u(α)
. (5)

By ensuring u(α) 6= 0 and solving for λ0 in S(α, λ0) = 0, we are actually obtain-
ing λ0 such that H(α, λ0) = 0.

If f(α) is a perfect square over IFq, then (5) gives two values of λ0 which
are in IFq. Denote these values as λ00 and λ01. Increment ctr[λ00] and ctr[λ01].
There are two ways in which an O(q) pre-computation helps in speeding up.

1. Prepare a table of square roots of f(α) for all α ∈ IFq and use this table to
solve (5). This table is independent of the divisor D and will be used in all
the sieving steps. This avoids computing (f(α))1/2 during actual sieving.

2. Prepare a table of inverses of all the non-zero elements of IFq. After com-
puting γ = u(α) use this table to obtain γ−1. This avoids computing the
multiplicative inverse of u(α) during actual sieving.

After the loop over all elements α ∈ IFq has been completed, we check each
entry of ctr. If ctr[λ0] = g+ 1, then this λ0 results in the polynomial H(x, λ0) in
x which is smooth over IFq. To see this note that if ctr[λ0] is equal to g+ 1, then
the sieving has encountered g + 1 roots of H(x) in IFq; since H(x) is of degree
g + 1, it must actually be smooth over IFq.

Once a value of λ0 for which H(x) is smooth has been identified, the roots of
H(x) for this value of λ0 are obtained by factorisation. These roots have already
been encountered in the sieving phase and could be stored and used later. We
comment more on this issue later. On the other hand, even if we do not store the
roots, only one factoring is required per decomposition and the efficiency loss
for this may not be significant.

Each sieving step consists of an O(q) loop and at each iteration of the loop,
it is required to compute u(α), v(α) and a small number of additional IFq-
operations and table look-ups. Computing u(α) and v(α) requires O(g) IFq-
operations. The sieving step is repeated for about (g + 1)! divisors D to obtain
about q relations. At no point is it required to perform a smoothness check.

A matrix view of the sieving process: For a fixed divisor, we provide an
alternate view of the sieving process. Consider a q×q matrix M . Further consider
that α varies over the columns and λ0 varies over the rows of M . Entries of M
are either 0 or 1. An entry at the position (λ0, α) of M is 1 if λ0 is a solution in
IFq of (5), i.e., if (f(α))1/2 is in IFq; otherwise the entry at the position (λ0, α) of
M is 0. So, for every α, the column indexed by α has either two 1’s or zero 1’s.
If we assume that (f(α))1/2 is in IFq for about half of the α’s, the total number
of 1’s in the matrix M is about q. For any λ0, the sum of all elements in the row
of M indexed by λ0 is the value ctr[λ0]. Hence,

∑
λ0∈IFq

ctr[λ0] is also about q.



As a result, if for some λ0 the value ctr[λ0] is greater than 1, then for some other
λ0, the value ctr[λ0] will be zero.

The above description explains that the number of pairs (λ0, α) for which
M [λ0, α] = 1 is about q. This suggests an alternative implementation of ctr. It
can be implemented as a list of pairs (λ0, α). Whenever an α is obtained such
that (f(α))1/2 is in IFq, then (λ0, α) is appended to ctr, where λ0 is a solution
to (5) for this α. After the sieving step for a divisor is complete, the list ctr
is sorted on λ0. Since the size of ctr will be about O(q), sorting will require
Oq log q) time. One can then perform a pass over ctr obtaining all possible λ0
such that there are g+ 1 pairs (λ0, α) in ctr. Note that this directly provides the
g + 1 α’s which are the roots of H(x) for this value of λ0.

Parallelism: The loop of α over IFq is completely parallelisable. The computa-
tions for two different α’s can be carried out independent of each other, but, the
array ctr will be shared memory. The only point where a conflict may arise is if
two different α’s give rise to the same value for λ0 leading to a situation where
the same position of ctr needs to be updated. This issue can be tackled using
standard techniques for ensuring consistent writes. The other way in which par-
allelism can be exploited is by executing the different sieving steps for different
divisors in parallel. This will require separate copies of ctr to be available for the
different sieving steps which will increase the memory requirement. Depending
upon available resources, a suitable method for exploiting parallelism may be
determined. We have not tried to exploit parallelism in our experiments.

4.2 Comparison to Gaudry’s Method

A relation in Gaudry’s method is obtained by decomposing aiD1 + biD2 over
the factor basis, where ai and bi are obtained using a random walk. Each such
decomposition involves g elements of the factor basis and a decomposition is ob-
tained in about g! trials. So, obtaining q decompositions require about qg! trials.
Generating ai+1D1 + bi+1D2 from aiD1 + biD2 can be done using a single addi-
tion. So, the cost of obtaining a single decomposition consists of g! additions and
g! checking of smoothness of a degree g polynomial. Each relation in Gaudry’s
method involves D1, D2 and g elements of the factor basis. So, the number of
non-zero entries in each row of the matrix for the linear algebra step is g + 2.

In the new method, each sieving step on a divisor results in about q/(g+ 1)!
decompositions and to obtain about q decompositions one requires to perform
the sieving step on about (g+ 1)! divisors. This leads to a total of about (g+ 1)!
additions in JC(IFq). Each sieving step has q iterations where each iteration
involves O(g) IFq-operations and a small number of table look-ups.

The relative efficiencies of the two methods in obtaining q relations is as
follows. In Gaudry’s method, a total of about qg! additions in JC(IFq) and qg!
smoothness checking of degree g polynomials over IFq are required. The total
number of operations required by the new method consists of about (g + 1)!
additions in JC(IFq) and about O(qg(g+1)!) IFq-operations. The reduction in the
number of additions in JC(IFq) and the non-requirement of smoothness checking



should lead to faster decompositions in the new method. Our initial experimental
results indicate that this is indeed the case.

Each decomposition in the new method results in a relation involving D and
g+ 1 elements of the factor base. In general D = a1D1 + a2D2 and so a relation
involves g + 3 divisors. As mentioned above, if q > (g + 1)!, then one can set
a1 = 0 so that each relation involves g + 2 divisors which is the same as in
Gaudry’s decomposition. The matrix for the linear algebra step has g + 2 non-
zero elements per row if q > (g + 1)!; and has g + 3 non-zero elements per row
if q ≤ (g + 1)! < q2. In both cases, the linear algebra step is expected to require
about the same time as in Gaudry’s algorithm.

4.3 Double Large Prime Variant

The sieving technique makes it simple to apply the double large prime [9] variant.
This was mentioned by Joux and Vitse in the context of sieving for quadratic
extensions, but, applies equally well to the current context. The idea of the
double large prime variant is to reduce the size of the factor basis so that the
linear algebra step takes lesser time.

Suppose q is a prime. In the double large prime variant, the factor base
will consist of “small” primes which are divisors (P ) − (∞) with x(P ) to be at
most some pre-determined bound B. Large primes are divisors (P )− (∞) with
x(P ) > B. The main idea of the double large prime variant is to decompose a
divisor D into a sum of several “small” primes and at most two large primes.
Ensuring this in general is difficult.

With the sieving method that we have described this becomes easy. For
a divisor, the sieving varies α over all possible q. To implement the double
large prime variant, we simply vary α up to the bound B and increment ctr[λ0]
corresponding to the solutions for λ0 as before. Later, we select λ0 for which
ctr[λ0] is g−1 or more. If this value is g+ 1, then as before, we obtain a relation
consisting of only small primes; if the value is g, then since the degree of H(x) is
g+1, the other root must also be in IFq and this leads to a relation with a single
large prime. If the value of ctr[λ0] is g − 1, then again since the degree of H(x)
is g + 1, for this λ0, the corresponding H(x) has g − 1 roots in IFq. The other
factor of H(x) is quadratic. If this is smooth (which happens with probability
1/2), then we obtain a decomposition of D consisting of g − 1 small primes and
at most 2 large primes.

Consider the matrix M mentioned in Section 4.1 which describes the sieving
process. With the double large prime variant, the number of columns in M
reduces from q to B. As a result, many of the row sums turn out to be zero. So,
it will be advantageous to have some method to ensure that we only check the
positions where ctr has positive values. We discuss two methods to do this.

Indirection: One method is to use indirection. Apart from ctr, we use an ad-
ditional array val which is of maximum length q, but the actual length is lesser.
The initial length of val is 0. When (5) results in two solutions λ00 and λ01,



these values are appended to val and its current length increases by 2. The en-
tries ctr[λ00] and ctr[λ01] are incremented as before. Suppose the final length of
val is N . After the pass of α over IFq is over, for each i in 1, . . . , N , we compare
the value of ctr[val[i]] with g − 1. This loops over the N positions of ctr having
positive values. Since, N will be much smaller than q, this saves time.

Associative array: The other method is to implement ctr as an associative
array indexed by elements of IFq, instead of a fixed array of size q. The entries
of ctr are of the type (γ, i), where γ is an element of IFq and i is a positive
integer. We use the notation ctr[γ] = i to denote that the pair (γ, i) is present
in the array. By incrementing ctr[γ] we mean the following: if (γ, i) is present
in the array, then it is replaced by (γ, i + 1); and if γ is not equal to the first
component of any pair already in ctr, then the pair (γ, 1) is inserted into ctr.
During the sieving process, suppose (5) gives two values λ00 and λ01 which are
in IFq. Increment ctr[λ00] and ctr[λ01]. After the pass of α over IFq is over, let
N be the length of the associative array ctr. By construction, if (λ0, i) is in ctr,
then ctr[λ0] > 0. Now, a pass is made over the entries of ctr comparing each
value with g−1 as before. Compared to the indirection method, no array of size
q is required, but, in this case, an index structure is required to implement ctr.

The efficiency of generating relations depends crucially on the value of B.
The value of B in turn determines the value N of the maximum length of ctr.
Experimental results indicate that the associative array based approach is faster
if B is small, whereas the indirection based approach is faster when B is com-
paratively larger. In a concrete setting, it is advisable to use the method which
is faster.

In general B will be qr such that q2r is o(qg/2). This will ensure that the linear
algebra step involving B elements runs in time B2 and is still faster than the
Pollard’s rho method. During relation generation, it will be required to obtain
much more than B relations so that the large primes in the relations can be
eliminated to obtain relations involving only the factor base elements. A graph
based approach is used to achieve this [9]. We do not discuss these details,
since our focus here is the average time for obtaining a single relation with at
most two large primes. For an actual discrete log computation, sufficiently many
decompositions will have to be carried out to obtain the required number of
double large prime relations.

The sieving loop runs over B values of α. This ensures that each sieving loop
runs much faster. Further, while checking the values of ctr, the loop runs over N
values which is also significantly smaller than q. So, overall each sieving step runs
much faster than the case for obtaining relations where only small primes are
involved. The catch, however, is that now each sieving step yields significantly
less number of relations. So, the average time required for obtaining a single
relation actually goes up. We provide results of some practical experiments later.



5 Experimental Results

In this section, we report the results of some experiments that we conducted
with the new method.

For the experiments, we used the Magma Computer Algebra System [18] on
a single core of Intel Xeon CPU @ 3.07GHz. The efficiency of obtaining decom-
positions in the new method does not depend on the order of the Jacobian and
depends only on the genus and the underlying field IFq. So, for the experiments
we have fixed the genus and the value of q and run the decomposition method on
randomly generated hyperelliptic curves. Further, for simplicity we have chosen
q to be a prime.

5.1 Examples of Decompositions Obtained Using the New Method

We first provide some examples of decompositions using the new method. Con-
sider a hyperelliptic curve C of genus g = 7, defined by y2 = x15+26412x+15471
over the field IFq, where q = 1048583.
Let

D1 = (x7 + 361878x6 + 853622x5 + 966112x4 + 379368x3 + 578236x2

+369465x+ 201503, 983227x6 + 37594x5 + 655264x4 +

27833x3 + 886828x2 + 931655x+ 25374);

D2 = (x7 + 616043x6 + 290099x5 + 162688x4 + 204670x3 + 551267x2

+390226x+ 747247, 905210x6 + 983958x5 + 329094x4 +

1003866x3 + 225827x2 + 817769x+ 456719).

Suppose a = 672611 and b = 529480. Then by varying λ0, it is possible to obtain
q/(g + 1)! decompositions of aD1 + bD2. Two such examples are given below.

−aD1 − bD2 = (x+ 404553, 819523) + (x+ 476821, 73840)

+ (x+ 607178, 332244) + (x+ 608877, 68511) + (x+ 647811, 676561) +

(x+ 898698, 42974) + (x+ 958676, 247112) + (x+ 1041752, 736564);

−aD1 − bD2 = (x+ 122108, 276972) + (x+ 178013, 962779)

+ (x+ 189540, 1018873) + (x+ 202334, 504402) + (x+ 658095, 911545)

+ (x+ 726744, 503834) + (x+ 989490, 958207) + (x+ 1046320, 202759).

Consider another pair of values for a and b, say, a = 2405771 and b = 1403025.
Then an example of a decomposition of aD1 + bD2 is as follows.

−aD1 − bD2 = (x+ 185559, 22966) + (x+ 192011, 527282)

+ (x+ 262101, 183920) + (x+ 335423, 773936) + (x+ 393421, 741757)

+ (x+ 432914, 706326) + (x+ 589633, 749516) + (x+ 750866, 142288).



5.2 Some Timing Results

We provide timing results of the new decomposition method and Gaudry’s
method for various parameters in Table 1. The data given in Table 1 is the
average of timings of more than hundred thousand decompositions for genus up
to 8. For genus 9, we have taken the the average of more than ten thousand
decompositions.

For conducting the experiments using the new method, we have used a pre-
computed table to obtain the values of (f(α))1/2 and another pre-computed table
to obtain the inverses of u(α). We have used an array based implementation of
ctr as mentioned in Section 4.1. The smoothness checking required for Gaudry’s
method was performed in two stages as suggested in [7]. To check a polynomial
u(x) for smoothness, Swan’s [16] necessary condition was first applied as a filter;

if it passes this test, then the criterion xp mod u(x)
?≡ x was applied. Factoring

was carried out only after this criterion was satisfied.

For the first two primes, the speed-up of the new method is about two times
that of Gaudry’s method. For the third prime, the speed-up for low values of
g is also about two but, increases as g increases. This could be possibly due to
some non-linear scaling factor in Magma as the size of p increases. While our
computations have been carried out in Magma, we expect similar comparative
performance results for ‘C’ implementations.

Table 1. Average time in seconds per decomposition for some example hyperelliptic
curves.

y2 = x2g+1 + 26412x + 15471 over IFp, p = 1048583 (≈ 220)

Method g = 4 g = 5 g = 6 g = 7 g = 8 g = 9

Our 0.00037 0.0017 0.0125 0.098 0.90 9.28

Gaudry 0.00059 0.0032 0.0204 0.161 1.42 14.08

Speedup 1.59 1.88 1.63 1.64 1.58 1.51

y2 = x2g+1 + 14212x + 47156 over IFp, p = 8388593 (≈ 223)

Method g = 4 g = 5 g = 6 g = 7 g = 8 g = 9

Our 0.00041 0.0019 0.0126 0.103 0.93 9.30

Gaudry 0.00087 0.0045 0.0286 0.223 1.90 18.76

Speedup 2.12 2.36 2.26 2.16 2.04 2.01

y2 = x2g+1 + 26412x + 15471 over IFp, p = 33554467 (≈ 225)

Method g = 4 g = 5 g = 6 g = 7 g = 8 g = 9

Our 0.00043 0.0020 0.0140 0.112 1.01 10.51

Gaudry 0.00083 0.0051 0.0371 0.344 4.98 53.53

Speedup 1.93 2.55 2.65 3.07 4.93 5.09



We next consider the timing results of the new method for obtaining decom-
positions with at most two double large primes. These are given in Tables 2
and 3. The total time for relation collection in the double large prime algorithm
involves the cost of maintaining an LP graph and the cost of finding a cycle in
that graph. We have not implemented these steps.

The timings that we provide are indicative of the time required to obtain a
single decomposition using at most two large primes. Since double large prime
variant is more relevant for genus 3 and 4 cases, we have done our experiments
for these two cases only. For these experiments, we have used the implementa-
tions of ctr which have been described in Section 4.3; specifically, we have used
the associative array implementation when B ≤ 220 and the indirection-based
implementation for larger values of B. We have found the respective techniques
to be faster for the corresponding cases.

From the results it can be seen that for the double large prime variant, in
comparison to Gaudry’s method the new method performs even better. This is
due to the fact that obtaining a double large prime relation requires many more
trials and the requirement of smoothness check at each trial in Gaudry’s method
has a more pronounced effect.

Comparing Table 1 and Tables 2, 3 for p = 33554467 and g = 4, it is to be
noted that obtaining a single double large prime relation takes considerably more
time. Further, this time goes up as the value of B goes down. This behaviour is
to be expected and our results only confirm the behaviour.

Table 2. Average time in seconds for one decomposition with at most two large primes.
Here p = 33554467 ≈ 225 and B is the bound determining ‘small primes’.

y2 = x7 + 5412x + 84711 over IFp

Method B = 216 B = 218

Our 0.0062 0.0018

Gaudry 0.0340 0.0086

Speedup 5.48 4.78

y2 = x9 + 56241x + 7141 over IFp

Method B = 220 B = 222

Our 0.0449 0.0033

Gaudry 0.1462 0.0103

Speedup 3.25 3.12

Table 3. Average time in seconds for one decomposition with at most two large primes.
Here p = 268435399 ≈ 228 and B is the bound determining ‘small primes’.

y2 = x7 + 14572x + 94347 over IFp

Method B = 218 B = 220

Our 0.0138 0.0043

Gaudry 0.1276 0.0318

Speedup 9.24 7.39

y2 = x9 + 63441x + 7453 over IFp

Method B = 222 B = 225

Our 0.198 0.0037

Gaudry 1.057 0.0190

Speedup 5.33 5.13



6 Conclusion

In this paper, we have described a new method for decomposing a divisor in the
Jacobian of a small genus hyperelliptic curve. In practical terms, the method is
faster than the decomposition method proposed earlier by Gaudry. The speed-up
is obtained by using a sieving method which is based on a method suggested by
Joux and Vitse in the context of curves over fields of extenstion degree two. The
sieving method combines well with the double large prime variant.

References

1. Leonard M. Adleman, Jonathan DeMarrais, and Ming-Deh A. Huang. A subex-
ponential algorithm for discrete logarithms over the rational subgroup of the jaco-
bians of large genus hyperelliptic curves over finite fields. In Leonard M. Adleman
and Ming-Deh A. Huang, editors, Algorithmic Number Theory, First International
Symposium, ANTS-I, Ithaca, NY, USA, May 6-9, 1994, Proceedings, volume 877
of Lecture Notes in Computer Science, pages 28–40. Springer, 1994.

2. Claus Diem. The GHS attack in odd characteristic. J. Ramanujan Math. Soc.,
18(1):1–32, 2003.

3. Andreas Enge. Computing discrete logarithms in high-genus hyperelliptic jacobians
in provably subexponential time. Math. Comput., 71(238):729–742, 2002.

4. Andreas Enge and Pierrick Gaudry. A general framework for subexponential dis-
crete logarithm algorithms. Acta Arithmetica, 102:83–103, 2002.

5. Ralf Flassenberg and Sachar Paulus. Sieving in function fields. Experimental
Mathematics, 8(4):339–349, 1999.

6. Gerhard Frey. How to disguise and elliptic curve (Weil descent). Talk at the 2nd
Elliptic Curve Cryptography (ECC) Workshop, 1998.

7. Pierrick Gaudry. An algorithm for solving the discrete log problem on hyperellip-
tic curves. In Bart Preneel, editor, Advances in Cryptology - EUROCRYPT 2000,
International Conference on the Theory and Application of Cryptographic Tech-
niques, Bruges, Belgium, May 14-18, 2000, Proceeding, volume 1807 of Lecture
Notes in Computer Science, pages 19–34. Springer, 2000.

8. Pierrick Gaudry, Florian Hess, and Nigel P. Smart. Constructive and Destructive
Facets of Weil Descent on Elliptic Curves. J. Cryptology, 15(1):19–46, 2002.

9. Pierrick Gaudry, Emmanuel Thomé, Nicolas Thériault, and Claus Diem. A double
large prime variation for small genus hyperelliptic index calculus. Math. Comput.,
76(257):475–492, 2007.

10. Antoine Joux and Vanessa Vitse. Cover and decomposition index calculus on el-
liptic curves made practical - application to a previously unreachable curve over
fp6 . In David Pointcheval and Thomas Johansson, editors, Advances in Cryptology
- EUROCRYPT 2012 - 31st Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Cambridge, UK, April 15-19, 2012. Pro-
ceedings, volume 7237 of Lecture Notes in Computer Science, pages 9–26. Springer,
2012.

11. Neal Koblitz. Elliptic curve cryptosystesm. Math. Comp., 48(177):203–209, 1987.
12. Neal Koblitz. Hyperelliptic cryptosystems. J. Cryptology, 1(3):139–150, 1989.
13. Alfred Menezes, Yi-Hong Wu, and R. Zuccherato. An elementary introduction to

hyperelliptic curves. Appendix in ‘Algebraic Aspects of Cryptography’ by Neal
Koblitz, 1998.



14. Victor S. Miller. Use of elliptic curves in cryptography. In Hugh C. Williams, editor,
Advances in Cryptology - CRYPTO ’85, Santa Barbara, California, USA, August
18-22, 1985, Proceedings, volume 218 of Lecture Notes in Computer Science, pages
417–426. Springer, 1985.

15. Koh-ichi Nagao. Decomposition attack for the Jacobian of a hyperelliptic curve
over an extension field. In Algorithmic number theory, volume 6197 of Lecture
Notes in Comput. Sci., pages 285–300. Springer, Berlin, 2010.

16. Richard G. Swan. Factorization of polynomials over finite fields. Pacific Journal
of Mathematics, 12(3):1099–1106, 1962.

17. Nicolas Thériault. Index calculus attack for hyperelliptic curves of small genus. In
Chi-Sung Laih, editor, ASIACRYPT, volume 2894 of Lecture Notes in Computer
Science, pages 75–92. Springer, 2003.

18. Magma v2.19 7. http://magma.maths.usyd.edu.au/magma/.
19. M. D. Velichka, Michael J. Jacobson Jr., and Andreas Stein. Computing discrete

logarithms in the jacobian of high-genus hyperelliptic curves over even character-
istic finite fields. Math. Comput., 83(286), 2014.


