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Abstract. The main bottleneck affecting the efficiency of all known fully homomorphic encryption
(FHE) schemes is Gentry’s bootstrapping procedure, which is required to refresh noisy ciphertexts and
keep computing on encrypted data. Bootstrapping in the latest implementation of FHE, the HElib
library of Halevi and Shoup (Crypto 2014), requires about six minutes per batch. We present a new
method to homomorphically compute simple bit operations, and refresh (bootstrap) the resulting out-
put, which runs on a personal computer in just about half a second. We present a detailed technical
analysis of the scheme (based on the worst-case hardness of standard lattice problems) and report on
the performance of our prototype implementation.

1 Introduction

Since Gentry’s discovery of the first fully homomorphic encryption (FHE) scheme [15], much progress has
been made both towards basing the security of FHE on more standard and well understood security assump-
tions, and improving the efficiency of Gentry’s initial solution.

On the security front, a sequence of papers [16,9,8,5,2] has lead to (leveled) FHE schemes based on essen-
tially the same intractability assumptions underlying standard (non homomorphic) lattice based encryption.
To date, the main open theoretical problem still left to be solved is how to remove the “circular security”
assumption made in [15] (and all subsequent works) to turn a leveled FHE scheme (i.e., a scheme where
the homomorphic computation depth is chosen at key generation time) into a full fledged one which allows
to perform arbitrarily large homomorphic computations on encrypted data, even after all key material has
been fixed.

Improving the efficiency of Gentry’s scheme has received even more attention [23,6,21,20,19,18,17,2,1],
resulting in enhanced asymptotic performance, and some reference implementations and libraries [23,17]
that are efficient enough to be run on a personal computer. Still, the cost of running FHE schemes is
quite substantial. The main bottleneck is caused by the fact that all current FHE solutions are based on
“noisy” encryption schemes (based on lattices or similar problems) where homomorphic operations increase
the noise amount and lower the quality of ciphertexts. As more homomorphic operations are performed,
the noise can easily grow to a level where the ciphertexts are no longer decryptable, and operating on
them produces meaningless results. Gentry’s breakthrough discovery [15] was an ingenious “bootstrapping”
technique (used in all subsequent works) that refreshes the ciphertexts by homomorphically computing the
decryption function on encrypted secret key, and bringing the noise of the ciphertexts back to acceptable
levels. This bootstrapping method allows to homomorphically evaluate arbitrary circuits, but it is also the
main bottleneck in any practical implementation due to the complexity of homomorphic decryption.

Going back to efficiency considerations, the current state of the art in terms of FHE implementation
is represented by the recent HElib of Halevi and Shoup [23,24], which reported a bootstrapping/refreshing
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procedure with running times around 6 minutes. While this is much better than previous implementations,
and a nontrivial amount of computation can be performed in-between refreshing operations, the fact that
even the simplest computation requiring bootstrapping takes such a macroscopic amount of time makes FHE
clearly unattractive.

Our work The goal of this paper is to investigate to what extent the running time of a useful FHE bootstrap-
ping procedure can be reduced. We do so by analyzing bootstrapping in vitro, i.e., in the simplest possible
setting: given two encrypted bits Epb1q and Epb2q, we want to compute their logical NAND (or any other
complete boolean operation) and obtain the encrypted result Epb1 ¯̂ b2q in a form which is similar to the
input bits. As in the most recent FHE schemes, here Ep¨q is just a standard lattice (LWE [32]) encryption
scheme. In particular, Epbiq are noisy encryptions, and the output ciphertext Epb1 ¯̂ b2q is homomorphically
decrypted (i.e., bootstrapped) in order to reduce its noise level back to that of Epb1q and Epb2q. Our main
result is a new boostrapping method and associated implementation that allows to perform the entire com-
putation (consisting of homomorphic NAND computation and homomorphic decryption/bootstrapping) in
less than a second on a standard (consumer grade) personal computer as detailed in Section 6.4.

We remark that the problem solved here is definitely simpler than HElib [23], as we perform only a single
bit operation before bootstrapping, while [23] allows to perform more complex operations. In fact, using
complex ciphertexts packing and homomorphic SIMD techniques, [23] achieves an amortized cost (per ho-
momorphic bit operation) which we estimate to be in the same order of magnitude as our solution. The main
improvement with respect to previous work is in terms of granularity and simplicity: we effectively show that
macroscopic delays are not a necessary requirement of bootstrapped FHE computations, and bootstrapping
itself can be achieved at much higher speeds than previously thought possible. Another attractive feature of
the scheme presented in this paper is simplicity: we implemented our fully bootstrapped NAND computation
in just a few hundreds lines of code and just a few days of programming effort.

Finally, our methods are not necessarly limited to a single NAND computation. As a simple extension of
our basic scheme we show how to compute (homomorphically, and at essentially the same level of efficiency)
various other operations, like majority, threshold gates. This extension also offers xor-for-almost-free as
previous homomorphic schemes. Combining our fast (subsecond) bootstrapping method with other techniques
that allow to perform substantially more complex computations in-between bootstrappings, is left as an open
problem.

Techniques Our improvement is based on two main techniques. One is a new method to homomorphically
compute the NAND of two LWE encryptions. We recall that LWE encryption satisfies certain approximate
additive homomorphic properties. Specifically, given two encryptions Epm1q and Epm2q one can compute
a noisier version of Epm1 ` m2q. When working modulo 2, this allows to homomorphically compute the
exclusive-or of two bits. The way we extend this operation to a logical NAND computation is by moving
(during boostrapping) from arithmetic modulo 2 to arithmetic modulo 4. So, adding Epm1q and Epm2q

results in the encryption Epmq of m “ 2 (if m1 ¯̂ m2 “ 0) or m P t0, 1u (if m1 ¯̂ m2 “ 1). Moving from this
ciphertext to the encryption of m1 ¯̂ m2 is then achieved by a simple affine transformation.

The main advantage of our new homomorphic NAND operation is that it introduces a much lower level
of noise than previous techniques. So, the refreshing procedure (required for bootstrapping) is faced with
a much simpler task. Our second technical contribution builds on a recent method from [2] to implement
and speed up bootstrapping. Decryption of LWE ciphertexts requires essentially the computation of a scalar
product (modulo q) and a rounding operation. So, homomorphic decryption needs to compute these opera-
tions on encrypted data. The scheme of [2] uses a homomorphic cryptosystem that encrypts integers modulo
q, and allows the efficient computation of scalar products. This is achieved using a homomorphic encryption
scheme for binary messages x P t0, 1u, and encoding elements v P C of a cyclic group as vectors of cipher-
texts Epx1q, . . . , Epx|C|q, where xi “ 1 if and only if i “ v. We introduce a ring variant of the bootstrapping
method of [2] that also supports efficient homomorphic computation of scalar products modulo q. The use of
ring lattices was first suggested3 in [31] to reduce the asymptotic computation time of lattice cryptography

3 Similar lattices had previously been used in practice also by the NTRU cryptosystem [25] , but without employing
quasi-linear FFT techniques, and no connection to the worst-case complexity of lattice problems.
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from quadratic to quasi-linear (using FFT techniques), and have become a fundamental technique to bring
theoretical lattice constructions to levels of performance that are attractive in practice. Our work uses the
LWE instantiation of ring lattices [29,30] for the efficient implementation of encryption. But our bootstrap-
ping method goes beyond the use of ring lattices to speed up normal lattice operations. We also use the
ring structure of these lattices to directly implement the encryption of cyclic groups by encoding the cyclic
group Zq into the group of roots of unity: i ÞÑ Xi where i is a primitive q-th root of unity. This allows to
implement a bootstrapping method similar to [2], but where each cyclic group element is encoded by a single
ciphertext, rather than a vector of ciphertexts.

As a last technique, in order to contain noise generation during key switching operations, we use LWE
instances with binary secrets, which were recently proved as hard as standard LWE in [7].

Like all previously known schemes, our FHE construction requires (in addition to standard worst-case
lattice intractability assumptions) a circular security assumption in order to release a compact homomorphic
evaluation key, and allow to combine an arbitrarily large number of homomorphic bit operations.

Organization The rest of the paper is organized as follows. In section 2 we give some background on lattices
and related techniques as used in the paper. In Section 3 we present a detailed description of the LWE
encryption scheme that we want to bootstrap. The high level structure of our bootstrapped homomorphic
NAND computation is given in Section 4. Section 5 goes into the core of our new refreshing procedure based
on ring lattices. Section 6 describes concrete parameters, implementation and performance details. Section 7
concludes the paper with extensions and open problems.

2 Preliminaries

We will use bold-face lower-case letters a,b . . . to denote column vectors over Z or any other ring R, and
boldface upper-case letters A,B . . . for matrices. The product symbol ¨ will be used for both scalar products
of two column vectors, and for matrix product, to be interpreted as the only applicable one. The norm } ¨ },
will denote the euclidean norm. When speaking of the norm of a vector v over the residue ring ZQ of Z
modulo Q, we mean the shortest norm among the equivalence class of v P ZnQ in Zn.

2.1 Distributions

A randomized rounding function χ : R Ñ Z is a function mapping each x P R to a distribution over Z such
that χpx`nq “ χpxq`n for all integers n. For any x P R, the random variable χpxq´x is called the rounding
error of χpxq. As a special case, when the domain of χ is restricted to Z, we have χpxq “ x` χp0q, i.e., the
randomized rounding function simply adds a fixed “noise” distribution χp0q to the input x P Z.

A random variable X over R is subgaussian with parameter α ą 0 if for all t P R, the (scaled) moment-
generating function satisfies Erexpp2πtXqs ď exppπα2t2q. If X is subgaussian, then its tails are dominated
by a Gaussian of parameter α, i.e., Prt|X| ě tu ď 2 expp´πt2{α2q for all t ě 0. Any B-bounded symmetric
random variable X (i.e., |X| ď B always) is subgaussian with parameter B

?
2π. More generally, we say

that a random vector x (respectively, a random matrix X) is subgaussian (of parameter α) if all its one-
dimensional marginals xu,xy (respectively, utXv) for unit vectors u,v are subgaussian (of parameter α).
It follows immediately from the definition that the concatenation of independent subgaussian vectors with
common parameter α, interpreted as either a vector or matrix, is subgaussian with parameter α.

2.2 The Cyclotomic Ring

Throughout the paper, we let N be a power of 2 defining the p2Nqth cyclotomic polynomial Φ2N pXq “ XN`1
and associated cyclotomic ring R “ ZrXs{pXN ` 1q. We also write RQ “ R{pQRq for the residue ring of
R modulo an integer Q. Elements in R have a natural representation as polynomials of degree N ´ 1 with
coefficients in Z, and R can be identified (as an additive group) with the integer lattice ZN , where each ring
element a “ a0`a1x`. . .`aN´1x

N´1 P R is associated with the coefficient vector ÝÑa “ pa0, . . . , aN´1q P ZN .
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We extend the notation ÝÑ̈ to any vector (or matrix) over R component-wise. We use the identification R “

ZN to define standard lattice quantities like the euclidean length of a ring element }a} “ }ÝÑa } “
a

ř

i |ai|
2,

or the spectral norm of a matrix R P Rwˆk of ring elements s1pRq “ supxPRkzt0u }R ¨ x}{}x}.
The ring R is also identified with the sub-ring of anti-circulant square matrices of dimension N by

regarding each ring element r P R as a linear transformation x ÞÑ r ¨ x over (the coefficient embedding) of

R. The corresponding matrix is denoted
ùñ
r P ZNˆN , and its first column is ÝÑr . (The other columns are the

cyclic rotations of ÝÑr with the cycled entries negated.) We extend the notation
ùñ
¨ to vectors and matrices

over R: for R P Rwˆk,
ùñ
R P ZNwˆNk is a matrix with anti-circulant NˆN blocks. Notice that the definition

of spectral norm of a ring element (or a matrice of ring elements) is consistent with the definition of spectral

norm of the corresponding anticirculant matrix (or blockwise anti-circulant matrix): s1prq “ s1p
ùñ
r q and

s1pRq “ s1p
ùñ
R q.

We say that a random polynomial a is subgaussian if its associated vector ÝÑa is subgaussian. The fact
that a is subgaussian does not imply that its associated anticirculant matrix

ùñ
a is also subgaussian, because

its columns are not independent. Nevertheless, subgaussianity of a ring elements still allows a good bound
on its singular norm. This bound is as small as its non-ring counterpart as soon as either w or k is larger
than ωp

?
logNq.

Fact 1 (Adapted from [12], Fact 6) If D is a subgaussian distribution of parameter α over R, and R Ð

Dwˆk has independents coefficients drawn from D, then, with overwhelming probability, we have s1pRq ď
α
?
N ¨Op

?
w `

?
k ` ωp

?
logNqq.

Invertibility in R. Invertibility in cyclotomic rings has to be handled with care. (E.g., see [12].) The main
issue is that, for a power-of-two cyclotomic ring R “ ZrXs{pXN ` 1q, the residue ring RQ is never a field
whatever the choice of Q. Yet, for appropriate moduli Q, it is not so far from being a field. More concretely,
for Q a power of 3 most elements in R will be invertible, and so will most of the square matrices over R as
detailed by the following Lemma 4. The lemma uses the following two facts.

Fact 2 (Irreducible factors of XN ` 1 modulo 3.) For any k ě 3 and N “ 2k we have XN ` 1 “
pXN{2 `XN{4 ´ 1q ¨ pXN{2 ´XN{4 ´ 1q mod 3 and both factors are irreducible in F3rXs.

Proof. This follows directly from [26, Theorem 2.47].

Lemma 3 (Hensel Lemma for powers of prime integers) Let R be the ring ZrXs{pF pXqq for some
monic polynomial F P ZrXs. For any prime p, if u P Rpe is invertible mod p (i.e. it is invertible in Rp)
then u is also invertible in Rpe .

Lemma 4 (Invertibility of random matrices) For Q a power of 3, and any dimension k, if D is a
distribution over RQ such that D mod 3 is (statistically close to) uniform over R3, then, with overwhelming
probability D Ð Dkˆk is invertible.

Proof. By Fact 2, the ring R3 factors as R3 “ F1 ˆ F2, where F1 “ R{p3, P1pXq “ XN{2 `XN{4 ´ 1q and
F2 “ R{p3, P2pXq “ XN{2 ´XN{4 ´ 1q are fields of order q “ #Fi “ 3N{2. Note that D mod p3, PipXqq is
(statistically close to) a uniform random variable over Fkˆki . We recall that the number of invertible matrices
over the field of size q is given by

#GLpk, qq “ qk
2
k´1
ź

i“0

p1´ qi´kq

ě qk
2

p1´
k
ÿ

i“1

q´iq ě qk
2

p1´
1

q

ÿ

iě0

q´iq “ qk
2

p1´
1

q ´ 1
q.

In particular D mod p3, PipXqq is invertible except with probability 1{pq ´ 1q. By a union bound, D is
invertible modulo both p3, P1pXqq and p3, P2pXqq, except with negligible probability 2{pq´1q “ 2{p3N{2´1q.
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It follows that D is invertible modulo 3, and by Hensel lifting (Lemma 3), also modulo Q. Indeed, Hensel
lemma extends to matrices over R, considering that a matrix M P Rkˆk

Q is invertible if and only if its
determinant over RQ is invertible.

3 LWE Symmetric Encryption

We recall the definition of the most basic LWE symmetric encryption scheme (see [4,32,3]). LWE symmetric
encryption is parametrized by a dimension n, a message-modulus t ě 2, a ciphertext modulus q “ nOp1q and
a randomized rounding function χ : RÑ Z. The message space of the scheme is Zt. (Typically, the rounding
function has error distribution |χpxq ´ x| ă q{2t, and t “ 2 is used to encrypt message bits.) The (secret)
key of the encryption scheme is a vector s P Znq , which may be chosen uniformly at random, or as a random
short vector. The encryption of a message m P Zt under key s P Znq is

LWEt{qs pmq “ pa, χpa ¨ s`mq{tq mod qq P Zn`1
q (1)

where a Ð Znq is chosen uniformly at random. Notice that when t divides q, the encryption of m equals
pa,a¨s`e`mq{t mod qq, where the error e is chosen according to a fixed noise distribution χp0q. A ciphertext
pa, bq is decrypted by computing

m1 “ ttpb´ a ¨ sq{qs mod t P Zt. (2)

We write LWEt{qs pmq to denote the set of all possible encryptions of m under s. The error of a ciphertext

pa, bq P LWEt{qs pmq is the random variable errpa, bq “ pb ´ a ¨ s ´ mq{tq mod q describing the rounding
error, reduced modulo q to the centered interval r´q{2, q{2s. Notice that the error errpa, bq depends not
just on pa, bq, but also on s, q, t and m. Also, in the absence of any restriction on the error, a ciphertext

pa, bq P LWEt{qs pmq can be any vector in Zn`1
q . We write LWEt{qs pm,Eq to denote the set of all ciphertexts

c P LWEt{qs pmq with error bounded by |errpcq| ă E. It is easy to check that for all pa, bq P LWEt{qs pm, q{2tq,
the decryption procedure correctly recovers the encrypted message:

ttpb´ a ¨ sqqs mod t “

Z

t

q
¨

´q

t
m` e

¯

V

“

Z

m`
t

q
e

V

“ m mod t

because t
q |e| ă 1{2.

Modulus switching. LWE ciphertexts can be converted from one modulus Q to another q using the (scaled)
randomized rounding function r¨sQ:q : ZQ Ñ Zq defined as

rxsQ:q “ tqx{Qu`B

where B P t0, 1u is a Bernoulli random variable with PrtB “ 1u “ pqx{Qq ´ tqx{Qu P r0, 1q. Notice that
ErrxsQ:qs “ tqx{Qu`ErBs “ qx{Q and |rxsQ:q ´ pqx{Qq| ă 1 with probability 1. In particular, the rounding
error rxsQ:q ´ pqx{Qq is subgaussian of parameter

?
2π. The randomized rounding function is applied to

vectors (e.g., LWE ciphertexts) coordinatewise:

ModSwitchpa, bq “ rpa, bqsQ:q “ ppra1sQ:q, . . . , ransQ:qq, rbsQ:qq. (3)

Lemma 5 For any s P Znq , m P Zt and ciphertext c P LWEt{Qs pmq with subgaussian error of parame-

ter σ, the rounding ModSwitchpcq “ rcsQ:q is a LWEt{qs pmq ciphertext with subgaussian error of parameter
a

pqσ{Qq2 ` 2πp||s||2 ` 1q.

Proof. Let c “ pa, bq and rcsQ:q “ pa1, b1q. We have a1i “
q
Qai ` ri and b1 “ q

Qb ` r0 for independent

subgaussian rounding errors r0 . . . rn of parameter
?

2π. It follows that c1 is an LWEt{qs encryption of m
with error errpc1q “ b1 ´ a1 ¨ s ´ qm

t “ pqerrpcq{Qq ` r0 ´
řn
i“1 siri. Since errpcq, r0, . . . , rn are independent

subgaussian variables, their sum is also subgaussian, with parameter
a

pqσ{Qq2 ` 2πp||s||2 ` 1q.
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In practice, one may use the non-randomized rounding function t ¨ s. Then, the error of the ouput of
ModSwitch, according to the central limit heuristic is expected to be close to a gaussian of standard deviation
a

pqσ{Qq2 ` p||s||2 ` 1q{12, based on the randomness of a. The factor 1{12 comes from the standard deviation
of a uniform distribution in r´ 1

2 ,
1
2 s.

Key Switching. Key switching allows to convert an LWE encryption under a key z P ZNq into an LWE
encryption of the same message (and slightly larger error) under a different key s P Znq . The key switching
procedure is parametrized by a base Bks, and requires as an auxiliary input a suitable encryption of z
under s. Specifically, let ki,j,v P LWEq{qs pvziB

j
ksq be an encryption of vziB

j
ks under z, for all i “ 1, . . . , N ,

v P t0, . . . , Bksu and j “ 0, . . . , dks ´ 1, where dks “ rlogBks
qs. (Notice that the message vziB

j
ks is interpreted

as a value modulo t “ q, and therefore the ciphertext ki,j,v is not typically decryptable because it has error

bigger than q{2t “ 1{2.) Given the switching key K “ tki,j,vu and a ciphertext pa, bq P LWEt{qz pmq, the key

swtching procedure computes the base-Bks expansion of each coefficient ai “
ř

j ai,jB
j
ks, and outputs

KeySwitchppa, bq,Kq “ p0, bq ´
ÿ

i,j

ki,j,ai,j . (4)

Lemma 6 The key switching procedure, given a ciphertext c P LWEt{qz pmq with subgaussian error of pa-

rameter α, and switching keys ki,j,v “ LWEq{qs pvziB
j
ksq and subgaussian error of parameter σ, outputs an

encryption KeySwitchpc, tki,j,vuq P LWEt{qz pmq with subgaussian error of parameter
?
α2 `Ndksσ2.

Proof. Let ei,j,v “ errpki,j,vq, so that ki,j,v “ pa
1
i,j,v,a

1
i,j,v ¨s`vziB

j
ks`ei,j,vq for some a1i,j,v P Znq . The output

of the key switching procedure is KeySwitchpa, bq “ pa1, b1q where a1 “ ´
ř

i,j a1i,j,ai,j and

b1 “ b´
ÿ

i,j

pa1i,j,ai,j ¨ s` ai,jziB
j
ks ` ei,j,ai,j q “ b´ a ¨ z` a1 ¨ s´ E,

where E “
ř

i,j ei,j,ai,j is subgaussian with parameter σ
?
Ndks. It follows that pa1, b1q has error

errpa1, b1q “ b1 ´ a1 ¨ s´
qm

t
“ b´ a ¨ z´ E ´

qm

t
“ errpa, bq ´ E.

Since errpa, bq and E are both subgaussian, their difference is also subgaussian with parameter
?
α2 `Ndksσ2.

4 Our FHE: high level structure

In this section we describe the high level structure/design of our fully homomorphic (symmetric) encryption
scheme. (This private-key FHE scheme can be transformed into a public-key one using standard techniques.)
The encryption scheme itself is just the standard LWE symmetric encryption described in Section 3. For now
we focus on encrypting single bits, and evaluating boolean NAND circuits. In summary, we need to solve the
following problem: given two ciphertexts ci P LWE2{q

s pmiq (for i “ 0, 1), compute a ciphertext c P LWE2{q
s pmq

where m “ 1´m0 ¨m1 “ m0 ¯̂ m1 is the logical NAND of m0 and m1.

4.1 A new Homomorphic NAND gate

The main idea to perform this encrypted NAND computation is to assume that the input ciphertexts
are available in a slightly different form. (We will see later how to perform the required transformation.)

Namely, assume that the input bits m0,m1 P t0, 1u are encrypted as ciphertexts ci P LWE4{q
s pmi, q{16q using

a slighly different message modulus t “ 4 and error bound E “ q{16. (Compare to the standard binary LWE
encryption parameters t “ 2 and E “ q{4.)
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Lemma 7 There is a simple algorithm

HomNAND : LWE4{q
s pm0, q{16q ˆ LWE4{q

s pm1, q{16q Ñ LWE2{q
s pm0 ¯̂ m1, q{4q

that on input two ciphertexts ci P LWE4{q
pmi, q{16q (for i “ 0, 1) encrypting binary messages m0,m1 P t0, 1u,

outputs an encryption HomNANDpc0, c1q P LWE2{q
pm, q{4q of their logical NAND m “ 1´m0m1 “ m0 ¯̂ m1

with error less than q{4.

Proof. The NAND of the two ciphertexts ci “ pai, biq can be easily computed as

pa, bq “ HomNANDppa0, b0q, pa1, b1qq “

ˆ

´a0 ´ a1,
5q

8
´ b0 ´ b1

˙

.

(Remember that we assumed for simplicity that 8 “ 2t divides q, and therefore 5q{8 is an integer.) The
resulting ciphertext satisfies

b´ as´ p1´m0m1q
q

2
“
q

4
p
1

2
´ pm0 ´m1q

2q ´ pe0 ` e1q “ ˘
q

8
´ pe0 ` e1q.

So, pa, bq “ HomNANDpc0, c1q is a regular LWE2{q
s encryption of 1´m0m1 “ m0 ¯̂ m1 with error at most

ˇ

ˇ

ˇ
˘
q

8
´ pe0 ` e1q

ˇ

ˇ

ˇ
ă
q

8
`

q

16
`

q

16
“
q

4
.

Notice that the HomNAND function can be computed from the input ciphertexts without using any key
material, and it requires just a handfull of additions modulo q. This shows that in order to compute the
NAND of two ciphertexts (and therefore homomorphically evaluate any boolean circuit on LWE encryptions),
it is enough to be able to compute a refreshing function

Refresh : LWE2
spm, q{4q Ñ LWE4

spm, q{16q.

The refreshing function will require some key material, and it will be substantially more expensive of
HomNAND, accounting essentially for the whole cost of homomorphic circuit evaluation. Notice that the
number of refresh computations required to evaluate a circuit with g gates is n ` g (one for each circuit
input and gate-output wire). Assuming that the encrypted input bits are already provided in refreshed form

(e.g., by using the modified LWE4{q
pm, q{16q encryption scheme), one needs just 1 refresh evaluation per

gate, applied to the output of the gate, rather than 2 evaluation (one for each input into the gate). So,
the computational cost of homomorphically evaluating a NAND gate is essentially that of a single refresh
function computation.

Improvement. Previous methods to compute homomorphic AND gates on LWE ciphertexts require errors of
input to be at most Op

?
qq, against Opqq in our case. Our technique therefore relaxes the requirement on

the Refresh procedure, potentially making the overall scheme faster.

4.2 Refreshing via Homomorphic Accumulator

We now move to the description of the refreshing function. As in all previous works on FHE, our cipher-
text refreshing is based on Gentry’s bootstrapping technique of homomorphically evaluating the decryption
function. More specifically, in our setting, given an LWE ciphertext pa, bq P LWE2{q

s pmq, we compute an en-
cryption Epmq of the same message under a different encryption scheme E by homomorphically evaluating
the LWE decryption procedure (2) on the encrypted key Epsq to yield

t2pb´ a ¨ Epsqq{qs mod 2 » Epmq.

We recall that the final goal of the refreshing function is to obtain an encryption in LWE4{q
pm, q{16q. However,

this target encryption scheme is not versatile enough to perform the required homomorphic computation.
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Instead, following [2], we use an intermediate encryption scheme E with message space Zq, which allows to
encrypt the secret s P Znq componentwise Epsq “ pEps1q, . . . , Epsnqq and supports the efficient computation of
affine transformations b´a¨Epsq “ Epb´a¨sq. Once this computation is done, it remains to homomorphically
extract the most significant bit of b´a ¨ s as an LWE ciphertext. We summarize our requirements under the
following definition. Notice that the definition makes use of two (typically different) encryption schemes:

– a scheme E, which is used internally by the accumulator, and it is left unspecified to allow a wider range
of possible implementations, and

– a target encryption scheme, which for simplicity we fix to LWEt{q as required by our application.

The definition is easily generalized to make it parametric also with respect to the target encryption scheme.

Definition 1 (Homomorphic Accumulator). A Homomorphic Accumulator Scheme is a quadruple of
algorithms pE, Init, Incr,msbExtractq together with moduli t, q, where E and msbExtract may require key

material related to an LWE key s. For brevity, we write ACC Ð v for ACC Ð Initpvq, and ACC
`
Ð Epvq for

ACCÐ IncrpACC, Epvqq. For any v0, v1 . . . v` P Zq, after the sequence of operations

ACCÐ v0; for i “ 1 to ` do ACC
`
Ð Epviq

we say that we say that ACC is an `-encryption of v, where v “
ř

vi mod q.
A Homomorphic Accumulator Scheme is said E-correct for some function E if, for any `-encryption ACC

of v, computing c Ð msbExtractpACCq ensures c P LWEt{qs pv, Ep`qq with overwelming probability.

In order to use the accumulator in our refreshing function, we set t “ 4 and we will need Ep`q ď q{16. Note
that the correctness requirement assumes that all ciphertexts added to the accumulator are freshly generated
and independent. (In particular, although the internal encryption scheme E may enjoy useful homomorphic
properties, the ciphertexts Epviq are generated by a direct application of the encryption function E on vi,
rather than performing homomorphic operations on ciphertexts.)

Using this accumulator data structure, we describe a family of refreshing procedures (exhibiting different
space/time trade-offs) parametrized by an integer Br. (The subscript in Br stands for Refresh, and it is
used to distinguish Br from similar basis parameters used elsewhere in the paper.) The refreshing procedure

takes as input a ciphertext pa, bq P LWE2{q
s pm, q{4q and a refreshing key K consisting of the encryptions

Ki,c,j “ EpcsiB
j
r mod qq for c P t0, . . . , Br ´ 1u, j “ 0, . . . , dr ´ 1 (where dr “ rlogBr

qs) and i “ 1, . . . , n. (In
total, nBrdr « npBr{ logBrq log q ciphertexts). It then proceeds as described in Algorithm 1.

Algorithm 1 RefreshKpa, bq, for K “ tKi,c,juiďn,cďBr,jďdr

ACCÐ b` pq{4q
for i “ 1, . . . , n do

Compute the base-Br representation of ´ai “
ř

j B
j
r ¨ ai,j pmod qq

for j “ 0, . . . , dr ´ 1 do ACC
`
Ð Ki,ai,j ,j

end for
Output msbExtractpACCq.

Theorem 8 If pE, Init, Incr,msbExtractq is a correct Homomorphic Accumulator Scheme, then the Refresh

procedure, on input any ciphertext c P LWE2{q
s pm, q{4q, and a valid refreshing key K “ tKi,c,j “ EpcsiB

j
r qui,c,j,

outputs a ciphertext RefreshKpcq P LWEt{qs pm, Epndqq.

Proof. The refreshing procedure initializes the accumulator to b ` q{4, and then adds nd (distinct, freshly
generated) ciphertexts Ki,ai,j ,j “ Epai,jsiB

j
r q to it. So, the final output is (with overwhelming probability)
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an LWE encryption with error at most Epndq. The implicit value v of the accumulator at the end of the
main loop is

v ´
q

4
“ b`

ÿ

i,j

ai,jsiB
j
r “ b`

ÿ

i

si
ÿ

j

Bjr ai,j “ b`´
ÿ

i

aisi “
q

2
m` e

where e is the error of the input ciphertext pa, bq. Since |e| ă q{4 by assumption, we have 0 ă e` q{4 ă q{2.
If follows that 0 ă v ă q{2 if m “ 0, and q{2 ă v ă q if m “ 1. Therefore, msbExtractpACCq produces a

LWEq{ts pm, Epndqq encryption as claimed.

5 Homomorphic Accumulator from Ring-GSW

In this section we show how to implement the homomorphic accumulator scheme needed by our refreshing
procedure. As a reminder, the homomorphic accumulator is parametrized by a modulus q “ 2k (which we
assume to be a power of 2), an integer t (in our main application, t “ 4), and an encryption scheme E with
message space Zq.

Our construction follows the suggestion of Alperin-Sheriff and Peikert [2] to generalize their scheme.
Essentially, we avoid the costly construction of the additive group Zq as a subgroup of some symmetric
group S` (represented as permutation matrices). Instead, we directly implement Zq as the multiplicative
(sub)group of the roots of unity of the ring R.

5.1 Description

The scheme is parametrized by a modulus Q, a dimension N “ 2K such that q divides 2N , and a base Bg.

(Here the subscript in Bg stands for gadget.) For simplicity of the analysis, we will assume that Q “ B
dg
g

for some integer dg, and that Bg is a power of 3. We use the rings R “ ZrXs{pXN ` 1q and RQ “ pR{QRq
(see Section 2), and an additional parameter u, which should be an invertible element of ZQ close to Q{2t.
Since Q is a power of 3, either tQ{2tu or rQ{2ts is invertible, and we can let u be one of these two numbers,
so that the distance δ “ u´Q{2t is at most |δ| ă 1.

Messages m P Zq are encoded as roots of unity Y m P R where Y “ X2N{q. Notice that the roots of unity
G “ xXy “ t1, X . . . ,XN´1,´1,´X . . . ,´XN´1u form a cyclic group, and the message space Zq » xY y
is a subgroup of G » Z2N . Our Homomorphic Accumulator Scheme is based on a variant of the GSW
cryptosystem and works as follows:

– Ezpmq, on input a message m and a key z P R, picks a P R2dg
Q uniformly at random, and e P R2dg » Z2dgN

with a subgaussian distribution χ of parameter ς, and outputs

Ezpmq “ ra,a ¨ z ` es ` uY mG P R2dgˆ2
Q

where G “ pI, BgI, . . . , B
dg´1
g Iq P R2dgˆ2

Q .

– Init (ACCÐ v), on input v P Zq, simply sets ACC :“ uY v ¨G P R2dgˆ2
Q .

– Incr (ACC
`
Ð C), on input the current accumulator content ACC P R2dgˆ2

Q and a ciphertext C P R2dgˆ2
Q ,

first computes the base-Bg decomposition of u´1ACC “
řdg
i“1B

i´1
g Di (where each Di P R2dgˆ2 has

entries with coefficients in t
1´Bg

2 , . . . ,
Bg´1

2 u), and then updates the accumulator to

ACC :“ rD1, . . . ,Ddg s ¨C.

An efficient algorithm for Incr using FFT/NTT will be detailed in Section 5.3.
– msbExtract (defined by Algorithm 2) uses a key-switching auxiliary input K (as defined in Section 2) and

a testing vector t “ ´
řq{2´1
i“0

ÝÑ
Y i. (On a first reading, the reader may want to focus on the special case

where q “ 2N , where the testing vector is just t “ ´p1, 1, . . . , 1q.) The algorithm follows. The crux of

matter for the extraction of the msb is that t ¨
ÝÑ
Y v “ ´1 if 0 ď i ă N , and `1 if N ď i ă 2N .
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Algorithm 2 msbExtractKpACCq, for K “ tki,j,wuiďN,jďBks,wďdks

Require: A switching key K “ tki,j,wui,j,w from z to s: ki,j,w Ð LWEq{q
s pw ¨ zi ¨ d

j
ksq. An accumulator ACC that is an

`-encryption of v.

1: rat,bt
s Ð pr

ÝÑ
0

t
, tt,

ÝÑ
0

t
, . . . ,

ÝÑ
0

t
s ¨
ùùùñ
ACC q P Z2N

Q //
ùùùñ
ACC P Z2Ndgˆ2N

2: cÐ pa, b0 ` uq P LWEt{Q
ÝÑz pmsbpvqq

3: c1 Ð KeySwitchpc,Kq P LWEt{Q
s pmsbpvqq

4: c2 Ð ModSwitchpc1q P LWEt{q
s pmsbpvqq

5: Return c1.

Before providing a detailed analysis (Theorem 10) we explain the ideas behind the definitions of our
homomorphic accumulator. As already mentioned, the scheme is based on a variant of the (private-key, ring-
based) GSW encryption scheme. There are two main differences between our scheme and the original GSW
scheme: the use of the extra parameter u (which plays an important role in our msb extraction algorithm),
and the fact that the messages are encrypted in the exponent (of Y ). At any point in time, the accumulator
data structure holds the encryption Ezpvq of some value v P Zq under a fixed key z. The initialization
step Init simply sets ACC to a trivial (noiseless) encryption of v. The increment procedure is similar to the
multiplicative homomorphism of the GSW scheme [22]. Since our messages are in the exponent, this provides
homomorphic additions of ciphertexts.

5.2 Correctness

In this subsection we prove that ACC is a correct Homomorphic Accumulator Scheme for an appropriate
error function E . The main result is given in Theorem 10. But first, let us detail the behaviour of individual
operations.

The Init operation ACC Ð v sets up ACC to a noiseless encryption of v under Ez for any secret key z.
The homomorphic property of Incr follows from the following claim.

Fact 9 For any messages m,m1 P Zq, if ACC “ ra,a ¨ z ` es ` uY mG and C “ ra1,a1 ¨ z ` e1s ` uY m
1

G,

then ACC
`
Ð C has the form ra2,a2 ¨ z ` e2s ` uY m`m

1

G for e2 “ e` rC1, . . . ,Cdg s ¨ e
1.

The last operation msbExtract is slightly more intricate. Let us put aside the key and modulus switching
steps, and consider, as in the algorithmic definition of msbExtract, the vector

“

at, b0
‰

Ð tt ¨
”

ùñ
a ,
ÝÑ
b1
ı

where ra, b1s P R1ˆ2 is the second row of the accumulator ACC P R2dgˆ2. If ACC is a GSW encryption of

a value v, ra, b1s verifies
ÝÑ
b1 “

ùñ
a ¨ ÝÑz ` u ¨

ÝÝÑ
Y v ` e for some small error e. Let’s write

ÝÝÑ
Y v as the vector

xv¨2N{q P ZNQ defined as follows:

xi “
ÝÝÑ
Xi “ p 0 , . . . , 0

looomooon

i´1

, 1, 0 . . . , 0q if i P t0 . . . N ´ 1u, xi “ ´xi´N otherwise.

For i P Z2N , summing all coordinates of xi results in p´1qmsbpiq, and tt ¨
ÝÝÑ
Y v “ ´p´1qmsbpvq for any v P Zq.

It remains to recall the identity 1´ p´1qx “ 2x for any bit x P t0, 1u to rewrite

c “ pa, b0 ` uq “ pa,a ¨ÝÑz ` t ¨ e` 2umsbpvqq where a “ tt ¨
ùñ
a ,

which is an LWE
t{Q
ÝÑz encryption of msbpvq since u « Q{2t. We may now move to the formal correctness

statement, including bound on error size.
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Theorem 10 Assuming the hardness Ring-LWER,Q,χ the above Homomorphic Accumulator Scheme is E-
correct with error function

Ep`q “

d

q2

Q2

´

ς2B2
g ¨ ` ¨ q ¨Ndg ` σ

2Ndks

¯

` }s}2 ¨ ωp
a

log nq.

We obtain Theorem 10 by combining the following Lemma 11 with the correctness of Key Switching and
Modulus Switching, Lemmata 6 and 5. The hardness assumption is not strictly necessary for correctness, but
does simplify the proof by allowing one to assume that fresh ciphertexts C Ð Ezp¨q behave as independent
uniform random matrices.

Lemma 11 (Intermediate error) Assume the hardness of Ring-LWER,Q,χ, and let ACC be an `-encryption

of v where ` ě ωp
?

logNq. Then the ciphertext c P LWEt{Qz pmsbpvqq as define in line 2 of algorithm 2 while
computing msbExtractpACCq has an error errpcq which is, under the randomness used in the calls to Ezp¨q, a
subgaussian variable of parameter β and mean 2δ where β “ OpςB

a

q ¨Ndg ¨ `q.

Let us start with the following fact.

Fact 12 (Spectral Norm of Decomposed Matrices) Let Cpiq Ð Ezpv
piqq be fresh encryptions of vpiq P

Zq for all i ď ` “ ωp
?

log nq, and assume that the Cpiq’s are indistinguishable from random without the

knowledge of z. Consider ACCp`q as the value of ACC after the sequence of operations:

ACCÐ vp0q; for i “ 1 . . . ` do ACC
`
Ð Cpiq.

Set Dpiq “ rD1 . . .Ddg s to be the decomposition of u´1ACCpiq “
řdg
j“1B

j´1
g Dj. Then, with overwhelming

probability we have

s1

´”

Dp0q,Dp1q . . . ,Dp`´1q
ı¯

“ OpBg

a

Ndg ¨ `q.

Proof. Because the spectral norm s1prD
p0q,Dp1q . . . ,Dp`´1qsq is efficiently computable from the Cpiq’s, we

can assume without loss of generality that the Cpiq’s are truly uniformly random. We prove by induction on
` that

1. for 1 ď i ď `, the Dpiq’s follow independents uniform distributions in R2dgˆ2dg
rBgs

where RrBgs is the set of

polynomials with coefficients in t
1´Bg

2 . . .
Bg´1

2 u.

2. for 0 ď i ď `, Dpiq is invertible with overwhelming probability.

The implication 1. ñ 2. follows from Lemma 4. Indeed the uniform distribution over RrBgs is still a

uniform distribution when taken mod3 since 3 divides Bg. Note that Dp0q “ Y v0 ¨ I2D is invertible.

We may now start the induction and assume that Dp`´1q is invertible. It follows that ACCp`q “ Dp`´1q¨Cp`q

is uniformly random in R2dgˆD
Q and independent of all Dpiq for i ă `. We conclude the induction using the

fact that the decomposition step is a bijective map R2dgˆ2
Q Ñ R2dgˆ2dg

rBgs
.

The coefficients of D “ rDp1q . . . ,Dp`´1qs P R2dgˆ2dg` are independents subgaussian variables with pa-
rameter OpBgq. It follows by lemma 1 that

s1p
”

Dp0q,Dp1q . . . ,Dp`´1q
ı

q ď OpBg

a

Ndg ¨ `q.

Proof (of Lemma 11). Applying ` times Fact 9, we can show that ACCp`q has the form

ACCp`q “ rA,A ¨ z ` es ` uXvG with e “
ÿ̀

i“1

Dpi´1qepiq
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where epiq is the error used in the encryption Cpiq Ð Ezpv
piqq. The final error in c is e “ r

ÝÑ
0
t
, tt,

ÝÑ
0
t
, . . . ,

ÝÑ
0
t
s¨

ÝÑe . We rewrite

e “
”

ÝÑ
0
t
, tt,

ÝÑ
0
t
, . . . ,

ÝÑ
0
t
ı

¨

ùùùùùùùùùùùùùùùñ”

Dp0q, . . . ,Dp`´1q
ı

¨

ÝÝÝÝÝÝÝÝÝÝÝÑ´

ep1q, . . . , ep`q
¯

.

Recall that }t} “
a

q{2, and by Fact 12, we have that
ùùùùùùùùùùùùùùñ
rDp0q, . . . ,Dp`´1qs has spectral normOpBg

a

Ndg ¨ `q.

We can rewrite e “ v ¨
ÝÝÝÝÝÝÝÝÝÝÝÑ
pep1q, . . . , ep`qq where }v} “ OpBg

a

q ¨Ndg ¨ `q and
ÝÝÝÝÝÝÝÝÝÝÝÑ
pep1q, . . . , ep`qq is a subgaussian

vector of parameter ς. We conclude that the final error is subgaussian of parameter β “ OpςBg

a

qNdg ¨ `q.

5.3 Efficient Accumulator Increment

To efficiently implement the accumulator increment Incr, one needs to keep the accumulator ACC, as well as
the precomputed ciphertexts from the bootstrapping key, in FFT/NTT format.

Algorithm 3 IncrpzACC P pR2dgˆ2, pC P pR2dgˆ2q

Compute ACCÐ FFT´1
pzACCq

Decompose u´1ACC “
řdg

i“1 B
i´1
g Di, and set D “ rD1 . . .Ddg s P R2dgˆ2dg

Compute pDÐ FFTpDq
Return pDd pC

Each increment requires 4dg backward FFT’s and 4d2g forward FFT’s. If one uses the Number Theoretic
Transform rather than the complex FFT, 4dg forward transforms can be traded for a few additions modQ

by computing pD1 “ u´1
zACC´

řdg
i“2B

i´1
g ¨ pDi mod Q.

5.4 Asymptotic parameters and efficiency

Secret keys and errors. We choose the secret key s of the LWE scheme to be binary in order to minimize the
final error parameter Epndq that depends on }s} (Theorem 10). The hardness of LWE for such a distribution
of secrets was established in [7]. The randomized rounding used for errors in the switching key ki,j,v Ð

LWEq{qs pv ¨ zi ¨ d
j
ksq, is χσpxq “ DZ,x,σ, the discrete gaussian of standard deviation σ centered in x.

The secret z P R of the Ring-GSW scheme follows the discrete gaussian distribution χςp0q, and the errors
follow the gaussian randomized rounding function χς .

Parameters. For simplicity, we take the base Bg, Br, Bks “ Θp1q to be fixed, which sets dg, dr, dks “ Oplog nq
provided that q,Q “ polypnq. Error parameters are set to σ, ς “ ωp

?
log nq. For the dimension of the Ring-

GSW scheme, we take 2N “ q “ Θpnq. It remains to set Q “ n2 ¨ log n ¨ωplog nq, and we obtain a refreshing
error Epndq “ Opnq ď q{16.

Efficiency and comparison. The running time of the Refresh operation is dominated by dn homomorphic
operations. For comparison, the scheme of [2] requires dn ¨Oplog3 q{ log log qq homomorphic operations.

In practice this polylogarithmic is far from negligible, e.g. q “ 2 ¨ 3 ¨ 5 ¨ 7 ¨ 11 “ 2310 gives a factor
22` 32` 52` 72` 112 “ 208. Memory usage is also decreased by a factor Oplog2 q{ log log qq, that is a factor
28 in our previous example.

Also, we do not rely on randomized decomposition for the increment operation ACC
`
Ð C. While this

randomization is asymptotically less expensive than the FFT step by a factor logN , avoiding it makes the
implementation simpler and potentially faster considering the cost of randomness in practice.

Finally, our Refresh procedure (before key and modulus switching) produces a ciphertext with subgaussian
error of parameter α “ Opn2 log nq in our scheme against α “ Θpn5{2 log3 n{log log nq in [2].
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LWE4{q
s pm1, q{16q

LWE4{q
s pm2, q{16q

NAND LWE2{q
s pm, q{4q

LWE4{Q
ÝÑz pm, E1pndrqq

ACC operations

LWE4{Q
s pm, E2pndrqq

KeySwitch

LWE4{q
s pm, Epndrqq

ModSwitch

Fig. 1: Cycle for a simple NAND gate, using the Homomorphic property of Section 3

6 Parameters, Implementation and Benchmark

We start by presenting the methodology to evaluate the security of our scheme in Section 6.1, propose param-
eters in Section 6.2, discuss FFT implementation details in Section 6.3 and conclude with the benchmarks
in Section 6.4.

6.1 Security estimation

The security estimate methodology follows the analysis of [27]. To build an ε-distinguisher against LWE in
dimension n, modulus q and a randomized rounding function χ of standard deviation σ, Lindner and Peikert
estimate that the best known attack by lattice reduction requires to achieve a root Hermite factor of

δ “ δ-LWEpn, q, σ, εq “ 2plog
2
2 ρq{p4n log2 qq where ρ “ pq{σq ¨

a

2 lnp1{εq (5)

To estimate the security of binLWEn,q,σ, going through the security reduction of [7] would be a very
pessimistic approach. Still, binLWEn,q,σ doesn’t enjoy as much concrete security as LWEn,q,σ. Indeed, binary
secrets allow an attacker to switch to a smaller modulus q1 without affecting the relative error 1{ρ much
(which is actually the property we exploit for the correctness of our scheme). Indeed, switching from modulus
q to q1, one obtains essentially binLWE samples with errors parameter σ1 “

a

pq1{qq2σ2 ` }s}{12 « σq1{q,
following Lemma 5. For comparison, such modulus switch on usual LWE produces errors of parameter σ1 “
a

pq1{qq2σ2 ` σ2Opnq « σ
?
n.

In light of this attack, we compute the root Hermite factor for binLWE as follows:

δ-binLWEpn, q, σ, εq “ min
q1ďq

δ-LWEpn, q1, σ1 “
a

pq1{qq2σ2 ` n{24, εq. (6)

Such minimum will be computed using standard numerical analysis tools for the security estimation of
our set of parameters below.

6.2 Proposed Parameters

Relaxed constraints on Bg and Q. In practice we will ignore the constraints of the correctness statement
(Theorem 10) that Bg is a power of 3 and Q is a power of Bg. Those constraints are artifact of our proofs,

we will only require that B
dg
g ě Q. We have verified that in practice this relaxation does not signficantly

affects the distribution of errpRefreshpcqq.
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Accumulated Errors. According to the central limit heuristic, the final error errpRefreshpcqq of a refreshed
ciphertext behaves as a Gaussian of standard deviation:

β “

d

q2

Q2

ˆ

ς2 ¨
B2

r

12
¨ ndr ¨

q

2
¨ 2Nd1 ` σ2Ndks

˙

`
}s}2 ` 1

12
.

The factors 1
12 follows from the fact that a uniform random variable in r- 12 ,

1
2 s has variance 1

12 .
The factor 2d1 (instead of 2dg) takes account that the final coordinate of a decomposition of an element

modQ over base Bg is bounded by Q{2B
dg
g rather than Bg{2. Therefore we set d1 “ Bg ´ 1`Q{B

dg
g (in the

following parameters we have d1 “ 2.5 instead of dg “ 3).
Additionally, we assume that }s} ď n{2, which is true for half of the random secrets s P t0, 1un. If not, one

may simply discard this s during key generation and resample a fresh secret key. To thwart an attack that
would shift all coordinates of s by ´1{2, we also randomize the signs of each entry of s, which intuitively,
can only increase the security (and does not affect the error analysis).

We evaluate the error probability as the probability that two independently refreshed ciphertexts c1, c2
verify |errpc1q ` errpc2q| ă q{8, which is sufficient but looser than |errpciq| ă q{16.

Parameters.

LWE parameters: n “ 500 Q “ 232, σ “ 217, q “ 29.
Ring-GSW parameters: N “ 210, ς “ 1.4.

Gadget Matrix: Bg “ 211, dg “ 3, u “ Q
8 ` 1.

Bootstrapping Key parameters: Br “ 23, dr “ 2.
Key Switching Key parameters: Bks “ 24, dks “ 7.

Efficiency.

Bootstrapping Key Size: 4nNdrBrdg log2Q bits “ 1032 MBytes.
Key Switching Key Size: nNBksdks log2Q bits “ 314 MBytes.
FFTs per NAND gate: 4ndrdgpdg ` 1q “ 48, 000 FFTs.

Correctness.

Final error parameter: β “ 6.94.

Pr. of error per NAND: p “ 1´ erfpr{
?

2q ď 2´31 where r “ q{8
?
2β

.

The error probability can be brought down to 2´45 by applying the HomNAND operation before KeySwitch
and ModSwitch.

Security.

Security of the LWE scheme δ-binLWEpn,Q, σ, 2´64q “ 1.0064.
Security of the Ring-GSW scheme δ-LWEpN,Q, ς, 2´64q “ 1.0064.

The security of the Ring-GSW scheme is evaluated ignoring the ring structure, since there are yet no known
algorithms that exploit such structure.

According to the predictions of [10], the BKZ algorithm requires a block size greater than 190 to reach a
root hermite factor of 1.0065. For such block size, each of the many calls to the enumeration routine would
visit more than 2100 nodes of the pruned enumeration tree. This is to be considered as a preliminary security
analysis, demonstrating the feasibility of our construction. For a more precise security analysis, one should
include the more involved results of Liu and Nguyen [28], and any new advances on lattice cryptanalysis.

6.3 FFT implementation

To avoid implementation technicalities related to working in a prime field FQ and potentially expensive
reduction modQ, we choose to rely on the complex FFT rather than the Number Theoretic Transform, that
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is, we use the complex primitive 2N -th root of unity ω “ expp2πı{2Nq rather than a primitive root in FQ.
This allows us to rely on a flexible and optimized library for FFT, namely, the Fastest Fourier Transform in
the West [13] and choose Q as a power of two, essentially offering reductions modQ for free.

Technically, one wishes to compute the so-called negacyclic-FFT of rank N , which can be extracted
from the FFT in rank 2N by only keeping the odd indexes of the result. Nevertheless, a factor 2 is saved
considering that we are computing FFT on real-data.

Due to vectorized instructions, this implementation of FFT at double-precision reaches up to 6 Gflops
on a single 64-bits Intel Core running at 3 Ghz. We measure a running time of 10 microseconds per FFT at
dimension 2N “ 2048; which fits the predictions4. While it is unclear if either the choice of FFT over NTT
is optimal, or if this particular implementation is, this prototype is enough to support our claim.

Precision issues. One crucial question when using complex FFT is the precision requirement. In our case
(see Section 5.3), FFT is used to multiply two integer polynomials with coefficients in ZQ, yet one of them
is guaranteed to have coefficients smaller than Bg{2. Without reduction modQ, the resulting product is
expected to have coefficients of size S “ BgQ

?
N{4. The final result is guaranteed to be correct if the final

relative error ε verifies Sε ď 1{2. For our set of parameters, we have S “ 246.
Asymptotically, the relative error growth during FFT is known to be OplogNq in the worst case and

Op
?

logNq on average [14,33]. In practice, at double precision (ε0 “ 2´54 relative error for each operation)
FFTW [13] in rank 2N “ 2048 is reported5 to produce errors of standard deviation ε “ 2´52 (which match
« ε0 ¨

?
logN). It seems barely sufficient to ensure perfect correctness of each computation of a products

of polynomials. Yet, if small errors are introduced by floating-point approximations, this doesn’t necessary
breaks the correctness of the scheme. Indeed, this errors can simply be considered as a small extra error term
introduced at each operation on the accumulator.

A formal claim would require a more detailed study. The fact that our implementation works in practice,
and that the measurements of errors fit our prediction is sufficient for our purpose.

6.4 Benchmark and Source Code

Our implementation performs a HomNAND and a Refresh operation every 0.69 seconds on a single 64-bits
Intel core at 3GHz, which conforms to our prediction of 0.5 seconds from the count of FFT operations (the
key switching step is having non negligible cost because it hasn’t been vectorized yet). It consumes 2.2Gbytes
of memory, which is approximately twice the prediction. This is explained by the fact that for efficiency, the
Bootstrapping Key is stored in FFT form, at double precision.

We can expect those performance figures to be improved by further implementation efforts. Yet, our
prototype implementation already performs within one order of magnitude of the amortized cost of boot-
strapping in HElib [23]. A more precise comparison is hard to state considering our scheme has a different
security parameters, and does not offers the same set of gates. Sophisticated benchmarking would not be
very useful until this new scheme is optimized and generalized to reach its full potential.

The source code is reasonably concise and simple, consisting of about 600 lines of C++ code, excluding
the library FFTW. It is available on github [11].

7 Extensions, Conclusions and Future Work

We have shown that a complete bootstrappable homomorphic computation can be performed in a fraction
of a second, much faster than any previous solution. We achieved the result by addressing the simplest
form of bootstrappable computation (the computation of a single binary gate that is complete for boolean
circuits), and introducing new techniques for this homomorphic computation. We remark that the techniques
presented in the paper are not limited to NAND gates. For example, it is immediate to extend our solution

4 http://www.fftw.org/speed/
5 http://www.fftw.org/accuracy/

15

http://www.fftw.org/speed/
http://www.fftw.org/accuracy/


to compute a majority gate that on input 3 bits x1, x2, x3 P t0, 1u, outputs 1 if at least two of the inputs are
1, and 0 if at least two of the inputs are zero. To see this, recall that our solution to the NAND problem
resorted to viewing bits are integers modulo t “ 4, and then encoding the NAND operation in terms of
addition. Still using arithmetic modulo 4, one can compute the majority of x1, x2, x3 by taking the sum
y “ x1 ` x2 ` x3 P t0, 1, 2, 3u, and checking if the result is at least 2. The final test is easily performed by
applying our most significant bit extraction procedure to the shifted sum y ´ 0.5. As we are adding three
input ciphertexts, this may require slighly smaller noise, but the computation is almost identical to the
NAND gate described in this paper.

This can be further generalized to (weigthed) threshold gates
ř

i wixi ą h, where the number of inputs,
weigths wi and the threshold h are arbitrary, by using arithmetic modulo a larger t ą 2

ř

|wi|.
Further generalizations are possible by replacing our msbExtract procedure with a more complex test

that checks membership for many subsets of Zt. Precisely, membership test may be extended to any anti-
symmetric set S Ă Zt (x P S ô x` t

2 R S). For example, with t “ 6 arbitrary large xor’s x1 ‘ . . . ‘ xk can
be performed in just one Refresh operation using the membership test x1 ` . . . ` xk mod 6 P t1, 3, 5u. With
this generalization, our technique also offers xor-for-almost-free, as in previous FHE schemes.

Additionally, taking weighted linear combinations of k input bits
ř

i 2ixi, and checking membership in
subsets of Z2k`2 , one can (at least in principle) implement arbitrary boolean gates (adders, S-boxes, etc.),
but the complexity grows exponentially in the number of inputs k.

We also remark that since the membership test is much less expensive than the rest of the Refresh
procedure, one may test several function of the same input for almost free. In other words, gates with several
outputs would not be much more expensive than gates with only one output. For t “ 6, this already allows
to perform an add-with-carry gate (3 inputs, 2 outputs) in a single shot (instead of 5 using binary gates).

Fully exploring the use of our techniques to realize more complex gates is left to future work. Other
interesting open problems are finding ways to fully exploit the message space offered by ring LWE encryption
in our accumulator implementation, and combining our framework with the CRT techniques of [2].
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