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Abstract. Multi-precision squaring is a crucial operation for implementation of El-
liptic Curve Cryptography. Particularly, when it comes to embedded processors, the
operation should be designed carefully to execute expensive ECC operation on re-
source constrained devices. In order to bridge the gap between high overheads and
limited computation capabilities, we present optimized Karatsuba squaring method for
embedded processors. Traditional squaring computation can be divided into two sub-
squaring and one sub-multiplication parts. Firstly we compute the multiplication part
with the fastest Karatsuba multiplication and then remaining two squaring parts are
conducted with the fastest sliding block doubling squaring. Proposed method sets the
new speed records for multi-precision squaring, improving the execution time by up to
8.49% comparing to the best known works.
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1 Introduction

The developments of embedded processors make various technologies including Wireless Sen-
sor Networks (WSNs) and Internet of Things (IoT) feasible. For the first step, the processors
are deployed and continuously exchange the data what they obtained from the target areas.
After then the data is re-produced into useful applications, i.e. home automation, smart grid
and surveillance systems. However, WSNs and IoT are highly vulnerable to malicious attacks,
because the data packets exchanged through the air can be easily captured by attackers.
In order to provide trustworthy applications, users should construct secure and robust net-
working protocols. Under these circumstances, Public-Key Cryptography (PKC) would be
a promising candidate that resolves vulnerabilities, since PKC applications including RSA
[?], Elliptic Curve Cryptography (ECC) [?,?], provide quite useful protocols such as data
encryption, key establishment as well as digital signature protocols. Among them, ECC is
practical solution for resource constrained devices by considering the key size, which occupies
small memory spaces rather than RSA. In order to establish ECC on embedded processor,
we should design efficient cryptographic arithmetic operations over finite fields. Among these
field arithmetic operations, multi-precision multiplication and squaring are crucial operations,
thus, especially concerns on optimal implementation of these operations are deserved to pay
for resource constrained environments. Recently high speed Karatsuba multiplication is intro-
duced by Hutter and Peter in [?]. The work employs the subtractive Karatsuba multiplication
to reduce the number of partial product computations by imposing simple addition opera-
tions. In case of squaring, Sliding Block Doubling (SBD) method is introduced by Seo et al.
in INDOCRYPT’13 [?]. The method uses product-scanning for main computation and simply
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doubles the duplicated parts to reduce the clock cycles into roughly half. However, there is
no practical Karatsuba squaring results on AVR conducted. In this paper, we present Hy-
brid Karatsuba squaring on AVR, which finely combines Karatsuba multiplication and SBD
squaring into single squaring operation. Firstly, we largely divided the squaring structure
into two sub-squaring and one sub-multiplication. We adopt Karatsuba multiplication for
sub-multiplication part and two remaining sub-squaring are established with SBD methods.
When implementing on the ATmega128 microprocessor, only 3253 clock cycles are required
for squaring at the length of 256-bit, which produces the fastest implementation published
for 8-bit AVR platform, improving in a factor of 8.49%.

The rest of the paper is organized as follows. In Section 2, we describes the multi-precision
multiplication and squaring algorithms. Proposed method is shown in Section 3. In Section
4, performance evaluation including clock cycles and memory consumptions are drawn. We
conclude the paper in Section 5.

2 Field Multiplication and Squaring

Finite field multiplication and squaring are most expensive operations in ECC. In order to
boost performance in speed factor, we should concern the finite field operations. We firstly ex-
plore multiplication methods. Our squaring method exploits the latest multiplication method.

2.1 Multi-precision Multiplication Techniques

Before describing the multi-precision multiplication method, we first define the following nota-
tions. Let A and B be two operands with a length of m-bit that are represented by multiple-
word arrays. Each operand is written as follows: A = (A[n − 1], A[n − 2], . . . , A[1], A[0])
and B = (B[n − 1], B[n − 2], . . . , B[1], B[0]), whereby n = ⌈m/w⌉, and w is the word size.
The product of multiplication A · B is twice the length of A and can be represented by
C = (C[2n− 1], C[2n− 2], . . . , C[1], C[0]). For clarity, we describe the method using a multi-
plication structure and rhombus form. As shown in Figure 1, each point represents a word-level
multiplication, i.e. A[i]×B[j]. The rightmost corner of the rhombus represents the lowest in-
dex (i, j = 0), meanwhile the leftmost represents corner with highest index (i, j = n−1). The
lowermost side represents result index C[k], which ranges from the rightmost corner (k = 0)
to the leftmost corner (k = 2n− 1).

Operand Scanning Method Figure 1 shows the operand scanning which consists of two
parts, i.e., inner and outer loops. In the inner loop, operand A[i] holds a value and computes
the partial product by multiplying all the multiplicands B[j] (j = 0...n − 1). While in the
outer loop, the index of operand A[i] increases by a word-size and then the inner loop is
executed.
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Fig. 1. Operand scanning multiplication [?]



Product Scanning Method Figure 2 shows the product scanning method which computes
all partial products in the same column by multiplication and addition [?]. Since each partial
product in the column is computed and then accumulated, registers are not needed for inter-
mediate results. The results are stored once, and the stored results are not reloaded since all
computations have already been completed.
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Fig. 2. Product scanning multiplication [?]

Hybrid Scanning Method Figure 3 shows the hybrid scanning method which combines
both of the advantages of operand scanning and product scanning. Multiplication is performed
on a block scale using product scanning. Inner block partial products follow the operand
scanning rule. Therefore, this method reduces the number of load instructions by sharing the
operands within the block [?].
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Fig. 3. Hybrid scanning multiplication [?]

Operand Caching Method Figure 4 shows the operand caching method which follows
the product scanning method, but it divides the calculation into several row sections [?]. By
reordering the sequence of inner and outer row sections, previously loaded operands in working
registers are reused for the next partial products. A few store instructions are added, but
the number of required load instructions is reduced. The number of row section is given by
r = ⌊n/e⌋, and e denotes the number of words used to cache digit in the operand.

Consecutive Operand Caching Method Figure 5 shows the consecutive operand caching
which is based on characteristic of operand-caching method. Previous method has to reload
operands whenever a row is changed which generates unnecessary overheads. To avoid these
shortcomings, this method provides a contact point among rows that share the common
operands for partial products. As a result of this, one side of operands is continuously main-
tained in registers and used [?].
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Fig. 4. Operand caching multiplication [?]

A[7]B[0]

A[0]B[7]

A[7]B[7]

C[0]C[7]C[14]

A[0]B[0]

A[7]B[0]

A[0]B[0]

A[0]B[7]

A[7]B[7]

C[0]C[7]C[14]

A[7]B[0]

A[0]B[0]

A[0]B[7]

A[7]B[7]

C[0]C[7]C[14]

1

2

3

A[7]B[0]

A[0]B[0]

A[0]B[7]

A[7]B[7]

C[0]C[7]C[14]

2

1

2

3

3

4

4

5

5

A[7]B[0]

A[0]B[0]

A[0]B[7]

A[7]B[7]

C[0]C[7]C[14]

btop

2

3

r0

r1

binit

4

r0

r1

r2

1

2

3

4

1

2

3

4

binit

r0

r1

binit

r0

r1

r2

4

Fig. 5. Consecutive operand caching multiplication [?]

Subtractive Karatsuba Method The subtractive Karatsuba is established with following
computations where the operands A and B has even m-bit variables and k = m/2.

– Write A = ALOW + 2kAHIGH and B = BLOW + 2kBHIGH

– Compute L = ALOW ·BLOW

– Compute H = AHIGH ·BHIGH

– Compute M = |ALOW −AHIGH | · |BLOW −BHIGH |
– Set t = 0, if M = (ALOW −AHIGH) · (BLOW −BHIGH)
– Otherwise t = 1
– Compute M ′ = (−1)tM
– Obtain AB = L+ 2k(L+H −M ′) + 2mH

This subtractive Karatsuba avoids the carry bits in operands (|ALOW −AHIGH |, |BLOW −
BHIGH |) for the computation of middle partial products (M) but instead it needs to compute
two absolute differences from |ALOW − AHIGH | and |BLOW − BHIGH | and one conditional
negation ofM . This has to be conducted in constant time computation to make the multiplica-
tion routine suitable for timing-attack-protected implementations of cryptographic primitives
[?]. In order to ensure that, we need to choose branch-free operation rather than branched
one. The branch-free method is established by masking operand, which outputs zeroed or
original operand so without conditional branch we can get complete results.

2.2 Multi-precision Squaring Techniques

A typical software implementation of squaring method can be realized either using one of
the above mentioned multiplication techniques or the specialized squaring method. Imple-
mentation using a specialized squaring method may have two advantages than simply using
multiplication method for squaring. Firstly, in Figure 6, only one operand (A) is used for
squaring computation, thus, the number of operand load is reduced to half times of multipli-
cation, and many registers used for operand holding previously become idle status and can
be used for caching intermediate results or other values. Second, there are duplicated partial
products. In Figure 6, the squaring structure consists of three parts including red dotted
middle part, light and dark gray triangle parts. The red part is multiplying a same operand,
which is computed once. The other parts including light and dark gray parts generate same
partial product results. For this reason, these parts are multiplied once and added twice to



intermediate results. This computation generates same results, we expected. After removing
duplicated partial product results, we can describe the squaring structure as a triangular form
in Figure 7.
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Fig. 6. Multi-precision squaring structure. Before removing duplicated partial product results.
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Fig. 7. Multi-precision squaring structure. After removing duplicated partial product results

Yang-Hseih-Lair Method Figure 8 describes Yang et al’s method [?]. This squaring method
is designed for hardware machine not for software implementation. First, duplicated partial
products are computed using operand scanning. After then the intermediate results are dou-
bled. Lastly, remaining partial products are computed.
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Fig. 8. Yang et al.’s squaring [?]

Carry Catcher Method Prime field multiplication or squaring consists of a number of
partial products. When we compute partial products in ascending order, intermediate results
generate carry values, accumulating the partial product results. In order to handle carry bit
properly, carry-catcher method is introduced, which stores carry values to additional registers
and then updates at the end of computation at once. In Figure 9, carry catcher based squaring
was introduced by [?]. This method follows hybrid-scanning and doubles partial product
results before they are added to results. This method is inefficient because all products should
be doubled.
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Fig. 9. Carry catcher squaring [?].

Lazy Doubling Method In Figure 10, efficient doubling method named lazy-doubling is
described [?]. This method also follows hybrid scanning structure. The inner loop is computed
in a operand scanning way, and then carry catcher method is used for removing consecutive
carry updates. The strong feature of this method is doubling process which is delayed to end
of inner structure and then computed. This method reduces number of arithmetic operations
by conducting doubling computations on accumulated intermediate results. This technique
significantly reduces a number of doubling process to one doubling process.
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Fig. 10. Lazy doubling squaring [?]

Sliding Block Doubling Method In Figure 11, Sliding Block Doubling (SBD) method com-
putes doubling using “1-bit left shifting” operation at the end of duplicated partial product
computation, which accumulates all partial product results with only consuming few arith-
metic operations. On the other hand, contrary to previously known solutions, SBD method
adopts product-scanning method to compute duplicated product parts. After then the inter-
mediate results are doubled to the final results.
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Fig. 11. Sliding block doubling squaring [?].

3 Hybrid Karatsuba Squaring

Previous squaring methods conduct single computation methods including operand-, product-
or hybrid-scanning for partial product computations. However, we tried to use two different
approaches into the squaring computation. As drawn in Figure 12, a squaring consists of
three sub-structures including one sub-multiplication and two sub-squaring parts. The partial
products (A[4 ∼ 7] × A[0 ∼ 3]) construct sub-multiplication form with half size of operand



(4, n/2). Remaining partial products, (A[0 ∼ 3] × A[0 ∼ 3]) and (A[4 ∼ 7] × A[4 ∼ 7])
establish sub-squaring form with remaining half size of operand (4, n/2). Our main idea is
finely dividing the squaring into sub-multiplication and sub-squaring structures. After then
we apply different computation tactics to the different structures. When we use dedicated
multiplication and squaring methods for multiplication and squaring, both operations are
efficiently computable for each operation.
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Fig. 12. Structure of squaring

In Figure 13, we describe a novel Hybrid Karatsuba squaring method. Firstly we di-
vide ordinary squaring structure into three sub-parts. Part 1 colored in yellow is computed
with best known Karatsuba multiplication method and remaining parts including 2 and 3
are established with SBD method. The part 1 is half size of operand (4, 8/2) and conducts
subtractive Karatsuba multiplication for partial products (A[4 ∼ 7] × A[0 ∼ 3]) and out-
puts intermediate results (C[4] ∼ C[11]). Secondly parts 2 and 3 are computed with SBD
method. Firstly in part 2, partial products from (A[0]×A[1]) to (A[3]×A[2]) are computed
in product-scanning method, accumulating intermediate results (C[4] ∼ C[7]). After then the
intermediate results are doubled with one-bit left shift. Finally remaining partial products
(A[0] × A[0] ∼ A[3] × A[3]) are executed. In part 3, partial products from (A[4] × A[5]) to
(A[7] × A[6]) are computed in product-scanning method, accumulating intermediate results
(C[8] ∼ C[11]). After then the intermediate results are doubled and remaining partial prod-
ucts (A[4] × A[4] ∼ A[7] × A[7]) are executed. We implemented ECC friendly operand sizes
including 128-, 160-, 192-, and 256-bit. The cases conduct 64-, 80-, 96-, and 128-bit subtractive
karatsuba multiplication once for part 1 and then two 64-, 80-, 96-, and 128-bit SBD squaring
operations are conducted for part 2 and 3, respectively. For SBD method, we combined three
different operations (product-scanning, doubling, remaining partial product) into one com-
putation process, because the target field size (64 ∼ 128-bit) needs small number of registers
so they are readily retained into general purpose registers of target processor. This approach
avoids intermediate results loading and storing overheads to/from memory.
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Fig. 13. Hybrid karatsuba squaring



4 Evaluation

In this section, we evaluate the performance of proposed squaring method in term of execution
time and memory consumptions on 8-bit embedded platforms.

4.1 Evaluation on 8-bit Platform ATmega128

We implemented the method on 8-bit AVR processor ATmega128 which is widely used in
MICAz mote, and then simulated our implementation over AVR Studio 6.0. Normally, an
ATmega128 processor runs at a frequency of 7.3728 MHz. It has a 128 KB EEPROM chip
and 4 KB RAM chip [?]. The ATmega128 processor also supports a RISC architecture with
32 registers, among which 6 registers serve as the special pointers for indirect addressing.
The remaining 26 registers are available for arithmetic operations. One arithmetic instruction
incurs 1 clock cycle, and memory addressing (e.g. load, store) or 8-bit multiplication (e.g.
mul) incurs 2 processing cycles [?]. We used 4 registers for the operand and result pointers,
2 registers for storing the result of multiplication, and the remaining 26 registers for caching
operands and intermediate results.

4.2 Constant-time solution: branched vesus branch-free

Our squaring implementation is hybrid approach combining both Karatsuba multiplication
and SBD squaring. Particularly, Karatsuba multiplication is based on previous subtrac-
tive Karatsuba multiplication [?]. The subtractive Karatsuba multiplication has conditional
branch to determine the sign-bit of middle partial product computations (M). In [?], they
provide two different approaches including branched and branch-free to ensure constant time
solution. First one is branched method, which uses conditional branch operation but it is also
constant time method by adjusting the clock cycle with NOP (no operation). The alternative
approach is branch-free which executes identical program code for both conditional branches.
For this reason, the branch-free method is more secure than branched approach when it comes
to side channel attack but it imposes additional computation costs to mask operands.

4.3 Karatsuba squaring on the AVR

Our 128-, 160- and 192-bit squaring are rooted from one level 64-, 80- and 96-bit Karatsuba
multiplication. For the 64-bit multiplication (k = 4) we loaded all input bytes which need
only 6k = 24 registers. Afterwards we can also use the 4 registers holding the pointers to the
inputs, i.e., X and Y , and thus have 7k = 28 registers available. For the 80-bit multiplication,
we spill one byte of the Z output address-pointer to/from the stack and to use it during the
Karatsuba multiplication. The 96-bit multiplication needs all available registers including all 6
address-pointer bytes (X, Y , and Z) and we spilled two intermediate values in addition to the
stack. For 80-bit and 96-bit Karatsuba multiplication we need more memory operations than
strictly necessary to load inputs and store outputs. However, for those input sizes the benefit
of smaller arithmetic complexity is so large that Karatsuba still clearly outperforms to the
best known product-scanning. The 64-bit multiplication needs 16 LD/LDD instructions, and 16
ST/STD instructions. The 80-bit multiplication needs 25 LD/LDD instructions, and 20 ST/STD

instructions. The 96-bit multiplication needs 42 LD/LDD instructions, 26 ST/STD instructions,
4 PUSH instructions, and 4 POP instructions. In terms of 256-bit squaring, we used two levels
of Karatsuba multiplication in 128-bit. For 128-bit Karatsuba, we need 2k = 16 registers for
storing M and k = 8. For 2 levels Karatsuba multiplication we recursively conduct Karatsuba
multiplication. In total, the 128-bit multiplication needs 92 LD/LDD instructions, 51 ST/STD

instructions, 2 PUSH instructions, and 2 POP instructions. For remaining two squaring parts, we
conduct 64-, 80-, 96- and 128-bit wise SBD methods twice. Firstly we loaded all operands (n)
into general purpose register and 3 registers are assigned to result accumulation. We combined



product-scanning, doubling and remaining parts in a process because AVR has ample storages
to contain target operands. While SBD operation, we load intermediate results executed in
former Karatsuba multiplication by n. The final results by 2n are stored into memory. This
computation is conducted twice for two sub-squaring parts. In total, the two 64-bit squaring
needs 32 LD/LDD instructions, 32 ST/STD instructions. The two 80-bit squaring needs 40 LD/LDD
instructions, 40 ST/STD instructions. The two 96-bit squaring needs 48 LD/LDD instructions,
48 ST/STD instructions. The two 128-bit squaring needs 64 LD/LDD instructions, 64 ST/STD

instructions.

4.4 Comparison results

In this section, we compared our Hybrid Karatsuba squaring with previous best known results.
In Table 1, multiplication and squaring results are drawn. Compared with best known multi-
plication results, our squaring with branched and branch-free methods outperform 26% ∼ 32%
and 25% ∼ 31% in speed factor, respectively. In terms of memory consumptions, branched
and branch-free methods show 20% ∼ 28% and 20% ∼ 29% smaller size. This means that
dedicated squaring method is far much beneficial than the best known multiplication methods
when it comes to squaring. Compared with squaring method, our squaring with branched and
branch-free methods outperform 2.8% ∼ 8.5% and 2.1% ∼ 7.3% in speed factor, respectively.
In terms of memory consumptions, branched and branch-free methods show 0.8% ∼ 2.8% and
1.4% ∼ 3.1% smaller size. Generally, our branched method has higher speed than branch-free
method but it needs more memory consumptions because branch-free only needs one program
code for branch condition but branched method needs to write two different codes for both
cases.

5 Conclusions

This paper presents a new technique of implementing multi-precision squaring on resource-
constraint embedded processors, named Hybrid Karatsuba method. As the name implies,
Hybrid Karatsuba method employs the Karatsuba multiplication and SBD squaring. Firstly
squaring structure is finely divided into sub-multiplication and two sub-squaring parts and
then sub-multiplication and remaining sub-squaring parts are conducted with Karatsuba mul-
tiplication and SBD squaring methods, respectively. In order to further achieve high speed
footprint, we re-organize the computation order in efficient way. To validate the practical
results, we implement the method on 8-bit AVR microcontroller with different length of
operands. The results show that the method only requires 3253 clock cycles for performing a
256-bit squaring, achieving speed setting record on identical platform. Under a fair compari-
son, proposed method outperforms the best previous squaring work on same target device by
a factor of 8.49%, depending on concrete bit-length. Moreover, proposed method can be easily
extended for other embedded platforms with slight modification, e.g. 16-bit MSP and 32-bit
ARM series processors. As a future work, we will apply our method to various platforms and
show impact of proposed methods in real public key applications [?].
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Algorithm 1 Hybrid Karatsuba Squaring, where KM(A,B) and SBD(A) mean karatsuba
multiplication on A×B and sliding block doubling on A2, respectively

Require: word size n, Integers A ∈ [0, n), C ∈ [0, 2n).
Ensure: C = A2

1: KM(A[0 ∼ (n/2− 1)], A[n/2 ∼ (n− 1)])
2: SBD(A[0 ∼ (n/2− 1)]) + 2× C[n/2 ∼ (n− 1)]
3: SBD(A[n/2 ∼ n]) + 2× C[n ∼ (3n/2− 1)]
4: return C
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Fig. 14. Hybrid Karatsuba squaring for 128-bit
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Fig. 15. Hybrid Karatsuba squaring for 160-bit
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Fig. 16. Hybrid Karatsuba squaring for 192-bit
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Fig. 17. Hybrid Karatsuba squaring for 256-bit


