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Abstract

This paper resolves an open problem raised by Blocki et al. (FOCS 2012), i.e., whether other variants
of the Johnson-Lindenstrauss transform preserves differential privacy or not? We prove that a general class
of random projection matrices that satisfies the Johnson-Lindenstrauss lemma also preserves differential
privacy. This class of random projection matrices requires only n Gaussian samples and n Bernoulli trials
and allows matrix-vector multiplication in O(n log n) time. In this respect, this work unconditionally im-
proves the run time of Blocki et al. (FOCS 2012) without using the graph sparsification trick of Upadhyay
(ASIACRYPT 2013). For the metric of measuring randomness, we stick to the norm used by earlier re-
searchers who studied variants of the Johnson-Lindenstrauss transform and its applications, i.e., count the
number of random samples made. In concise, we improve the sampling complexity by quadratic factor,
and the run time of cut queries by an O(no(1)) factor and that of covariance queries by an O(n0.38) factor.

Our proof for both the privacy and utility guarantee uses several new ideas. In order to improve the
dimension bound, we use some known results from the domain of statistical model selection. This makes
our proof short and elegant, relying just on one basic concentration inequality. For the privacy proof,
even though our mechanism closely resembles that of Blocki et al. (FOCS 2012) and Upadhyay (ASI-
ACRYPT 2013), we cannot use their proof idea. This is because the projection matrices we are interested
in introduces non-trivial correlations between any two rows of the published matrix, and, therefore, we
cannot invoke the composition theorem of Dwork, Rothblum and Vadhan (STOC 2009). We argue that the
published matrix is not r-multivariate distribution; rather one matrix-variate distribution. We compute the
distribution of the published matrix and then prove it preserves differential privacy.

Keywords. Circulant Matrices, Differential privacy, Sampling Complexity.

1 Introduction

In a recent work, Blocki et al. [9] proved that the Johnson-Lindenstrauss transform with random i.d.d. Gaus-
sian entries preserves differential privacy, a very robust guarantee of privacy on database query. They left
the question open whether other variants of the Johnson-Lindenstrauss transform, more specifically, the fast
Johnson-Lindenstrauss transform, the randomness efficient Johnson-Lindenstrauss, and the sparse Johnson-
Lindenstrauss transform, preserves privacy or not? In this paper, we resolve this issue. We consider a general
class of random projection matrices of which the construction of Vybiral [51] is a special instance, and show
that every projection matrix in this class of matrices preserves differential privacy, requires only n Gaussian
samples and n Bernoulli trials, and allows fast matrix-vector multiplication.

The transform of Vybiral [51] is based on a class of matrices called partial circulant matrices1, and
achieves a suboptimal dimension reduction. We note that unless there is a significant improvement in the
concentration properties of the partial circulant matrices, one cannot improve the dimension bound achieved

1Partial circulant matrices are a class of matrices indexed by a n-dimensional vector and formed as follows: the first row is the
n-dimensional vector and the rest of the rows are formed iteratively by circulating the entries by shifting entries one position left with
respect to the previous row.
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by Vybiral [51]. We make a slight modification to their transform (more specifically, by composing a Walsh-
Hadamard transform matrix) to get an almost optimal dimension reduction. We then consider the general class
of matrices of which partial circulant matrices are special instance. We prove the utility and privacy bound
for this general class of matrices. Using this proof, we also give a simpler proof for the recent construction of
Upadhyay [50].

One of the reasons Blocki et al. [9] perceived the study of other variants of the Johnson-Lindenstrauss
important is due to their algorithmic and practical implications [8]. As argued in a series of work by Ailon
and Liberty [2, 3, 4] and Krahmer and Ward [38], the dimension of the projected space, run time of the
transform, and the number of random samples used by the transform are the most important parameters for a
Johnson-Lindenstrauss transform from an algorithmic as well as the applications and implementation point of
view. On the other hand, major focus of research in differential privacy until now has been towards providing
a tight utility and privacy tradeoff. We sought to bring the resource consideration in the domain of differential
privacy as well. Similar questions were also raised by Dwork et al. [23] and Upadhyay [49], where the
focus was on the design of efficient mechanisms with respect to the time taken to generate the sanitized data.
This paper forward the study of privacy preserving mechanisms while also taking in account the amount of
randomness used. An alternative way to look at this paper is the natural question whether we can use a more
sampling efficient mechanisms with same utility and privacy guarantee.

One could argue that the number of random bits used is a more natural notion for considering the ran-
domness complexity. However, in this paper, we stick with the norm used by researchers interested in the
Johnson-Lindenstrauss transform and its applications, i.e., measure the randomness complexity in terms of
the number of random samples. This measure has been used in the domain of dimension reduction and
its application like compressed sensing [13], machine learning [5], quantum algorithms [17], and numerical
analysis [16, 47].

Ailon and Liberty [2, 3, 4] and Krahmer-Ward [38] have thoroughly motivated why the number of random
samples is an important parameter with respect to other applications of the Johnson-Lindenstrauss transform.
Apart from all those reasons, one of the other main reasons for this choice in the domain of differential privacy
is that it gives a much cleaner picture and a good quantitative estimate on the actual random bits used and the
(actual) run-time of the mechanism2–it is the sampling process which is implemented in practice and might
cause several issues. We refer the readers to Kapralov and Talwar [34] for various theoretical and Chaudhary
et al. [15] and Mironov [41] for practical issues faced during sampling.

OUR TECHNIQUES. In this paper, we investigate whether suitable modifications and generalization to a
known transform by Vybiral [51], while maintaining the number of random samples used and efficiency in
terms of matrix-vector multiplication, preserves differential privacy or not. Moreover, we also give a sharper
analysis to get a tighter bound than achieved by Vybiral [51] in terms of the dimension of the projected space.
In concise, we achieve a quadratic improvement in the number of random samples used in comparison with
all known mechanisms for answering cut queries and covariance queries, and poly log n improvement in the
run time over the mechanism based on graph sparsification [49]. We follow up with the generalization of the
Vybiral’s construction and the techniques used in this paper to prove the privacy and utility bound.

OVERVIEW OF THE CONSTRUCTION. We start by giving a brief exposition of the construction by Vybi-
ral [51]. Vybiral [51] first pick n random Gaussian samples to form the first row and then construct the
remaining r − 1 rows by shifting the vector left-wise relative to the previous row. This matrix is also known
as partial circulant matrices and satisfies the Restricted Isometry Property [13], which we define next. For
for any set T ⊆ {1, · · · , r}, we say that an r× n matrix Φ satisfies the Restricted Isometry Property of order

2This could be seen akin to the complexity measure used in generic as well as concrete attacks on hash functions where we
just measure the number of hash computations done, and not the actual atomic operations required (see for example, the attack on
SHA-1 [52] and MD5 [53], and the generic attack on collision resistance [33] and second pre-image resistance [35]).
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k if there exists an 0 < ε < 1 such that, for all set T with |T | < k,

Pr
[
(1− ε)‖xT ‖22 ≤ ‖ΦT |x〉T ‖22 ≤ (1 + ε)‖|x〉T ‖22

]
≥ 1− η (1)

holds, where ΦT (xT , respectively) is the restriction of Φ (x, respectively) to the indices in T .
Rauhut et al. [44] proved that a partial circulant matrix formed as above satisfies the Restricted Isometry

Property for values of r ≥ max(ε−1
√

(k log n)3, ε−2k log4 n). Vybiral then multiply this matrix P to a
diagonal matrix whose entries are ±1 with probability 1/2. By Theorem 1, this construction satisfies the
Johnson-Lindenstrauss bound for suboptimal value of r = O(ε−2 log2m), where m is the number of vectors
on which the transform is to be applied.

Theorem 1. (Krahmer-Ward [38, Proposition 3.2]) Let ε be an arbitrary constant. Let Φ be a matrix of order
k and dimension r× n that satisfies the relation k ≤ c1δ

2
kr/ log(n/r) and equation (1). Then the matrix ΦD,

where D is an n× n diagonal matrix whose entries are ±1 with probability 1/2 (also known as Rademacher
matrix), is a Johnson-Lindenstrauss transform with r rows.

Therefore, unless there is a significant improvement in the understanding of concentration properties of
partial circulant matrices, the dimension bound achieved by Vybiral [51] is hard to beat. The key observation
here is that the diagonal Rademacher matrices does not produce a proper “mixing” of the entries of the partial
circulant matrices to facilitate a strong concentration bound. For this, we need to compose it with a matrix
that allows fast matrix-vector multiplication, preserves the Euclidean norm of the input vectors, and does
not introduce more randomness. Our key observation is that, instead of only preconditioning by a diagonal
matrix formed by a Rademacher sequence, if we also compose a Walsh-Hadamard matrix, then we achieve
good enough mixing that translates to a better concentration result3. This in turn helps us to strengthen the
Vybiral’s bound [51].

To generalize this construction, a key point to note is that partial circulant matrices are nothing special.
They are simply the first r rows of a fully circulant matrix, and, therefore, can be seen as a result of applying a
truncated permutation matrix from the left to a fully circulant matrix. Therefore, combined with the symmetry
of circulant matrices, intuitively, any r rows restricted circulant matrix should not effect the final concentration
result. This intuition infact turns out to be true. This increases our sampling complexity by an additive factor
of r because we need to sample r rows of a circulant matrix, but we now have a family of random projection
matrices that satisfies the Johnson-Lindenstrauss lemma. Sampling r rows independently was an idea used by
Rudelson and Vershynin [46], where they showed that a matrix formed by sampling r rows of a deterministic
matrices with bounded orthonormal rows satisfies the Restricted Isometry Property. Here, we are sampling
r rows of a random matrix. Therefore, at the cost of oversimplification, an intuitive way to see this general
class of Johnson-Lindenstrauss transform is as a hybrid of the known constructions of projection matrix with
Restricted Isometry Property and known constructions of the Johnson-Lindenstrauss transform.

TECHNIQUES USED FOR THE UTILITY PROOF. The general idea to prove the Johnson-Lindenstrauss lemma
is to first bound the expectation of the random variables corresponding to the output of an application of the
projection matrix, and then use the standard concentration bound to prove the result. For example, in the
simplified proof of the Johnson-Lindenstrauss transform [19], the above method gives a failure bound of at
most 1 − 1/n. They then repeat the experiment a required number of times to get the failure bound closer
to the desired constant. We cannot rely on repetition because it would increase the random samples required.
Therefore, we have to give a tighter bound. For this, we rely on a result from statistical model selection.

We break our analysis in two parts. We first use the isometry of Ailon and Chazelle [1], which precondition
the input vector x to get a vector x̃ with bounded co-ordinates. Then, we use this promise to prove that when
we multiply a restricted circulant matrix, formed by n-dimensional Gaussian vector, from the right, then the
Euclidean norm of x is preserved with high probability. For this, we use known concentration inequalities from
the area of model selection. Unlike the earlier results on randomness-efficient fast Johnson-Lindenstrauss

3This composed matrix is the isometry matrix of Ailon and Chazelle [1].
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Method Cut-queries Covariance-Queries Run-time # Random Samples
Randomized Response [11] O(

√
sn2/ε) Õ(

√
nd/ε) Θ(n2) O(n2)

Exponential [12, 40] O(n log n/ε) O(n log n/ε) Intractable O(n2)

Multiplicative Weight [31] Õ(n2/ε) Õ(nd
√

1/ε) O(n2) O(n2)
Johnson-Lindenstrauss [9] O(s

√
n/ε) O(ε−2n) O(rn2) O(rn)

Graph Sparsification [49] O(s
√
n/ε) − Õ(n2) O(n2)

This paper O(s
√
n/ε) O(ε−1n) O(n2 log n) 2n+ r

Table 1: Comparison between our mechanism and other mechanism when answering all possible queries.

transform that uses matrices satisfying the Restricted Isometry Property, the proof in this paper is elementary
and relies on basic concentration inequalities.

TECHNIQUES USED FOR THE PRIVACY PROOF. The proof of differential privacy is far more involved.
We use the same notion of neighbouring data as in [9, 49]. So, it is tempting to assume that multiplying our
projection matrix (because of the form it has) results in rmultivariate Gaussian and proof of [9] can be applied.
However, there are subtle correlations between two rows (or two columns) of our projection matrices, and,
applying these projection matrices to a private matrix does not yield r independent multivariate distribution,
but one matrix-variate distribution. We first compute the distribution of the published matrix and then prove it
is differentially private. Our proof uses various characterization of positive-definite matrices and Hermittian
matrices along with the properties of the trace of a matrix. Along the line, we need to prove concentration
result for a distribution which is the sum of the squares of n independent Gaussian variables.

Using the above technique for privacy proof, we also give a simpler proof for the construction given by
Upadhyay [50]. We recall that the author used a different isometry matrix than that of Ailon and Chazelle [1]
for projection that preserves differential privacy. We give our proof for the original construction. Our proof
involves reducing the proof of differential privacy for their original construction to that used in this paper.

One can also implement our mechanisms as distributed algorithms, a desirable feature as argued by [6].
This is because our mechanism uses operations that have efficient distributed algorithms. For example, one
could use Jacobi method for SVD [37] and Cannon’s algorithm for multiplication [14].

We summarize our results and its comparison with previous works in Table 1. The second and third
column is the noise added by the respective mechanisms when answering all possible queries. In the table,
s denote the size of a single query and r is the dimension of the projected space in our transform. Note
that, except for the random projection based mechanisms, all the other mechanisms are interactive. Since
comparing the noise bound for interactive and non-interactive mechanisms is not that straightforward, in our
comparison, we follow Blocki et al. [9] method: compare answering all set of adaptive queries for interactive
mechanims and all predetermined queries for non-interactive mechanisms (see [9, Section 3.2 and 4.2]).

RELATED WORK. The first formal definition of Differential Privacy was given by Dwork et al. [22] to
address the privacy concern of any participants. The key idea used in Dwork et al. [22] is to add noise
according to a Laplace distribution to the output of a query; the Gaussian variant was proven to preserve
differential privacy by Dwork et al. [21] in a follow-up work. Since then, many sanitizer for preserving
differential privacy has been proposed in the literature, including the Exponential mechanism [12, 40], the
Multiplicative Update mechanism [26, 27, 28, 31], the Median mechanism [45], the Boosting mechanism [24],
and the Random Projection mechanism [36]. All these mechanisms have a common theme: they perturb the
output before responding to queries. Blocki et al. [9, 10] and Upadhyay [48, 49] took a complementary
approach. They perturb the input by performing a random projection of the input and show that existing
algorithms preserves differential privacy if the input is perturbed in a reversible manner.
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2 Preliminaries, Notations, and Basic Definitions

NOTATIONS. We fix the letter n to denote the space of the input vectors,m to denote the number of vectors,
and r to denote the subspace to which the vectors are projected. We use the symbol η to denote the approxi-
mation parameter in the statement of the Johnson-Lindenstrauss transform. We use the notation 〈a1, · · · , an〉
to denote the individual entries of an n-dimensional vector |a〉. We use the symbol W to denote an n × n
Walsh-Hadamard matrix. We use A1..r to denote the matrix formed by taking the first r rows of A and Ai:
(A:j) to denote i-th row (column, respectively) of matrix A. We use Dirac notation to represent vectors, i.e.,
〈·| to represent row vector and |·〉 to represent a column vector. We use bold faced capital letters, like A, to
denote n copies of matrix A stacked together row-wise. For a vector |x〉, we use the notation Diag(|x〉) to
represent a diagonal matrix with non-zero entries 〈x1, · · · , xn〉.

PRIVACY MODEL USED IN THIS PAPER. In this work, we deal with privacy-preserving mechanisms for
answering cut-queries on a graph and directional covariance queries on a matrix. We work with the natural
relaxed notion of differential privacy, known as approximate differential privacy.

Definition 1. A randomized mechanism, K, gives (ε, δ)-differential privacy, if for all neighboring data-sets
D1 and D2, and all range S ⊂ Range(K), Pr[K(D1) ∈ S] ≤ exp(ε)Pr[K(D2) ∈ S] + δ, where the
probability is over the coin tosses of K. When δ = 0, we get the traditional definition of differential privacy.

We call two data-sets D1 and D2 are neighboring if ‖D1 −D2‖ ≤ 1. The following lemma is key to our
analysis in Section 3.

Lemma 2. Let M(D) be a (ε, δ)-differential private mechanism for a database D , and let h be any function,
then any mechanism M ′ := h(M(D)) is also (ε, δ)-differentially private for the same set of queries.

STATISTICAL MODEL SELECTION AND PROBABILITY THEORY. The main ingredients in our utility
proof are inequalities from model selection. We review some of its basics and probability theory that are
required to understand our proof. One of the main methods to prove concentration inequalities is the following
two step process: control the moment generating function of a random variable and then minimize the upper
bound resulting from the Markov’s inequality. Though simple, it is extremely powerful.

Let ζ be a real valued centered random variable, then the log-moment generating function is defined as
ψζ(λ) := ln(E[exp(λζ)]),∀λ ∈ R+, and the Cramer’s transform is defined as ψ∗ζ (x) := supλ∈R+

(λx −
ψζ(λ). The generalized inverse of ψ∗ at a point t is defined by ψ∗−1(f) := inf{x ≥ 0 : ψ∗(x) > f}.

The log generating function for centered random variable has some nice properties. It is continuously
differentiable in a half-open interval I = [0, b), where 0 < b ≤ ∞, and both ψζ and its differentiation at 0
equals 0. There is a nice characterization of the generalized inverse in the form of following lemma.

Lemma 3. Let ψ be a convex continuously differentialable function on I . Assume that ψ(0) = ψ′(0) = 0.
Then ψ∗ is non-negative non-decreasing convex function on R+. Moreover, its generalized inverse can be
written as ψ∗−1 = infλ∈I [(f + ψ(λ))/λ] .

This lemma follows from the definition and basic calculus. In the area of model selection, Lemma 3 is
often used to control the expectation of the supremum of a finite family of exponentially integrable variables.
Pisier [43] proved the following fundamental lemma.

Lemma 4. (Pisier [43]) Let {ζf}f∈F be a finite family of random variables and ψ be as in Lemma 3. Let
EA[ζ] = E[ζχA]/Pr[A] for a non-zero measurable set A. Then, for any non-zero measurable set A, we have
EA
[
supf∈F ζf

]
≤ ψ∗−1 (ln (|F |/Pr[A])) .

If we take A = (ζ ≥ φ(x)) and applying Markov’s inequality, then using the property that φ is an
increasing function, this immediately gives us that x ≤ ln(1/Pr[A]). This gives the following key lemma.
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Lemma 5. Let A be a set with non-zero measure and ζ be a centered random variable. Let φ be an increasing
function on positive reals such that EA[ζ] ≤ φ(ln(1/Pr[A])). Then Pr[ζ ≥ φ(x)] ≤ exp(−x).

We refer the interested readers to the book by Massart and Picard [39]. In this paper, we use the following
result by Birge and Massart [7] for bounding the utility, which follows from application of Lemma 5.

Theorem 6. (Birge-Massart [7]) Let (ζf )F be a finite family of random variable and ψ be a convex and
continuously differentiable function on [0, b) with 0 ≤ b ≤ ∞ such that ψ(0) = ψ′(0) = 0 and for ev-
ery u ∈ [0, b) and f ∈ F , we have log(E[exp(uζf )]) ≤ ψ(u). If N denotes the cardinality of F . Then
E
[
supf∈F ζf

]
≤ ψ∗−1(lnN), where ψ∗ is the Cramer’s transformation.

Using Lemma 5 and Talagrand inequality, the authors also proved the following corollary.

Corollary 7. (Birge-Massart [7]) Let 0 < λ < 1/b for some b. If ζ be a real valued integrable variable, and a
and b be constants such that log(E[exp(λζ)]) ≤ aλ2

2(1−bλ) . Then Pr
[
ζ ≥
√

2aτ + bτ
]
≤ exp(−τ).

LINEAR ALGEBRA AND PROBABILITY DISTRIBUTIONS. Our analysis of privacy makes extensive use
of linear algebra and statistical properties of Gaussian distribution. We give an exposition to the level required
to understand this paper. Let A be an n × d matrix. The singular value decomposition (SVD) of A is
A = V ΛUT, where U, V are unitary matrices and Λ is a diagonal matrix consisting of the singular values of
A. Since U and V are unitary matrices, one can write Ai = V ΛiUT for any real value i. We use standard
Walsh-Hadamard matrix and discrete Fourier transform matrix. A Walsh-Hadamard matrix Wm is a 2m× 2m

matrix formed recursively as follows: W0 = 1 and Wm = 1√
2

(
Wm−1 Wm−1

Wm−1 −Wm−1

)
. Where it is clear from

the context, we drop the subscript. We use the symbol F to denote discrete Fourier transform.
A Rademacher sequence is a sequence of random variables having value±1 with probability 1/2. Given a

random variable,X , we denote byX ∼ N (µ, σ2) the fact thatX is distributed according to a Gaussian distri-
bution with the probability density function, PDFX(x) = 1√

2πσ
exp

(
− (x−µ)2

2σ2

)
. The Gaussian distribution is

invariant under affine transformation. This is called spherical symmetry of Gaussian variable. The multivariate
Gaussian distribution is a generalization of univariate Gaussian distribution. Given a m dimensional multi-
variate random variable, X ∼ N (µ,Σ) with mean µ ∈ Rm and covariance matrix Σ = E[(X−µ)(X−µ)T],
the PDF of a multivariate Gaussian is given by PDFX(|x〉) := 1√

2π det(Σ)
exp

(
−1

2Tr (〈x|Σ|x〉)
)
. It is easy to

see from the description of the PDF that, in order to define the PDF corresponding to a multivariate Gaussian
distribution, Σ has to have full rank and is positive definite matrix (see Appendix B.2).

3 Circulant Matrices and Differential Privacy

In this section, we show that a general class of projection matrices of which Vybiral [51] is a special instance
also preserves differential privacy. We also note a slight modification that allows us to get a tighter dimension
bound, which is optimal up to a logarithmic factor. Our random projections have the form Φ = PWD,
where W is a Walsh-Hadamard transform, D is a diagonal matrix formed by Rademacher sequence, and P is
formed by independently sampling r rows of a circulant matrix. The mechanisms for answering cut-queries
and covariance queries follows by substituting our projection matrix instead of the random Gaussian matrix
based Johnson-Lindenstrauss transform used in Blocki et al. [9]. We assume that the private matrix has a
dimension n × d where n is a power of 2. This is without any loss of generality because we can simply
append block of 0 matrix to make the number of rows a power of 2 while incurring at most constant overhead.

DESCRIPTION OF THE MATRIX P AND THE FAMILY OF PROJECTION MATRICES. Letα := 〈α1, · · · , αn〉
be n i.d.d. Gaussian samples and C be a circulant matrix formed using the vector α, i.e, for 1 ≤ i ≤ n,
Ci: = 〈αi, · · · , αn, α1, · · · , αi−1〉. Then the matrix P corresponding to a permutation matrix Π truncated to
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Construction of Φ: Set r = O(η−2 logm log n). Construct the matrices D and P as below.

1. D is an n× n diagonal matrix such that Pr[Dii = +1] = Pr[Dii = −1] = 1/2.

2. P is a matrix formed as follows: Construct a circulant matrix C with entries picked from a
Gaussian distribution and then independently sample r rows from C.

Compute Φ = PWD, where W is the normalized n× n Walsh-Hadamard transform matrix.

Figure 1: A Family of Random Projection Matrices

r rows and circulant matrix C is formed by choosing r rows of the circulant matrix (i.e., P = Π1..rC). This
approach has been used by Rudelson and Vershynin [46] to prove that certain matrix satisfies the Restricted
Isometry Property. This choice of sampling r rows combined by sampling a Gaussian vector gives us a family
of matrices P = {P}Π, the size of this family being

(
n
r

)
. Of this, a special case is the partial circulant matrix,

which was used by Vybiral [51], in which the first r rows of the matrix C is chosen deterministically to form
the matrix P . Note that this is not the only option. One can also pick r rows deterministically by specifying
some known fixed permutations, like Affine transformation or combinatorial designs, like r random rows of
Latin squares4, but they are also a special case of the family P .

We first note few salient features of this class of projection matrices. The matrix P alone cannot be used
for random projection because for some bad input vector |x〉, the estimate of ‖P |x〉‖2 can be really bad. For
example, when |x〉 is along a single coordinate, then only the non-zero values of P along this coordinate
would contribute to P |x〉, giving a very bad variance bound. This is why we need some preconditioning
on the inputs–Vybiral [51] does this by using diagonal Rademacher matrix. However, as we argued earlier
using the result by Krahmer and Ward [38] and Rauhut et al. [44], unless there is a significant improvement
in the concentration bounds on partial circulant matrices, the Vybiral [51] result seems hard to improve. The
intuitive reasoning is that the diagonal Rademacher matrix does not preconditions the input to a proper degree
of isometry. For this, we need to precondition the input with WD instead of just D. The extra W helps in
spreading out the vector in all direction. At a very high level, this isometry allows us to mimic a projection
matrix with every entries picked i.d.d.

We conclude this section by giving the formal description of the projection matrix (Figure 1), privacy
guarantee (Theorem 8), and a proof of the utility (Theorem 11).

Theorem 8. Privacy Guarantee. Let Φ be a n× r projection matrix constructed by transposing the construc-
tion in Figure 1. If the singular values of a private n× d matrix A is at least

(
16 ln(1/δ)

√
n/ε
)

. Then ATΦ

preserves (ε, δ)-differential privacy. Moreover, the computation requires O(nd log n) basic operations.
A remark about the above theorem is due here. Note that we have a factor of n instead of a factor of r as in

Blocki et al. [9]. However, as mentioned by the authors [9], in order to answer all cut (or covariance) queries,
r has to be set at least equal to n. In other words, the mechanism does not perform dimension reduction, rather
it increases the dimension. In that respect, differential privacy is distinct from all the other known applications
of the Johnson-Lindenstrauss transform. However, we loss an extra

√
1/ε factor in the singular value term

than in Blocki et al. [9]. This is not surprising as we expect to pay the price for faster and randomness efficient
computation in some or the other way.

Proof. Before we give our proof, we argue why the proof of Blocki et al. [9] does not extend to our case. One
of the reasons why the proof of Blocki et al. [9] does not generalize to any Johnson-Lindenstrauss transform

4Latin squares are combinatorial design in which a square n×n matrices have entries from 1 to n such that every row and column
have all the entries.
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in general is due to its strong dependency on the fact that each samples in a dense Gaussian matrices is picked
i.d.d. More concretely, each row of their published matrix is a multivariate Gaussian and preserves differen-
tial privacy. This allows them to use the composition theorem of Dwork, Rothblum and Vadhan [24] to prove
differential privacy of the entire published matrix. Unfortunately, we cannot invoke the composition theorem
because, as we reuse the random samples, we introduce correlations between the entries of our projection ma-
trices. Therefore, applying our projection matrix to a private matrix does not yield n independent multivariate
distribution, but one matrix-variate distribution. We compute the resulting distribution and then prove that it
preserves differential privacy. In this sense, our proof uses the same idea as used by Upadhyay [48]; however,
the analogy ends here as the probability distribution are very different and requires a fresh analysis.

Our starting point is an alternate way to look at any matrixP ∈ P , i.e., a matrix formed by sampling r rows
of a fully circulant matrix independently. In other words, one can see P as a product of a truncated permutation
matrix and a circulant matrix formed by α. Let Ik denote the k × k identity matrix. Since differential privacy
is preserved under any arbitrary post-processing, we can just concentrate on the distribution when a fully
circulant matrix is used instead of the matrix P (the truncated permutation can be seen as a post-processing
step). For example, for a partial circulant matrix, we have,

P =


α1 α2 · · · αn
α2 · · · αn α1
...

...
. . .

...
αr α1 · · · αr−1

 =
(
Ir 0

)︸ ︷︷ ︸
n columns


α1 α2 · · · αn
α2 · · · αn α1
...

...
. . .

...
αn α1 · · · αn−1

 =
(
Ir 0

)
C. (2)

Therefore, for the rest of this proof, we just concentrate on fully-circulant matrix. Let denote by vec(C)
the vector formed by the entries of C. Then, the covariance matrix of vec(C) is,

Λ := COV(vec(C)) =



In/2 0 0 In−1 0 In−2 · · · 0 I1
0 In/2 I1 0 I2 0 · · · In−1 0

0 I1 In/2 0 · · · · · · · · ·
...

...

In−1 0 0 In/2 · · · · · ·
...

...
...

...
...

...
. . .

...
...

...
...

0 In−2
...

...
...

. . . · · · In/2+1 0

I2 0 · · · · · · · · · · · · . . . 0 In/2−1

0 In−1 0 In−2 · · · · · · · · · In/2 0

I1 0 I2 0 · · · · · · 0 In/2



,

︸ ︷︷ ︸
n2 columns

n2 rows (3)

where 0 are block zero matrices of appropriate dimensions. We first note that WD does not effect the privacy.
This is because of the spherical symmetry of a vector of Gaussian distribution. Also note that WD is norm-
preserving; therefore, WDA and WDA′ are also neighbouring matrices if A and A′ are. Therefore, without
any loss of generality, we can analyze the distribution ATC instead of ATΦ. Another way to look at it is that
differential privacy is preserved under arbitrary post-processing.

In order to compute the PDF of the matrix-variate distribution corresponding to the published matrix, we
follow the standard technique. We look at the published matrix as a vector and analyze the corresponding
multivariate distribution. Recall that the published matrix is not an n independent multi-variate distribution;
rather one matrix-variate distribution and there are non-trivial correlations between the entries of two rows of
the published matrix as clear by equation (3). In Lemma 18, we prove that a covariance matrix is a positive
semi-definite matrix; therefore, we can write equation (3) succinctly in form of its Cholesky decomposition,
say Λ = LLT.
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Note that ΛΛT = nI. Using the left spherical symmetry of Gaussian distribution, and since the Jacobian
of the transformation ATC is

√
det (ATA), the resulting matrix variate distribution for X ∼ ATY for Y

picked from a distribution with mean vector 0 and covariance matrix Λ has the covariance matrix ATΛA,
where A is matrix formed by stacking n copies of A row-wise. Therefore,

PDFATC(X) =
1√

det(ATΛA)
exp

(
−1

2
Tr
(
XT(ATΛA)−1X

))
. (4)

For the sake of simplicity, let us denote by B = LTA. Let the singular value decomposition of B = UΣVT.
Similarly, let define B̃ = LTÃ = ŨΣ̃ṼT. Then from equation (4), we can write the distribution of the
published matrices corresponding to the neighbouring matrices A and Ã as follows.

PDFATC(X) =
1√

det(BTB)
exp

(
−1

2
Tr(XT(BTB)−1X)

)
,

PDFÃTC(X) =
1√

det(B̃TB̃)
exp

(
−1

2
Tr(XT(B̃TB̃)−1X)

)
.

In order to prove the differential privacy, we prove the following lemma.

Lemma 9. For a matrix A with all singular values greater than Ω
(√

n
ε log(4/δ)

)
, the following holds√

det(BTB)

det(B̃TB̃)
∈ exp(±ε). (5)

If X = ATC, then

Pr
[∣∣∣Tr

(
XT

(
(B̃TB̃)−1 − (BTB)−1

)
X
)∣∣∣ ≤ ε] ≥ 1− δ. (6)

Proof. The first part of the proof follows simply as in Blocki et al. [9]. More concretely, we have det(BTB) =(∏
i σ

2
i

)
n, where σ1 ≥ · · · ≥ σd ≥ σmin are the singular values of B. Let σ̃1 ≥ · · · ≥ σ̃d ≥ σmin be its

singular value for B̃. Since the singular values of B − B̃ and B̃ − B are the same,
∑

i(σi − σ̃i) ≤ 1 using
Linskii’s theorem. Therefore,

det(BTB)

det(B̃TB̃)
=

(∏
i

σ̃2
i

σ2
i

)
≤ exp

(
ε

8log(2/δ)

)∑
i

(σ̃i − σi) ≤ exp (ε) .

Similarly, we can bound det(B̃TB̃)
det(BTB)

≤ exp(ε).

PROOF OF EQUATION (6). In this part, we bound the following expression.∣∣∣∣Tr
(
XT

((
BTB

)−1
−
(
B̃TB̃

)−1
)
X

)∣∣∣∣ . (7)

We can write Ã = A+ |v〉〈ei| for some i and a unit vector v. Let E be a matrix formed by n-copies of |ei〉〈v|
stacked together. The following is immediate.
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Tr
(
XT

((
BTB

)−1
−
(
B̃TB̃

)−1
)
X

)
= Tr

(
XT

(
(BTB)−1(B̃TB̃)(B̃TB̃)−1 − (B̃TB̃)−1

)
X
)

= Tr
(
XT

(
(BTB)−1(B + E)T(B + E)(B̃TB̃)−1 − (B̃TB̃)−1

)
X
)

= Tr
(
XT

(
(BTB)−1(BTE + ETB̃)(B̃TB̃)−1

)
X
)

= Tr
(
CTA

(
(BTB)−1(BTE + ETB̃)(B̃TB̃)−1

)
ATC

)
≤ Tr

(
CCT

)
Tr
(
A
(

(BTB)−1(BTE + ETB̃)(B̃TB̃)−1
)
AT
)

= Tr
(
CCT

)
︸ ︷︷ ︸

S

Tr
(
ATA

(
(BTB)−1(BTE + ETB̃)(B̃TB̃)−1

))
︸ ︷︷ ︸

Q

,

where the inequality follows from the fact that Tr(XY ) ≤ Tr(X)Tr(Y ) for Hermittian matrices X and Y .
In fact, the two matrices in question are positive semi-definite. We bound each of the above trace terms. To
bound S, we recall the fundamental relation between discrete Fourier transform and circulant matrices. Recall
that C is made by circulating the Gaussian vectors 〈α1, · · · , αn〉 to form an n× n matrix. Then

P = FnDiag(
√
nFnα)F−1

n . (8)

Therefore, to bound the trace of CCT, we have to bound the following.

PPT = FnDiag(
√
nFnα)F−1

n

[
FnDiag(

√
nFnα)F−1

n

]T
= FnDiag(n|Fnα|2)F−1

n . (9)

Since α and Zα are equidistributed when the rows of Z are orthonormal, we need the following lemma
to bound S.

Lemma 10. Let β1, · · · , βn be n i.d.d. N (0, 1) random variables. Then,

Pr

[
n∑
i=1

β2
i > 2(1 + θ)n

]
≤ 2−θn/2.

Proof. First, from the definition of normal distribution, we know that Pr[βi = t] = 1√
2π

exp
(
−t2/2

)
. Then

consider the random variable Zi = exp(β2
i /4). Then

E[Zi] =

∫ ∞
−∞

1√
2π

exp
(
−t2/2

)
exp(−t2/4) dt =

√
2.

Now, observe that,

Prβ1,···βn [β2
1 + · · ·β2

n > λ] = Prβ1,··· ,βn

[
β2

1 + · · ·β2
n

4
>
λ

4

]
= Prβ1,··· ,βn

[
exp

(
β2

1 + · · ·β2
n

4

)
> exp

(
λ

4

)]
≤ exp(−λ/4)Eβ1,··· ,βn

[
exp

(
β2

1 + · · ·β2
n

4

)]
.
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Since all βi are i.d.d., the above expression is bounded as

n∏
i=1

E
[
exp

(
β2
i

4

)]
=

n∏
i=1

E [Zi] = 2n/2.

Putting λ = 2(1 + θ)n, the lemma follows.

The term Q is easy to compute once we note the following.

nTr
(
ATA

)
≤ Tr

(
VΣ−2VT

)
= Tr

(
BTB

)
≤ n3/2Tr

(
ATA

)
since ΛΛT = nIn2×n2 and Tr(Λ) = n3/2. Now ei and v are unit vectors which forms the marix E , and the
singular values of A, Ã are at least σmin with Ã − A = |v〉〈ei|. Combining with the invariance of trace of
matrices under cyclic permutations, it is easy to see thatQ by bounded by at most 1/σ2

min

(
1/σmin + 1/σ2

min

)
.

Using Lemma 10, equation (9), and the bound on σmin, we have

Pr

[
(7) ≤ 1

σ2
min

(
1

σmin
+

1

σ2
min

)
4n2 ln(4n/δ)

n
≤ 5ε

]
≥ 1− δ.

Rescaling the value of ε, the lemma follows.

It is straightforward to see that Lemma 9 implies the privacy guarantee in Theorem 8. For the run-
time guarantee, note that a circulant matrix has a singular value decomposition in form of discrete Fourier
transform. Therefore, in disguise, all the matrices used in the projection matrix allow fast matrix-vector
multiplication. The final truncated permutation matrix takesO(r) time to sample the corresponding entry after
the application of CWD; therefore, the run-time of a single matrix-vector multiplication takes O(n log n)
time. Since, there are d columns in the matrixA, it takesO(nd log n) time to publish the sanitized matrix.

Theorem 11. Utility Guarantee. Let Φ be as in Figure 1. Then for any set of m vectors S in Rn, there is an
r = O(η−2 log n logm) such that the following holds with the probability at least 2/3,

(1− η)
√
r‖|x〉‖22 ≤ ‖Φ|x〉‖22 ≤ (1 + η)

√
r‖|x〉‖22, ∀|x〉 ∈ S. (10)

Proof. The usual idea in proving the Johnson Lindenstrauss lemma is to first bound the expectation of the
random variables corresponding to the output of an application of the projection matrix, and then use the
standard concentration bound to prove the result. We use the same idea. We first proof the result when we use
a Walsh-Hadamard matrix instead of discrete-Fourier transform.

We break the analysis in two parts. We first use the fact that WD is an isometry [1], i.e., for any vector
|x〉 of unit length, WD|x〉 has bounded co-ordinates. Then, we use this promise to prove the following: when
we multiply a circulant matrix formed by Gaussian vector from the right to this smoothen vector and sample
r rows, then this preserves the Euclidean norm with high probability.

Since the transformation is linear, without loss of generality, we can assume |x〉 is a unit vector. Fix a
|x〉 ∈ S . The first step follows simply from the following result by Ailon and Chazelle [1].

Theorem 12. (Ailon-Chazelle [1], Wolff [54, Proposition 4.2]) Let |x〉 ∈ Rn and t > 0. Let W and D be as
above. Then, for any κ > 0, we have Pr

[
‖WD|x〉‖∞ ≥

√
2e/n log (2n/κ)〈x, x〉

]
≤ κ.

Bounding the expectation. The second step is to use the guarantee that ‖ ˜|x〉‖∞ = O(n−1/2
√

log n) to get
the desired expectation bound. The naive method to work with the permutation in the matrix Φ to get the
concentration result makes the proof very lengthy. The crucial observation here is that a circulant matrix
formed by a vector of i.d.d. Gaussian is very symmetric; therefore, picking any set of r would have the same
concentration properties as picking the first r rows. We follow the approach taken by Upadhyay [50]. This
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is possible because of the nice representation of a partial circulant matrices by a discrete Fourier transform
matrix. We first get around the problem of dealing with the permutation matrices by making a substitution,
i.e., for the matrix Φ and any vector |x〉 ∈ Rn, ‖Φ|x〉‖2 = ‖Zα‖2, where the entries of Z are zi,j =
(Π1..r)i:(Diag(|x̃〉)):j . The rest of the proof is very similar to [51, 50] owing to our observation in equation (9);
we include it for the sake of completion.

Let UΣV T be the SVD of Z, γ = V Tα. Let σ := 〈σ1, · · · , σr〉 be the singular values of Z and
〈γ1, · · · , γr〉 be the co-ordinates of V Tα. Making this substitution, we have the following equalities.

Prα
[
‖Φ|x〉‖22 ≥ (1 + η)

]
= Prα

[
‖WZα‖22 ≥ (1 + η)r

]
= Prα

[
‖Zα‖22 ≥ (1 + η)r

]
= Prα

[
‖UΣV Tα‖22 ≥ (1 + η)r

]
= Prγ

[
‖UΣγ‖22 ≥ (1 + η)r

]
= Prγ

[
‖Σγ‖22 ≥ (1 + η)r

]
. (11)

In other words, if we can prove the concentration bound on
∑
σ2
i |γi|2, we are done. We use the Corollary 7

to Theorem 6, for which we need to find the function ψ corresponding to our case. Let 0 < λ < 1/2a.
The following proposition, which we prove in Appendix A, follows by simple arithmetic and linearity of
expectation.

Proposition 13. Let Y1, · · ·Yr be picked fromN (0, 1) and σ = 〈σ1, · · · , σr〉 be an r dimensional vector. Let
λ be an arbitrary constant such that 0 < λ < 1/2‖σ‖∞. Then

r∑
i=1

log
(
EYi

[
exp

(
λσ2

i (Y
2
i − 1)

)])
≤

λ2
∑r

i=1 σ
4
i

1− 2λmaxi |σi|2
.

Since Σ = Diag(σ1, · · · , σr), Z = UΣV T , and Gaussian distribution is invariant if we multiply with a
matrix with orthonormal rows on the right, we can restate Proposition 13 as

r∑
i=1

log
(
EYi

[
exp(λσ2

i (γ
2
i − 1))

])
≤ λ2‖Z‖42

1− 2‖Z‖2∞λ
=

2λ2‖Z‖42
2(1− 2‖Z‖2∞λ)

.

The right hand side has the form ψ(u) = aλ2

2(1−bλ) for a = 2‖Z‖42 and b = 2‖Z‖2∞. Using Corollary 7, we
have

Prγ

[
r∑
i=1

σ2
i

(
γ2
i − 1

)
≥ 2‖Z‖2∞τ + 2‖Z‖22

√
τ

]
≤ exp(−τ). (12)

We need to estimate ‖Z‖∞ and ‖Z‖2. This is where the guarantee on ‖ ˜|x〉‖∞ is useful. Using Theo-
rem 12, with probability 19/20 and the symmetry of the matrices, we have

‖Z‖2∞ = max
|x〉∈Rn,‖|x〉‖2=1

‖Z|x〉‖22 ≤ n‖WD|x〉‖2∞ = n‖ ˜|x〉‖2∞ = 2 log (40n). (13)

Since ‖Z‖F =
∑r

i=1 σ
2
i = r. Thus,

‖Z‖22 ≤ ‖Z‖F · ‖Z‖∞ = 2r log (40n). (14)

Since
∑

j σ
2
j = r, by setting τ = crη2/ log(40n) for a small constant c, and using equations (11), (12), (13),

and (14), we have

Prα[‖Φ|x〉‖22 ≥ (1 + η)] = Prγ

 r∑
j=1

σ2
j (|γj | − 1) ≥ ηr

 < exp

(
− rη2

log(40n)

)
. (15)
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For (15) < 1/10m, we need r = O
(
η−2 log n logm

)
. The result follows using the union bound and similar

analysis for the negative side of the tail, i.e., for the value of r, we have

Prα[‖Φ|x〉‖22 ≤ (1− η)] = Prγ

 r∑
j=1

σ2
j (|γj | − 1) ≤ −ηr

 < 1

10m
. (16)

Combining equation (15) and equation (16) and using union bound over all x ∈ S, the result follows.

As we mentioned in Section 1, our proof extends to give a simpler privacy proof for the projection matrix
given by Upadhyay [50]. We first recall their construction.

CONSTRUCTION 2. Let D be a diagonal Bernoulli matrix and M be a diagonal Gaussian matrix. Let
Π and Π′ be permutation matrices. Then Upadhyay [50] showed that Π1..rMΠ′WD satisfies the Johnson-
Lindenstrauss bound, where Π1..r is a matrix restricted to the first r rows of the permutation matrix Π. We
follow up with the details as to how we can mould the proof of Theorem 8 to the case of Construction 2.

Theorem 14. Let Φ be a n× r projection matrix constructed by transposing the matrix of Construction 2. If
the singular values of an n× d matrix A is at least

(
16
√
n/ε ln(1/δ)

)
. Then for any private input matrix A,

ATΦ preserves (ε, δ)-differential privacy. Moreover, the computation requires O(nd log r) basic operations.

Proof. Our proof reduces the problem of proving privacy for Construction 2 to that for Theorem 8. First note
that for two neighbouring matrices A and A′, ‖A− Ã‖ = ‖WD(A− Ã)‖ ≤ 1. Also, note that ATΠ1..r and
ÃΠ1..r differs by at most one row by a unit entry depending on whether Π1..r picks that row or not. Therefore,
‖(AT − ÃT)Π1..r‖ ≤ 1 given that ‖A− Ã‖ ≤ 1. Moreover, for discrete Fourier transform Fn, we also have
‖(AT − ÃT)Π1..rFn‖ ≤ 1 given that ‖(AT − ÃT)Π1..r‖ ≤ 1 because ‖Fn‖ = 1. Let B = ATΠ1..rFn
and B̃ = ÃΠ1..rFn. Therefore, proving Theorem 14 reduces to that of proving that for BTFT

nMΠ′WD.
Also, from Lemma 2, we have that proving privacy of BTFT

nMΠ′WD is equivalent to proving privacy for
BTFT

nMFn. Now recall that M is Diag(α) for Gaussian vector α. Therefore, M is distributed equiva-
lent to Diag(Fnα). In other words, proving privacy for BTFT

nMFn is equivalent to proving privacy for
BTFT

nDiag(Fnα)Fn. Using equation (9), Theorem 14 follows. The run-time efficiency is straightforward to
compute.

4 Implications of our Projection Matrices

In this section, we give two applications of our projection matrix where we improve the run time and the
random samples required in the case of [9, 49]. Our mechanism gives an improvement wherever random
projections have been used to sanitize data-base, but we restrict our attention to just these two cases.

Cut Queries on a Graph. Blocki et al. [9] gave the first mechanism that uses random projection to answer
cut-queries on a graph. They achieve the best additive error bound; however, their mechanism takes O(n2.38)
basic operations to publish a sanitized graph assuming we use Coppersmith-Winograd’s matrix multiplication.
Upadhyay [49] showed that we can use graph sparsification in composition with random projection to improve
the run time to O(n2+o(1)), but this comes at the price of increased sampling cost. Using our projection
matrix shown in Figure 1, we achieve the following guarantee (see Figure 2 for the formal description of the
mechanism).

Theorem 15. Let G be a graph on n-vertices. There exists a mechanism that published a sanitized graph G̃ in
O(n2 log n) time using 2n + r random samples such that, for every α, β > 0, one can compute all possible
cut-queries on G with an additive error at most Õ(s

√
n/ε) while preserving (ε, δ)-differential privacy.
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Proof. The proof of privacy follows from Theorem 8 and the construction of Blocki et al. [9], while the proof
of utility follows from plugging in the guarantee of Theorem 11 in the computation done by Blocki et al. [9,
Theorem 3.2]. The details are in Appendix B.1.

Note that almost the same additive bound is achieved by Blocki et al. [9] and Upadhyay [49] with a factor
of Õ(n) more random samples (we have a loss of factor

√
1/ε). Moreover, Blocki et al. [9] requires time

O(n2.38) in comparison to O(n2 log n) time taken by the mechanism in Figure 2 to compute the sanitized
graph.

Directional Covariance Queries on a Matrix. Blocki et al. [9] also gave a mechanism that uses random
projection to answer covariance-queries with least additive error among all existing mechanisms. However,
their mechanism requires O(n2.38) and uses nr Gaussian samples, which amounts to n2 if one wishes to
answer all covariance queries. Plugging in our projection matrix instead of random Gaussian matrix in their
mechanism (see Figure 3) amounts to the following.

Theorem 16. Let A be an n × d matrix. There exists a mechanism that published a sanitized matrix Ã in
O(nd log n) time and using 2n + r random samples such that, for any unit vector |x〉, one can compute its
covariance with A with an additive error at most Õ(n/ε) while preserving (ε, δ)-differential privacy.

Proof. The proof of privacy follows from Theorem 8 and the construction of Blocki et al. [9], while the proof
of utility follows from plugging in the guarantee of Theorem 11 in the computation done by Blocki et al. [9,
Theorem 4.2]. The details are in Appendix B.2.

5 Conclusion and Future Works

In this paper, we modified and generalized a known construction of the Johnson-Lindenstrauss transform by
Vybiral [51] and proved that it preserves differential privacy with the same additive error as in comparison
to Blocki et al. [9] and Upadhyay [49], which by far achieve the best bound compared to other mechanisms
(see [9, 49] or Table 1 for more details). We exhibited a counter-intuitive result that less randomness than the
number of entries of the data-base also preserve differential privacy. We believe the reason why this is true is
because multiplying two matrices distribute the noise throughout over the private matrix.

This work leaves several open questions. Of particular interest is whether sparse variants of the Johnson-
Lindenstrauss transform preserves differential privacy or not. Few constructions of such transforms, like [18],
use linear sampling to achieve sparsity. We do not hope to see any improvement on the utility guarantee, but
they would improve the running time by log n factor if the sparse transform under study achieves optimal di-
mension bound. An interesting problem relates to the problem of error amplification. The question is whether
we can introduce some error-correction techniques to the problem? Any positive result in this direction would
help reduce the additive error.

In the context of this work, one major open problem is to find a non-trivial lower bounds on the sampling
complexity and multiplicative noise. There are tight lower bounds known for the sampling complexity of
the samplers [25] and for additive noise in a differentially-private mechanisms [20, 32, 34]. We believe we
could use some ideas from these lower bound results to give lower bounds on the sampling complexity and
multiplicative noise of differentially private mechanisms. Any such lower bounds, even in the non-interactive
setting, would help in our understanding of the gap, if any, between traditional privacy and differential privacy.

As Blocki et al. [9] mentioned, one of the open problem is whether we can use our mechanism to com-
pute differentially private low-rank approximation of a matrix. There have been some recent activity using
Gaussian matrices, starting with the work of Hardt and Roth [29, 30]. In low-rank approximation, one first
computes the range of the projection and then perform the actual projection. Our result already gives a differ-
entially private mechanism for the range finding step, but the private second step is still elusive.
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A Deferred Proofs

A.1 Proof of Proposition 13

We start by proving a one-dimensional analogue of the proposition.

Proposition 17. Let Y ∼ N (0, 1) and S := log(E[exp(aλ(Y 2 − 1))]). Then S ≤ a2λ2

1−2aλ .

Proof. S := log(EY [exp(λa(Y 2 − 1))]), where Y ∼ N (0, 1). A simple calculation shows that when Y ∼
N (0, 1), then

S = a2λ2
∑
i≥0

(2λa)i

i+ 1
≤ a2λ2

∑
i≥0

(2aλ)i =
a2λ2

1− 2aλ
.

The proof of Proposition 13 now follows from linearity of expectation. Let Y1, · · · , Yr be random vari-
ables picked using the distribution N (0, 1). From the linearity of expectation, a simple extension of Propo-
sition 17 to a vector of Gaussian variables results in Proposition 13. More concretely, from the linearity of
expectation, we have

r∑
j=1

log
(
EYi

[
exp(λσ2

j (Y
2
j − 1))

])
=

r∑
j=1

λ2σ4
j

∑
i≥0

(2λσ2
j )
i

i+ 1

≤ λ2
r∑
j=1

σ4
j

∑
i≥0

(2λσ2
j )
i ≤

λ2
∑r

i=1 σ
4
i

1− 2λmaxi |σi|2
.

A.2 Covariance Matrices are Positive Semi-Definite

Lemma 18. Suppose that Σ is the covariance matrix corresponding to some random vector |x〉. Then Σ is
symmetric positive semi-definite.

Proof. For any vector |x〉 ∈ Rn, we have

〈x|Σ|x〉 =
∑∑

(Σijxixj) =
∑∑

(COV[xi, xj ])xixj = E
[∑∑

(xi − E[xi])(xj − E[xj ])xixj

]
.

Now the quantity under the summation is of form
∑∑

xixjzizj = (|x〉〈z|) ≥ 0. Therefore, the quan-
tity inside the expectation is always non-negative; therefore, the expectation is non-negative. This proves
the proposition. Now, for the definition of PDF for the above multivariate distribution, Σ−1 should exists;
therefore, Σ ∈ Sn++.

B Details of the Application of Our Projection Matrices

B.1 Cut Queries on a Graph

We first give the utility proof. For any any set of vertex of size n, assuming equation (10) holds, we have
χT
S L̃GχS ≤ (1 + η)χT

SLGχS . In other word, the approximation can be bounded from the above by

1

1− w
n

(
(1 + η)χT

SLGχS −
ws(n− s)

n

)
=

1

1− w
n

(
(1 + η)

w

n
s(n− s) + (1 + η)

(
1− w

n

)
χT
SLGχS −

ws(n− s)
n

)
≤ (1 + η)CUT(S) + 2ηws,
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INPUT. A n-node graph G, parameters ε, δ, η, ν.
OUTPUT. A Laplacian of a graph L̃G.

1. Set w = 16
√

n
ε ln(4n/δ) and L′G = w

nKn +
(
1− w

n

)
LG, where Kn is the complete

graph on n-vertices.

2. Construct a matrix Φ as in Figure 1 and publish 1
rΦL′GΦT.

ANSWERING A CUT QUERY.

INPUT. A non-empty S ⊆ V (G), parameters n,w, and L̃G.
OUTPUT. Return 1

1−w
n

(
χT
S L̃GχS −

ws(n−s)
n

)
.

Figure 2: Answering Cut Queries of a Graph while Preserving Differential Privacy

where CUT(S) is the correct answer. Now, just as in Blocki et al. [9], if we wish to answer correctly a set of
all possible queries, we need to set ν ′ = ν/2n, and deduce that the amount of noise added to each query is
Õ(s
√
n/ε). For the privacy proof, note that Step 1 assures that the singular values of LG which is now the

private graph are at least w = 16
√

n
ε ln(4n/δ) = σmin. This is because it has a complete graph as a subgraph,

and complete graph has second largest eigenvalue n. Note that in this case, we are only consider the space
orthogonal to the kernel space of the Laplacian of a graph, i.e., as stated in Lemma 19 below. In other words,
we have X with support over 1⊥.

Lemma 19. The kernel space of a connected graph is Span{1}, the span of all one vector.

B.2 Covariance Queries on a Matrix

INPUT. A n× d-matrix A, parameters ε, δ, η, ν.
OUTPUT. A sanitized matrix Ã.

1. Set w = 16
√

n
ε ln(4n/δ).

2. Subtract the mean from A by setting A1 = A− 1
n |1〉〈1|A.

3. For A1 = UΣV T computed above, set A′ = U(
√

Σ2 + w2I)V T.

4. Construct a matrix Φ as in Figure 1 and return Ã = 1
rA
′TΦTΦA.

ANSWERING A COVARIANCE QUERY.

INPUT. A unit vector |x〉, parameters n,w, and Ã.
OUTPUT. Return 〈x|A|x〉 − w2.

Figure 3: Answering Covariance Queries on a Matrix while Preserving Differential Privacy

The utility proof is straightforward just as in Appendix B.1. For the privacy proof, note that Step 3 assures
that the singular values of A′ which is now the private matrix are at least w = 16

√
n
ε ln(4n/δ) = σmin.
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