
Riding on Asymmetry:

Efficient ABE for Branching Programs

Sergey Gorbunov∗ Dhinakaran Vinayagamurthy†

October 9, 2014

Abstract

In an Attribute-Based Encryption (ABE) a ciphertext, encrypting message µ, is associated
with a public attribute vector x and a secret key skP is associated with a predicate P . The
decryption returns µ if and only if P (x) = 1. ABE provides efficient and simple mechanism
for data sharing supporting fine-grained access control. Moreover, it is used as a critical
component in constructions of succinct functional encryption, reusable garbled circuits, token-
based obfuscation and more.

In this work, we describe a new efficient ABE scheme for a family of branching programs with
short secret keys over a small ring. In particular, in our constriction the size of the secret key
for a branching program P is |P |+poly(λ), where λ is the security parameter. Our construction
is secure assuming nω(1)-hardness of standard Learning With Errors (LWE) problem, resulting
in small ring modulo. Previous constructions relied on nO(logn)-hardness of LWE (resulting in
large ring modulo) or had large secret keys of size |P |×poly(λ). We rely on techniques developed
by Boneh et al. (EUROCRYPT’14) and Brakerski et al. (ITCS’14) in the context of ABE for
circuits and fully-homomorphic encryption.

∗MIT. Email: sergeyg@mit.edu. Supported by Microsoft PhD fellowship.
†University of Toronto. Email: dhinakaran5@cs.toronto.edu

1 Introduction

Attribute-Based Encryption (ABE) was introduced by Sahai and Waters [SW05] in order to realize
the vision of fine-grained access control to encrypted data. Using ABE, a user can encrypt a message
µ with respect to a public attribute-vector x to obtain a ciphertext ctx. Anyone holding a secret
key skP , associated with an access policy P , can decrypt the message µ if P (x) = 1. Moreover,
the security notion guarantees that no collusion of adversaries holding secret keys skP1 , . . . , skPt
can learn anything about the message µ if none of the individual keys allow to decrypt it. Until
recently, candidate constructions of ABE were limited to restricted classes of access policies that
test for equality (IBE), boolean formulas and inner-products: [Coc01, BF03, GPSW06, Wat09,
LW10, LOS+10, ABB10, CHKP10, AFV11, Boy13].

In recent breakthroughs Gorbunov, Vaikuntanathan and Wee [GVW13] and Garg, Gentry,
Halevi, Sahai and Waters [GGH+13c] constructed ABE schemes for arbitrary boolean predicates.
The GVW construction is based on the sub-exponential hardness of standard Learning With
Errors (LWE) problem, whereas GGHSW relies on hardness of a (currently) stronger assumptions
over existing multilinear map candidates [GGH13a, CLT13]. In a subsequent work, Boneh
et al. [BGG+14] showed how to construct ABE for arithmetic predicates with short secret
keys: |P | + poly(λ, d) (where d is the circuit depth), also assuming sub-exponential hardness of
LWE. However, also in [GVW13], the authors showed an additional construction for a family
of branching programs under a quantitatively better assumption: polynomial hardness of LWE.
Besides immediate theoretical benefits for basing the security on polynomial hardness of LWE, it
also directly leads to practical efficiency improvements, resulting in a smaller ring modulo q. In this
work, we focus on the efficiency of ABE schemes for a family of branching programs from standard
lattice assumptions. First, we summarize the two most efficient results translated to this setting
via standard Barrington’s theorem [Bar86]. Let L be the length of a branching program P and let
λ denote the security parameter. Then,

• [GVW13]: there exists an ABE scheme for length L branching programs with large secret keys
but small modulo: |skP | = |L| × poly(λ), q = poly(L, λ) (secure assuming polynomial hardness
of LWE).

• [BGG+14]: there exists an ABE scheme for length L branching programs with small secret
keys but large modulo: |skP | = |L| + poly(λ, logL), q = poly(λ)logL (secure assuming quasi-
polynomial hardness of LWE).

1.1 Our Results

We present a new efficient construction of ABE for branching programs. Our result can be
summarized in the following theorem.

Theorem 1.1. There exists a selectively-secure Attribute-Based Encryption for a family of length-
L branching programs with small secret keys and small modulo q. More formally, the size of the
secret key skP is L+ poly(λ, logL) and the construction is secure assuming polynomial hardness of
n-dimensional LWE with modulo q = poly(L, λ), where λ is the security parameter.

Furthermore, we can extend our construction to support arbitrary length branching programs
by setting q to some small super-polynomial.

1

High Level Overview. The starting point of our construction is an ABE for circuits by Boneh
et al. [BGG+14]. They present a scheme with small secret keys from a new primitive they name
as key-homomorphic encryption. Informally, given two encryptions of a message µ with respect to
two distinct public keys pk1, pk2 and index bits x1, x2, the key-homomorphic encryption satisfies
properties:

Encpk1,x1(µ) + Encpk2,x2(µ) = Encpk1+pk2,x1+x2(µ)

and
Encpk1,x1(µ)× Encpk2,x2(µ) = Encpk1×pk2,x1×x2(µ)

Note that, in contract to FHE, there is no homomorphism over the messages, but instead over the
public keys with corresponding index bits. In an ABE scheme, the attribute vector x = (x1, . . . , x`)
is then encrypted under a collection of distinct public keys {pki}. Now, say a user is given a secret
key skP ({pki}),1 for a predicate P (derived with respect to a homomorphically computed public key)
and a set of encryptions {Encpki,xi(µ)}. Using the homomorphic properties of the encryption, the
user can compute:

P
(
{Encpki,xi(µ)}

)
= EncP ({pki}),P ({xi})(µ).

The user then can proceed to decrypt EncP ({pki}),P ({xi})(µ) using the secret key skP ({pki}),1 if
P ({xi}) = 1. It is easy to see that skP ({pki}),1 is the desired short secret key. However, their key-
homomorphic encryption, built from lattices, has noise which blows up with every homomorphic
operation. Our first observation is the asymmetric noise growth in their construction. When adding
two encryptions with noise levels e and e′, the resulting noise remains small: e + e′. However,
multiplying two encryptions results in large noise level e′ + poly(n) · e. Hence, naively multiplying
k encryptions in a multiplication tree results in noise level of magnitude poly(n)log k.

Our second idea is to design evaluation algorithms for a “sequential” representation of a matrix
branching program to carefully manage the noise growth, as was recently achieved by Brakerski
and Vaikuntanathan in the context of fully-homomorphic encryption [BV14]. The main challenge
in “riding on asymmetry” for attribute-based encryption is the requirement for satisfying parallel
homomorphic properties: we must design separate homomorphic algorithms for operating over the
public keys and over the ciphertexts that allow for correct decryption. First, we define and design
an algorithm for public key homomorphic operations that works specially for branching programs.
Second, we design a homomorphic algorithm that works over the encryptions {Encpki,xi(µ)} that
preserves the homomorphism over public keys and index bits and carefully manages the noise growth.
When multiplying k encryptions, the accumulated noise level in our construction will remain
bounded by k · poly(n). This allows us to base the security on polynomial hardness of LWE and
establish the desired small modulo. As an additional challenge, the parallelism for homomorphism
must be carried further into the simulation, where we need to argue that no collusion of users is
able to learn anything about the message given many secret keys for programs that do not allow
for decryption individually. We design a separate public-key simulation algorithm to accomplish
this.

1.2 Applications

We summarize some of the known applications of attribute-based encryption. Parno, Raykova
and Vaikuntanathan [PRV12] showed how to use ABE to design (publicly) verifiable two-
message delegation delegation scheme with a pre-processing phase. Goldwasser, Kalai, Popa,
Vaikuntanathan and Zeldovich [GKP+13] showed how to use ABE as a critical building block

2

to construct succinct one-query functional encryption, reusable garbled circuits, token-based
obfuscation and homomorphic encryption for Turing machines. Our efficiency improvements for
branching programs can be carried into all these applications.

Homomorphic Signatures. On the technical side, ideas developed in the context of attribute-
based encryption by Boneh et al. [BGG+14] were recently used by Gorbunov, Vaikuntanathan
and Wichs [GV14, Wic14] to construct fully homomorphic signature scheme. We note that
the techniques developed in this work can similarly be applied to construct more efficient
homomorphic signatures for branching programs, improving the result of the evaluated signatures
from quasipolynomial to polynomial.

1.3 Other Related Work

A number of works optimized attribute-based encryption for boolean formulas: Attrapadung et
al. [ALdP11] and Emura et al. [EMN+09] designed ABE schemes with constant size ciphertext
from bilinear assumptions. For arbitrary circuits, Boneh et al. [BGG+14] also showed an ABE
with constant size ciphertext from multilinear assumptions. ABE can also be viewed as a special
case of functional encryptions [BSW12]. Gorbunov et al. [GVW12] showed functional encryption
for arbitrary functions in a bounded collusion model from standard public-key encryption scheme.
Garg et al. [GGH+13b] presented a functional encryption for unbounded collusions for arbitrary
functions under a weaker security model from multilinear assumptions.

1.4 Organization

In Section 2 we present the lattice preliminaries, definitions for ABE and branching programs. In
Section 3 we present our main evaluation algorithms and build our ABE scheme in Section 4.

2 Preliminaries

Notation. Let PPT denote probabilistic polynomial-time. For any integer q ≥ 2, we let Zq
denote the ring of integers modulo q and we represent Zq as integers in (−q/2, q/2]. We let Zn×mq

denote the set of n×m matrices with entries in Zq. We use bold capital letters (e.g. A) to denote
matrices, bold lowercase letters (e.g. x) to denote vectors. The notation AT denotes the transpose
of the matrix A.

If A1 is an n×m matrix and A2 is an n×m′ matrix, then [A1‖A2] denotes the n× (m+m′)
matrix formed by concatenating A1 and A2. A similar notation applies to vectors. When doing
matrix-vector multiplication we always view vectors as column vectors.

We say a function f(n) is negligible if it is O(n−c) for all c > 0, and we use negl(n) to denote a
negligible function of n. We say f(n) is polynomial if it is O(nc) for some c > 0, and we use poly(n)
to denote a polynomial function of n. We say an event occurs with overwhelming probability if its
probability is 1−negl(n). The function log x is the base 2 logarithm of x. The notation bxe denotes
the nearest integer to x, rounding towards 0 for half-integers.

3

2.1 Lattice Preliminaries

2.1.1 Learning With Errors (LWE) Assumption

The LWE problem was introduced by Regev [Reg05], who showed that solving it on the average is
as hard as (quantumly) solving several standard lattice problems in the worst case.

Definition 2.1 (LWE). For an integer q = q(n) ≥ 2 and an error distribution χ = χ(n) over
Zq, the learning with errors problem dLWEn,m,q,χ is to distinguish between the following pairs of
distributions:

{A,ATs + x} and {A,u}

where A
$← Zn×mq , s

$← Znq ,x
$← χm,u

$← Zmq .

Connection to lattices. Let B = B(n) ∈ N. A family of distributions χ = {χn}n∈N is called
B-bounded if

Pr[χ ∈ {−B, . . . , B − 1, B}] = 1.

There are known quantum [Reg05] and classical [Pei09] reductions between dLWEn,m,q,χ and
approximating short vector problems in lattices in the worst case, where χ is a B-bounded
(truncated) discretized Gaussian for some appropriate B. The state-of-the-art algorithms for these
lattice problems run in time nearly exponential in the dimension n [AKS01, MV10]; more generally,

we can get a 2k-approximation in time 2Õ(n/k). Throughout this paper, the parameter m = poly(n),
in which case we will shorten the notation slightly to LWEn,q,χ.

2.1.2 Trapdoors for Lattices and LWE

Gaussian distributions. Let DZm,σ be the truncated discrete Gaussian distribution over Zm
with parameter σ, that is, we replace the output by 0 whenever the || · ||∞ norm exceeds

√
m · σ.

Note that DZm,σ is
√
m · σ-bounded.

Lemma 2.1 (Lattice Trapdoors [Ajt99, GPV08, MP12]). There is an efficient randomized
algorithm TrapSamp(1n, 1m, q) that, given any integers n ≥ 1, q ≥ 2, and sufficiently large
m = Ω(n log q), outputs a parity check matrix A ∈ Zn×mq and a ‘trapdoor’ matrix TA ∈ Zm×m
such that the distribution of A is negl(n)-close to uniform.

Moreover, there is an efficient algorithm SampleD that with overwhelming probability over all
random choices, does the following: For any u ∈ Znq , and large enough s = Ω(

√
n log q), the

randomized algorithm SampleD(A,TA,u, s) outputs a vector r ∈ Zm with norm ||r||∞ ≤ ||r||2 ≤
s
√
n (with probability 1). Furthermore, the following distributions of the tuple (A,TA,U,R) are

within negl(n) statistical distance of each other for any polynomial k ∈ N:

• (A,TA)← TrapSamp(1n, 1m, q); U← Zn×kq ; R← SampleD(A,TA,U, s).

• (A,TA)← TrapSamp(1n, 1m, q); R← (DZm,s)
k; U := AR (mod q).

2.1.3 Sampling algorithms

We will use the following algorithms to sample short vectors from specific lattices. Looking ahead,
the algorithm SampleLeft [ABB10, CHKP10] will be used to sample keys in the real system, while
the algorithm SampleRight [ABB10] will be used to sample keys in the simulation.

4

Algorithm SampleLeft(A,B,TA,u, α):

Inputs: a full rank matrix A in Zn×mq , a “short” basis TA of

Λ⊥q (A), a matrix B in Zn×m1
q , a vector u ∈ Znq , and a Gaussian

parameter α.
(1)

Output: Let F := (A ‖ B). The algorithm outputs a vector
e ∈ Zm+m1 in the coset ΛF+u.

Theorem 2.2 ([ABB10, Theorem 17], [CHKP10, Lemma 3.2]). Let q > 2, m > n and α >
‖TA‖GS · ω(

√
log(m+m1)). Then SampleLeft(A,B,TA,u, α) taking inputs as in (1) outputs a

vector e ∈ Zm+m1 distributed statistically close to DΛF+u,α, where F := (A ‖ B).

where ‖T‖GS refers to the norm of Gram-Schmidt orthogonalisation of T. We refer the readers
to [ABB10] for more details.

Algorithm SampleRight(A,G,R,TG,u, α):

Inputs: matrices A in Zn×kq and R in Zk×m, a full rank matrix

G in Zn×mq , a “short” basis TG of Λ⊥q (G), a vector u ∈ Znq , and
a Gaussian parameter α.

(2)

Output: Let F := (A ‖ AR + G). The algorithm outputs a
vector e ∈ Zm+k in the coset ΛF+u.

Often the matrix R given to the algorithm as input will be a random matrix in {1,−1}m×m. Let
Sm be the m-sphere {x ∈ Rm+1 : ‖x‖ = 1}. We define sR := ‖R‖ := supx∈Sm−1 ‖R · x‖.

Theorem 2.3 ([ABB10, Theorem 19]). Let q > 2,m > n and α > ‖TG‖GS · sR · ω(
√

logm).
Then SampleRight(A,G,R,TG,u, α) taking inputs as in (2) outputs a vector e ∈ Zm+k distributed
statistically close to DΛF+u,α, where F := (A ‖ AR + G).

2.1.4 Primitive matrix

We use the primitive matrix G ∈ Zn×mq defined in [MP12]. This matrix has a trapdoor TG such
that ‖TG‖∞ = 2.

We also define an algorithm InvG : Zn×mq → Zm×mq which deterministically derives a pre-image Ã

satisfying G · Ã = A. From [MP12], there exists a way to get Ã such that Ã ∈ {0, 1}m×m.

2.2 Attribute-Based Encryption

An attribute-based encryption scheme ABE [GPSW06] for a class of circuits C with ` bit inputs
and message space M consists of a tuple of p.p.t. algorithms (Params, Setup,Enc,KeyGen,Dec):

Params(1λ)→ pp : The parameter generation algorithm takes the security parameter 1λ and
outputs a public parameter pp which is implicitly given to all the other algorithms of the
scheme.

5

Setup(1`)→ (mpk,msk) : The setup algorithm gets as input the length ` of the input index, and
outputs the master public key mpk, and the master key msk.

Enc(mpk, x, µ)→ ctx : The encryption algorithm gets as input mpk, an index x ∈ {0, 1}` and a
message µ ∈M. It outputs a ciphertext ctx.

KeyGen(msk, C)→ skC : The key generation algorithm gets as input msk and a predicate specified
by C ∈ C. It outputs a secret key skC .

Dec(ctx, skC)→ µ : The decryption algorithm gets as input ctx and skC , and outputs either ⊥ or
a message µ ∈M.

Definition 2.2 (Correctness). We require that for all (x, C) such that C(x) = 1 and for all
µ ∈ M, we have Pr[ctx ← Enc(mpk,x, µ);Dec(ctx, skC) = µ)] = 1 where the probability is taken
over pp← Params(1λ), (mpk,msk)← Setup(1`) and the coins of all the algorithms in the expression
above.

Definition 2.3 (Security). For a stateful adversary A, we define the advantage function AdvabeA (λ)
to be

Pr


b = b′ :

x∗, dmax ← A(1λ, 1`);
pp← Params(1λ, 1dmax);
(mpk,msk)← Setup(1`,x∗);

(µ0, µ1)← AKeygen(msk,·)(mpk), |µ0| = |µ1|;
b

$← {0, 1};
ctx ← Enc(mpk,x, µb);

b′ ← AKeygen(msk,·)(ctx)


− 1

2

with the restriction that all queries y that A makes to Keygen(msk, ·) satisfies C(x∗) = 0 (that is,
skC does not decrypt ctx). An attribute-based encryption scheme is selectively secure if for all PPT
adversaries A, the advantage AdvabeA (λ) is a negligible function in λ.

2.3 Branching Programs

We define branching programs similar to [BV14]. A width-w branching program BP of length L
with input space {0, 1}` and s states (represented by [s]) is a sequence of L tuples of the form
(var(t), σt,0, σt,1) where

• σt,0 and σt,1 are injective functions from [s] to itself.

• var : [L]→ [`] is a function that associates the t-th tuple σt,0, σt,1 with the input bit xvar(t).

The branching program BP on input x = (x1, . . . , x`) computes its output as follows. At step
t, we denote the state of the computation by ηt ∈ [s]. The initial state is η0 = 1. In general, ηt can
be computed recursively as

ηt = σt,xvar(t)(ηt−1)

Finally, after L steps, the output of the computation BP(x) = 1 if ηL = 1 and 0 otherwise.
As done in [BV14], we represent states with bits rather than numbers to bound the noise growth.

In particular, we represent the state ηt ∈ [s] by a unit vector vt ∈ {0, 1}s. The idea is that vt[i] = 1
if and only if σt,xvar(t)(ηt−1) = 1. Note that we can also write the above expression as vt[i] = 1 if
and only if either:

6

• vt−1

[
σ−1
t,0 (i)

]
= 1 and xvar(t) = 0

• vt−1

[
σ−1
t,1 (i)

]
= 1 and xvar(t) = 1

This latter form will be useful for us since it can be captured by the following formula. For t ∈ [L]
and i ∈ [s],

vt[i] := vt−1

[
σ−1
t,0 (i)

]
· (1− xvar(t)) + vt−1

[
σ−1
t,1 (i)

]
· xvar(t)

= vt−1 [γt,i,0] · (1− xvar(t)) + vt−1 [γt,i,1] · xvar(t)

where γt,i,0 := σ−1
t,0 (i) and γt,i,1 = σ−1

t,1 (i) can be publicly computed from the description of the

branching program. Hence,
{
var(t), {γt,i,0, γt,i,1}i∈[s]

}
t∈[L]

is also valid representation of a branching

program BP.

For clarity of presentation, we will deal with width-5 permutation branching programs, which is
shown to be equivalent to the circuit class NC1 [Bar86]. Hence, we have s = w = 5 and the
functions σ0, σ1 are permutations on [5].

3 Our Evaluation Algorithms

In this section we describe the key evaluation and encoding (ciphertext) evaluation algorithms that
will be used in our ABE construction. The algorithms are carefully designed to manage the noise
growth in the LWE encodings and to preserve parallel homomorphism over the public keys and the
encoded values.

3.1 Basic Homomorphic Operations

We first describe basic homomorphic addition and multiplication algorithms over the public keys
and encodings (ciphertexts) based on the techniques developed by Boneh et al. [BGG+14].

Definition 3.1 (LWE Encoding). For any matrix A
$← Zn×mq , we define an LWE encoding of a

bit a ∈ {0, 1} with respect to a (public) key A and randomness s
$← Znq as

ψA,s,a = (A + a ·G)Ts + e ∈ Zmq

for error vector e
$← χm and an (extended) primitive matrix G ∈ Zn×mq .

In our construction, however, all encodings will be under the same LWE secret s, hence for
simplicity we will simply refer to such an encoding as ψA,a.

Definition 3.2 (Noise Function). For every A ∈ Zn×mq , s ∈ Znq and encoding ψA,a ∈ Zmq of a bit
a ∈ {0, 1} we define a noise function as

Noises(ψA,a) := ||ψA,a − (A + a ·G)Ts mod q||∞

Looking ahead, in Lemma 4.1 we show that if the noise obtained after applying homomorphic
evaluation is ≤ q/4, then our ABE scheme will decrypt the message correctly. Now we define the
basic additive and multiplicative operations on the encodings of this form, as per [BGG+14]. In
their context, they refer to a matrix A as the “public key” and ψA,a as a ciphertext.

7

3.1.1 Homomorphic addition

This algorithm takes as input two encodings ψA,a, ψA′,a′ and outputs the sum of them. Let A+ =
A + A′ and a+ = a+ a′.

Adden(ψA,a, ψA′,a′) : Output ψA+,a+ := ψA,a + ψA′,a′ mod q

Lemma 3.1 (Noise Growth in Adden). For any two valid encodings ψA,a, ψA′,a′ ∈ Zmq , let A+ =
A + A′ and a+ = a+ a′ and ψA+,a+ = Adden(ψA,a, ψA′,a′), then we have

NoiseA+,a+(ψA+,a+) ≤ NoiseA,a(ψA,a) + NoiseA′,a′(ψA′,a′)

Proof. Given two encodings we have,

ψA+,a+ = ψA,a + ψA′,a′

= ((A + a ·G)Ts + e) +
(
(A′ + a′ ·G)Ts + e′

)
=
(
(A + A′) + (a+ a′) ·G

)T
s + (e + e′)

= (A+ + a+ ·G)Ts + (e + e′)

Thus, from the definition of the noise function, it follows that

NoiseA+,a+(ψA,a + ψA′,a′) ≤ NoiseA,a(ψA,a) + NoiseA′,a′(ψA′,a′)

3.1.2 Homomorphic multiplication

This algorithm takes in two encodings ψA,a = (A + a ·G)Ts + e1 and ψA′,a′ = (A′ + a′ ·G)Ts + e2

and outputs an encoding ψA×,a× where A× = −AÃ′ and a× = aa′ as follows:

Multiplyen(ψA,a, ψA′,a′) : Output ψA×,a× := −Ã′
T

· ψ + a · ψ′.

Note that this process requires the knowledge of the attribute a in clear.

Lemma 3.2 (Noise Growth in Multiplyen). For any two valid encodings ψA,a, ψA′,a′ ∈ Zmq , let

A× = −AÃ′ and a× = aa′ and ψA×,a× = Multiplyen(ψA,a, ψA′,a′) then we have

NoiseA×,a×(ψA×,a×) ≤ m · NoiseA,a(ψA,a) + a · NoiseA′,a′(ψA′,a′)

Proof. Given two valid encodings, we have

ψA×,a× = −Ã′
T

· ψ + a · ψ′

= −Ã′
T(

(A + a ·G)Ts + e
)

+ a ·
(
(A′ + a′ ·G)Ts + e′

)
=

(
(−AÃ′ − a ·A′)Ts− Ã′

T

e

)
+

(
(a ·A′ + aa′ ·G)Ts + a · e′

)
=
(
(−AÃ2︸ ︷︷ ︸

A×

) + aa′︸︷︷︸
a×

·G
)T

s +
(
−Ã′

T

e + a · e′︸ ︷︷ ︸
e×

)
Thus, from the definition of the noise function, we must bound the noise e×. Hence,∥∥e×∥∥∞ ≤ ∥∥∥Ã′Te∥∥∥∞ + a ·

∥∥e′∥∥∞ ≤ m · ‖e‖∞ + a ·
∥∥e′∥∥∞

where the last inequality holds since Ã′ ∈ {0, 1}m×m.

8

3.2 Our Public Key Evaluation Algorithm

We define a (public) key evaluation algorithm Evalpk. The algorithm takes as input a description
of the branching program BP, a collection of public keys {Ai}i∈[`] (one for each attribute bit xi),
a collection of public keys V0,i for initial state vector and an auxiliary matrix Ac. The algorithm
outputs an “evaluated” public key corresponding to the branching program:

Evalpk(BP, {Ai}i∈[`], {V0,i}i∈[5],A
c)→ VBP

The auxiliary matrix Ac can be thought of as the public key we use to encode a constant 1. We
also define A′i := Ac −Ai, as a public key that will encode 1− xi. The output VBP ∈ Zn×mq is the
homomorphically defined public key VL,1 at position 1 of the state vector at the Lth step of the
branching program evaluation.

The algorithm proceeds as follows. Recall the description of the branching program BP
represented by tuples

(
var(t), {γt,i,0, γt,i,1}i∈[5]

)
for t ∈ [L]. The initial state vector is always taken

to be v0 := [1, 0, 0, 0, 0]. And for t ∈ [L],

vt[i] = vt−1 [γt,i,0] · (1− xvar(t)) + vt−1 [γt,i,1] · xvar(t)

Our algorithm calculates VBP inductively as follows. Assume at time t− 1 ∈ [L], the state public
keys {Vt−1,i}i∈[5] are already assigned. We assign state public keys {Vt,i}i∈[5] at time t as follows.

1. Let γ0 := γt,i,0 and γ1 := γt,i,1.

2. Let Vt,i = −A′var(t)Ṽt−1,γ0 −Avar(t)Ṽt−1,γ1 .

It is important to note that the public key defined at each step of the state vector is independent
of any input attribute vector. Now, let VL,1 be the public key assigned at position 1 at step L of
the branching program. We simply output VBP := VL,1.

3.3 Our Encoding Evaluation Algorithm

We also define an encoding evaluation algorithm Evalen which we will use in the decryption algorithm
of our ABE scheme. The algorithm takes as input the description of a branching program BP, an
attribute vector x, a set of encodings for the attribute (with corresponding public keys) {Ai, ψi :=
ψAi,xi}i∈[`], encodings of the initial state vector {V0,i, ψ0,i := ψV0,i,v0[i]}i∈[5] and an encoding of a
constant “1” ψc := ψAc,1. (From now on, we will use the simplified notations ψi, ψ0,i, ψ

c for the
encodings). Evalen outputs an encoding of the result y := BP(x) with respect to a homomorphically
derived public key VBP := VL,1.

Evalen
(
BP,x, {Ai, ψi}i∈[`], {V0,i, ψ0,i}i∈[5],A

c, ψc
)
→ ψBP

Recall that for t ∈ [L], we have for all i ∈ [5]:

vt[i] = vt−1 [γt,i,0] · (1− xvar(t)) + vt−1 [γt,i,1] · xvar(t)

The evaluation algorithm proceeds inductively to update the encoding of the state vector for each
step of the branching program. The key idea to obtain the desired noise growth is that we only
multiply the fresh encodings of the attribute bits with the binary decomposition of the public keys.

9

The result is then be added to update the encoding of the state vector. Hence, at each step of
the computation the noise in the encodings of the state will only grow by some fixed additive factor.

The algorithm proceeds as follows. We define ψ′i := ψA′i,(1−xi) = (A′i + (1 − xi) · G)Ts + e′i
to denote the encoding of 1 − xi with respect to A′i = Ac − Ai. Note that it can be computed
using Adden(ψAc,1,−ψAi,xi). Assume at time t − 1 ∈ [L] we hold encodings of the state vector
{ψVt−1,i,vt[i]}i∈[5]. Now, we compute the encodings of the new state values:

ψt,i = Adden
(
Multiplyen(ψ′var(t), ψt−1,γ0),Multiplyen(ψvar(t), ψt−1,γ1)

)
where γ0 := γt,i,0 and γ1 := γt,i,1. As we show below (in Lemma 3.3), this new encoding has the
form

(
Vt,i + vt[i] ·G

)T
s + et,i (for a small enough noise term et,i).

Finally, let ψL,1 be the encoding obtained at the Lth step corresponding to state value at
position “1” by this process. As we show in Lemma 3.4, noise term eBP has “low” infinity norm
enabling correct decryption (Lemma 4.1). The algorithm outputs ψBP := ψL,1.

3.3.1 Correctness and Analysis

Lemma 3.3. For any valid set of encodings ψvar(t), ψ
′
var(t) for the bits xvar(t), (1 − xvar(t)) and

{ψt−1,i}i∈[5] for the state vector vt−1 at step t− 1, the output of the function

Adden
(
Multiplyen(ψ′var(t), ψt−1,γ0),Multiplyen(ψvar(t), ψt−1,γ1)

)
→ ψt,i

where ψt,i =
(
Vt,i + vt[i] ·G

)T
s + et,i, for some noise term et,i.

Proof. Given valid encodings ψvar(t), ψ
′
var(t) and {ψt−1,i}i∈[5], we have:

ψt,i =Adden
(
Multiplyen(ψ′var(t), ψt−1,γ0),Multiplyen(ψvar(t), ψt−1,γ1)

)
=Adden

([
(−A′var(t)Ṽt−1,γ0 + (vt[γ0] · (1− xvar(t))) ·G)Ts + e1)

]
,[

(−Avar(t)Ṽt−1,γ1 + (vt[γ1] · xvar(t)) ·G)Ts + e2)
])

=
[(
−A′var(t)Ṽt−1,γ0 −Avar(t)Ṽt−1,γ1

)
︸ ︷︷ ︸

Vt,i

+
(
vt[γ0] · (1− xvar(t)) + vt[γ1] · xvar(t)

)︸ ︷︷ ︸
vt[i]

·G
]T

s + et,i

where the first step follows from the correctness of Multiplyen algorithm and last step from that

of Adden with et,i = e1 + e2 where e1 = −
(
Ṽt−1,γ0

)T

e′var(t) − (1 − xvar(t)) · et−1,γ0 and e2 =

−
(
Ṽt−1,γ1

)T

evar(t) − xvar(t) · et−1,γ1 .

Lemma 3.4. Let Evalen
(
BP,x, {Ai, ψi}i∈[`], {V0,i, ψ0,i}i∈[5],A

c, ψc
)
→ ψBP such that all the noise

terms,
{
NoiseAi,xi(ψi)

}
i∈[`]

,NoiseAc,1(ψc),
{
NoiseV0,i,v0[i](ψ0,i)

}
i∈[5]

are bounded by B, then

NoiseVBP,y(ψBP) ≤ 3m · L ·B +B

10

Proof. We will prove this lemma by induction. That is, we will prove that at any step t,

NoiseVt,i,vt[i](ψt,i) ≤ 3m · t ·B +B

for i ∈ [5]. For the base case, t = 0, we operate on fresh encodings for the initial state vector v0.
Hence, we have that, NoiseV0,i,v0[i](ψ0,i) ≤ B, for all i ∈ [5]. Let {ψt−1,i}i∈[5] be the encodings of
the state vector vt−1 at step t− 1 such that

NoiseVt−1,i,vt−1[i](ψt−1,i) ≤ 3m · (t− 1) ·B +B

for i ∈ [5]. We know that ψt,i = Adden
(
Multiplyen(ψ′var(t), ψt−1,γ0),Multiplyen(ψvar(t), ψt−1,γ1)

)
.

Hence, from Lemma 3.1 and Lemma 3.2, we get:

NoiseVt,i,et[i](ψt,i) ≤
(
m · NoiseA′

var(t)
,(1−xvar(t))(ψ

′
var(t)) + (1− xvar(t)) · NoiseVt−1,γ0 ,vt−1[γ0]

)
+
(
m · NoiseAvar(t),xvar(t)(ψvar(t)) + xvar(t) · NoiseVt−1,γ1 ,vt−1[γ1]

)
=
(
m · 2B + (1− xvar(t)) · (3m(t− 1)B +B)

)
+
(
m ·B + xvar(t) · (3m(t− 1)B +B)

)
= 3m · t ·B +B

where

NoiseA′
var(t)

,(1−xvar(t))(ψ
′
var(t)) ≤ NoiseAc,1(ψc) + Noise−Avar(t),−xvar(t)(−ψvar(t)) ≤ B +B = 2B

by Lemma 3.1. With ψBP being an encoding at step L, we have NoiseVBP,y(ψBP) ≤ 3m ·L ·B +B.
Thus, NoiseVBP,y(ψBP) = O(m · L ·B).

3.4 Our Simulated Public Key Evaluation Algorithm

During simulation, we will use a different procedure for assigning public keys to each wire of the
input and the state vector. In particular, Ai = A · Ri − xi · G for some shared public key A
and some low norm matrix Ri. Similarly, the state public keys Vt,i = A · Rt,i − vt[i] ·G. The
algorithm thus takes as input the description of the branching program BP, the attribute vector x,
two collection of low norm matrices {Ri}, {R0,i} corresponding to the input public keys and initial
state vector, a low norm matrix Rc for the public key of constant 1 and a shared matrix A. It
outputs a homomorphically derived low norm matrix RBP.

EvalSIM(BP,x, {Ri}i∈[`], {R0,i}i∈[5],R
c,A)→ RBP

The algorithm will ensure that the output RBP satisfies A ·RBP − BP(x) ·G = VBP, where VBP

is the homomorphically derived public key.

The algorithm proceeds inductively as follows. Assume at time t − 1 ∈ [L], the we hold a
collection of low norm matrices Rt−1,i and public keys Vt−1,i = A · Rt−1,i − vt[i] ·G for i ∈ [5]
corresponding to the state vector. Let R′i = Rc−Ri for all i ∈ [`]. We show how to derive the low
norm matrices Rt,i for all i ∈ [5]:

1. Let γ0 := γt,i,0 and γ1 := γt,i,1.

11

2. Compute

Rt,i =
(
−R′var(t)Ṽt−1,γ0 + (1− xvar(t)) ·Rt−1,γ0

)
+
(
−Rvar(t)Ṽt−1,γ1 + xvar(t) ·Rt−1,γ1)

)
Finally, let RL,1 be the matrix obtained at the Lth step corresponding to state value “1” by

the above algorithm. Output RBP := RL,1. Below, we show that the norm of RBP remains
small and that homomorphically computed public key VBP using Evalpk satisfies that VBP =
A ·RBP − BP(x) ·G.

Lemma 3.5 (Correctness of EvalSIM). For any set of valid inputs to EvalSIM, we have

EvalSIM(BP,x, {Ri}i∈[`], {R0,i}i∈[5],R
c,A)→ RBP

where VBP = ARBP − BP(x) ·G.

Proof. We will prove this lemma by induction. That is, we will prove that at any step t,

Vt,i = ARt,i − vt[i] ·G

for any i ∈ [5]. For the base case t = 0, since the inputs are valid, we have that V0,i = AR0,i −
v0[i] ·G, for all i ∈ [5]. Let Vt−1,i = ARt−1,i − vt−1[i] ·G for i ∈ [5].
Hence, we get:

ARt,i =
(
−AR′var(t)Ṽt−1,γ0 + (1− xvar(t)) ·ARt−1,γ0

)
+
(
−ARvar(t)Ṽt−1,γ1 + xvar(t) ·ARt−1,γ1)

)
=
(
−
(
A′var(t) + (1− xvar(t)) ·G

)
Ṽt−1,γ0 + (1− xvar(t)) ·

(
Vt−1,γ0 + vt−1[γ0] ·G

))
+
(
−
(
Avar(t) + xvar(t) ·G

)
Ṽt−1,γ1 + xvar(t) ·

(
Vt−1,γ1 + vt−1[γ1] ·G

))
=
(
−A′var(t)Ṽt−1,γ0 − (1− xvar(t)) ·Vt−1,γ0 + (1− xvar(t)) ·Vt−1,γ0 +

(
(1− xvar(t))vt−1[γ0]

)
·G
)

+
(
−Avar(t)Ṽt−1,γ1 − xvar(t) ·Vt−1,γ1 + xvar(t) ·Vt−1,γ1 +

(
xvar(t)vt−1[γ1]

)
·G
)

=
(
−A′var(t)Ṽt−1,γ0 −Avar(t)Ṽt−1,γ1︸ ︷︷ ︸

Vt,i

)
+
(

(1− xvar(t))vt−1[γ0] +
(
xvar(t)vt−1[γ1]︸ ︷︷ ︸

vt[i]

)
·G

Hence, we have Vt,i = ARt,i − vt[i] ·G. Thus, at the Lth step, we have by induction that

VBP = VL,1 = ARL,1−vt[i]·G = ARBP − vt[i] ·G

Lemma 3.6. Let EvalSIM
(
BP,x, {Ri}i∈[`], {R0,i}i∈[5],R

c,A)→ RBP such that all the “R” matrices
are sampled from {−1, 1}m×m, then

‖RBP‖∞ ≤ 3m · L+ 1

12

Proof. This proof is very similar to that of Lemma 3.4. We will prove this lemma also by induction.
That is, we will prove that at any step t,

‖Rt,i‖∞ ≤ 3m · t+ 1

for i ∈ [5]. For the base case, t = 0, the input R0,is are such that, ‖Rt,0‖∞ = 1, for all i ∈ [5]. Let
‖Rt−1,i‖∞ ≤ 3m · (t− 1) + 1 for i ∈ [5]. We know that

Rt,i =
(
−R′var(t)Ṽt−1,γ0 + (1− xvar(t)) ·Rt−1,γ0

)
+
(
−Rvar(t)Ṽt−1,γ1 + xvar(t) ·Rt−1,γ1)

)
Hence, we have:

‖Rt,i‖∞ ≤
(
m ·

∥∥∥Ṽt−1,γ0

∥∥∥
∞
·
∥∥∥R′var(t)∥∥∥∞ + (1− xvar(t)) · ‖Rt−1,γ0‖∞

)
+
(
m ·

∥∥∥Ṽt−1,γ0

∥∥∥
∞
·
∥∥Rvar(t)

∥∥
∞ + xvar(t) · ‖Rt−1,γ1‖∞

)
=
(
m · 1 · 2 + (1− xvar(t)) · 3m · (t− 1)

)
+
(
m · 1 · 1 + xvar(t) · 3m · (t− 1)

)
= 3m · t+ 1

where ∥∥R′i∥∥∞ ≤ ‖Rc + Ri‖∞ ≤ ‖R
c‖∞ + ‖Ri‖∞ ≤ 1 + 1 = 2

With RBP being at step L, we have ‖RBP‖∞ ≤ 3m · L+ 1. Thus, ‖RBP‖∞ = O(m · L).

4 Our Attribute-Based Encryption

In this section we describe our attribute-based encryption scheme for branching programs. We
present the scheme for a bounded length branching programs, but note that we can trivially
support unbounded length by setting modulo q to a small superpolynomial. For a family of
branching programs of length bounded by L and input space {0, 1}`, we define the ABE algorithms
(Params,Setup,KeyGen,Enc,Dec) as follows.

• Params(1λ, 1L): For a security parameter λ and length bound L, let the LWE dimension be n =
n(λ) and let the LWE modulus be q = q(n,L). Let χ be an error distribution over Z and let B =
B(n) be an error bound. We additionally choose two Gaussian parameters: a “small” Gaussian
parameter s = s(n) and a “large” Gaussian parameter α = α(n). Both these parameters
are polynomially bounded (in λ, L). The public parameters pp = (λ, L, n, q,m, χ,B, s, α) are
implicitly given as input to all the algorithms below.

• Setup(1`): The setup algorithm takes as input the length of the attribute vector `.

1. Sample a matrix with a trapdoor: (A,TA)← TrapSamp(1n, 1m, q).

2. Let G ∈ Zn×mq be the primitive matrix with the public trapdoor basis TG.

3. Choose ` + 6 matrices {Ai}i∈[`], {V0,1}i∈[5],A
c at random from Zn×mq . First, ` matrices

form the LWE “public keys” for the bits of attribute vector, next 5 form the “public keys”
for the initial configuration of the state vector, and the last matrix as a “public key” for a
constant 1.

13

4. Choose a vector u ∈ Znq at random.

5. Output the master public key

mpk :=
(
A,Ac, {Ai}i∈[`], {V0,i}i∈[5],G,u

)
and the master secret key msk := (TA,mpk).

• Enc(mpk,x, µ): The encryption algorithm takes as input the master public key mpk, the
attribute vector x ∈ {0, 1}` and a message µ.

1. Choose an LWE secret vector s ∈ Znq at random.

2. Choose noise vector e
$← χm and compute ψ0 = ATs + e.

3. Choose a random matrix Rc ← {−1, 1}m×m and let ec = (Rc)Te. Now, compute an
encoding of a constant 1:

ψc = (Ac + G)T s + ec

4. Encode each bit i ∈ [`] of the attribute vector:

(a) Choose random matrices Ri ← {−1, 1}m×m and let ei = RT
i e.

(b) Compute ψi = (Ai + xi ·G)Ts + ei.

5. Encode the initial state configuration vector v0 = [1, 0, 0, 0, 0]: for all i ∈ [5],

(a) Choose a random matrix R0,i ← {−1, 1}m×m and let e0,i = RT
0,ie.

(b) Compute ψ0,i = (V0,i + v0[i] ·G)Ts + e0,i.

6. Encrypt the message µ as τ = uTs + e+ bq/2eµ, where e← χ.

7. Output the ciphertext

ctx =
(
x, ψ0, ψ

c, {ψi}i∈[`], {ψ0,i}i∈[5], τ
)

• KeyGen(msk,BP): The key-generation algorithm takes as input the master secret key msk and
a description of a branching program:

BP :=
(
v0,
{
var(t), {γt,i,0, γt,i,1}i∈[5]

}
t∈[L]

)
The secret key skBP is computed as follows.

1. Homomorphically compute a “public key” matrix associated with the branching program:

VBP ← Evalpk(BP, {Ai}i∈[`], {V0,i}i∈[5],A
c)

2. Let F = [A||(VBP + G)] ∈ Zn×2m
q . Compute rout ← SampleLeft(A, (VBP + G),TA,u, α)

such that F · rout = u.

3. Output the secret key for the branching program as

skBP := (BP, rout)

• Dec(skBP, ctx): The decryption algorithm takes as input the secret key for a branching program
skBP and a ciphertext ctx. If BP(x) = 0, output ⊥. Otherwise,

14

1. Homomorphically compute the encoding of the result BP(x) associated with the public key
of the branching program:

ψBP ← Evalen(BP,x, {Ai, ψi}i∈[`], {V0,i, ψ0,i}i∈[5], (A
c, ψc))

2. Finally, compute φ = rT
out · [ψ||ψBP]. As we show in Lemma 4.1, φ = uTs + bq/2eµ + eφ

(mod q), for a short eφ.

3. Output µ = 0 if |τ − φ| < q/4 and µ = 1 otherwise.

4.1 Correctness

Lemma 4.1. Let BP be a family of width-5 permutation branching programs with their length
bounded by L and let ABE = (Params, Setup,KeyGen,Enc,Dec) be our attribute-based encryption
scheme. For a LWE dimension n = n(λ), the parameters for ABE are instantiated as follows
(according to the values calculated in Section 5):

χ = DZ,
√
n B = O(n)

q = Õ(n7 · L2) s = O(
√
n log q)

m = O(n log q) α = Õ(n log q)2 · L

then the scheme ABE is correct, according to the definition in Section 2.2.

Proof. We have to show that the decryption algorithm outputs the correct message µ, given a valid
set of a secret key and a ciphertext.

From Lemma 3.3, we have that ψBP = (VBP +G)Ts+eBP since BP(x) = 1. Also, from Lemma 3.4,
we know that ‖eBP‖∞ = O(m · L · (m · B)) = O(m2 · L · B) since our input encodings have noise
terms bounded by m ·B. Thus, the noise term in φ is bounded by:

‖eφ‖∞ = m ·
(
NoiseA,0(ψ) + NoiseVBP,1(ψBP)

)
· ‖rout‖∞

= m · (B +O(m2 · L ·B)) · Õ(n log q)2 · L
√
m

= O
(
(n log q)6 · L2 ·B

)
where m = O(n log q) and ‖rout‖∞ ≤ α

√
m = Õ(n log q)2 ·L

√
m according to Section 5. Hence, we

have
|τ − φ| ≤ ‖e‖∞ + ‖eφ‖∞ = O

(
(n log q)6 · L2 ·B

)
≤ q/4

Clearly, the last inequality is satisfied when q = Õ(n7 ·L2). Hence, the decryption proceeds correctly
outputting the correct µ.

4.2 Security Proof

Theorem 4.2. For any ` and any length bound L, ABE scheme defined above satisfies selective
security game 2.3 for any family of branching programs BP of length L with `-bit inputs, assuming
hardness of dLWEn,q,χ for sufficiently large n = poly(λ), q = Õ(n7 · L2) and poly(n) bounded error
distribution χ. Moreover, the size of the secret keys grows polynomially with L (and independent
of the width of BP).

15

Proof. We define a series of hybrid games, where the first and the last games correspond to
the real experiments encrypting messages µ0, µ1 respectively. We show that these games are
indistinguishable except with negligible probability. Recall that in a selective security game,
the challenge attribute vector x∗ is declared before the Setup algorithm and all the secret key
queries that adversary makes must satisfy BP(x∗) = 0. First, we define auxiliary simulated ABE∗
algorithms.

• Setup∗(1λ, 1`, 1L,x∗): The simulated setup algorithm takes as input the security parameter
λ, the challenge attribute vector x∗, its length ` and the maximum length of the branching
program L.

1. Choose a random matrix A← Zn×mq and a vector u at random.

2. Let G ∈ Zn×mq be the primitive matrix with the public trapdoor basis TG.

3. Choose `+ 6 random matrices {Ri}i∈[`], {R0,i}i∈[5],R
c from {−1, 1}m×m and set

(a) Ai = A ·Ri − x∗G for i ∈ [`],

(b) V0,i = A ·R0,i − v0[i] ·G for i ∈ [5] where v0 = [1, 0, 0, 0, 0],

(c) Ac = A ·Rc −G.

4. Output the master public key

mpk :=
(
A,Ac, {Ai}i∈[`], {V0,i}i∈[5],G,u

)
and the secret key

msk :=
(
x∗,A,Rc, {Ri}i∈[`], {R0,i}i∈[5]

)
• Enc∗(mpk,x∗, µ): The simulated encryption algorithm takes as input mpk,x∗ and the message
µ. It computes the ciphertext using the knowledge of short matrices {Ri}, {R0,i},Rc as follows.

1. Choose a vector s ∈ Znq at random.

2. Choose noise vector e
$← χm and compute ψ0 = ATs + e.

3. Compute an encoding of an identity as ψc = (Ac)T s + (Rc)Te.

4. For all bits of the attribute vector i ∈ [`] compute

ψi = (Ai + xi ·G)Ts + RT
i e

5. For all i ∈ [5], encode the bits of the initial state configuration vector v0 = [1, 0, 0, 0, 0]

ψ0,i = (V0,i + v0[i] ·G)Ts + RT
0,ie

6. Encrypt the message µ as τ = uTs + e+ bq/2eµ, where e← χ.

7. Output the ciphertext

ct =
(
x, ψ0, {ψi}i∈[`], ψ

c, {ψ0,i}i∈[5], τ
)

• KeyGen∗(msk,BP): The simulated key-generation algorithm takes as input the master secret
key msk and the description of the branching program BP. It computes the secret key skBP as
follows.

16

1. Obtain a short homomorphically derived matrix associated with the output public key of
the branching program:

RBP ← EvalSIM
(
BP,x∗, {Ri}i∈[`], {R0,i}i∈[5],R

c,A
)

2. By the correctness of EvalSIM, we have VBP = ARBP − BP(x∗) · G. Let F =
[A||(VBP + G)] ∈ Zn×2m

q . Compute rout ← SampleRight(A,G,RBP,TG,u, α) such that
F · rout = u (this step relies on the fact that BP(x∗) = 0).

3. Output the secret key for the branching program

skBP := (BP, rout)

Game Sequence. We now define a series of games and then prove that all games Game i and
Game i+1 are either statistically or computationally indistinguishable.

• Game 0: The challenger runs the real ABE algorithms and encrypts message µ0 for the
challenge index x∗.

• Game 1: The challenger runs the simulated ABE algorithms Setup∗,KeyGen∗,Enc∗ and
encrypts message µ0 for the challenge index x∗.

• Game 2: The challenger runs the simulated ABE algorithms Setup∗,KeyGen∗, but chooses a
uniformly random element of the ciphertext space for the challenge index x∗.

• Game 3: The challenger runs the simulated ABE algorithms Setup∗,KeyGen∗,Enc∗ and
encrypts message µ1 for the challenge index x∗.

• Game 4: The challenger runs the real ABE algorithms and encrypts message µ1 for the
challenge index x∗.

Lemma 4.3. The view of an adversary in Game 0 is statistically indistinguishable from Game
1. Similarly, the view of an adversary in Game 4 is statistically indistinguishable from Game 3.

Proof. We prove for the case of Game 0 and Game 1, as the other case is identical. First, note
the differences between the games:

• In Game 0, matrix A is sampled using TrapSamp algorithm and matrices Ai,A
c,V0,j ∈ Zn×mq

are randomly chosen for i ∈ [`], j ∈ [5]. In Game 1, matrix A ∈ Zn×mp is chosen uniformly
at random and matrices Ai = ARi − x∗i ·G, Ac = ARc −G, V0,j = AR0,j − v0[j] ·G for
randomly chosen Ri,R

c,R0,j ∈ {−1, 1}m×m.

• In Game 0, each ciphertext component is computed as:

ψi = (Ai + x∗i ·G)Ts + ei = (Ai + x∗i ·G)Ts + RT
i e

ψc = (Ac + G)Ts + e1 = (Ac + G)Ts + (Rc)Te

ψ0,j = (V0,j + v0[j] ·G)Ts + ei = (V0,j + v0[j] ·G)Ts + RT
0,je

On the other hand, in Game 1 each ciphertext component is computed as:

ψi = (Ai + x∗i ·G)Ts + RT
i e = (ARi)

Ts + RT
i e = RT

i

(
ATs + e

)
Similarly, ψc = (Rc)T(ATs + e) and ψ0,j = RT

0,j(As + e).

17

• Finally, in Game 0 the vector rout is sampled using SampleLeft, whereas in Game 1 it is
sampled using SampleRight algorithm.

For sufficiently large α (See Section-5), the distributions produced in two games are statistically
indistinguishable. This follows readily from [AFV11, Lemma 4.3], Theorem-2.2 and Theorem-2.3.
We will provide the proof here for completeness.

We would like to prove that the tuple A, {Ai, ψi}i∈[`],A
c, ψc, {V0,j , ψ0,j}j∈[5] in Game 0 is

statistically indistinguishable from the set from Game 1. The generalisation of left-over hash

lemma [DORS08, ABB10] states that, for two matrices Ri
$← {−1, 1}m×m,A,Ai

$← Zn×mq and any
vector e ∈ Zmq , the following is true, when q is square-free (q does not have a square of a prime
number as its factor).

(A,ARi,R
T
i e,) ≈s (A,Ai,R

T
i e)

With the matrices Ri,R0,j independently chosen from {−1, 1}m×m we can extending this to have:(
A, (ARi,R

T
i e) , (ARc, (Rc)Te) ,

(
AR0,j ,R

T
0,je
))

≈s
(
A, (Ai,R

T
i e) , (Ac, (Rc)Te) ,

(
V0,j ,R

T
0,je
))

Hence, for every fixed matrix G ∈ Zn×mq and every bit x∗i ,v0[j] ∈ {0, 1},(
A, (ARi − x∗i ·G,RT

i e) , (ARc −G, (Rc)Te) ,
(
AR0,j − v0[j],RT

0,je
))

≈s
(
A, (Ai,R

T
i e) , (Ac, (Rc)Te) ,

(
V0,j ,R

T
0,je
))

Now, we can extend this statistical indistinguishability to the joint distribution of these tuples for
all i ∈ [`], j ∈ [5], since the matrices Ri,R0,j are independently chosen from {−1, 1}m×m, ∀i ∈
[`], j ∈ [5]. Thus,(

A,
(
{ARi − x∗i ·G,RT

i e}i∈[`]

)
, (ARc −G, (Rc)Te) ,

(
{AR0,j − v0[j],RT

0,je}j∈[5]

))
≈s
(
A,
(
{Ai,R

T
i e}l∈[`]

)
, (Ac, (Rc)Te) ,

(
{V0,j ,R

T
0,je}j∈[5]

))
Also, due to the fact that applying any function to two statistically indistinguishable entities results
in entities which are atleast as statistically indistinguishable as the original pair, we eventually get:(

A,As + e,
(
{ARi − x∗i ·G, (ARi)

T s + RT
i e}i∈[`]

)
,
(
ARc −G, (ARc)T + (Rc)Te

)
,(

{AR0,j − v0[j], (AR0,j)
T + RT

0,je}j∈[5]

))
≈s(

A,As + e, (Ai, (Ai + xi ·G)Ts + RT
i e) ,

(
{Ac, (Ac + G)Ts + (Rc)Te}i∈[`]

)
,(

{V0,j , (V0,j + v0[j] ·G)Ts + RT
0,je}j∈[5]

))
Thus, we can conclude that the public parameters in Game 0 are statistically indistinguishable

from those in Game 1, and that the output of Enc is statistically indistinguishable from that of
Enc∗. When the “large” Gaussian parameter α is chosen appropriately (as discussed in 5), the
output of the KeyGen and KeyGen∗ algorithms are also statistically indistinguishable. Thus, the
view of an adversary in Game 0 is statistically indistinguishable from the view in Game 1.

18

Lemma 4.4. If the decisional LWE assumption holds, then the view of an adversary in Game 1
is computationally indistinguishable from Game 2. Similarly, if the decisional LWE assumption
holds, then the view of an adversary in Game 3 is computationally indistinguishable from Game
2.

Proof. Assume there exist an adversary Adv that distinguishes between Game 1 and Game 2. We
show how to break LWE problem given a challenge {(ai, yi)}i∈[m+1] where each yi is either a random
sample in Zq or aT

i · s + ei (for a fixed, random s ∈ Znq and a noise term sampled from the error
distribution ei ← χ). Let A = [a1,a2, . . . ,am] ∈ Zn×mq and u = am+1. Let ψ∗0 = [y1, y2, . . . , ym]
and τ = ym+1 + µ bq/2c.

Now, run the simulated Setup∗ algorithm where A,u are as defined above. Run the simulated
KeyGen∗ algorithm. Finally, to simulate the challenge ciphertext set ψ∗0, τ as defined above and
compute

ψi = RT
i · ψ∗0 = RT

i

(
ATs + e

)
for i ∈ [`]. Similarly, ψc = (Rc)T(ATs + e) and ψ0,j = RT

0,j(A
Ts + e), for j ∈ [5]. Note that if

yi’s are LWE samples, then this corresponds exactly to the Game 1. Otherwise, the ciphertext
corresponds to an independent random sample as in Game 2 by the left-over hash lemma. Thus,
an adversary which distinguishes between Game 1 and Game 2 can also be used to break the
decisional LWE assumption with almost the same advantage.

The computational indistinguishability of Game 3 and Game 2 follows from the same argument.

To conclude, note that Game 0 always corresponds to an encryption of the challenge message
µ0 in the real experiment and Game 4 corresponds to an encryption of the challenge message µ1

(also in the real experiment). Hence, by the standard hybrid argument, no adversary can distinguish
between encryptions of µ0 and µ1 with non-negligible advantage establishing the selective security
of our ABE scheme.

5 Parameter Selection

This section provides a detailed description on the selection of parameters for our scheme, so that
both correctness (see Lemma 4.1) and security (see Theorem 4.2) of our scheme are satisfied.

For a family of width-5 permutation branching programs BP of bounded length L, with the LWE
dimension n, the parameters can be chosen as follows:

• The error distribution χ = DZ,
√
n with parameter σ =

√
n. And, the error bound B =

O(σ
√
n) = O(n).

From now, we will consider the LWE modulus parameter q = q(n,L), without instantiating it, to
calculate the other parameters m, s, α. Later, we will instantiate q with a value which would make
m, s, α satisfy the correctness and security properties.

• The parameter m = O(n log q).

19

• The “small” Gaussian parameter s is chosen to be O(
√
n log q).

• Now, let us calculate the value of the “large” Gaussian parameter α = α(n,L). We should
choose α such that the output of the SampleLeft and the SampleRight algorithms are statistically
indistinguishable from each other, when provided with the same set of inputs F and u.

The SampleRight algorithm (Algorithm 2) requires

α > ‖TG‖GS · ‖RBP‖ · ω(
√

logm) (3)

where ‖TG‖GS refers to the norm of Gram-Schmidt orthogonalisation of TG. Hence, we proceed
as follows:

1. From Lemma 3.6, we have that ‖RBP‖∞ = O(m · L).

2. We then get ‖RBP‖ as follows:

‖RBP‖ := sup
x∈Sm−1

‖RBP · x‖ ≤ m · ‖RBP‖∞ ≤ O(m2 · L)

3. Finally, we substitute this value in Equation 3 to get the value of α required for the
SampleRight algorithm.

α ≥ O(m2 · L) · ω(
√

logm) (4)

with ‖TG‖GS being a constant.

The value of the parameter α required for the SampleLeft algorithm (Algorithm 1) is

α ≥ ‖TA‖GS · ω(
√

log 2m) ≥ O(
√
n log q) · ω(

√
log 2m) (5)

Thus, to satisfy both Equation 4 and Equation 5, we set the parameter

α ≥ O(m2 · L) · ω(
√

logm) = Õ(n log q)2 · L

Thus, the outputs of the SampleLeft and the SampleRight algorithms will be statistically
indistinguishable from each other, when provided with the same set of inputs F and u.

When our scheme is instantiated with these parameters, the correctness (see Lemma 4.1) of the
scheme is satisfied when

O((n log q)6 · L2 ·B) < q/4

Clearly, this condition is satisfied when q = Õ(n7L2). Also, this value of q = poly(n) (for any
L = poly(n)), enables both the quantum reduction [Reg05] and the classical reduction [Pei09]
from dLWEn,q,χ to approximating lattice problems in the worst case, when n, χ chosen as described
above. To conclude this section, for a given max length L and an LWE dimension n = n(λ), we
set the parameters for our scheme to satisfy both the correctness and security, as follows:

χ = DZ,
√
n

B = O(n)

q = Õ(n7L2)

m = O(n log q)

s = O(n log q)

α = Õ(n log q)2 · L

20

5.1 Extensions

We note a few possible extensions on our basic construction that lead to further efficiency
improvements. First, we can support arbitrary width branching programs by appropriately
increasing the dimension of the state vector in the encryption. Second, we can switch to an
arithmetic setting, similarly as it was done in [BGG+14].

References

[ABB10] S. Agrawal, D. Boneh, and X. Boyen. Efficient lattice (H)IBE in the standard model.
In EUROCRYPT, pages 553–572, 2010.

[AFV11] S. Agrawal, D. M. Freeman, and V. Vaikuntanathan. Functional encryption for inner
product predicates from learning with errors. In ASIACRYPT, 2011.

[Ajt99] M. Ajtai. Generating hard instances of the short basis problem. In ICALP, 1999.

[AKS01] M. Ajtai, R. Kumar, and D. Sivakumar. A sieve algorithm for the shortest lattice
vector problem. In STOC, pages 601–610, 2001.

[ALdP11] N. Attrapadung, B. Libert, and E. de Panafieu. Expressive key-policy attribute-based
encryption with constant-size ciphertexts. In Dario Catalano, Nelly Fazio, Rosario
Gennaro, and Antonio Nicolosi, editors, Public Key Cryptography PKC 2011, volume
6571 of Lecture Notes in Computer Science, pages 90–108. Springer Berlin Heidelberg,
2011.

[Bar86] D A Barrington. Bounded-width polynomial-size branching programs recognize exactly
those languages in nc1. In STOC, pages 1–5, 1986.

[BF03] D. Boneh and M. K. Franklin. Identity-based encryption from the Weil pairing. SIAM
Journal on Computing, 32(3):586–615, 2003.

[BGG+14] D. Boneh, C. Gentry, S. Gorbunov, S. Halevi, V. Nikolaenko, G. Segev,
V. Vaikuntanathan, and D. Vinayagamurthy. Fully key-homomorphic encryption,
arithmetic circuit ABE and compact garbled circuits. In EUROCRYPT, pages 533–
556, 2014.

[Boy13] X. Boyen. Attribute-based functional encryption on lattices. In TCC, pages 122–142,
2013.

[BSW12] D. Boneh, A. Sahai, and B. Waters. Functional encryption: a new vision for public-key
cryptography. Commun. ACM, 55(11):56–64, 2012.

[BV14] Z. Brakerski and V. Vaikuntanathan. Lattice-based fhe as secure as pke. In ITCS,
pages 1–12, 2014.

[CHKP10] D. Cash, D. Hofheinz, E. Kiltz, and C. Peikert. Bonsai trees, or how to delegate a
lattice basis. In EUROCRYPT, 2010.

21

[CLT13] J. Coron, T. Lepoint, and M. Tibouchi. Practical multilinear maps over the integers.
In CRYPTO, 2013.

[Coc01] C. Cocks. An identity based encryption scheme based on quadratic residues. In
Cryptography and Coding, 8th IMA International Conference, pages 360–363, 2001.

[DORS08] Y. Dodis, R. Ostrovsky, L. Reyzin, and A. Smith. Fuzzy extractors: How to generate
strong keys from biometrics and other noisy data. SIAM Journal on Computing,
38(1):97–139, 2008.

[EMN+09] K. Emura, A. Miyaji, A. Nomura, K. Omote, and M. Soshi. A ciphertext-policy
attribute-based encryption scheme with constant ciphertext length. In Information
Security Practice and Experience, pages 13–23, 2009.

[GGH13a] S. Garg, C. Gentry, and S. Halevi. Candidate multilinear maps from ideal lattices. In
EUROCRYPT, 2013.

[GGH+13b] S. Garg, C. Gentry, S. Halevi, M. Raykova, A Sahai, and B. Waters. Candidate
indistinguishability obfuscation and functional encryption for all circuits. In FOCS,
pages 40–49, 2013.

[GGH+13c] S. Garg, C. Gentry, S. Halevi, A. Sahai, and B. Waters. Attribute-based encryption
for circuits from multilinear maps. In CRYPTO, pages 479–499, 2013.

[GKP+13] S. Goldwasser, Y. T. Kalai, R. A. Popa, V. Vaikuntanathan, and N. Zeldovich.
Reusable garbled circuits and succinct functional encryption. In STOC, 2013.

[GPSW06] V. Goyal, O. Pandey, A. Sahai, and B. Waters. Attribute-based encryption for fine-
grained access control of encrypted data. In ACM CCS, 2006.

[GPV08] C. Gentry, C. Peikert, and V. Vaikuntanathan. Trapdoors for hard lattices and new
cryptographic constructions. In STOC, 2008.

[GV14] Sergey Gorbunov and Vinod Vaikuntanathan. (leveled) fully homomorphic signatures
from lattices. Cryptology ePrint Archive, Report 2014/463, 2014. http://eprint.

iacr.org/.

[GVW12] S. Gorbunov, V. Vaikuntanathan, and H. Wee. Functional encryption with bounded
collusions via multi-party computation. In CRYPTO, pages 162–179, 2012.

[GVW13] S. Gorbunov, V. Vaikuntanathan, and H. Wee. Attribute-based encryption for circuits.
In STOC, pages 545–554, 2013.

[LOS+10] A. B. Lewko, T. Okamoto, A. Sahai, K. Takashima, and B. Waters. Fully secure
functional encryption: Attribute-based encryption and (hierarchical) inner product
encryption. In EUROCRYPT, 2010.

[LW10] A. B. Lewko and B. Waters. New techniques for dual system encryption and fully
secure HIBE with short ciphertexts. In TCC, pages 455–479, 2010.

22

http://eprint.iacr.org/
http://eprint.iacr.org/

[MP12] D. Micciancio and C. Peikert. Trapdoors for lattices: Simpler, tighter, faster, smaller.
In EUROCRYPT, 2012.

[MV10] D. Micciancio and P. Voulgaris. A deterministic single exponential time algorithm for
most lattice problems based on voronoi cell computations. In STOC, pages 351–358,
2010.

[Pei09] C. Peikert. Public-key cryptosystems from the worst-case shortest vector problem. In
STOC, 2009.

[PRV12] B. Parno, M. Raykova, and V. Vaikuntanathan. How to delegate and verify in public:
Verifiable computation from attribute-based encryption. In TCC, 2012.

[Reg05] O. Regev. On lattices, learning with errors, random linear codes, and cryptography.
In STOC, 2005.

[SW05] A. Sahai and B. Waters. Fuzzy identity-based encryption. In EUROCRYPT, 2005.

[Wat09] B. Waters. Dual system encryption: Realizing fully secure IBE and HIBE under simple
assumptions. In CRYPTO, pages 619–636, 2009.

[Wic14] Daniel Wichs. Leveled fully homomorphic signatures from standard lattices.
Cryptology ePrint Archive, Report 2014/451, 2014. http://eprint.iacr.org/.

23

http://eprint.iacr.org/

	Introduction
	Our Results
	Applications
	Other Related Work
	Organization

	Preliminaries
	Lattice Preliminaries
	Learning With Errors (LWE) Assumption
	Trapdoors for Lattices and LWE
	Sampling algorithms
	Primitive matrix

	Attribute-Based Encryption
	Branching Programs

	Our Evaluation Algorithms
	Basic Homomorphic Operations
	Homomorphic addition
	Homomorphic multiplication

	Our Public Key Evaluation Algorithm
	Our Encoding Evaluation Algorithm
	Correctness and Analysis

	Our Simulated Public Key Evaluation Algorithm

	Our Attribute-Based Encryption
	Correctness
	Security Proof

	Parameter Selection
	Extensions

