
Operational Signature Schemes

Michael Backes
CISPA, Saarland University

Özgür Dagdelen∗

TU Darmstadt

Marc Fischlin
TU Darmstadt

Sebastian Gajek
NEC Research Labs

Sebastian Meiser
CISPA, Saarland University

Dominique Schröder
CISPA, Saarland University

Abstract

Functional encryption, as introduced by Boneh, Sahai, and Waters (TCC’11), gen-
eralizes public-key encryption systems to include functional decryption capabilities.
Recently, Boyle et al. as well as Bellare and Fuchsbauer (both PKC’14) formalized
analogous notions for signature schemes. Here we discuss that both their notions are
limited in terms of expressiveness in the sense that they cannot cast known signature
schemes supporting operations on data in their frameworks. We therefore propose
a notion of what we call, for sake of distinctiveness, operational signature schemes
which captures functional signatures, policy-based signatures, sanitizable signatures,
P -homomorphic signatures, ring signatures, aggregate signatures etc., and also their
message authentication code counterparts.

We discuss possible instantiations for operational signatures. We give some posi-
tive result about achieving our general notion of operational signatures presenting a
compact construction that relies on a new combination of indistinguishability obfusca-
tion and random oracles. We then indicate that it is unlikely to be able to instantiate
operational signature schemes in general using one-wayness and, under some circum-
stances, even using specific “non-interactive” assumptions like RSA.

Keywords: Foundations, functional cryptography, random oracle obfuscation, mes-
sage authentication systems, existential relations

∗Part of the research was conducted while interning at NEC Research Labs

1 Introduction

Functional encryption [SW05, BSW11] for functionality F allows one to encrypt messages
m such that decryption, depending on a secret key skid for identifier id, yields a function
F (id,m) of this message. The notion is general enough to capture a vast number of “special”
encryption schemes like identity-based encryption or attribute-based encryption. The origi-
nal notion has been initially restricted to single ciphertexts and has therefore not subsumed,
for example, homomorphic encryption. Nonetheless, the definition can be extended to also
include (fully) homomorphic encryption schemes [ABF+13].

Recently, Boyle et al. [BGI14] transferred the idea of functional encryption to signatures.
They basically say that, with knowledge of a signing key skf , one can sign any message
f(m). The related notion of policy-based signatures has been introduced by Bellare and
Fuchsbauer [BF14], where a signer holding a key skP can sign messages m which conform
to the respective policy P . Similar to the core case of functional encryption both notions,
however, neglect schemes in which the signature is derived from a set of already signed
messages (as required for example in the case of homomorphic signatures).

Some progress towards capturing homomorphic schemes in a general way has been
achieved with the notion of P-homomorphic signatures, put forward by Ahn et al. [ABC+12].
There, one can deduce a signature for any message m for which one already holds signa-
tures for messages m1,m2, . . . such that the predicate P(m,m1,m2, . . .) is satisfied. Yet,
such P-homomorphic schemes do not cover, for example, sanitizable signatures, because the
predicate does not take into account any requirements on the keys. The same holds for ap-
proaches in a recent work by Chase et al. [CKLM13], transforming input message-signature
pairs to a new signature for the transformed message all under the same signer’s key.

The purpose of our work here is to bridge this gap between functional keys and malleable
signatures. Our goal is to introduce a general notion which allows us to capture more
broadly signature schemes (and also message authentication codes) supporting a rich class
of operations, and to discuss the possibility to instantiate them. Since the term “functional
signatures” has somewhat been set by the work of Boyle et al. for specific schemes, we
call our schemes here operational signature schemes (OSS). In contrast to previous work,
our notion is general enough to capture message authentication codes (MACs). On the
constructive side, the general approach allows us to provide universal solutions, instead
having to design dedicated schemes from scratch. At the same time, if defined properly,
then any infeasibility result about operational signature schemes immediately tells us about
the hardness of devising signature schemes for certain operations. Both features show up in
our results.

1.1 How to Define Operational Signature Schemes

To define operational signature schemes we consider an ensemble P of predicates P , describ-
ing the “admissible operations”. These predicates operate on sets of pairs (id,m) consisting
of key identifiers id, which one can view as a public handle for the corresponding secret
(resp. public) key skid (resp. pkid), and a message m. More precisely, a predicate takes as

1

input a sequence (idin,i,min,i)1,2,..., a pair (ideval,meval), a pair (idout,mout) and returns 0 or
1, with the following interpretation:

If for each i the tag of the input message min,i verifies under the key for iden-
tifier idin,i, and one evaluates these messages under the key for ideval to obtain
message meval, then the derived tag verifies for message mout under the key for
identifier idout.

The key identifiers id are divided into secret and public keys, determining if the algorithm
can access them, such that there is no need to differentiate between MACs and signatures
with this approach. Note that we could also allow multiple messages-key pairs for evaluation
and multiple output message-key pairs in our definition. Since we are not aware of any
example, for sake of readability, we refrain from using this more general notion.

As an example, consider a sanitizable signature scheme [ACMT05] where a designated
party, the sanitizer, can modify a given message-signature pair of another user with the
help of a secret key into a signature for a new qualified message. For such a sanitizable
signature scheme ideval would correspond to the sanitizer’s secret key and idin = idout = idpub
to the signer’s public verification key, min would be the original message, meval = mout be
the sanitized message, and the predicate P describes the sanitization process. In this sense
it is understood that sanitizing min with a valid tag under the key idpub to meval one derives
a signature for meval = mout which is again valid under idpub. Hence, the starting message
may have been created under the original key, or may, recursively, have been a sanitized
version itself. If we would like to implement for example a “sanitize only once” scheme then
we can define idout to be different from idpub such that one can verify the derived signature
under idout, but one cannot use the derived signature as input again (because the predicate
P evaluates to 1 only if the input messages verify under idin = idpub 6= idout).

As we explain formally later on, the notion of operational signature schemes comprises
special notions of signatures supporting operations in the literature. This includes sanitizable
signatures [ACMT05], redactable signatures [CLX09], P-homomorphic signatures [ABC+12],
fully homomorphic message authenticators and signatures [GW13, CF13, BF11, CFGN14,
CFW14], and even ring signatures [RST01a]. Our definition also captures the concepts of
functional signatures introduced in [BGI14], policy-based signatures in [BF14], and dele-
gatable functional signatures [BMS13], where parties can delegate signing capabilities to
another party. Moreover, it covers aggregate signatures [BGLS03] where a public algorithm
takes as input a set of message/signature pairs and outputs a single element that is as big as
an ordinary signature and which verifies if all message/signature pairs were valid. A related
result about generalizing aggregate signature schemes has very recently been proposed by
Hohenberger et al. [HKW14].

Our notion of course has its limitations in terms of expressiveness. For example, while
we are able to model ring signatures [RST01b] with our approach, group signatures [CH91]
escape our framework. The reason is that group signatures usually include a group manager
which can revoke anonymity of signers in case of a dispute. This, however, is clearly more
than any pure signature functionality provides; we cannot hope to capture arbitrary multi-

2

party protocols which include signatures (or MACs). Still, it appears to us that we can
express all known signature-only based schemes within our framework.1

1.2 Security Notions for Operational Signature Schemes

The very basic notion for (ordinary) signature schemes and MAC schemes is unforgeabil-
ity, usually under adaptive chosen message attacks and providing existential unforgeability.
Since our notion of operational signatures captures these ordinary schemes we adapt the idea
behind unforgeability and generalize it for our approach. Basically, we require that an ad-
versary can forge a signature for a “fresh” identifier-message pair (id∗,m∗), where freshness
says that any direct signature (or MAC) query about a message and a key identifier renders
this pair as “unfresh”, and any pair (idout,mout) which can be derived recursively according
to the rule from known input pairs (idin,i,min,i) and ideval above, is also unfresh. Again,
known unforgeability requirements for schemes fall under our general notion, such as sani-
tizable signatures [BFF+09], redactable signatures [CLX09, BBD+10], and P-homomorphic
signatures [ABC+12, ALP12].

Besides unforgeability, sometimes signature and message authentication schemes require
additional privacy properties, e.g., that redacted parts of the original message cannot be
recovered [BBD+10, BFLS10], or that the signature hides the message [Bel06]. Boyle et
al. [BGI14] for their functional signatures also define a privacy notion which basically hides
the function which has been used in the generation of the signatures. While the unforgeability
requirement is nowadays undisputed, the concrete privacy requirement, if needed at all, for
signatures and MACs varies significantly with the application. We have chosen to give a
general definition for our operational signature schemes in the spirit of context hiding for
P-homomorphic signatures [ABC+12, ALP12]. The notion basically says that one cannot
distinguish between any two cases in which a tag for pair (idout,mout) could have been
generated. We discuss that this definition captures for example some of the anonymity
requirements for ring signatures [BKM09]. It also comprises the notion of [BGI14] for their
functional signatures, and the privacy notion of delegatable functional signatures [BMS13].

1.3 Constructions, Techniques, and Results

We next discuss possible instantiations for operational signatures. We give some positive
result about achieving our general notion of operational signatures. The universality of our
construction comes at a price, though: it relies on a new combination of indistinguishability
obfuscation (iO) [BGI+12, GGH+13, PST14] and random oracles [BR93].

Construction of operational signatures. The main idea of our construction is to push
all evaluation steps into an obfuscated circuit. This circuit contains a master secret sign-
ing key, used for all users in the system, and issues signatures for identifier-message pair

1Note that similarly to policy-based signatures [BF14] one is able to construct a group signature scheme
from operational signature schemes, if one adds the property of extractability. This extra property, however,
seems to be much more than what is required for most of the operational schemes.

3

(idout,mout) if and only if the user supplies valid inputs (idin,i,min,i)i=1,2...,, (ideval,meval) and
P , with the corresponding signatures and key to ideval. That is, the circuit first checks the
validity of the inputs and, if valid, then issues a signature under its master secret. General
verification of such signatures is then carried out via the public key to the master secret.

The construction immediately comes with useful features. Since derived signatures are
basically regular signatures under the master key, we obtain succinct operational signatures,
enabling us to make recursive calls without having to worry about increasing signature
lengths. Privacy holds in a strong sense as the final signature does not carry any information
about the inputs.

Unforgeability of our construction should intuitively follow from the unforgeability of
the master scheme. Alas, this property requires a more sophisticated argument. Since the
scheme is operational it allows us to deduce further signatures for derivable messages. An
adversary could thus forge a signature for some input messages and then execute a sequence
of calls to the obfuscated circuit to cover its original forgery. We, however, need to be able to
find the source for that final forgery. This is where the random oracle and its observability
property turn out to be handy: If the adversary also needs to provide a (random oracle)
hash value of its inputs, and we additionally let the obfuscated circuit check that hash value,
then we can extract the source forgery from the adversary’s queries to the random oracle.
Indeed, we show that this approach works and allows us to argue unforgeability.2

Obfuscation and random oracles. At first glance using obfuscators —which require the
code of some program or circuit— which take random-oracle based circuits —for which one
cannot provide a short code— sounds provoking. In fact, it first and foremost requires us to
define how such an obfuscator works in the oracle world. Once this technical issue has been
addressed we can argue about the meaningfulness of the approach.

To define formally what obfuscation in the random oracle model means we assume that
circuits passed to the obfuscator may now contain special random oracle gates. For our
application we will use the random oracle only as an initial step. In this case we can think
of the obfuscator of a circuit CH(·) with access to random oracle H to be of the form
CH(x) = C ′(x,H(x)) and we merely obfuscate the C ′ part. Indistinguishability of the
obfuscator’s output then requires indistinguishability of the C ′ part. Some additional care
is required to make sure that an adversary cannot run C ′ on malformed inputs (x, h) to gain
additional information.

The above approach corresponds to the mental model used in other random-oracle based
constructions. The honest party can run the original program faithfully and the adversary
can only access the “other code”. The general idea of the random oracle method is that,
eventually the random oracle is instantiated by a concrete hash function, simply putting
in the function’s code where oracle calls have been made before. For our obfuscator this
means that it can then be run on the full code of the circuit. It will then hide the code
of such evaluations within the whole circuit, and prevent that one can for example inject

2We also take advantage of some form of programmability of the random oracle, in order to be able to
non-adaptively redirect outputs to pseudorandom values.

4

intermediate values “half way through the evaluations” of such steps, e.g., after the H
evaluation. Note that secure obfuscators need provide these properties, and constructions
such as in [GGH+13, PST14] actually address this.

Operational signature schemes imply blind signatures. We then indicate that it is
unlikely to be able to instantiate operational signature schemes in general using one-wayness
and, under some circumstances, even using specific “non-interactive” assumptions like RSA.
More precisely, we show that unforgeable and private operational signature schemes allow one
to build two-move blind signature schemes, such that we can then apply known impossibility
results for such blind signatures [FS10, KSY11]. Since we determine exactly the predicate
P for which our implication is satisfied, one can easily identify specific signature schemes
for which the same limitations hold. Our result also underlines the difference to functional
signatures as in [BGI14]. While in [BGI14], it was shown that succinct functional signatures
cannot be build from one-way functions, our results supplements their result in the sense
that demanding privacy (instead of succinctness) still makes constructions hard to be built
out of one-way functions.

Historical note. Our contributions include and subsume the preliminary work called (Del-
egatable) Functional Signatures (DFS) by Backes, Meiser, and Schröder [BMS13]. Here we
generalize their notions and results in several ways. Our definition covers both MACs and
signature schemes and admits arbitrary input sequences (see Section 2), thereby covering a
much larger class of known signature schemes (cf. Section 3). We also provide a construction
for the more general notion in Section 4. We also adapt their impossibility result, which
shows that constructing DFS requires blind signatures to the more general case of OSS in
Section 5.

2 Operational Signature Schemes

We begin this section by giving a definition of operational signatures (and message authen-
tication) schemes for predicates P along the line of some example instantiation of existing
schemes.

2.1 Identifiers, Keys, and Predicates

Throughout the paper, let λ be the security parameter (but which we drop if it is clear
from the context). Operational message authenticators will work over ensembles ID =
{IDλ}λ∈N andM = {Mλ}λ∈N of finite sets of key identifiers IDλ and messages spacesMλ.
The set IDλ specifies the (public) key identifiers id for security parameter λ which can be
thought of as handles for the actual, possibly private cryptographic keys kid. It is often also
useful to identify a subset of key identifiers IDpub ⊆ IDλ as the set of identifiers for public
cryptographic keys.

5

The admissible operations are given by an ensemble P = {Pλ}λ∈N of finite collections Pλ
of predicates. The input to such an n-ary predicate P ∈ Pλ consists of n pairs (id,m) from
IDλ×Mλ. It is convenient to designate the first n− 2 input pairs (idin,i,min,i))i=1,2,...,n−2 as
the input pairs, and the final pairs (ideval,meval), (idout,mout) as the evaluation and the output
pair, respectively. Below we sometimes abbreviate

(
(idin,i,min,i)i=1,2,...,n−2, (ideval,meval), (idout,

mout)
)

by (id,m).
Intuitively, the predicate P upon input (idin,i,min,i)i=1,2,...,n−2, (ideval,meval), and (idout,

mout) should return 1 if one holds authenticators for each min,i which verify under the cryp-
tographic keys to idin,i, and if one evaluates these messages under key ideval to meval, then one
derives an authenticator for mout which verifies under the key to identifier idout. An example
would be homomorphic signatures where the predicate evaluates to 1 if the output message
is the sum of the input messages, independently of meval:

P (id,m) = 1 ⇐⇒
n−2∑
i=1

min,i = mout.

Note that the predicate P only operates on key-message pairs (id,m) and not signatures,
of course. The actual transformation of signatures will be carried out by an algorithm Eval
which takes tuples (idin,i,min,i, σin,i)i including authenticators σin,i and a pair (kideval ,meval)
with the actual cryptographic key kideval for identifier ideval as input, and returns an authen-
ticator for mout under identifier idout. For sake of simplicity we often write

(id[keval → ideval],m, σ)

for the input ((idin,i,min,i, σin,i)i, (kideval ,meval), (idout,mout)) to Eval, where Eval takes the key
kideval instead of the index.

2.2 Syntax

We begin by describing the interfaces of operational signature schemes.

Definition 2.1 (Operational Signature Scheme). An operational signature scheme OSS for
predicates P consists of four PPT algorithms (Setup,KeyGen,Eval,Verify) such that

Setup: The probabilistic parameter generation algorithm Setup takes as input a security
parameter 1λ and outputs a master secret MSK and some public parameters PP. We
assume that all algorithms get PP as input, but we drop it to simplify the notations.

Key Generation: The probabilistic key generation algorithm KeyGen takes as input a mas-
ter secret MSK and a key identifier id ∈ ID. It outputs an operational key kid.

(If queried again on id ∈ ID, the algorithm returns the same kid. Similarly, we assume
that KeyGen could output related keys for similar identifiers such as the corresponding
secret and public key for identifiers idsig and idpub. Thereby, one can, for example,
fetch the public key via KeyGen only, without learning the secret key.)

6

Evaluation: The (probabilistic) signature algorithm Eval takes as input a sequence
(id[keval → ideval],m, σ) consisting of triples (idin,i,min,i, σin,i)

n−2
i=1 , the cryptographic key

keval for evaluating message meval, the pair of target values (idout,mout), and (the de-
scription of) a predicate P . The algorithm outputs a signature σ in a set S, or a special
symbol ⊥ /∈ S.

Verification: The (deterministic) verification algorithm Verify takes as input an operational
key kout, a message mout ∈M, and a signature σ. It outputs a bit b ∈ {0, 1}.

An operational signature scheme for predicates P is correct, if for any P ∈ Pλ, and
all message tuples m = (min,1, . . . ,min,n−2,meval,mout) ∈ Mn

λ, all key identifiers id =
(idin,1, . . . , idin,n−2, ideval, idout) ∈ IDnλ, and all signatures σ = (σ1, . . . , σn−2) ∈ Sn−2λ , where
n ≥ 2 is the arity of P , we have

Pr

Verify(kout,mout, σout) = P (id,m)

∣∣∣∣∣∣∣∣
(MSK,PP)← Setup(1λ)

(kid)id∈id ← KeyGen(MSK, id)id∈id
σout ← Eval((id[keval → ideval],m, σ), P)
∀i ∈ [n− 2] : Verify(kidin,i ,min,i, σi) = 1

 = 1−ε(λ)

where the probability is taken over the coin tosses of Setup, KeyGen, and Eval.

Note that our notion, in particular, is a generalization of functional signatures [BGI14],
policy-based signatures [BF14], sanitizable signatures [ACMT05], redactable signatures [CLX09],
aggregate signatures [BGLS03], homomorphic signatures/MACs [GW13, CF13, BF11, CFGN14,
CFW14]. We discuss several of these examples in Appendix A. In the forthcoming section
we show how to cast regular signatures and MACs in our framework.

2.3 Signatures and MACs as Operational Schemes

To cover regular signature schemes we note that we can take up again the idea of designating
some key identifiers IDpub ⊆ ID as public keys, which are given to all parties (and which
also the scheme’s algorithms like Eval can take as additional input or access via KeyGen).
In this sense, for a digital signature scheme in the single-user setting the key space is ID =
{idsig, idpub} with idsig ∈ ID \ IDpub being the secret signing key and idpub ∈ IDpub being
the verification key. Simply consider the predicate

Psig(id,m) =

{
1 if ideval = idsig ∈ ID, idout = idpub ∈ IDpub, meval = mout ∈M
0 otherwise.

In our terminology we formally thus operate on an empty sequence of input pairs (idin,i,min,i)i
and allow any tag produced for message meval = mout under idsig to be publicly verifiable
under idpub. In fact, this allows us to spare a formal definition of the signature generation
algorithm, but we can view this as a special case of the Eval algorithm.

7

Analogously, to devise the notion of message authentication schemes, let ID = {idmac}
be the key space consisting of a symmetric key idmac only, and let IDpub = ∅. A message
authentication scheme is a special case of an operational scheme for predicate

Pmac(id,m) =

{
1 if ideval = idout = idmac ∈ ID, meval = mout ∈M
0 otherwise

In other words, Pmac is identical to the signature functionality Psig with the exception that
key idmac is used for evaluation and verification.

Looking ahead, many operational signature systems (cf. Appendix A) comprise either of
the two predicates. We then call the system well-formed.

Definition 2.2 (Well-Formedness). We call a predicate ensemble P well-formed if the basic
signature (or, depending on the setting, MAC) predicates are included, that is, if Pmac ∈ P
or Psig ∈ P.

3 Security Models

We now turn to the description of the security properties.

3.1 Unforgeability

To define unforgeability we need to specify the set of messages for which the adversary
can trivially deduce a valid signature (or MAC, for that matter). In the case of single-user
ordinary signatures and standard unforgeability, this set is simply the set of queried messages
to the Eval oracle, implementing the signing process. In the multi-user case, this set contains
all pairs (id,m) for which the adversary has made such a query. However, the adversary
should be considered successful if it manages to create a signature for a pair (id′,m) where it
may have queried the signing oracle for (id,m) for a different key. In the case of non-trivial
operations, we also need to take into account any messages for which the adversary can
deduce tags trivially.

In the course of the attack, the adversary will be allowed to ask for keys associated to
identifiers, in addition to the public ones for key identifiers in IDpub which it can fetch
without punishment at any point, to derive signatures via Eval for (id,m, P), and to verify
messages via Verify. (We call the corresponding oracles Eval′,Verify′ as they partly operate
on key identifiers instead of actual keys.) To define messages m for which the adversary can
trivially compute a MAC or signature under some identifier id, we keep track of the keys
QID which the adversary requested from KeyGen (where QID initially contains the public
keys IDpub), all queries QE of the form ((idin,i,min,i)i, (ideval,meval), P) made to Eval′, where
the pairs (idin,i,min,i) also come with signatures σin,i, but which are not added to QE . We
inductively then define the set Triv of “trivial” pairs (id,m) as follows:

8

Definition 3.1 (Trivial Identifier-Message-Pairs). Let OSS = (Setup,KeyGen,Eval,Verify)
be an operational signature scheme for predicated P over IDpub ⊆ ID and M. For sets
QID ⊂ ID and QE ⊆ (ID × M)+ × P let the set Triv(QID,QE) ⊆ ID × M be the
following set:

Case 1 (Base Case): for any (id,m, P) ∈ QE we have (idout,mout) ∈ Triv(QID,QE);
// results of evaluations queries are trivial (where we leave it to the adversary to avoid
irregular queries and to keep the set of trivial messages small3)

Case 2 (Recursion): If (idin,i,min,i) ∈ Triv(QID,QE) for each i, and ideval ∈ QID,
then also any (idout,mout) for which there is some P ∈ P and some meval such that
P (id,m) = 1, is in Triv(QID,QE);
// messages which are deducible with the known key for ideval are trivial

Note that in the standard case, the set Triv only contains the signature queries, or in case
the adversary corrupts the key holder and requests the key to idsig, also any pair (idpub,m)
in m ∈ M. In the case of redactable schemes, the set also contains all redacted messages
for which a signature has been created, or which have already been redacted successfully.
For sanitizable schemes the set contains the signature and evaluation queries only, if the ad-
versary does not request the sanitizing key. In [BFF+09] for sanitizable signatures security
against these “outside” attackers are captured under the term unforgeability. If the adver-
sary requests the sanitizing key, and becomes an “inside” attacker, then the trivial set also
contains sanitized messages of otherwise available pairs. Security against such insiders for
sanitizable signatures is called immutability in [BFF+09]. Both notions are captured in our
single definition, by leaving the choice to request the sanitizer’s secret key to the adversary.

In the definition below we now demand that the adversary cannot successfully create
a forgery σ∗ for some message m∗ which verifies under chosen key id∗ such that the pair
(id∗,m∗) is non-trivial. It suffices for the adversary to find such tuples at any point during
the attack, where the set of trivial pairs grows over time, depending on the key generation
and evaluation queries. There might be some keys that are publicly known and computing
a forgery for these keys is not a valid attack; recall that we denote this set of (public-key)
identifiers by IDpub and we assume that these keys are known to the adversary (and can be
fetched by the adversary at will). This is captured formally by setting QID = IDpub.

Definition 3.2 (EUF-CMA Security.). An operational signature scheme OSS = (Setup,
KeyGen,Eval,Verify) for predicates P over IDpub, ID,M is (t, qk, qe, qv, ε)-existentially-unfor-
geable under adaptively chosen-message attacks if for any algorithm A with runtime t and
making at most qk (resp. qe and qv) queries to his key-generating (resp. evaluation and ver-
ifying) oracle, the probability that the following experiment returns 1 is at most ε.

3For example, while verifying the input tags in case of signatures is possible for Eval′ with the help of
the public verification keys, for MACs we would otherwise put the burden of distinguishing valid input tags
from invalid ones on Eval′ without being able to rely on any keys.

9

Experiment ExpEUF-CMA
OSS,A (λ)

Set QE = ∅ and QID = IDpub.
(MSK,PP)← Setup(1λ)

(id∗,m∗, σ∗)← AKeyGen′,Eval′,Verify′(PP)
Return 1 if, at some point, A queried
Verify′ about (PP, id∗,m∗, σ∗) such that

(a) Verify′(PP, id∗,m∗, σ∗) = 1, and
(b) (id∗,m∗) /∈ Triv(QID,QE) at this point.

If A queries KeyGen′(id),
add id to QID, and
return KeyGen(MSK, id)

If A queries Verify′(id,m, σ),
return Verify(kid,m, σ).

If A queries Eval′(PP, (id,m, σ), P),
add (id,m, P) to QE, and
return Eval(PP, (id[keval → ideval],m, σ), P)

The probability is taken over all coin tosses of algorithms Setup, KeyGen, Eval, and A. We let
AdvEUF-CMA

OSS (t, qk, qe, qv) denote (a bound on) the value ε for which the scheme OSS is
(t, qk, qe, qv, ε)-existentially-unforgeable. If OSS is (t, qk, qe, qv, ε)-existentially-unforgeable for
time t and queries qk, qe, qv polynomial in λ and ε is negligible in λ, then we simply say OSS
is unforgeable.

Note that the above notion simplifies in case of digital signature schemes where verifica-
tion is public, and deterministic MACs where the verification is carried out by re-computing
MACs, to the case that A never queries the verification oracle and immediately stops when
creating the forgery attempt. This loses a factor qv in the success probability. However,
since we consider general schemes we prefer to give the more general definition above.

3.2 Privacy

In the context of P -homomorphic signatures, such as redactable and homomorphic signa-
tures, Boneh et al. [ABC+12] defined a strong privacy requirement, called context hiding.
Basically it says that one cannot distinguish deduced signatures from fresh signatures, thus
hiding for example which parts of the message have been redacted. The notion has later
been refined in [ALP12, ALP13, DFF+13]. It implies several privacy notions in the context
of redactable signature, for example [BBD+10]. Here, we more generally let the adversary
decide upon two predicates P0, P1 ∈ P , trying to decide which Pb has been used; since in our
case of well-formed P we have Pmac ∈ P or Psig ∈ P , representing fresh MACs or signatures,
this subsumes the context-hiding property.

The biggest difference of MACs to the case of signatures is that, in general, the challenge
oracle, creating either fresh authentication data or assembling it out of the given one, cannot
check the validity of the inputs min,i, σin,i, because it may lack knowledge of the corresponding
verification key. Hence, our definition below allows for arbitrary, not necessarily valid inputs

10

min,i, σin,i. However, we also define a weaker notion for which these values must be valid
according to the game.

For MACs it makes also sense to differentiate between insider and outsider privacy. Out-
sider privacy basically means that no one is able to distinguish tags generated through
operations P0, P1 as long as the verification key idout is oblivious to him. In other words,
only an honest verifier is able to tell the function applied when generating the tag, and no
one else. We call OSSs which are insider-private simply private.

Definition 3.3 (Privacy). An operational signature scheme OSS = (Setup,KeyGen,Eval,Verify)
for well-formed predicates P (i.e., with Pmac-or-sig ∈ P) over IDpub ⊆ ID,M is (t, qk, q, ε)-
[weakly] private if for any algorithm A with runtime t and making at most qk (resp. q) queries
to his key-generating (resp. challenge oracle), the probability that the following experiment
returns 1 is at most 1

2
+ ε.

Experiment Exp
[weak] [outsider-]privacy
OSS,A (λ)

Set QID = ∅.
b← {0, 1}
(MSK,PP)← Setup(1λ)

b∗ ← AKeyGen′,Chb(PP)
Return 1 iff b = b∗

KeyGen′,Verify′,Eval′ as defined Definition 3.2

If A queries KeyGen′(id),
add id to QID, and
return KeyGen(MSK, id)

If A queries Chb((id
0,m0, σ0), (id1,m1, σ1), P0, P1),

if P0((id
0,m0)) = 0 or P1((id

1,m1)) = 0 return ⊥;
if (k0out,m

0
out) 6= (k1out,m

1
out) return ⊥;

[weak: if Verify′((id0,m0, σ0)) = 0
or Verify′((id1,m1, σ1)) = 0 return ⊥;]

[outsider: if k0out = k1out ∈ QID, return ⊥;]

compute σ0
eval ← Eval′(PP, (id0,m0, σ0), P0) and
σ1
eval ← Eval′(PP, (id1,m1, σ1), P1).

return ⊥ if σ0
eval = ⊥ or σ1

eval = ⊥,
else return σbeval.

The probability is taken over all coin tosses of algorithms Setup, KeyGen, Eval, and A. We let
Adv

[w][o]priv
OSS (t, qk, q) denote (a bound on) the value ε for which the scheme OSS is (t, qk, q, ε)-

[weakly] [outsider-]private. If OSS is (t, qk, q, ε)-[weakly] [outsider-]private for time t and
queries qk, q polynomial in λ and ε is negligible in λ, then we simply say OSS is [weakly]
[outsider-]private.

Note that the context hiding definitions in [ABC+12, ALP12] actually ask for distribu-
tional equivalence of fresh signatures and derived signatures. As pointed out in [DFF+13]

11

this can be captured by considering unbounded A in the experiment above.

Capturing Re-randomizable Signatures. As an example, consider how our privacy
notion captures re-randomizable signatures where, given a signature τ for a message m,
one can publicly compute a signature τ ′ for the same message, such that τ ′ is distributed
like a signature for m computed from scratch. To this end we add a predicate Prand to
P , with Psig ∈ P , such that Prand((idin,min), (ideval,meval), (idout,mout)) = 1 if and only if
idin = idout = idpub, ideval = idε, and min = meval = mout. Privacy guarantees that one
cannot distinguish between signatures created via Psig, i.e., through regular signing, and via
Prand, implying that anyone can derive quasi fresh signatures from given ones. If we now,
for example, omit any bound on the adversary’s running time t and demand ε = 0, then we
obtain perfectly re-randomizable signatures.

4 Operational Signatures from Indistinguishability Ob-

fuscation

In this section we propose our construction of operational signature schemes from indistin-
guishability obfuscation. The basic idea of our construction is to build an obfuscated circuit
that verifies that the user is allowed to derive the signature and, if this is the case, then
outputs a signature on the derived message under a universal master key. The usage of
strong obfuscators (namely for random oracles) is motivated by the fact that we aim for
unforgeability and privacy in our construction.

We remark that if one only strives for unforgeability operational signatures can be con-
structed from signatures with the approach of Boyle et al. [BGI14]. See Appendix D for
more details.

4.1 Indistinguishable Obfuscator for Random Oracles

Our definition of indistinguishability obfuscators follows the one from the literature [BGI+12],
with the difference that the circuit get access to a random oracle H. A discussion about
obfuscators in the context of random oracles has been given in the Introduction Section 1.3;
here we focus on the technical aspects.

The difference to the original definition is that we now merely demand indistinguishability
for the “non-oracle part”, in the sense that we consider the output of the obfuscator to strip
off all random oracle gates before obfuscating the circuit’s “core”: To this end we consider
circuits CH of the form CH(x) = C ′(x,H(x)) and run the obfuscator only on the C ′ part.
We say that random-oracle based circuits of this kind have upstream hashing only. For such
circuits it is understood that the obfuscator iO on input CH outputs the obfuscation of
circuit C ′ for input pairs of the form (x,H(x)).

Ideally, we would like to simply hand the obfuscated part over now to the distinguisher.
Unfortunately, the obfuscation of the whole circuit, including the upstream hashing, also

12

prevents an adversary from jumping in at the computation after the hash check; this form
of integrity of intermediate values is usually required to build secure obfuscators and is
fundamental to the security of our operational signature scheme. Note that this property is
achieved (again), once we instantiate the random oracle and run the obfuscator on the full
circuit. Here we demand, abstractly, that the obfuscated circuit is defined only on inputs
(x,H(x)) relative to the oracle H, and that queries outside of the domain would always
return ⊥ for the circuit.

Definition 4.1. A uniform PPT machine iO is called an oracle indistinguishability ob-
fuscator with respect to an oracle H and for a class {Cλ} of oracle circuits with upstream
hashing only, if the following conditions are satisfied:

• Correctness: For all security parameters λ ∈ N , for all CH(·) = C ′(·, H(·)) ∈ Cλ
with upstream hashing only, and for all inputs x, we have that

Prob
[
O(x,H(x)) = CH(x) : O ← iO(λ,C ′) for CH(·) = C ′(·, H(·))

]
= 1

• Indistinguishability: For any (not necessarily uniform) PPT adversaries Samp, D,
there exists a negligible function µ such that the following holds: if Prob, CH

0 (x) =
CH

1 (x) : (CH
0 , C

H
1 , aux)← Samp(1λ) > 1− ε(λ), then we have:∣∣Prob

[
DH(aux, iO(λ,C ′0)) = 1 : (CH

0 , C
H
1 , aux)← SampH(1λ)

]
−Prob

[
DH(aux, iO(λ,C ′1)) = 1 : (CH

0 , C
H
1 , aux)← SampH(1λ)

]∣∣ ≤ ε(λ)

where CH
b (x) = C ′b(x,H(x)) for b ∈ {0, 1}.

4.2 Constructing OSS from iO
To describe our OSS construction based on iOformally, we fix the following notations and
parameters. Recall that the idea is to build an obfuscated circuit which contains a master
signing key, checks if the identifier-message-signature inputs are valid with respect to the
predicate, and if so creates a signature for mout||idout under the master secret. Technically,
this requires that all identifiers id0, id1 ∈ IDλ of the same security level have equal length.
As explained in the introduction, we include another random-oracle based hash verification
in order to extract forgeries from the adversaries. To ensure that only authenticated key
holders can run the (publicly available) obfuscated circuit we use signature-based certificates
as secrets attached to key identifiers. For simplicity we will use the same signature scheme
as for the message-identifier pairs and think of these certificates as signatures for empty
messages.

We cast our construction with a secret key for the evaluation key under identifier ideval.
But if this key is public, we can assume that any party can fetch this key from the key
generation algorithm. Also recall that we assume that identifiers are always recoverable
from actual keys.

13

CH,sk,pk,P(((id[keval → ideval],m, σ), P), h) :

If h = H((id[keval → ideval],m, σ), P)
∧ ∀i : VerifyS(pk,min,i||idin,i, σi) = 1
∧ VerifyS(pk, keval, σeval) = 1
∧ P (id,m) = 1
output σout ← Sig(sk,mout||idout)

else
output ⊥

Figure 1: Description of the obfuscated circuit CH,sk,pk,P .

Construction 4.2. Given a signature scheme S = (KGenS, SigS,VerifyS), an indistinguisha-
bility obfuscator iO, and a hash function H, we construct an operational signature scheme
OSS = (Setup,KeyGen,Eval,Verify) as follows:

Setup(1λ): Sample a key pair (sk, pk)← KGenS(1λ) and generate an obfuscation c← iO(CH,sk,pk)
of circuit CH,sk,pk,P described in Fig. 1. Set the public parameters as PP = (c, pk) and
the master key as msk = (sk,PP).

KeyGen(msk, id): On input a master secret msk = (sk, c, pk) and an identifier id ∈ ID,
return the pair (id, σid) where σid ← SigS(sk, id) is a signature over the identifier id.

Eval(PP, (id[keval → ideval],m, σ), P): On input public parameters PP = (c, pk), a tuple
(id[keval → ideval],m, σ) consisting of triples (idin,i,min,i, σin,i)

n−2
i=1 , the cryptographic key

keval = (pk, ideval, σeval) for evaluating message meval, the pair of target values (idout,mout),
and a predicate P , compute first the digest h← H((id[keval → ideval],m, σ), P) and then
return the signature σ ← c(((id[keval → ideval],m, σ), P), h).

Verify(kid,m, σ): On input a key kid = (PP, id, σid), where PP = (c, pk) a message m and a
signature σ, return VerifyS(pk,m||id, σ).

Theorem 4.3 (Correctness). Assume S = (KGenS, SigS,VerifyS), iO are correct, then the
above operational signature scheme OSS is correct.

Proof. Let P ∈ Pλ be an arbitrary predicate, m = (min,1, . . . ,min,n−2,meval,mout) ∈ Mn
λ be

any tuple of messages, id = (idin,1, . . . , idin,n−2, ideval, idout) ∈ IDnλ be any tuple of key identi-
fiers, σ = (σ1, . . . , σn−2) ∈ Sn−2λ s.t. for all i in [n−2] we have that Verify(kidin,i ,min,i, σi) = 1,
and let H be any function, e.g., a hash function.

14

Pr

Verify(kout,mout, σout) = P (id,m) :
(PP,MSK)← Setup(1λ)
(kid)id∈id ← KeyGen(MSK, id)id∈id
σout ← Eval((id[keval → ideval],m, σ), P)

 (1)

=Pr

Verify(kout,mout, σout) = P (id,m) :

(sk, pk)← KGenS(1λ)
c← iO(CH,sk,pk)
(kid)id∈id ← KeyGen((sk, pk, c), id)id∈id
σout ← Eval((id[keval → ideval],m, σ), P)

 (2)

=Pr

Verify(kout,mout, σout) = P (id,m) :

(sk, pk)← KGenS(1λ)
c← iO(CH,sk,pk)
(σid)id∈id ← SigS(sk, id)id∈id
σout ← Eval((id[keval → ideval],m, σ), P)

 (3)

=Pr

Verify(kout,mout, σout) = P (id,m) :

(sk, pk)← KGenS(1λ)
c← iO(CH,sk,pk)
(σid)id∈id ← SigS(sk, id)id∈id
h← H((id[keval → ideval],m, σ), P)
σout ← c((id[keval → ideval],m, σ), h)

 (4)

=Pr


Verify(kout,mout, σout) = P (k,m) :

(sk, pk)← KGenS(1λ)
c← iO(CH,sk,pk)
(σid)id∈id ← SigS(sk, id)id∈id
h← H((id[keval → ideval],m, σ), P)
If h = H((id[keval → ideval],m, σ), P)
∧∀i. VerifyS(pk,min,i||idin,i, σin,i) = 1
∧VerifyS(pk, ideval, σeval) = 1
∧P (id,m) = 1
then σout ← SigS(sk,mout||idout)
else σout ← ⊥


(5)

=Pr

Verify(kout,mout, σout) = P (id,m) :

(sk, pk)← KGenS(1λ)
If P (id,m) = 1
then σout ← SigS(sk,mout||idout)
else σout ← ⊥

 (6)

=Pr [P (id,m) = P (id,m)] = 1 (7)

We start with the desired probability for the correctness from Definition 2.1. In the steps from
(1) to (4), we replace Setup, KeyGen and Eval by their respective constructions. This does, of
course, not modify the probability. In the step from (4) to (5), we replace the obfuscated cir-
cuit c by its non-obfuscated definition. By the definition of iO, it holds that every circuit C,
the obfuscated variant c ← iO(C) has the same functionality as C. Therefore, the replace-
ment does not change the probability. Note that, by construction, h = H((id,m, σ), P), so
the check always succeeds as the random oracle gives the same answer if queried on the same
inputs. Furthermore, by assumption it holds for every input tuple (idin,i,min,i, σi) that the

15

verification succeeds: Verify(kidin,i ,min,i, σi). Moreover, as KeyGen creates valid signatures σid
for every key identifier id, the signature σkeval verifies because of the correctness property of the
signature scheme S. We remove all these respective checks from (5) to (6) as they are always
satisfied and we also remove all unused variables. By definition of Verify and the correctness
of the underlying signature scheme, we know that all signatures σout ← Sig(sk,mout||idout)
verify. Consequently, the verification succeeds if and only if the predicate is satisfied and
thus the probability collapses to 1.

This completes the proof for the correctness of OSS.

4.3 Security Analysis

Regarding security, we prove the following theorem.

Theorem 4.4. Let S = (KGenS, SigS,VerifyS) be an unforgeable and deterministic signature
scheme, iO be a random-oracle based indistinguishability obfuscator for a class of upstream-
hashing-only circuits C containing CH,sk,pk,P and Cfake according to Definition 4.1, PRF is
a pseudorandom function, and H be a hash function modeled as a random oracle. Then
Construction 4.2 is an unforgeable and private OSS for all predicates P of fixed polynomial
size, such that each P ∈ P is efficiently computable.

We split the proof of this theorem in two parts by first showing unforgeability against
chosen message attacks (Lemma 4.5) and then privacy (Lemma 4.6).

Lemma 4.5. If S = (KGenS, SigS,VerifyS) is an unforgeable and deterministic signature
scheme, iO a random oracle indistinguishability obfuscator for a class of circuits C containing
CH,sk,pk,P and Cfake (defined in Figure 2) according to Definition 4.1, PRF is a pseudorandom
function, and H is a hash function modeled as a random oracle, then Construction 4.2 is an
unforgeable OSS for all predicates P of polynomial size, such that each P ∈ P is efficiently
computable.

Intuition. We prove the lemma by reducing the unforgeability of the OSS construc-
tion to the unforgeability of the underlying signature scheme S. To do so, we show, via a
transition of games, that an adversary A cannot distinguish whether it interacts with the
challenger EUF-CMAOSS or with another adversary B that simulates said challenger to break
the unforgeability of S. First, we have A against the challenger for OSS. Next, we replace
the random oracle by an oracle H that simulates a PRF and encodes signatures within its
output, whenever the input x is a valid input for Eval that would lead to a signature y (see
Figure 2). Since A does not know the key of the PRF, it cannot distinguish H from the
random oracle. Next, we replace the game with a game in which our adversary B simulates
the challenger for OSS. Since B does not have access to the secret key sk of S, it cannot
generate the circuit CH,sk,pk,P . Instead, it creates a circuit Cfake (see Figure 2) that extracts
signatures from the output of the oracle H. By definition of H, the two stripped-off versions
of the circuits CH,sk,pk,P and Cfake are functionally equivalent for inputs of the form (x,H(x)).
Thus, we can apply the indistinguishability property of the indistinguishability obfuscator
and see that A cannot distinguish the circuits.

16

H(x) :

if x = ((id[keval → ideval],m, σ), P)
and for all i : VerifyS(pk,min,i||idin,i, σi) = 1
and VerifyS(pk, keval, σeval) = 1
and P (id,m) = 1.

then // extract forgery
if there exists a tuple (id,m, σ)

in (id[keval → ideval],m, σ) or keval = (pk, ideval, σeval, c)
such that Verify(id,m, σ) = 1 and (m||id) 6∈ Q

then either output (m||id, σ) or (ideval, σeval) to B
else

query y ← Sig(mout||idout)
return H(x) := PRF(kPRF, x)⊕ y

else return PRF(kPRF, x)

Cfake(((id[keval → ideval],m, σ), P), h) :

if h = H((id[keval → ideval],m, σ), P)
∧ forall i. VerifyS(pk,min,i||idin,i, σi) = 1
∧ VerifyS(pk, keval, σeval) = 1
∧ P (id,m) = 1
output h⊕ PRF(kPRF, ((id[keval → ideval],m, σ), P))

else
output ⊥

Figure 2: Simulation of H and Cfake. The set Q denotes the set of messages which adversary
B has queried its signing oracle about.

Moreover, since CH,sk,pk,P does not contain the secret key kPRF of the PRF and Cfake

does not contain the secret key sk of S, both values must be hidden within the obfuscated
circuit. Consequently, A cannot use information from the obfuscated circuit c ← iO(Cfake)
to generate a forgery. Moreover, since B simulates the oracle H, it can see whenever the
input to H contains a forgery. We then show that whenever A wins the game, B can also
extract a forgery.

The full proof appears in Appendix B.

Lemma 4.6. Construction 4.2 is private.

Proof. By construction, all signatures σ for messages m under identifier id that are gener-
ated via Eval are deterministic signatures Sig(sk,m||id) for a master signing key sk of the
underlying signature scheme S. Consequently, for every computation that leads to signing
any message m for an identifier id, the way in which this signature was created is completely
hidden. More formally, let A be any machine. Whenever A queries Chb((id

0,m0, σ0),
(id1,m1, σ1), P0, P1), such that (k0out,m

0
out) = (k1out,m

1
out), then

σ0
eval = Eval′((id0,m0, σ0), P0) = Sig(sk,mout||idout) = Eval′((id1,m1, σ1), P1) = σ1

eval

This mathematical fact does not rely on any assumption on the strength of A or on any
information about the other queries that A performs. As this challenge query is the only
place in which Chb uses b, no information about b ever leaks to A and the construction above
is private.

5 Blind Signatures from Operational Signatures

We show that general unforgeable and private operational signatures imply two-move blind
signature schemes. Since blind signatures cannot be derived from black-box one-wayness in

17

general [KSY11], and since our construction and reduction are black-box, this entails that
a generic black-box construction for operational signatures solely based on one-wayness is
impossible as well. Furthermore, the result by Fischlin and Schröder [FS10] about the impos-
sibility results for basing three-move blind signatures on non-interactive problems like RSA
applies here in principle as well. They have additional stipulations on the blind signature
scheme and the reductions, which must thus hold for the underlying operational signatures,
too. Determining these properties is beyond our scope here.

We note that Boyle et al. [BGI14] actually do show that their notion of functional signa-
tures can be met using one-way functions, if one forgoes privacy. They also show that unforge-
able functional signatures, which are succinct but not necessarily private, imply SNARGs.
Such SNARGs, on the other hand, are most likely not derivable from falsifiable assumptions
like one-wayness [GW11]. This result hinges of the succinctness of the signatures, though. In
this sense, our result supplements their result by showing that demanding privacy (instead
of succinctness) still makes constructions based on one-wayness hard to find.

We also stress again that we do not claim to be able to subsume blind signatures under
our definitional framework; this is impossible, because blind signatures have an interactive
signature generation protocol underneath. Instead, we build a blind signature scheme from
a private and unforgeable operational signature scheme.

5.1 Recap: Blind Signatures

We briefly recall the definition of blind signatures. For more information we refer to [Cha83].
A blind signature scheme BS = (BSGen, S,U,BSVf) consists of the key generation algorithm
BSGen which on input 1λ returns a key pair (sk, pk), and of two interactive algorithms S
and U which, when run interactively on inputs sk resp. (pk,m) allow the user U to output
a signature σ such that this signature can be verified with BSVf(pk,m, σ). As usual, for
correctly generated data, verification should succeed. We assume that all admissible messages
are of equal length (otherwise, an additional step is added in which the messages are hashed).
Both of the aforementioned impossibility results hold for equal-length messages. Without
loss of generality, we assume for convenience below that each message starts with a ‘1’ bit.
This can always be achieved by prepending this redundant bit to each message.

Unforgeability of blind signatures imposes two requirements: First, any efficient ma-
licious user U∗ must not be able to generate ` + 1 valid signatures for distinct messages
m1, . . . ,m`+1 after at most ` interactions with the honest signer S. Since we will derive a
two-move signature scheme we simply count initiated interactions here instead of completed
ones [FS12]. Second, to achieve the notion of blindness, an efficient malicious signer S∗ must
not be able to tell apart the following two scenarios: S∗ selects the key pair and a pair of
messages m0,m1; the user randomly selects the order of these two messages, corresponding
to the two scenarios, and uses them in that order in two interactions with the malicious
signer. Since our scheme will consist of two moves only, the two executions can be carried
out concurrently. We note that, in case one of the two user instances fails to compute a valid
signature σ0 or σ1 in one of the two executions, then the signer only receives (⊥,⊥) for both
executions.

18

Our blind signature scheme will achieve only “honest-key blindness” in the sense defined
in [JLO97], i.e., blindness only needs to hold with respect to honestly generated key pairs
for which the adversary against the blindness property learns the genuine secret key. This
is a reminiscence of our model in which KeyGen honestly generates keys for users. If we
adopt the stronger model where the adversary can choose keys for corrupted users, then
our scheme has this property as well and is blind with respect to maliciously chosen keys.
The aforementioned impossibility results for blind signatures hold in the honest-key case
as well, such that we can still conclude that deriving an unforgeable and private OSS from
one-wayness is hard.

5.2 Constructing Blind Signatures from OSS

For the construction we need a two-move commitment scheme C = (CGen,Com) where se-
crecy guarantees that, even for a maliciously generated key pkC ← CGen(1λ), the committed
message m is hidden by the commitment C = Com(pkC,m; r) for randomness r (defined
through the usual indistinguishability game). Unambiguity says that a malicious commit-
ter, even an unbounded one, cannot find (m, r), (m′, r′) with m 6= m′ but Com(pkC,m; r) =
Com(pkC,m

′; r′) for honestly chosen pkC. This should hold with overwhelming probability
over the choice of pkC. We say that the scheme is secure if it has the two properties. We as-
sume that any key pkC has a fixed length, depending only on λ; this can always be achieved
by padding the keys. Such commitments can be based on any one-way functions, and if
we assume (as we will below) that the operational message authenticator includes a regular
signature or MAC scheme, then we can thus build such commitments without any further
assumption.

The construction idea is to have the user in the blind signature ask the signer to sign the
required messages min under its key such that the user can then locally derive the signature
for mout with pkideval (which we assume to be a public value). We will then craft an appropriate
predicate P which ensures that unforgeability of the blind signature scheme basically follows
from the unforgeability of the operational signatures. Blindness will follow from the privacy
of the underlying operational scheme and because we let the user have the signer sign a
commitment of min instead, and ensure that P is still compatible with this commitment.

Construction 5.1. Let C = (CGen,Com) be a two-move commitment scheme. Let OSS =
(Setup,KeyGen,Eval,Verify) be an operational signature scheme for predicate P over IDpub ⊆
ID,M, where P only contains Psig and the following predicate P :

P ((idin,min), (ideval,meval), (idout,mout)) = 1 ⇐⇒


meval = (r,mout),

idout = idin = idpub, ideval = idε

min = 0||pkC||Com(pkC,mout; r)

Note that ideval = idε corresponds to public information, and that we have idout = idin = idpub,
i.e., transform signatures into signatures.

Define the following blind signature scheme BS = (BSGen, S,U,BSVf):

19

Key generation: Run Setup(1λ) to generate (MSK,PP). Also, sample a signing key pair
(skidsig , pkidpub) via MSK, as well as pkC ← CGen(1λ). Output skidsig as the secret key,
and (PP, pkidpub , pkC) as the public key.

Interactive Signing: In the interactive signing protocol let the user for input (PP, pkidpub , pkC)
and m first pick randomness r for the commitment. It then computes C = Com(pkC,m; r)
and sends C to the signer. The signer computes (via Psig) a signature for 0||pkC||C
under key pkidpub and returns this signature σC to the user. The user checks the va-
lidity of the signature (and aborts if it cannot be verified); else, it runs Eval for input
(idpub, 0||pkC||C, (idε, (r,m)), (idpub,m)) and P to derive a signature σm for m. It out-
puts this signature.

Verification: Simply run Verify for pkidpub on m and σ, and check that m starts with a bit
′1′.

Theorem 5.2. If the commitment scheme C is secure and the operational signature scheme
OSS is unforgeable, then the blind signature scheme in Construction 5.1 is secure.

Proof. We need to show that the above scheme satisfies blindness and unforgeability.

Blindness. Here we only sketch the blindness proof; the full proof can be found in Ap-
pendix C. Basically, the idea is that we can make the view of the signer completely indepen-
dent of the bit b it tries to predict. This happens in two steps: First, instead of giving the
signer the correct blind signatures σ0, σ1 for the messages m0,m1, which have been signed
in random order by forwarding commitments C0, C1 to the signer to receive intermediate
signatures, we instead forward signatures σ′0, σ

′
1 which have been derived in another execu-

tion branch, using the same keys, randomness, and messages m0,m1 on the signer’s side but
independent commitments C ′0, C

′
1 and an independent bit b′. Privacy of the OSS, saying that

one cannot distinguish signatures derived from two possible sources, guarantees here that
the malicious signer would still be able to predict b successfully from C0, C1 and the “wrong”
signatures σ′0, σ

′
1.

4

In the next step we replace the commitments C0, C1 in the main branch by commitments
to all-zero strings, and still provide the signatures σ′0, σ

′
1 derived in the other branch. The

latter means that we do not need to be able to open the commitments in the main branch. By
the hiding property of the commitment scheme, it follows that this is again indistinguishable
from the signer’s viewpoint. But now the signer only receives commitments to zero strings,
and signatures derived in an execution for an independent bit b′. It thus cannot predict the
unknown bit b better than by guessing.

Unforgeability. To prove unforgeability we turn the adversary B against the unforgeabil-
ity of the blind signature scheme into an adversary A against the unforgeability of OSS.

4The main part of the argument is to show that this is indeed true, because we have to take care of
possible aborts in the second branch.

20

Initially, A receives PP and pkidpub . It will generate pkC ← CGen(1λ) and start an execution
of B on (PP, pkidpub , pkC). Whenever B ask for a signature for C in an interaction with the

signer, adversary A calls its Eval′ oracle on (idpub, 0||pkC||C), (idpub, 0||pkC||C) and Psig to
create a signature for 0||pkC||C. Forward this signature to B. Note that A does not need
to make any queries to KeyGen, nor to Verify′ at this point. When B eventually outputs
` + 1 pairs (m1, σ1), . . . , (m`+1, σ`+1) adversary A calls the verification oracle Verify′ about
all these pairs and idpub.

To assess A’s success probability we need to determine the set of trivial pairs. Clearly,
any signed commitment C adds an entry (idpub, 0||pkC||C) to this set. As for the recur-
sive elements, note that Psig ∈ P does not add further elements from those derivable from
(idpub, 0||pkC||C). Varying over all meval = (r,mout), the function f can only add one pair
(idpub,mout) to the trivial set for a tuple (idpub, 0||pkC||C), because for the honestly generated
key pkC, included in 0||pkC||C, there is at most one valid message opening mout to C. This
holds with overwhelming probability over the choice of pkC such that we can simply assume
perfect unambiguity and lose only a negligible term in the success probability. (Note that
there may be multiple matching random strings r, but this is irrelevant.) Furthermore, mout

must start with bit ‘1’ and cannot recursively add further entries via P .
In summary, the trivial set only contains entries (idpub, 0||pkC||C) for queries C made

by B, and one entry of the form (idpub,m) for each such tuple, where m starts with a
bit ‘1’. Hence, if B succeeds and produces ` + 1 valid signatures for distinct messages
after ` interactions, then A creates ` + 1 valid signatures for distinct messages m (with ‘1’
prepended), even though the trivial set only contains ` such messages. It follows that any
successful B would yield a contradiction against the unforgeability of OSS.

Note that the counterexample requires meval 6= mout. We can easily modify the scheme
to enforce meval = mout by considering predicates Pr (over all possible random strings r) in
P instead.

It is worthwhile to note that we were unable to build other “heavy” primitives like key
agreement, or even functional encryption out of operational signatures. We leave this as an
open problem.

References

[ABC+12] Jae Hyun Ahn, Dan Boneh, Jan Camenisch, Susan Hohenberger, abhi shelat, and
Brent Waters. Computing on authenticated data. In Ronald Cramer, editor,
Theory of Cryptography, volume 7194 of Lecture Notes in Computer Science,
pages 1–20. Springer Berlin Heidelberg, 2012.

[ABF+13] Joël Alwen, Manuel Barbosa, Pooya Farshim, Rosario Gennaro, S. Dov Gordon,
Stefano Tessaro, and David A. Wilson. On the relationship between functional
encryption, obfuscation, and fully homomorphic encryption. In Cryptography
and Coding - 14th IMA International Conference, IMACC 2013, Oxford, UK,
December 17-19, 2013. Proceedings, pages 65–84, 2013.

21

[ACLY00] R. Ahlswede, Ning Cai, S.-Y.R. Li, and R.W. Yeung. Network information flow.
IEEE Transactions on Information Theory, 46(4):1204–1216, 2000.

[ACMT05] Giuseppe Ateniese, Daniel H. Chou, Breno Medeiros, and Gene Tsudik. Sani-
tizable signatures. In Sabrinade Capitani Vimercati, Paul Syverson, and Dieter
Gollmann, editors, Computer Security ESORICS 2005, volume 3679 of Lecture
Notes in Computer Science, pages 159–177. Springer Berlin Heidelberg, 2005.

[ALP12] Nuttapong Attrapadung, Benot Libert, and Thomas Peters. Computing on au-
thenticated data: New privacy definitions and constructions. In Xiaoyun Wang
and Kazue Sako, editors, Advances in Cryptology ASIACRYPT 2012, volume
7658 of Lecture Notes in Computer Science, pages 367–385. Springer Berlin Hei-
delberg, 2012.

[ALP13] Nuttapong Attrapadung, Benoit Libert, and Thomas Peters. Efficient completely
context-hiding quotable and linearly homomorphic signatures. In Kaoru Kuro-
sawa and Goichiro Hanaoka, editors, Public-Key Cryptography - PKC 2013, vol-
ume 7778 of Lecture Notes in Computer Science, pages 386–404. Springer Berlin
Heidelberg, 2013.

[BBD+10] Christina Brzuska, Heike Busch, Özgür Dagdelen, Marc Fischlin, Martin Franz,
Stefan Katzenbeisser, Mark Manulis, Cristina Onete, Andreas Peter, Bertram
Poettering, and Dominique Schröder. Redactable signatures for tree-structured
data: Definitions and constructions. In Jianying Zhou and Moti Yung, editors,
Applied Cryptography and Network Security, volume 6123 of Lecture Notes in
Computer Science, pages 87–104. Springer Berlin Heidelberg, 2010.

[Bel06] Mihir Bellare. New proofs for nmac and hmac: Security without collision-
resistance. In CRYPTO, volume 4117 of Lecture Notes in Computer Science,
pages 602–619. Springer, 2006.

[BF11] Dan Boneh and David Mandell Freeman. Homomorphic signatures for polyno-
mial functions. In Kenneth G. Paterson, editor, Advances in Cryptology EU-
ROCRYPT 2011, volume 6632 of Lecture Notes in Computer Science, pages
149–168. Springer Berlin Heidelberg, 2011.

[BF14] Mihir Bellare and Georg Fuchsbauer. Policy-based signatures. In Public-Key
Cryptography - PKC 2014 - 17th International Conference on Practice and The-
ory in Public-Key Cryptography, Buenos Aires, Argentina, March 26-28, 2014.
Proceedings, pages 520–537, 2014.

[BFF+09] Christina Brzuska, Marc Fischlin, Tobias Freudenreich, Anja Lehmann, Mar-
cus Page, Jakob Schelbert, Dominique Schröder, and Florian Volk. Security of
sanitizable signatures revisited. In Stanislaw Jarecki and Gene Tsudik, editors,
Public Key Cryptography PKC 2009, volume 5443 of Lecture Notes in Computer
Science, pages 317–336. Springer Berlin Heidelberg, 2009.

22

[BFKW09] Dan Boneh, David Freeman, Jonathan Katz, and Brent Waters. Signing a linear
subspace: Signature schemes for network coding. In Stanislaw Jarecki and Gene
Tsudik, editors, Public Key Cryptography PKC 2009, volume 5443 of Lecture
Notes in Computer Science, pages 68–87. Springer Berlin Heidelberg, 2009.

[BFLS10] Christina Brzuska, Marc Fischlin, Anja Lehmann, and Dominique Schröder. Un-
linkability of sanitizable signatures. In Public Key Cryptography, volume 6056
of Lecture Notes in Computer Science, pages 444–461. Springer, 2010.

[BGI+12] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai,
Salil P. Vadhan, and Ke Yang. On the (im)possibility of obfuscating programs.
J. ACM, 59(2):6, 2012.

[BGI14] Elette Boyle, Shafi Goldwasser, and Ioana Ivan. Functional signatures and pseu-
dorandom functions. In Public-Key Cryptography - PKC 2014 - 17th Interna-
tional Conference on Practice and Theory in Public-Key Cryptography, Buenos
Aires, Argentina, March 26-28, 2014. Proceedings, pages 501–519, 2014.

[BGLS03] Dan Boneh, Craig Gentry, Ben Lynn, and Hovav Shacham. Aggregate and veri-
fiably encrypted signatures from bilinear maps. In Advances in Cryptology - EU-
ROCRYPT 2003, International Conference on the Theory and Applications of
Cryptographic Techniques, Warsaw, Poland, May 4-8, 2003, Proceedings, pages
416–432, 2003.

[BKM09] Adam Bender, Jonathan Katz, and Ruggero Morselli. Ring signatures: Stronger
definitions, and constructions without random oracles. J. Cryptology, 22(1):114–
138, 2009.

[BMS13] Michael Backes, Sebastian Meiser, and Dominique Schröder. Delegatable func-
tional signatures. Cryptology ePrint Archive, Report 2013/408, 2013. http:

//eprint.iacr.org/.

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm
for designing efficient protocols. In Dorothy E. Denning, Raymond Pyle, Ravi
Ganesan, Ravi S. Sandhu, and Victoria Ashby, editors, CCS ’93, Proceedings of
the 1st ACM Conference on Computer and Communications Security, Fairfax,
Virginia, USA, November 3-5, 1993., pages 62–73. ACM, 1993.

[BSW11] Dan Boneh, Amit Sahai, and Brent Waters. Functional encryption: Definitions
and challenges. In Yuval Ishai, editor, Theory of Cryptography, volume 6597 of
Lecture Notes in Computer Science, pages 253–273. Springer Berlin Heidelberg,
2011.

[CF13] Dario Catalano and Dario Fiore. Practical homomorphic macs for arithmetic cir-
cuits. In Thomas Johansson and PhongQ. Nguyen, editors, Advances in Cryptol-

23

http://eprint.iacr.org/
http://eprint.iacr.org/

ogy – EUROCRYPT 2013, volume 7881 of Lecture Notes in Computer Science,
pages 336–352. Springer Berlin Heidelberg, 2013.

[CFGN14] Dario Catalano, Dario Fiore, Rosario Gennaro, and Luca Nizzardo. Generalizing
homomorphic macs for arithmetic circuits. In Public-Key Cryptography - PKC
2014 - 17th International Conference on Practice and Theory in Public-Key
Cryptography, Buenos Aires, Argentina, March 26-28, 2014. Proceedings, volume
8383 of Lecture Notes in Computer Science, pages 538–555. Springer, 2014.

[CFW14] Dario Catalano, Dario Fiore, and Bogdan Warinschi. Homomorphic signatures
with efficient verification for polynomial functions. In Advances in Cryptology
- CRYPTO 2014 - 34th Annual Cryptology Conference, Santa Barbara, CA,
USA, August 17-21, 2014, Proceedings, Part I, volume 8616 of Lecture Notes in
Computer Science, pages 371–389. Springer, 2014.

[CH91] David Chaum and Eugène Heyst. Group signatures. In DonaldW. Davies, editor,
Advances in Cryptology — EUROCRYPT ’91, volume 547 of Lecture Notes in
Computer Science, pages 257–265. Springer Berlin Heidelberg, 1991.

[Cha83] David Chaum. Blind signatures for untraceable payments. In David Chaum,
RonaldL. Rivest, and AlanT. Sherman, editors, Advances in Cryptology, pages
199–203. Springer US, 1983.

[CKLM13] Melissa Chase, Markulf Kohlweiss, Anna Lysyanskaya, and Sarah Meiklejohn.
Malleable signatures: Complex unary transformations and delegatable anony-
mous credentials. In Anupam Datta and Cedric Fournet, editors, IEEE Com-
puter Security Foundations Symposium, Lecture Notes in Computer Science.
IEEE Computer Society, 2013.

[CLX09] Ee-Chien Chang, CheeLiang Lim, and Jia Xu. Short redactable signatures using
random trees. In Marc Fischlin, editor, Topics in Cryptology CT-RSA 2009,
volume 5473 of Lecture Notes in Computer Science, pages 133–147. Springer
Berlin Heidelberg, 2009.

[DFF+13] Björn Deiseroth, Victoria Fehr, Marc Fischlin, Manuel Maasz, Nils Fabian
Reimers, and Richard Stein. Computing on authenticated data for adjustable
predicates. In ACNS, pages 53–68, 2013.

[FS10] Marc Fischlin and Dominique Schröder. On the impossibility of three-move
blind signature schemes. In Henri Gilbert, editor, Advances in Cryptology EU-
ROCRYPT 2010, volume 6110 of Lecture Notes in Computer Science, pages
197–215. Springer Berlin Heidelberg, 2010.

[FS12] Marc Fischlin and Dominique Schröder. Security of blind signatures under aborts
and applications to adaptive oblivious transfer. J. Mathematical Cryptology,
5(2):169–204, 2012.

24

[GGH+13] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and
Brent Waters. Candidate indistinguishability obfuscation and functional en-
cryption for all circuits. In 54th Annual IEEE Symposium on Foundations of
Computer Science, FOCS 2013, 26-29 October, 2013, Berkeley, CA, USA, pages
40–49. IEEE Computer Society, 2013.

[GW11] Craig Gentry and Daniel Wichs. Separating succinct non-interactive arguments
from all falsifiable assumptions. In Proceedings of the 43rd annual ACM sympo-
sium on Theory of computing, STOC ’11, pages 99–108, New York, NY, USA,
2011. ACM.

[GW12] Rosario Gennaro and Daniel Wichs. Fully homomorphic message authenticators.
Cryptology ePrint Archive, Report 2012/290, 2012.

[GW13] Rosario Gennaro and Daniel Wichs. Fully homomorphic message authenticators.
In Advances in Cryptology - ASIACRYPT 2013 - 19th International Conference
on the Theory and Application of Cryptology and Information Security, Ben-
galuru, India, December 1-5, 2013, Proceedings, Part II, volume 8270 of Lecture
Notes in Computer Science, pages 301–320. Springer, 2013.

[HKW14] Susan Hohenberger, Venkata Koppula, and Brent Waters. Universal signa-
ture aggregators. Cryptology ePrint Archive, Report 2014/745, 2014. http:

//eprint.iacr.org/.

[JLO97] Ari Juels, Michael Luby, and Rafail Ostrovsky. Security of blind digital signa-
tures. In S. Burton and Jr. Kaliski, editors, Advances in Cryptology CRYPTO
’97, volume 1294 of Lecture Notes in Computer Science, pages 150–164. Springer
Berlin Heidelberg, 1997.

[KN08] Eike Kiltz and Gregory Neven. Identity-Based Signatures. Cryptology and In-
formation Security Series on Identity-Based Cryptography. IOS Press, 2008.

[KSY11] Jonathan Katz, Dominique Schröder, and Arkady Yerukhimovich. Impossibility
of blind signatures from one-way permutations. In Yuval Ishai, editor, Theory
of Cryptography, volume 6597 of Lecture Notes in Computer Science, pages 615–
629. Springer Berlin Heidelberg, 2011.

[LYC03] S.-Y.R. Li, R.W. Yeung, and Ning Cai. Linear network coding. IEEE Transac-
tions on Information Theory, 49(2):371–381, 2003.

[MPR11] Hemanta K. Maji, Manoj Prabhakaran, and Mike Rosulek. Attribute-based
signatures. In Aggelos Kiayias, editor, Topics in Cryptology CT-RSA 2011,
volume 6558 of Lecture Notes in Computer Science, pages 376–392. Springer
Berlin Heidelberg, 2011.

25

http://eprint.iacr.org/
http://eprint.iacr.org/

[PST14] Rafael Pass, Karn Seth, and Sidharth Telang. Indistinguishability obfuscation
from semantically-secure multilinear encodings. In Advances in Cryptology -
CRYPTO 2014 - 34th Annual Cryptology Conference, Santa Barbara, CA, USA,
August 17-21, 2014, Proceedings, Part I, volume 8616 of Lecture Notes in Com-
puter Science, pages 500–517. Springer, 2014.

[RST01a] Ronald L. Rivest, Adi Shamir, and Yael Tauman. How to leak a secret. In
ASIACRYPT, volume 2248 of Lecture Notes in Computer Science, pages 552–
565. Springer, 2001.

[RST01b] Ronald L. Rivest, Adi Shamir, and Yael Tauman. How to leak a secret. In Colin
Boyd, editor, Advances in Cryptology — ASIACRYPT 2001, volume 2248 of
Lecture Notes in Computer Science, pages 552–565. Springer Berlin Heidelberg,
2001.

[SPB+12] Kai Samelin, Henrich C. Pöhls, Arne Bilzhause, Joachim Posegga, and Hermann
Meer. Redactable signatures for independent removal of structure and content.
In MarkD. Ryan, Ben Smyth, and Guilin Wang, editors, Information Security
Practice and Experience, volume 7232 of Lecture Notes in Computer Science,
pages 17–33. Springer Berlin Heidelberg, 2012.

[SR10] Daniel Slamanig and Stefan Rass. Generalizations and extensions of redactable
signatures with applications to electronic healthcare. In Bart Decker and In-
grid Schaumller-Bichl, editors, Communications and Multimedia Security, vol-
ume 6109 of Lecture Notes in Computer Science, pages 201–213. Springer Berlin
Heidelberg, 2010.

[SW05] Amit Sahai and Brent Waters. Fuzzy identity-based encryption. In Ronald
Cramer, editor, Advances in Cryptology EUROCRYPT 2005, volume 3494 of
Lecture Notes in Computer Science, pages 457–473. Springer Berlin Heidelberg,
2005.

A Expressing Special Operational Schemes in the Frame-

work

In this section we instantiate the predicate P for a various prominent authentication prim-
itives to show how the notion captures such schemes. We discuss here signatures only; one
may easily derive the functionality for the symmetric counterpart where designated verifiers
validate the authenticity of a message by adhering the convention as put forth in Defini-
tion 2.2.

26

A.1 Malleable Signatures: The Case of Sanitizable and Redactable
Signatures

Sanitizable signatures [ACMT05, BFF+09] allow the signer to grant a designated party, called
the sanitizer, the privilege of message modification without invalidating the authenticity of
the unmodified part. The signer holds a signing key for idsig for authentication of messages m,
and the sanitizer has a secret key ksan for controlled sanitization, which is formally expressed
in terms of a polynomial-time predicate psan : ID×M×M→ {0, 1}. Signatures are verified
with the help of the public key for idpub. Thus, in a sanitizable signature scheme the key space
comprises the key identifiers ID = {idsig, idpub, ksan, idε} such that IDpub = {idpub, idε} and
the functionality P = {Psig, Psan} contains the sanitizing predicate Psan : (ID×M)3 → {0, 1}
defined as:

Psan(id,m) =

{
1 if idin = idout = idpub, ideval = ksan, psan(ksan,meval,min) = 1, meval = mout

0 otherwise
.

In words, if one receives a message min with a signature as input which verifies under idpub,
and one applies the sanitization key for ksan to derive a signature for meval, the sanitized
version of min, then this signature verifies for mout = meval under idpub again. In addition,
Psig realizes the usual behavior of a standard digital signature, namely if one applies idsig
to a message meval and verifies this signature for mout = meval under pkidpub . Note also that
one may refine the sanitization predicate and demand that ksan is specific to the sanitizing
operation, e.g., that only leading 0-bits can be removed.

Redactable signatures [CLX09, BBD+10, SR10, SPB+12] are special sanitizable signa-
tures with “public sanitization”. Given a message and a valid signature over the message,
any party may delete parts of the message and infer a valid signature. In this context, an
OSS is cast over the key space ID = {idsig, idpub, idε} such that IDpub = {idpub, idε} and
the predicates P = {Psig, Pred} where the redaction prdicate Pred : (ID ×M)3 → {0, 1} is
defined as:

Pred(id,m) :

{
1 if idin = idout = idpub, ideval = idε, pred(idpub,meval,min) = 1, meval = mout

0 otherwise
.

Predicate Pred is identical to Psan with the exception that the evaluation key is public. More
precisely, predicate Psan checks that message meval can be derived from min by redaction,
expressed in form of predicate pred : ID ×M ×M → {0, 1} that outputs 1 if and only
if meval is a redacted version of min, that idin = idout = idpub and meval = mout (i.e., the
input message verifies under key identifier idpub, the output message meval = mout, too), and
that ideval = idε for the trivial (public) information. This way, redaction becomes a public
operation.

27

A.2 Homomorphic Signatures: The Case of Network Coding and
P-Homomorphic Signatures

In line with tremendous breakthroughs in computing on encrypted data, significant steps
towards computing on authenticated data have been made [ACLY00, LYC03, BFKW09,
ABC+12, BF11, GW12]. In a homomorphic signature scheme a third party derives from
message-signature pairs (mi, σi)1≤i≤N a valid signature σ′ over message m′ = f(m1, . . . ,mN).
Ahn et al. [ABC+12] present a framework to compute on authenticated data where a third
party may compute a derived signature as long as there is some relation (expressed in terms
of a predicate P : MN+1 → {0, 1}) between messages m1, · · · ,mN and m′. They call
signatures of that type P -homomorphic.

Ahn et al. [ABC+12] show that many related signatures are expressible in their P-
homomorphic notion including signatures for linear functions (aka. signatures for network
coding) [ACLY00, LYC03] and polynomial functions [BF11]. One may consider P-homomor-
phic signatures as an OSS defined over the identifier space ID = {idsig, idpub, idε} such that
idpub, idε ∈ IDpub and the predicate set P = {Psig, PP-hom} where PP-hom is defined as

PP-hom(id,m) =


1 if idin,i = idpub ∀i, idout = idpub, ideval = idε,

P(min,1, · · · ,min,N ,meval) = 1, meval = mout

0 otherwise

.

In other words, predicate PP-hom assures that messages M = {min,i}i and meval = mout

satisfy the relation P(M,meval) = 1 of the P-homomorphic signature and that all keys satisfy
idin,i, idout = idpub and ideval = idε.

A.3 Indexed Signatures: The Case of Identity-Based and Attribute-
based Signatures

In some cases, it is useful to add additional structure to the message space. In many applica-
tions the plaintext m ∈M itself is a pair (ind,m′) ∈ I×M′ where ind is called the index (or
preamble) and m′ is called the payload (or simply message). For example, the index may be a
string or set thereof. This additional structure already suffices to express identity-based sig-
natures [KN08] and more general derivatives like attribute-based signatures [MPR11]. In an
index-based signature scheme, parties have signing keys associated with their index and they
are eligible to sign a message, if key and index are related in terms of some polynomial-time
predicate p : ID × I → {0, 1}. In this context, we instantiate the OSS with identifier space
ID = {k1, . . . , k|I|, idpub, idε} such that idpub, idε ∈ IDpub and predicates P = {Psig, Pind}
where we define Pind as:

Pind(id,m) =

{
1 if idin = idout = idpub, ideval = kind, p(kind, ind) = 1, meval = mout

0 otherwise
.

Phrased in our terminology, the functionality ensures that the verification with public key
idpub of the signature generated with the evaluation key kind for message min = mout is

28

valid, if the user with index ind is a member of the polynomial-time relation p. This way,
one may immediately obtain definitions for identity-based or attribute-based signatures.
In an identity-based signature scheme, keys are assigned to identities, and the predicate
pind : ID × I → {0, 1} accepts, if keys are linked to the matching index kind = ind. In an
attribute-based signature scheme, keys are associated with sets of strings (attributes), and
the predicate patt : ID∗ × I∗ → {0, 1} accepts if there exists a polynomial time relation
between the key identifiers and indices.

Maji et al. [MPR11] observe that attribute-based signatures relate to many important
concepts of multi-user signature systems such as group, ring, and mesh signatures. (As men-
tioned in the Introduction, this addresses the core signing operation, but excludes additional
functionality such as the revocation of anonymity in case of group signatures.) In a nutshell,
in these multi-user signature systems, a set of users (group) is entitled to sign a message
on behalf of the group and the common interpretation in all these signature systems is that
they provide some form of unforgeability and privacy. More specifically, group and ring sig-
natures reveal only the fact that the signer is a member of the group. In a group signature
scheme, the list of group members is public, but chosen by the group manager in advance; in
a ring signature, the list is public as well, but chosen by the signer in an ad hoc way. Mesh
signatures extend ring signatures with some finer-grained access structure.

One easily may cast the “eligibility” of the user within the group by defining an appropri-
ate polynomial time predicate P where keys are linked with user identities and the relation
is a disjunction over the universe of attributes (group and ring signatures) or a finer-grained
mechanism (mesh signatures). In the forthcoming section, we give a concrete instantiation
of ring signatures. In fact, we discuss an alternative way to cast ring signatures in our frame-
work, without relying on indices as here. There we also discuss our notion of unforgeability
and privacy, as defined in Section 3, along a comparison to standard security definitions for
ring signatures in the literature.

A.4 Ring Signatures

To exemplify further our definitions we now show how to map the security requirements of
ring signatures to our notions of unforgeability and privacy. To cast ring signatures in our
framework we have (adjacent) key pairs skid, pkid for each user, and also “rings of identifiers”
idR = (id1, . . . , idn) of public keys pkid1 , . . . , pkidn . The predicate ensemble P only consists
of the predicate Pis part which, on input (ideval,meval), (idout,mout) returns 1 if and only if
ideval = idsig for some idsig /∈ IDpub, and the matching public key idpub ∈ IDpub to idsig is in
the ring idout, and meval = mout. Note that the fact that we have a master secret key which
is used to generate keys in an ad-hoc manner is somewhat corresponds to the case of ring
signatures in [RST01a, BKM09] where the key pairs are generated at the outset.

Unforgeability according to our Definition 3.2 is then equivalent to unforgeability with
respect to insider corruption in [BKM09]. That is, the notion in [BKM09] says that the
adversary receives public keys of honest parties (as here) and can ask to see ring signatures
for arbitrary messages, rings, and signing parties. This is given here through Eval′ queries,
where ideval determines the signing party, meval the input message, and idout the ring. The

29

adversary there also gets to corrupt parties and learn their secret keys; this can be modeled
here through KeyGen′ queries.

The adversary in [BKM09] eventually outputs a forgery for a message m∗ and ring R∗

of uncorrupt parties only, where it has never ask for a signature for (m∗, R∗) for any signer.
In our terminology, the signing queries about R,m (i.e., the Eval′ queries) add exactly such
entries (idout,mout) corresponding to (R,m) to the set of trivial pairs. Furthermore, for any
corrupt user (i.e., with idsig ∈ QID), the trivial set contains any pair (idout, ∗) where the
public key idpub to idsig is in the ring idout, because the adversary could trivially compute
such signatures if it knows one of the secret keys of the users in the ring. However, the fact
that R∗ in a successful forgery corresponds to a ring of honest users only means that no pair
(idout, ∗) for idout corresponding to R∗ is trivial, unless it was signed, such that the forgery
would also be valid according to our definition. In fact, there is a one-to-one correspondence
between the two notions.

As for anonymity, our privacy notion (almost) corresponds to the anonymity against full
key exposure notion in [BKM09], the only difference being that there the adversary does
not only receive the secret key of parties, but also the randomness used to create them.
There, the adversary can query a challenge oracle (multiple times) about a message m, a
ring R including two user indices, and then receives a signature for m for ring R under
either the left or right user index, depending on a secret random bit b. This corresponds
exactly to our challenge oracle here, where the requirements for such queries stipulate that
P0 = P1 = Pis part, that m0

eval = m1
eval = mout, and that both ideval

0 and ideval
1 are thus part

of the (same) ring idout. The final prediction of the adversary for b there is then exactly the
same as here.

A.5 Delegatable Functional Signatures

Delegatable Functional Signatures (DFS) [BMS13] support the delegation of signing capabil-
ities to another party, called the evaluator, with respect to a functionality F . The evaluator
may compute valid signatures on messages m′ and delegate capabilities f ′ to another evalua-
tor with key k whenever (f ′,m′)← F(f, α, k,m) for a value α of the evaluators choice. The
functionality describes both the malleability of the signature (i.e., how it can be modified)
and the delegatability of the signature (i.e., to whom it can be delegated).

DFS are general enough to imply many other primitives, amongst them functional sig-
natures [BGI14]. However, DFS are a special case of OSS, as we can map the security
requirements of DFS to our notions of unforgeability and privacy. As for ring signatures
we have (adjacent) key pairs skid, pkid for each user, where we assume that there is a func-
tion pk that relates these keys as pkid = pk(skid). As in DFS the signer of a message can
choose a function for the malleability and delegatability and specify an evaluator by its
public key. Consequently, we compose messages as a combination of the real message m,
the function f for malleability and delegatability and the public key k of the evaluator:
m = (m, f, k). Then we build a predicate P that computes the functionality F of the
DFS. To this end, the predicate checks whether the messages min and mout are of the form
(m, f, k). Then, P computes the functionality F and checks whether mout contains the val-

30

ues that F computes. Formally, given a functionality F , we create a predicate PF on input
(min, idin,meval, ideval,mout, idout) as follows: If idout = pk(ideval), then this is a new signature
and the predicate outputs 1. Otherwise, the predicate checks whether the evaluation is al-
lowed, by verifying that min is of the form (m, f, k) and that mout is of the form (m′, f ′, k′)
and that moreover k = pk(ideval) ∧ idin = idout ∧ F(f,meval, k

′,m) = (m′, f ′).
Unforgeability according to our Definition 3.2 is then equivalent to unforgeability with

respect to insider or outsider attackers (depending on whether the adversary asks for secret
keys and not just for public keys). The notion in [BMS13] is very related to our notion in
that the adversary has access to (almost) the same oracles and also their definition of trivial
messages (via the transitive closure of F) is equivalent to our set Triv. Only their security
against strong insider attackers, that may generate their own keys, is stronger and cannot
be achieved in general.

The privacy notion of DFS marks a special case of our privacy notion from Definition 3.3
as it states that evaluations of signatures are indistinguishable from fresh signatures. How-
ever, the notions are equivalent, as their privacy (against fresh signatures) implies Definition
3.3.

B Proof of Unforgeability (Lemma 4.5)

Proof. Let A be an efficient adversary with running time t that makes at most (qk, qe, qv)
queries to its respective oracles (as in Definition 3.2), where t, qk, qe, qv are polynomial in λ
and assume for contradiction thatA breaks the unforgeability with non-negligible probability
λ. Then, we construct an adversary B against unforgeability of S. This algorithm gets as
input a key pk and it chooses a key kPRF for a pseudorandom function PRF. We denote by
Q the set of message that B queries to its signing oracle. In the following we describe B’s
simulation of the random oracle H(·) and the circuit Cfake(((id[keval → ideval],m, σ), P), h)
that will be used later.
B computes c ← iO(Cfake), sets PP := (c, pk), and runs a black-box simulation of A on

input PP and handles A’s oracle queries as follows (where it updates QID and QE just as
the challenger would).

• Upon receiving a request for KeyGen′(id) for any identifier id ∈ ID, the algorithm B
sends a query Sig(id) to its challenger, adds id to QID and returns the corresponding
answer to A.

• Upon receiving a request for Eval′((id,m, σ), P), the algorithm B simulates Eval, i.e.,
checks whether the signatures are valid (for ideval it only checks whether ideval ∈ ID)
and whether the predicate is fulfilled. If so, B adds (idout,mout, P) to QE , sends a
query Sig(mout||idout) to its challenger and upon receiving an answer σ, the algorithm
B sends σ to A.

In the following, we show that B does not compute the forgery for A, i.e., all responses
to A’s query belong to the set of trivial queries.

31

Claim B.1. Whenever B sends a query Sig(x) to its signature oracle, then either x is a
known key identifier x ∈ QID, or x is of the form x = (m||id) and the pair (id,m) is trivial.

Proof for Claim B.1. There are exactly four places in the simulation at which B sends queries
Sig(x) to its challenger and via recursion over the queries of B we will see that they all fulfill
the claim:

• Keys contained in the set IDpub: It is assumed that these keys are publicly known and
by definition it holds that IDpub ⊆ QID.

• Upon receiving a request for KeyGen′(id) for any identifier id ∈ ID: Here, B sends a
query Sig(id) to its challenger, but now id is added to QID.

• Upon receiving a request for Eval′(x): Here whenever B sends a query Sig(m||id) to its
challenger and receives a signature σ, then it also adds (id,m) to QE , i.e., (id,m) is
trivial by the base case.

• Upon receiving a request for H(x): Here B might send a query Sig(mout||idout) to its
challenger, but only if all input signatures verify and if furthermore the predicate is
fulfilled. If any of the signatures (either for keys or for the input messages) has not
been requested by B to its challenger (but still verifies), then B halts and outputs a
forgery. Otherwise, if all signatures have been requested by B, then via recursion over
this claim, A knows keval (ideval ∈ QID) and all input pairs (idin,i,min,i) are trivial. It
follows that (idout,mout) is also trivial.

We now argue why any forgery produced by A leads to a forgery for S. To do so, we
first show that the adversary A cannot distinguish its interaction with B from a real game
against a challenger for the unforgeability of OSS. We show this by the following transition
of indistinguishable games:

Game0: The real game in which A interacts with a challenger for the unforgeability of OSS.

Game1: The game Game1 is defined as Game0, but we replace the random oracle H by
a (keyed) pseudorandom function PRF for which we draw a fresh key kPRF in the
beginning of the game.

Claim B.2. The games Game0 and Game1 are computationally indistinguishable.

Since this claim follows easily by the pseudorandomness of PRF, we omit a formal
proof. Note that by assumption about obfuscation of the hash-free C ′ part only, the
obfuscator here also works for the pseudorandom hash function now.

Game2: The game Game2 is defined as Game1, but in this game we replace the oracle
HGame1(x) = PRF(kPRF, x) with H defined in Figure 2.

32

Claim B.3. The games Game1 and Game2 are computationally indistinguishable.

Again, this claim follows easily from the pseudorandomness of PRF and the formal
proof is omitted.

Game3: This game is identical to Game2, but now B uses Cfake as defined in Figure 2.

Claim B.4. The games Game2 and Game3 are computationally indistinguishable.

Proof of Claim B.4. The circuits C from Game2 and Cfake from Game3 are functionally
equivalent with respect to the oracle H. Consequently, by Definition 4.1 the obfuscated
circuits c← iO(λ,CH) and c′ ← iO(λ,CH

fake) are indistinguishable. Note that A does
not learn any information about sk from c′, as it is not used anymore. Moreover, since
c and c′ are indistinguishable and kPRF is only used in c′, the attacker A also does not
learn information about kPRF from c′.

We have shown, that A cannot distinguish a game against the challenger for OSS from
a game against the unforgeability of S in which A interacts with B. Note that the circuit of
Game3 does not contain secret information about the signing key anymore (we shifted it to
H). Thus, B can create the circuit in its own game.

To conclude the proof, we show that B can use A’s advantage in breaking the unforge-
ability of OSS to break the unforgeability of S. For doing so we analyze what happens when
A would win the game by sending a forgery (id∗,m∗, σ∗) to Verify′. Since S is a unique
signature scheme, we know that σ∗ has not been the output of B to a query Eval′ by A, as
otherwise (id∗,m∗) would be trivial. We do a case distinction on the origin of the forgery.

Case 1: A has not sent any value x to H such that H has answered with the output
PRF(kPRF, x)⊕ σ∗. But then B did not receive σ∗ from its signature oracle, as it only
requests signatures for messages in such cases and upon receiving an Eval′ request. Note
that by definition of ID, the combination of id∗ and m∗ cannot be a key. Formally:
∀id∗ ∈ ID,m∗ ∈ M. m∗||id∗ /∈ ID. Since the signature scheme S is deterministic,
B has never sent a query Sig(m∗||id∗) to its challenger and consequently, (m∗||id∗, σ∗)
constitutes a forgery for B.

Case 2: A has sent a value x toH such thatH has answered with the output PRF(kPRF, x)⊕
σ∗. But then x must be of the form ((id[keval → ideval],m, σ), P) and all checks on
((id[keval → ideval],m, σ), P) must have succeeded. Then either all signatures σin,i and
the key keval were handed to A by B, and by Claim B.1 they must be trivial and thus
(id∗,m∗, σ∗) is trivial, or B has already received a forgery, as there is a signature σi
for an identifier-message-pair (idin,i,min,i) such that Verify(pk,min,i||idin,i, σin,i) = 1 or
for the key keval = (pk, ideval, σeval, c) such that Verify(pk, ideval, σeval) = 1 and B has not
sent a query Sig(idin,i||min,i) or Sig(ideval) to its challenger.

33

We have shown that if we assume that A has a non-negligible advantage in producing a
forgery for OSS, then B also has a non-negligible advantage in producing a forgery for S.
This, however, contradict the assumption that S is unforgeable and thus, the opposite is true
and our construction for OSS is unforgeable.

This completes the proof of Lemma 4.5.

C Proof of Blindness (Theorem 5.2)

Proof. Assume that we have a successful attacker S∗ on the blindness, which outputs a bit
b∗ and succeeds in predicting the random bit b with probability 1

2
+ ε(λ). We show that the

advantage ε = ε(λ) must be negligible, by performing some game hops which would preserve
a non-negligible advantage, until we finally reach a game in which the advantage disappears
completely. This shows that ε must be negligible, too.

Game0: This is the real blindness game against the scheme.

Game1: Change the blindness game (Game0) now as follows to Game1. Initialize two copies of
the malicious signer, both with honestly generated tuples (MSK, skidsig ,PP, pkidpub , pkC,
ω) where ω is the randomness for the signer. Since these values are identical in both
copies, we also obtain the same pair of messages m0,m1 in both executions. Run now
one copy, called the main branch, on fresh randomness r0, r1 and b← {0, 1} to compute
the commitments C0, C1, and run the other instance, the side branch, with independent
randomness r′0, r

′
1, b
′ to compute commitments C ′0, C

′
1 of the same messages m0,m1 but

in independent order. Forward the commitment pairs in both instances to the signer
and wait to receive signatures τ0, τ1 as well as τ ′0, τ

′
1. Abort the side branch.

If one of the signatures in the side branch, τ ′0 or τ ′1, is invalid, then abort the whole
game and output a random guess for b; if one of the signatures τ0, τ1 in the main branch
is invalid, then continue to run the signer in the main branch, but return (⊥,⊥) on
behalf of the user. Else, run locally the Eval algorithm on all four values as the honest
user would, to obtain signatures σmb

, σm1−b
, σ′mb′

, σ′m1−b′
. Completeness says that these

signatures must be valid. Output (m0, σm0) and (m1, σm1) to the signer in the main
branch. Copy the signer’s final prediction in the main execution for b as the output.

We claim that the probability of being able to predict b correctly in the modified game
for our given malicious signer S∗, is still at least 1

2
+ ε2 − neg(λ) for some negligible

function neg(λ) which is still non-negligibly far from the pure guessing strategy. To
see this, let Abort0 be the event in Game0 —with only the main branch— that the
user fails to generate two valid signatures (and quasi aborts). Let Pred0 be the event
that S∗ predicts b∗ = b correctly in Game0. Note that the success probability of S∗ in
the original blindness game can then be written as follows:

Prob[Pred0] ≤ Prob[Pred0 ∧Abort0] + Prob[¬Abort0] .

34

We argue that the first term is negligibly close to 1
2
, such that the second probability

must be at least ε, up to a negligible term. To bound the first probability note that in
case of an abort the only information S∗ receives about b is via the commitments C0, C1

to the messages mb,m1−b. But since the commitments are computationally hiding, we
can essentially replace them by commitments to 0’s of the same length as the messages,
without changing the signer’s view significantly. Denote the corresponding events in
this game by Pred0

0, Abort0
0. The probability of event Pred0

0∧Abort0
0 cannot drop

by more than a negligible term neg(λ) from the one in Game0, or else we would easily
obtain a successful distinguisher against the commitment scheme. Note that checking
for the event Pred0

0 ∧ Abort0
0 to happen does not require the user to be able to

generate signatures on the messages.

If we give commitments to 0’s, on the other hand, S∗ is completely oblivious about b
in case an abort happens, such that:

1
2

+ ε ≤ Prob[Pred0]

≤ Prob[Pred0 ∧Abort0] + Prob[¬Abort0]

≤ Prob
[
Pred0

0 ∧Abort0
0

]
+ neg(λ) + Prob[¬Abort0]

≤ 1
2

+ neg(λ) + Prob[¬Abort0] ,

implying that
Prob[Abort0] ≤ 1− ε+ neg(λ).

With this we are now able to show that the success probability of predicting b in our
Game1 with the two branches (event Pred1), is at least 1

2
+ ε2 (minus some negligible

term). Recall that the difference between the two games is that, if the side branch
does not provide valid signatures, denoted as event Abort1 here, we merely output a
guess. Note that the probabilities of Abort0 in Game0 and of Abort1 in Game1 are
identical, as they both consider a failure of one branch with random inputs. Since we
have, under the condition that we do obtain valid signatures in the side branch, the
same prediction probability here as in Game0, we conclude:

Prob[Pred1] = Prob[¬Abort1] · Prob[Pred1 | ¬Abort1] + 1
2
· Prob[Abort1]

≥ (1− Prob[Abort1]) · (12 + ε) + 1
2
· Prob[Abort1]

= 1
2

+ (1− Prob[Abort1]) · ε
≥ 1

2
+ ε2 − ε · neg(λ).

Game2: In the next game hop, let Game2 be the game which is identical to Game1, except
that if outputting (m0, σm0) and (m1, σm1) to the signer in the main branch (if this
point is reached), we now hand over (m0, σ

′
m0

) and (m1, σ
′
m1

) for the signatures from
the side branch, and let S∗ predict b from the main branch for these signatures.

We claim that, by the privacy of OSS, the success probability of S∗ in this slightly
modified game Game2 cannot change significantly from Game1. For this note that we

35

can view the original game, where S∗ would obtain the genuine signatures (m0, σm0)
and (m1, σm1), and the modified game here, correspond to the privacy game in which
the challenger either derives the tags from the left input, or from the right input
(twice). Our compound behavior of receiving the OSS keys, creating the other key for
the commitment, and running S∗ and the user instances as above, corresponds to an
adversary against privacy. Hence, if the advantage of S∗ of predicting b in the main
execution would drop from non-negligible to negligible, we would obtain successful
attacker against the privacy of OSS. Note that aborts are irrelevant for this argument.

Game3: In the next game hop to Game3, replace the commitments C0, C1 in the main branch
by commitments to 0’s (of equal length as the messages). Still use the original messages
m0,m1 in the commitments C ′0, C

′
1 for the side branch, and derive the final signatures

from that execution. It follows straightforwardly from the hiding property of the
commitment scheme that the advantage of S∗ cannot change significantly, or else we
would obtain a successful distinguisher.

Game4: In the final game, the view of S∗ in the main branch is now independent of the bit
b, such that it cannot predict b better than by guessing. Since the game hops only lost
a negligible success probability, it follows that S∗ cannot predict b in the original game
with non-negligible advantage either.

This completes the blindness analysis of Theorem 5.2.

D Unforgeable Operational Signature Schemes

Boyle et al. [BGI14] give a simple construction for unforgeable functional signatures. Their
construction relies on a standard digital signature scheme which shows that the existence of
one-way functions implies the existence of unforgeable functional signature schemes. Their
idea is to provide the signer a certified function and verification key for each functional
signing key so that a signature consists of that certificate and a signature on the input
message which verifies for the certified verification key.

Below we lift their construction and show how to construct even unforgeable operational
signature schemes. The verification algorithm must additionally check whether the evaluator
used the correct inputs when generating the tag, and whether the inputs together with the
message and the signature comply with the respective predicate.

Construction D.1. Let S = (KGenS, SigS,VerifyS) be a digital signature scheme. The op-
erational signature scheme OSS = (Setup,KeyGen,Eval,Verify) for predicates P over ID,M
is defined as follows:

Setup(1λ): Sample key pair (sk, vk) ← KGenS(1λ). Set MSK = sk and PP = vk. The set
of (public) keys ID, IDpub, the message space M is defined consistent to the key and
message space of S.

36

KeyGen(MSK, id): On input the master secret MSK and a key identifier id ∈ ID, perform
the following:

1. sample a key pair (ssk, svk)← KGenS(1λ), and

2. compute σid = SigS(MSK, id||svk), and

return kid = (ssk, svk, σid).

Eval((id[keval → ideval],m, σ), P): On input a sequence (idin,i,min,i, σin,i)i, pairs (kideval ,meval)
and (idout,mout), and a predicate P ∈ P, perform the following:

1. parse (ssk, svk, σeval)← keval and

2. check whether for all i, Verify(kidin,i ,min,i, σin,i) = 1 where kidin,i ∈ IDpub,

3. sign all inputs, i.e., σin ← SigS(ssk, (id,m, σ)||P) where

(id,m, σ) = ((idin,i,min,i, σin,i)i, (ideval,meval), (idout,mout)) .

Return σ′ = ((id,m, σ), P, σeval, σin).

Verify(kid,m
′, σ′): On input key kid = (ssk, svk, σ), a message m′, and a signature σ′ =

((id,m, σ), P ′, σ′eval, σ
′
in), check if the following conditions hold:

1. m′ = mout,

2. P ′(id,m) = 1,

3. VerifyS(svk, (id,m, σ)||P ′, σ′in) = 1, and

4. VerifyS(vk, idout||svk, σ′eval) = 1, and

5. for all i, Verify(kidin,i ,min,i, σin,i) = 1 where kidin,i ∈ IDpub.

If either test fails, output 0; else output 1.

Theorem D.2. If S is (t, qs, ε)-unforgeable against chosen-message attacks, then the above
construction for an operational message authenticator for predicates P over ID,M is (t +
O(λ), qk, qe, qv, ε

′)-unforgeable where qk, qe, qv are polynomially bounded in λ, and ε′ = ε.

Proof sketch. The construction is very close to the unforgeable functional signature scheme
by Boyle et al. [BGI14], and the main difference here is that input signatures of previous eval-
uations are verified in the evaluation algorithm, and similarly in the verification algorithm.
An adversary can forge essentially in the way as it does in the construction in [BGI14] or she
must have been able to inject a forged signature in the evaluation algorithm. The former at-
tack(s) are covered by Boyle et al. through the security reduction to the underlying signature
scheme. Similarly, one can show that a forged input signature to the evaluation algorithm
can also serve as a forgery in the unforgeability of the underlying signature scheme. In the
beginning of the reduction, one has to guess the public key under which the forgery will later
verify. Note that are only polynomial many public keys. We omit a formal analysis.

37

	Introduction
	How to Define Operational Signature Schemes
	Security Notions for Operational Signature Schemes
	Constructions, Techniques, and Results

	Operational Signature Schemes
	Identifiers, Keys, and Predicates
	Syntax
	Signatures and MACs as Operational Schemes

	Security Models
	Unforgeability
	Privacy

	Operational Signatures from Indistinguishability Obfuscation
	Indistinguishable Obfuscator for Random Oracles
	Constructing OSS from iO
	Security Analysis

	Blind Signatures from Operational Signatures
	Recap: Blind Signatures
	Constructing Blind Signatures from OSS

	Expressing Special Operational Schemes in the Framework
	Malleable Signatures: The Case of Sanitizable and Redactable Signatures
	Homomorphic Signatures: The Case of Network Coding and P-Homomorphic Signatures
	Indexed Signatures: The Case of Identity-Based and Attribute-based Signatures
	Ring Signatures
	Delegatable Functional Signatures

	Proof of Unforgeability (Lemma 4.5)
	Proof of Blindness (Theorem 5.2)
	Unforgeable Operational Signature Schemes

