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Abstract

Non-malleable codes, introduced by Dziembowski, Pietrzak and Wichs [DPW10], provide
a useful message integrity guarantee in situations where traditional error-correction (and even
error-detection) is impossible; for example, when the attacker can completely overwrite the
encoded message. Informally, a code is non-malleable if the message contained in a modified
codeword is either the original message, or a completely “unrelated value”. Although such codes
do not exist if the family of “tampering functions” F allowed to modify the original codeword
is completely unrestricted, they are known to exist for many broad tampering families F . The
family which received the most attention [DPW10, LL12, DKO13, ADL14, CG14a, CG14b] is
the family of tampering functions in the so called (2-part) split-state model: here the message x
is encoded into two shares L and R, and the attacker is allowed to arbitrarily tamper with each
L and R individually. Despite this attention, the following problem remained open:

Build efficient, information-theoretically secure non-malleable codes in the split-state model
with constant encoding rate: |L| = |R| = O(|x|).

In this work, we resolve this open problem. Our technique for getting our main result is of
independent interest. We

(a) develop a generalization of non-malleable codes, called non-malleable reductions;

(b) show simple composition theorem for non-malleable reductions;

(c) build a variety of such reductions connecting various (independently interesting) tampering
families F to each other;

(d) construct several new non-malleable codes in the split-state model by applying the com-
position theorem to a series of easy to understand reductions.

Most importantly, we show several “independence amplification” reductions, showing how to
reduce split-state tampering of very few parts to an easier question of split-state tampering
with a much larger number of parts. In particular, our final, constant-rate, non-malleable code
composes one of these reductions with the very recent, “9-split-state” code of Chattopadhyay
and Zuckerman [CZ14].
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1 Introduction

Non-malleable codes, introduced by Dziembowski, Pietrzak and Wichs [DPW10], provide a use-
ful message integrity guarantee in situations where traditional error-correction (and even error-
detection) is impossible; for example, when the attacker can completely overwrite the encoded
message. Informally, given a tampering family F , a F-non-malleable code (E,D) encodes a given
message x into a codeword y ← E(x) in a way that, if y is modified into y′ = f(y) by some f ∈ F ,
then the message x′ = D(y′) contained in the modified codeword y′ is either the original message
x, or a completely “unrelated value”. In other words, non-malleable codes aim to handle a much
larger class of tampering functions F than traditional error-correcting or error-detecting codes,
at the expense of potentially allowing the attacker to replace a given message x by an unrelated
message x′ (and also necessarily allowing for a small “simulation error” ε). As shown by [DPW10],
this relaxation still makes non-malleable codes quite useful in a variety of situations where (a) the
tampering capabilities of the attacker might be too strong for error-detection, and, yet (b) changing
x to unrelated x′ is not useful for the attack. For example, imagine x being a secret key for a signa-
ture scheme. In this case, tampering which keeps x the same corresponds to the traditional chosen
message attack (covered by the traditional definition of secure signatures), while tampering which
changes x to an unrelated value x′ will clearly not help in forging signatures under the original
(un-tampered) verification key, as the attacker can produce such signatures under x′ by himself.

Split-State Model. Although such codes do not exist if the family of “tampering functions” F
is completely unrestricted,1 they are known to exist for many broad tampering families F . One
such natural family is the family of tampering functions in the so called t-split-state model Stn.
Here the k-bit message x is encoded into t shares y1, . . . , yt of length n each, and the attacker is
allowed to arbitrarily tamper with each yi individually. The rate of such an encoding is naturally
defined as τ = tn/k.

The appeal of this family comes from the fact that it seems naturally enforceable in applications,
especially when t is low and the shares y1, . . . , yt are stored in different parts of memory, or by
different parties. Alternatively, non-malleable codes in this model could be interpreted as “non-
malleable secret-sharing schemes”: even if all the t message shares are independently tampered
with, the recovered message is either x or is unrelated to x. Not surprisingly, the setting of t = 2
appears the most useful (but also the most challenging from the technical point of view), so it
received the most attention so far [DPW10, LL12, DKO13, ADL14, CG14a, CG14b].

The known results can be summarized as follows. First, [DPW10] showed the existence of such
non-malleable codes, and this existential result was further improved by [CG14a], who (amazingly!)
showed that the optimal rate of such codes is just 2. Second, the work of [DPW10] also gave an
efficient construction in the random oracle model. Third, the work of Liu and Lysyanskaya [LL12]
built an efficient computationally-secure non-malleable code in the split model (necessarily restrict-
ing the tampering functions f1 and f2 to be efficient as well). The construction assumes so called
common reference string (CRS) which cannot be tampered, and also uses quite heavy tools from
public-key cryptography, such as robust non-interactive zero-knowledge proofs [DSDCO+01] and
leakage-resilient encryption [NS09]. Thus, given the clean information-theoretic definition of non-
malleable codes, we believe it is important to construct such codes unconditionally.

This was first achieved by Dziembowski, Kazana and Obremski [DKO13], who constructed an
elegant non-malleable code for 1-bit messages in the split-state model. Following that, Aggar-

1In particular, F should not include “re-encoding functions” f(y) = E(f ′(D(y))) for any non-trivial function f ′,
as x′ = D(f(E(y))) = f ′(x) is obviously related to x.
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wal, Dodis and Lovett [ADL14] gave the first information-theoretic construction supporting k-bit
messages, but where the length of each share n = O(k7 log7 k) [ADL14]. The security proof of
this scheme also used pretty advanced results from additive combinatorics, including the so called
Quasi-polynomial Freiman-Ruzsa Theorem, which was recently established by Sanders [San12] as
a step towards resolving the Polynomial Freiman-Ruzsa conjecture [Gre05]. This construction
was improved by Aggarwal [Agg14] to obtain non-malleable codes in the split state model with
n = O(k7). Very recently Chattopadhyay and Zuckerman [CZ14] construct a constant-rate non-
malleable code in the 9-split-state model. However, it was unclear how to reduce the number of
independent parts to the optimal 2.

Hence, prior to our work, the following question remained open: construct efficient, information-
theoretically secure non-malleable codes in the 2-split-state model whose rate is o(k6) (and, ideally,
constant).

Our Results. In this work, we resolve this open problem.

Theorem 1 (Main Result). (Informal) There exists efficient, information-theoretically secure
non-malleable codes in the 2-split-state model with constant encoding rate: |L| = |R| = O(k), where
k is the length of the message.

Our technique for getting this result is of independent interest. We

(a) develop a generalization of non-malleable codes, called non-malleable reductions;

(b) show simple composition theorem for non-malleable reductions;

(c) construct a variety of such reductions connecting various (independently interesting) tamper-
ing families F to each other; and

(d) construct our final, constant-rate, non-malleable code in the 2-split-state model by applying
the composition theorem to a series of easy to understand reductions.

We briefly expand on these results below, but notice that our final result uses the above mentioned
recent result of Chattopadhyay and Zuckerman [CZ14] as a black-box. Without using this work,
we could directly achieve a very simple linear-rate τ = O(k) non-malleable code in the 2-split-state
model, which is already considerably better than the prior state-of-the-art τ = O(k6) [ADL14,
Agg14].

Non-malleable Reductions. Recall, non-malleable codes encode the message x in a way that
decoding a tampered codeword either returns x itself, or yields an “independent” message x′.
Abstractly, this could be viewed as “reducing” a possibly complicated family of tampering functions
F to a much simpler family NM of what we call trivial tampering functions: identity function
f(x) = x and constant functions fx′(x) = x′. More generally, given two families F and G, we
can define a non-malleable reduction from F to G — denoted (F ⇒ G) — to be a pair (E,D)
of encoding/decoding functions with the property that, for any tampering function f ∈ F , the
function D(f(E(·))) is “close” to a convex combination of functions g(·) for g ∈ G. With this
perspective, non-malleable code w.r.t. to F is simply a non-malleable reduction (F ⇒ NM).
More interestingly, and ignoring error terms, it is very easy to see that the notion of non-malleable
reductions is transitive: (F ⇒ G) and (G ⇒ H) imply (F ⇒ H). Thus, to construct a non-malleable
code w.r.t. to some possibly complicated family F , we can define some useful intermediate families
F0 = F ,F1, . . . ,Fi = NM (for small constant i), and show that (F0 ⇒ F1), . . . , (Fi−1 ⇒ Fi).

Aside from improved modularity, our approach has the benefit that some of our intermediate
families and reductions are rather natural and could find other applications. Additionally, if a
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better intermediate non-malleable reduction is found in subsequent/independent work, we could
immediately get an improved result for our final non-malleable code. This is precisely what hap-
pened when we discovered the recent work of Chattopadhyay and Zuckerman [CZ14], which, in
our terminology, gave a better non-malleable reduction from O(1)-split-state family to the trivial
family NM. Coupled with our already established constant-rate reduction from 2-split-state to
O(1)-split-state family, the work of [CZ14] improved the rate of our final code from O(k) to O(1),
giving us the desired code stated in Theorem 1.

Our Reductions. As we mentioned, we introduce several useful intermediate families and derive
a variety of non-malleable reductions relating them. From a conceptual point of view, however,
we present two incomparable non-malleable reductions (each of which is composed of several sub-
reductions). Both of these reductions could be interpreted as independence amplification techniques:
they reduce split-state tampering of very few parts to an easier question of split-state tampering
with a much larger number of parts.

Our first main result (see Theorem 18) shows a non-malleable reduction from 5-split-state tam-
pering to t-split-state tampering, loosing only a factor O(t) in the rate of the code. In addition
to the 5-split-state tampering, it can also tolerate so called “forgetful” family FOR5, which is
allowed to (dependently) tamper all 5 memory parts as a function of any (5 − 1) = 4 memory
parts. (More generally, FORt can use any (t − 1) parts.) In turn, this reduction is composed of
several sub-reductions, some of which are of independent interest (e.g., one reduction uses the alter-
nating extraction technique of [DP07a] to reduce 2-split-state tampering to the so called family of
“lookahead functions”, which is a natural model for “one-pass” tampering). We defer more detailed
treatment to Section 5, here only mentioning that each of our reductions is rather elementary to
state (but not prove), using only general randomness extractors or the inner product function. In
particular, the resulting non-malleable codes that we get using this reduction could be “efficient”
not only in theory, but even in practice.

Our second main result (see Theorem 19) is a non-malleable reduction from 2-split-state tamper-
ing to the family containing t-split-state tampering and the t-part forgetful family FORt mentioned
above. This reduction loses a factor O(t3) in the rate, but this is still a constant when t = O(1).
Also, although the proof of this reduction is, by far, the most technically involved part of this work,
the reduction itself is very simple and efficient, using only the inner product function. We defer
more detailed treatment of this result to Section 6.

Applications to Non-malleable Codes. We can now compose our main new reductions with
the already known constructions of non-malleable codes for various families, to get the following
new results. First, composing our reduction from 5 parts to t parts with known non-malleable
codes in the so called independent-bit tampering model (where each of the t shares is only 1 bit)
[DPW10, CG14b, FMVW14], we get a very simple linear rate non-malleable code in the 5-split-state
model. See Theorem 21.

Second, we can now compose this code with our second reduction (from 2 parts to t = 5 parts
or the forgetful family FOR5) to get still quite simple linear rate non-malleable code in the 2-split-
state model. As we mentioned, this already considerably improves the prior state-of-the-art O(k6)
rate code by [ADL14, Agg14]. See Theorem 22.

Finally, instead of our own non-malleable code in the t = 5 split-state model above, we can use
the beautiful recent work of [CZ14], which uses a variety of advanced techniques to construct a
constant-rate non-malleable code in the 9-split-state model (i.e., number of parts t = 9). Composing
this constant-rate code with our second reduction from 2 to t = 9 part, which only loses a constant
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factor in the rate, we get our final code claimed in Theorem 1 (and, formally, in Theorem 24).

Other Related Work. Other results that look at an (enhanced) split-state model are Faust et
al. [FMNV14] which consider the model where the adversary can tamper continuously, and [ADKO14],
that considers the model where the adversary, in addition to performing split-state tampering, is
also allowed some limited interaction between the two states.

In fact, the result of [ADKO14] combined with our result gives a constant rate non-malleable
code that also allows leakage of a 1/12-th fraction of the bits from one share of the codeword to
the other. In addition to the already-mentioned results, several recent works [CCFP11, CCP12,
CKM11, FMVW14, ?, ?] either used or built non-malleable codes for various families F , but did
not concentrate on the split-state model, which is our focus here.

The notion of non-malleability was introduced by Dolev, Dwork and Naor [DDN00], and has
found many applications in cryptography. Traditionally, non-malleability is defined in the com-
putational setting, but recently non-malleability has been successfully defined and applied in the
information-theoretic setting (generally resulting in somewhat simpler and cleaner definitions than
their computational counter-parts). For example, in addition to non-malleable codes studied in
this work, the work of Dodis and Wichs [DW09] defined the notion of non-malleable extractors as
a tool for building round-efficient privacy amplification protocols.

Finally, the study of non-malleable codes falls into a much larger cryptographic framework of
providing counter-measures against various classes of tampering attacks. This work was pioneered
by the early works of [ISW03, GLM+03, IPSW06], and has since led to many subsequent models.
We do not list all such tampering models, but we refer to [KKS11, LL12] for an excellent discussion
of various such models.

2 Preliminaries

For a set T , let UT denote a uniform distribution over T , and, for an integer `, let U` denote uniform
distribution over ` bit strings. The statistical distance between two random variables A,B is defined
by ∆(A ; B) = 1

2

∑
v |Pr[A = v]− Pr[B = v]|. We use A ≈ε B as shorthand for ∆(A,B) ≤ ε.

Lemma 2. For any function α, if ∆(A ; B) ≤ ε, then ∆(α(A) ; α(B)) ≤ ε.

The min-entropy of a random variable W is H∞(W )
def
= − log(maxw Pr[W = w]), and the

conditional min-entropy of W given Z is H∞(W |Z)
def
= − log (Ez←Z maxw Pr[W = w|Z = z]).

Definition 3. We say that an efficient function Ext : {0, 1}N × {0, 1}d → {0, 1}n is an
(N,m, d, n, ε)-extractor if for all sources (W,Z) of conditional min-entropy H∞(W |Z) ≥ m, we
have (S,Z,Ext(W ;S)) ≈ε (S,Z, Un), where S is uniform on {0, 1}d.

In Section 5, we will be concerned with the case when d = n (seed length equals output length),
and will use the existence of the following extractors:

Lemma 4 ([GUV07]). There exist constants c1 and c2, such that for any N and n satisfying
n ∈ [c1 · logN,N/2], there exists an explicit, efficient (N,m = 2n, d = n, n, ε = 2−c2·n)-extractor
Ext.

We also also use bit-extractors which extract only one bit. One such extractor is the bit inner
product function 〈W,S〉 (which trivially follows from the Leftover Hash Lemma [HILL99]). We
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state this below, for future convenience renaming the source length to n (and no longer using n for
output size, as the latter is 1):

Lemma 5. The inner product function is an (n,m, n, `, 2−(m−`−1)/2)-extractor.

Definition 6. We say that a function Ext : {0, 1}n×{0, 1}n → {0, 1}m is an (n, k,m, ε)-2-source
extractor if for all independent sources X,Y ∈ {0, 1}n such that min-entropy H∞(X)+H∞(Y ) ≥ k,
we have (Y,Ext(X,Y )) ≈ε (Y,Um), and (X,Ext(X,Y )) ≈ε (X,Um).

For n being an integer multiple of m, and interpreting elements of {0, 1}m as elements from
F2m and those in {0, 1}n to be from (F2m)n/m, we have that the inner product function is a good
2-source extractor.

Lemma 7. For all positive integers m, n such that n is a multiple of m, and for all ε > 0, there
exists an efficient (n, n+m+ 2 log

(
1
ε

)
,m, ε) 2-source extractor.

We will need the following results. We include proofs in Appendix A for completeness.
The following is a simple result from [ADL14].

Lemma 8. Let X1, Y1 ∈ A1, and Y1, Y2 ∈ A2 be random variables such that ∆((X1, X2) ; (Y1, Y2)) ≤
ε. Then, for any non-empty set A′ ⊆ A1, we have

∆(X2 | X1 ∈ A′ ; Y2 | Y1 ∈ A′) ≤
2ε

Pr(X1 ∈ A′)
.

The following result is from [DP07a].

Lemma 9. Let A ∈ A and B ∈ B be two independent random variables. Let V1, V2, . . . be random
variables defined as functions of A,B satisfying the following property. For all i ∈ N, if i is even
then Vi = φi(V1, . . . , Vi−1, A) and if i is odd, then Vi = φi(V1, . . . , Vi−1, B) for some function φi.
Then for all i, A is independent of B given V1, . . . , Vi.

The following is (a generalization of) the Vazirani’s XOR Lemma.

Lemma 10. Let X = (X1, . . . , Xt) ∈ Ft be a random variable, where F is a finite field of order
q. Assume that for all a1, . . . , at ∈ Ft not all zero, ∆(

∑t
i=1 aiXi ; U) ≤ ε, where U is uniform

in F. Then ∆(X1, . . . , Xt ; U1, . . . , Ut) ≤ εq(t+2)/2, where U1, . . . , Ut are independent and each is
uniform in F.

3 Non-malleable Reductions and Useful Tampering Families

Definitions. In the following we generalize the notion of non-malleable codes w.r.t. to a tam-
pering family F [DPW10] to a more versatile notion of non-malleable reductions from F to G.

Definition 11 (non-malleable reduction). Let F ⊂ AA and G ⊂ BB be some classes of
functions (which we call manipulation functions). We will write:

(F ⇒ G, ε)

and say F reduces to G, if there exist an efficient randomized encoding function E : B → A, and
an efficient deterministic decoding function D : A → B, such that (a) for all x ∈ B, we have
D(E(x)) = x, and (b) for all f ∈ F , there exists G such that for all x ∈ B,

∆
(
D(f(E(x))) ; G(x)

)
≤ ε, (1)
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where G is a distribution over G, and G(x) denotes the distribution g(x), where g ← G.
The pair (E,D) is called (F ,G, ε)-non-malleable reduction.

Intuitively, (F ,G, ε)-non-malleable reduction allows one to encode a value x by y ← E(x), so
that tampering with y by y′ = f(y) for f ∈ F gets “reduced” (by the decoding function D(y′) = x′)
to tampering with x itself via some (distribution over) g ∈ G.

In particular, the notion of non-malleable code w.r.t. F , is simply a reduction from F to the
family of “trivial manipulation functions” NMk defined below.

Definition 12. Let NMk denote the set of trivial manipulation functions on k-bit strings, which
consists of the identity function I(x) = x and all constant functions fc(x) = c, where c ∈ {0, 1}k.

We say that a pair (E,D) defines an (F , k, ε)-non-malleable code, if it defines a (F ,NMk, ε)-
non-malleable reduction.

Remark 1. The above definition might seem a little different than the definition of [DPW10] (who
required a simulator outputting a distribution over constants c ∈ {0, 1}k, a special symbol “same”,
serving as a disguise for the identity function, and another special symbol ⊥). The symbol ⊥ is
meant to indicate that the tampered codeword is invalid, and facilitates one to view non-malleable
codes as a relaxation of error-detecting codes, where one wants to detect tampering. However,
one can equivalently consider the non-malleable code defintion without ⊥, simply by replacing the
“bottom output” ⊥ by a fixed message whenever the simulator or decoder outputs ⊥. We formally
discuss this issue in Appendix B, where we also show the equivalence between the definition of
non-malleable code presented here and the one in [DPW10].

Remark 2. Notice, the “complexity” of the initial tampering family F intuitively corresponds to
the complexity of the attacker on our system. Hence, when F consists of efficient functions (and
so does the target family G; e.g. G = NMk), it could be useful to require that the distribution G
over G is efficiently samplable given oracle access to f ∈ F . However, we do not insist on this for
two reasons: (1) our final tampering family F (the split-state family) will consist of arbitrary and
possibly inefficient functions f , making the efficiency requirement on G less motivated; and, more
importantly, (2) for the reduction from any family F to the trivial family NMk (which is our final
goal), the requirement that G is efficiently samplable (given oracle access to f ∈ F) can be anyway
ensured with mild loss of parameters, as already observed by [CG14b]. We formally state this in
Lemma 13 (see Appendix B for proof). Hence, we will keep our simpler definition, but stress that
our final distribution G (when G = NMk) could be made efficiently samplable, by Lemma 13.

Lemma 13. Let (E,D) be an (F , k, ε)-non-malleable code for some tampering family F . Then
for all f ∈ F , there exists a random function G distributed over NMk such that for all x ∈ {0, 1}k,

∆
(
D(f(E(x))) ; G(x)

)
≤ 2ε+

1

2k
,

and G is efficiently samplable given oracle access to f .

We also give a related useful notion of non-malleable transformations, where the F-tampering is
applied to uniformly random strings in A, and gets transformed (by some “transformation function”
T ) to G-tampering over uniformly random strings in B.

Definition 14 (non-malleable transformation). Let F ⊂ AA and G ⊂ BB be some classes of
manipulation functions. We will write:

(F → G, ε)
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and say F transforms to G, if there exists an efficient transformation function T : A→ B such that
for all f ∈ F there exists G such that:

∆
(
T (f(UA)), T (UA) ; G(UB), UB

)
≤ ε, (2)

where G is a distribution over G, and G(x) denotes the distribution g(x), where g ← G.
The function T is called (F ,G, ε)-non-malleable transformation.

Remark 3. Equation (2) implies the following analog of “correctness”: ∆
(
T (UA);UB

)
≤ ε.

The utility of non-malleable reductions and transformations comes from the following natural
composition theorem, which allows to gradually make our tampering families simpler and simpler,
until we eventually end up with a non-malleable code (corresponding to the trivial family NMk).

Theorem 15 (Composition). (a) If (F → G, ε1) and (G → H, ε2), then (F → H, ε1 + ε2).
(b) Similarly, if (F ⇒ G, ε1) and (G ⇒ H, ε2), then (F ⇒ H, ε1 + ε2).

Proof. We give the proof for (slightly more involved) part (b), as the proof for part (a) is analogous.
Since (F ⇒ G, ε1), there exists functions (E1, D1) satisfying Equation (1), and same for (E2, D2)
for (G ⇒ H, ε2). We claim that (E1 ◦E2, D2 ◦D1) is a correct reduction for (F ⇒ H, ε1 + ε2). The
correctness property is obvious, and the security follows from these equations:

((D2 ◦D1)(f((E1 ◦ E2)(x)))) = (D2(D1(f(E1(E2(x)))))) ≈ε1 D2(G(E2(x))) ≈ε2 H(x)

which means
((D2 ◦D1)(f((E1 ◦ E2)(x)))) ≈ε1+ε2 H(x),

as needed.

We will also need the following trivial observation.

Observation 1 (Union). Let (E,D) be an (F ,H, ε) and a (G,H, ε′) non-malleable reduction
(resp. transformation). Then (E,D) is an (F ∪ G,H,max(ε, ε′)) non-malleable reduction (resp.
transformation).

It is an easy observation that the decoding function in a non-malleable reduction is also a
non-malleable transformation, provided it maps uniform strings to uniform strings (which is not
always the case). We now show for any efficiently invertible non-malleable transformation T , the
pair (T−1, T ) is a non-malleable reduction.

Theorem 16. Let F ⊂ AA,G ⊂ BB. Assume (F → G, ε) with transformation T . For any x ∈ B,
let T−1(x) denote a uniformly random element U in A such that T (U) = x. If for all x ∈ B,
T−1(x) is efficiently samplable, then (F ⇒ G, 2ε|B|).

Proof. We define D : A 7→ B to be T and E is defined as E(x) := T−1(x) for all x ∈ B. Then the
correctness is obvious. Consider some x ∈ B. Using Equation 2 and Lemma 8, we have that

∆(D(f(UA)) | D(UA) = x ; G(UB) | UB = x) ≤ 2ε

Pr(UB = x)
,

which implies
∆(D(f(E(x))) ; G(x)) ≤ 2ε|B| .
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Useful Tampering Families. We define several natural tampering families we will use in this
work. For this, we first introduce the following “direct product” operator on tampering families:

Definition 17. Given tampering families F ⊂ AA and G ⊂ BB, let F × G denote the class of
functions h from (A×B)A×B such that

h(x) = h1(x1)||h2(x2)

for some h1 ∈ F and h2 ∈ G and x = x1||x2, where x1 ∈ A, x2 ∈ B.
We also let F1 := F , and, for t ≥ 1, F t+1 := F t ×F .

We can now define the following tampering families:

• Sn = ({0, 1}n){0,1}
n

denote the class of all manipulation functions on n-bit strings.

• Given t > 1, Stn denotes the tampering family in the t-split-state model, where the attacker
can apply t arbitrarily correlated functions h1, . . . , ht to t separate, n-bit parts of memory
(but, of course, each hi can only be applied to the i-th part individually).

• FORtn denotes forgetful family. It is applied to t parts of memory of length n but the
output value can depend only on (t − 1) parts. More precisely: Let x ∈ {0, 1}tn be a bit
vector and xi ∈ {0, 1}n denote i-th block of n bits. For any h ∈ FORtn there exist a subset
S ⊂ {1, 2, . . . , t} of size (t − 1) such that h(x) can be evaluated from xS . Besides that, it is
not restricted in any way.

• Finally, LA←tn ⊂ ({0, 1}tn){0,1}
tn

denotes the class of lookahead manipulation functions l that
can be rewritten as l = (l1, . . . , lt), for li : {0, 1}in → {0, 1}n, where

l(x) = l1(x1)||l2(x1, x2)|| . . . ||li(x1, . . . , xi)|| . . . ||lt(x1, . . . , xt)

for x = x1||x2|| . . . ||xt, and xi ∈ {0, 1}n. In other words, if l(x1, . . . , xt) = y1, . . . , yt, then
each yi can only depend on the “prior” x1, . . . , xi.

Notice, NMtn ⊂ Stn and Stn ⊂ LA←tn .

4 Our Reductions and Application to Non-malleable Codes

Our Reductions. In this Section, we state our main reductions. Both our reductions could be
interpreted as independence amplification techniques: they reduce split-state tampering of very few
parts to an easier question of split-state tampering with a much larger number of parts. Our first
result shows a non-malleable reduction from 5-split-state tampering to t-split-state tampering.

Theorem 18 (Independence amplification from 5 parts). (S5
6t2n∪FOR

5
6t2n ⇒ S

t
n, 2
−Ω(tn)).

In our second result, we show a non-malleable reduction from 2-split-state tampering to the
family containing t-split-state tampering and the t-part forgetful family.

Theorem 19 (Independence amplification from 2 parts). (S2
O(t4n) ⇒ S

t
n ∪ FORtn, 2−Ω(n)).

Theorem 18 will be proved in Section 5 and Theorem 19 will be proved in Section 6.
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Application to Non-malleable Codes. We can compose the reduction in Theorem 18 with
the already known constructions of non-malleable codes in the independent-bit tampering model
(i.e. for tampering families Sk1 ), summarized below [DPW10, CG14b, FMVW14, ?]:

Theorem 20 (NM code for bit tampering [CG14b]). (S1.1k
1 ⇒ NMk, 2

−Ω(k)).

Using Theorem 15, and Theorem 18 with t = k, and n = 1, we get the following result:

Theorem 21 (5-split NM code with rate O(k)). There exists n = O(k2), such that (S5
n ∪

FOR5
n ⇒ NMk, 2

−Ω(k)). In particular, there exists an efficient (S5
O(k2), k, 2

−Ω(k))-non-malleable
code.

We can compose this with Theorem 19, to reduce the number of parts from 5 to 2 by increasing
the length of the codewords by a constant factor.

Theorem 22 (2-split NM code with rate O(k)). (S2
O(k2) ⇒ NMk, 2

−Ω(k)). Namely, there

exists an efficient (S2
O(k2), k, 2

−Ω(k))-non-malleable code.

This result already dramatically improves upon the previous best-known (S2
O(k7), k, 2

−Ω(k1/7))-

non-malleable code of [ADL14, Agg14]. However, we can further improve our non-malleable code
using a recent work of Chattopadhyay and Zuckerman [CZ14]. [CZ14] obtained a construction of
non-malleable codes with constant rate in the 9-split-state model. Their construction was achieved
using a connection of t-source non-malleable extractors to non-malleable codes in the t-split-state
model shown in [CG14b]. We observe that if the extractor is also a strong extractor (which is the
case for [CZ14]), then the corresponding code is also non-malleable against the forgetful family.
The details can be found in Appendix C, but they imply the following result:

Theorem 23 (9-split NM code with rate O(1)). There exist n = O(k), such that (S9
n ∪

FOR9
n ⇒ NMk, 2

−Ω(k)).

Combining this with our reduction given in Theorem 19, we get our main result.

Theorem 24 (Main result: 2-split NM code with rate O(1)). (S2
O(k) ⇒ NMk, 2

−Ω(k)).

Namely, there exists and efficient (S2
O(k), k, 2

−Ω(k))-non-malleable code.

Remark 4. Clearly, from the asymptotic sense, Theorem 24 is superior to Theorem 22 (which is
in turn superior to Theorem 21). However, the constant factors hidden inside the result of [CZ14]
(i.e., Theorem 23) used to prove Theorem 24 are really large, as the rely on some existential results
in additive combinatorics. Thus, in many concrete situations the code constructed in Theorem 22
(which was done independently from the work of [CZ14]) would be superior to the asymptotically
better code obtained in Theorem 24. To a lesser extent, when increasing the number of independent
parts from 2 to 5 is feasible, the simple 5-part code in Theorem 21 will likely be more efficient than
the code in Theorem 22.

5 Non-Malleable Reduction from 5 parts to t parts

5.1 Our Construction

In this Section, we prove Theorem 18. We prove it by a sequence of simpler intermediate reduc-
tions/transformations (some of which could be of independent interest), and then applying the
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composition theorem (Theorem 15). We now specify the intermediate steps, leaving the proofs of
corresponding theorems to subsequent subsections.

Our first result is a transformation from 2-split-state model to the “t-lootahead model”. Namely,
we gain in introducing many parts, at the expense of dealing with more challenging tampering
functions on each part (as compared to the split-state model).

Theorem 25 (2-split to lookahead). (S2
3tn → LA←tn , t2 · 2−Ω(n)).

The proof is given in Section 5.2, but here we briefly sketch the definition of the required
transformation T1 (see Section 5.2 for more details). It is based on the alternating extraction
protocol [DP07b] depicted in Figure 1. The first memory part stores random strings Q,R0, the
second memory part stores random W (where |Q| = |W | ≈ 2tn and |R0| = n), and we let

T1((Q,R0),W ) = (R1, . . . , Rt), (3)

where each Ri is iteratively defined by using Ri−1 to extract Si−1 from W , and then Si−1 to extract
Ri from Q.

Next, we show how to transform two independent t-lookahead tampering families to the t-split-
state tampering family (and, for future use, the forgetful family).

Theorem 26 (2-lookahead to t-split). If n ≥ 2tm, then

(((LA←tn × LA←tn ) ∪ FOR2t
n )→ (Stm ∪ FORtm), O(2−Ω(n))) .

The proof is given in Section 5.3, but here we only mention the definition of the transformation
T2 we construct. Let Ext2 be any (n, n/2, n,m, 2−(n−2m−2)/4)-extractor (e.g., the inner product),
and define

T2(L,R) := (Ext2(Lt, R1),Ext2(Lt−1, R2), . . . ,Ext2(L1, Rt)), (4)

where L = (L1|| . . . ||Lt), R = (R1|| . . . ||Rt), Li, Ri ∈ {0, 1}n.
As a direct corollary of Theorems 25 and 26, we get a transformation from 4-split-state model

to t-split state model:

Theorem 27. (S4
6t2n → S

t
n, 2
−Ω(tn)).

Now, it is tempting to use Theorem 16 to get a non-malleable reduction from S4
6t2n to Stn.

Unfortunately, we do not know how to turn the non-malleable transformation in Theorem 27 into a
reduction (i.e., how to efficiently invert T in Theorem 27, and then apply Theorem 16). Instead, we
observe the following very general result allowing us to translate a non-malleable transformation
from any F to t-split tampering Stn, into a non-malleable reduction from F × Sn to Stn. Namely,
in the t-split model, we go from transformation to reduction at the expense of another “split-state
part” Sn.

Theorem 28. If (F → Stn, ε), then (F × Sn ⇒ Stn, 2ε).
In particular, using the transformation in Theorem 27, we get

(S5
6t2n ⇒ S

t
n, 2
−Ω(tn)) .

The proof is given in Section 5.4, but we briefly mention the reduction (E,D) as a function of
the transformation T . To encode a value x ∈ {0, 1}tn, we pick a random y in the domain of F , and
let x∗ = T (y), d = x⊕ x∗, and output (y, d) (where d is stored in the extra tn-bit part). To decode
(y, d), we compute D(y, d) = T (y)⊕ d.
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Of course, by using “dummy” bits to extend the 5-th part from tn bits to O(6t2n) bits, we
get a reduction from 5-split-state model to t-split state model. Also, to prove Theorem 18, we
additionally need to argue that our final encoding scheme is can also handle the forgetful family
FOR5

6t2n. We sketch the proofs in Section 5.5.

5.2 From two split-state parts to lookahead (proof of Theorem 25)

We first recall the alternating extraction, which was introduced by Dziembowski and Pietrzak in
[DP07b], and present a particular variant of the alternating-extraction theorem from Dodis and
Wichs [DW09], which will be especially convenient for our purposes. We then show how to use this
result to get our non-malleable transformation.

Quentin: Q,R0 Wendy W

R0

R0

−−−−−−−−−−→
S0

←−−−−−−−−−− S0 = Ext(W ;R0)

R1 = Ext(Q;S0)
R1

−−−−−−−−−−→
S1

←−−−−−−−−−− S1 = Ext(W ;R1)

. . .

Rt = Ext(Q;St−1)
Rt

−−−−−−−−−−→
St = Ext(W ;Rt)

Figure 1: Alternating Extraction

Alternating Extraction. Assume that two parties, Quentin and Wendy, have uniformly random
N -bit values Q and W , respectively, such that W is kept secret from Quentin and Q is kept secret
from Wendy. Let Ext be the efficient (N, 2n, n, n, 2−Ω(n))-extractor given in Lemma 4 (where
n = Ω(logN)), and assume that Quentin also has a random seed R0 ∈ {0, 1}n for the extractor Ext.
The alternating extraction protocol (see Figure 1) is an interactive process between Quentin and
Wendy, which runs in t iterations for some parameter t. In the first iteration, Quentin sends his
seed R0 to Wendy, Wendy computes S0 = Ext(W ;R0), sends S0 to Quentin, and Quentin computes
R1 = Ext(Q;S0). In each subsequent iteration i, Quentin sends Ri to Wendy, who replies with
Si = Ext(W ;Ri), and Quentin computes Ri+1 = Ext(Q;Si). Thus, Quentin and Wendy together
produce the sequence:

R0, S0 = Ext(W ;R0), R1 = Ext(Q;S0), . . . , Rt = Ext(Q;St−1), St = Ext(W ;Rt) (5)

The alternating-extraction theorem says that there is no better strategy that Quentin and Wendy
can use to compute the above sequence. More precisely, for our purposes we will use the following
version (slightly weaker than the most general version presented by [DW09]). Let us assume that,
in each iteration, Quentin is limited to sending at most s bits to Wendy, who can then reply by
sending at most s bits to Quentin, where s is much smaller than the entropy (i.e., length) N of Q and
W (preventing Quentin from sending his entire value Q, and vice versa). Then, for any possible
strategy cooperatively employed by Quentin and Wendy in the first i iterations, the value Si+1

(and also Si+2, . . . , St, but we won’t use it) look uniformly random to Quentin (and, symmetrically,
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Ri+1, and even Ri+2, . . . , Rt look random to Wendy). In other words, Quentin and Wendy acting
together cannot speed up the process in some clever way, so that Quentin would learn Si+1 (or
even distinguish it from random) in fewer than i+ 1 iterations.

More formally, the following variant of alternating extraction Theorem is a special case of
Lemma 41 from [DW09].

Theorem 29 (Alternating Extraction; [DP07b, DW09]). For any integers N,n, s, t, where
N ≥ st + 2n and n = Ω(logN), let W,Q be two random and independent N -bit strings, and Ext
be an efficient (N, 2n, n, n, ε = 2−Ω(n))-extractor (which exists by Lemma 4). Let R0 be uniformly
random on {0, 1}n and define S0, R1, S1, . . . , Rt, St as in equation (5). Let Aq(Q,R0),Aw(W ) be
interactive machines such that, in each iteration, Aq sends at most s bits to Aw which replies with
at most s bits to Aq. Let V i

w, V
i
q denote the views of the machines Aw,Aq respectively, including

their inputs and transcripts of communication, after the first i iterations. Then, for all 0 ≤ i ≤ t,(
V i
w, Ri

)
≈2tε

(
V i
w, Un

)
and

(
V i
q , Si

)
≈2tε

(
V i
q , Un

)
(6)

Our Non-Malleable Transformation. In the proof, we will use the alternating extraction
theorem with per round communication s = 2n, so that we can set N = 2nt + 2n. Our first part
of memory will simply random Q ∈ {0, 1}N and R0 ∈ {0, 1}n, and the second part will store a
random W ∈ {0, 1}N , so that the size of each memory piece is at most N + n ≤ 3tn (which is
what is claimed in Theorem 25), and our non-malleable transformation T1((Q,R0),W ) will simply
output t strings (R1, . . . , Rt), as defined in the alternating extraction protocol.

Now, let us fix arbitrary tampering functions fq(Q,R0) = (Q′, R′0) and fw(W ) = W ′ on the two
memory parts, and let (R′1, . . . , R

′
t) denote the output of an (honest) execution of the alternating

extraction protocol on inputs (Q′, R′0) and W ′. To complete the proof, it suffices to show the
validity of Equation (2). Namely, for given fq and fw, we need to exhibit a distribution G over
“lookahead functions” g(P1, . . . , Pt) = g1(P1)||g2(P1, P2)|| . . . ||gt(P1, . . . , Pt) such that

∆
(

(R1, R
′
1, . . . , Rt, R

′
t) ; (P1, P

′
1, . . . , Pt, P

′
t)
)
≤ t2 · 2−Ω(n), (7)

where each Pi ≡ Un (uniform n-bit string) and (P ′1, . . . , P
′
t) = G(P1, . . . , Pt).

We describe the distribution G as a stateful probabilistic algorithm which, given P1, produces
P ′1, then additionally given P2, produces P ′2, etc., which is equivalent to the lookahead restriction
above. Formally, for any 1 ≤ i ≤ t, given particular values P1 = s1, P

′
1 = s′1, . . . , Pi−1 = si−1, P

′
i−1 =

si−1, Pi = si, it samples (using fresh independent coins) the value s′i from the “real” conditional
distribution

R′i | (R1 = s1, R
′
1 = s′1, . . . , Ri−1 = si−1, R

′
i−1 = s′i−1, Ri = si),

and outputs P ′i = s′i. Namely, G views its inputs sj , which are actually sampled uniformly at
random from Un, as if coming from the “correct distribution” of running the alternating extraction
protocol on random Q,R0,W . And then G samples the tampered value s′i under this (incorrect)
assumption.

To argue Equation (7), we use the hybrid argument and define t+ 1 intermediate distributions
D0, . . . , Dt, where D0 = (R1, R

′
1, . . . , Rt, R

′
t), Dt = (P1, P

′
1, . . . , Pt, P

′
t), while the intermediate

distribution Di is defined as follows. For the first i steps, it honestly samples values (Ri, R
′
i) from

the left distribution, while for the last (t− i) steps it takes the partial history (s1, s
′
1, . . . , sj−1, s

′
j−1)

so far, picks uniformly random sj ← Un, and samples s′j from the conditional distribution described
above (using fresh coins every time). We can indeed see that D0 = (R1, R

′
1, . . . , Rt, R

′
t), Dt =
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(P1, P
′
1, . . . , Pt, P

′
t), so it suffices to show that ∆(Di;Di+1) ≤ 2tε, where ε = 2−Ω(n) is the same as

in Theorem 29.
Fortunately, this immediately follows from the alternating extraction theorem above, using

the following machines Aq(Q,R0),Aw(W ). Aq(Q,R0) computes (Q′, R′0) = fq(Q,R0), and runs
two honest executions of the alternating extraction protocol with real input (Q,R0) and tampered
input (Q′, R′0), and Aw(W ) does the same thing on its side. This indeed gives communication bound
s = 2n per round, and also results in a view V i

w which includes precisely (R1, R
′
1, . . . , Ri, R

′
i). Hence,

using Equation (6), we get(
R1, R

′
1, . . . , Ri, R

′
i, Ri+1

)
≈2tε

(
R1, R

′
1, . . . , Ri, R

′
i, Un

)
,

which is precisely the (i+1)-prefixes of our distributionsDi andDi+1. But since the (t−i−1)-suffixes
are sampled in the same way for both distributions, applying Lemma 2 yields ∆(Di;Di+1) ≤ 2tε,
completing the proof of Theorem 25.

5.3 From two look-ahead parts to t-split (proof of Theorem 26)

In this section, we show that if n ≥ 2tm, then (LA←tn ×LA←tn ∪FOR2t
n → Stm∪FORtm, t2−

n−2m−2
4 ).

Notation for the proof. Let Li, Ri ∈ {0, 1}n be random vectors, and let Ext2(Li, Ri) = bi ∈
{0, 1}m. Define:

L := (Lt, Lt−1, . . . L1) R := (R1, R2, . . . Rt)

Consider the output after applying manipulation function from LA←tn × LA←tn to L and R.
(Notice, we will generally use primed letters for manipulated values.) It can be described as:

L′i := fi(Li, Li+1, . . . , Lt) R′i := gi(R1, R2, . . . , Ri)

for some set of functions (called manipulation family) f1, g1, f2, g2, . . . ft, gt. Notice, while R′i de-
pends on R1, . . . , Ri, the value L′i depends on Li, . . . , Lt, since we “reversed” the vector L above,
so that the manipulation function from LA←tn reads the values of L “backwards”.

Similar notation will be used for decoding of manipulated input bitstrings:

b′i := Ext2(L′i, R
′
i).

We need to prove that

(b1, b
′
1, . . . , bt, b

′
t) ≈t2−n/4 (U (1), h1(U (1), Z1) . . . , U (t), ht(U

(t), Zt)) , (8)

where U (1), . . . , U (t) denote independent random elements in {0, 1}m, and Z = (Z1, . . . , Zt) is
some random variable independent of U (1), . . . , U (t). Note that Z1, . . . , Zt might have dependence
amongst themselves. In order to prove this, we need to define Z1, . . . , Zt, which we do below.

Definition of Z. We define random variables Z1, . . . , Zt iteratively.
Define Var1 to be the joint random variable (L2, . . . , Lt). Let Y1 be a fresh random variable

that samples the distribution L1 given the values of Var1, R1 and Ext2(L1, R1). Thus, conditioned
on R1,Ext2(L1, R1),Var1, we have

L1 ≡ φ1(Var1, R1, Y1,Ext2(L1, R1)) ,
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for some function φ1. Define Z1 = (Z1,b : b ∈ {0, 1}m) indexed by b to be a m · 2m-bit random
variable as a function of R1,Var1, Y1 as follows:

Z1,b := Ext2 (f1(φ1(Var1, R1, Y1, b), L2, . . . , Lt), g1(R1)) .

Note that b′1 = Z1,b1 is a deterministic function of Z1 and b1. Let b′1 = h1(b1, Z1).
Now, given Z1, . . . , Zi−1, we define Yi, Zi. Define Vari to be the joint random variable

Vari = Z1, . . . , Zi−1, R1, . . . , Ri−1, Li+1, . . . , Lt .

Let Yi be a fresh random variable that samples the distribution Li given the values of Vari, Ri, and
Ext2(Li, Ri). Thus, conditioned on Ri,Ext2(Li, Ri),Vari, we have

Li ≡ φi(Vari, Ri, Yi,Ext2(Li, Ri)) ,

for some function φi. Define Zi = (Zi,b : b ∈ {0, 1}m) indexed by b to be a m · 2m-bit random
variable as a function of Ri,Vari, Yi as follows:

Zi,b := Ext2 (fi(φi(Vari, Ri, Yi, b), Li+1, . . . , Lt), gi(R1, . . . , Ri)) .

Note that b′i = Zi,bi is a deterministic function of Zi and bi. Let b′i = hi(bi, Zi).

Proof of Theorem. We prove Equation (8) using a hybrid argument. In particular, we show
that for all i = 1, . . . , t,

(U (1), h1(U (1), Z1), . . . , U (i−1), hi−1(U (i−1), Zi−1), bi, b′i, bi+1, b
′
i+1, . . . , bt, b

′
t)

≈2−(n−2m−2)/4(U (1), h1(U (1), Z1), . . . , U (i−1), hi−1(U (i−1), Zi−1), U (i), hi(U
(i), Zi), bi+1, b

′
i+1, . . . , bt, b

′
t) .

(9)

Equation (8) then follows from (9) by triangle inequality.
To prove Equation (9), consider the following. Since the total length of (h1(U (1), Z1), . . .,

hi−1(U (i−1), Zi−1)) is m(i− 1) ≤ tm ≤ n
2 , we have that H∞(Li|Vari) = H∞(Li|Z1, . . . , Zi−1) ≥ n

2 .
Also notice that Ri is independent of Vari. Indeed, tracing the definition of Z1, . . . , Zi−1 and using
the “lookahead” property of R, we see that functions g1, . . . , gi−1 were only applied to R1, . . . , Ri−1

when defining values Z1, . . . , Zi−1. Thus, using the independence between the seedRi and the source
Li|Vari, and also throwing completely fresh and independent values U (1), . . . , U (i−1), Yi, Ri+1, . . . , Rt
into the mix, we can apply Lemma 5 and get

(Z1, . . . , Zi−1, U
(1), . . . , U (i−1), Ext2(Li, Ri),R1, . . . , Ri, Yi, Ri+1, . . . , Rt, Li+1, . . . , Lt)

≈2−n/4(Z1, . . . , Zi−1, U
(1), . . . , U (i−1), U (i), R1, . . . , Ri, Yi, Ri+1, . . . , Rt, Li+1, . . . , Lt) .

(10)

We now claim that Equation (9) directly follows from Equation (10) by applying Lemma 2.
To see this, we notice that, by the “lookahead”property of L, the values bi+1, b

′
i+1, . . . , bt, b

′
t are

deterministic functions of R1, . . . , Rt, Li+1, . . . , Lt (in particular, they do not depend on Li). Also,
the value Zi is deterministic function of Yi, Z1, . . . , Zi−1, R1, . . . , Ri, Li+1, . . . , Lt (in particular, it
also does not depend on the Li). Finally, bi = Ext2(Li, Ri) and b′i = hi(bi, Zi), which means that
(bi, b

′
i) (resp. (U (i), hi(U

(i), Zi))) is also a deterministic function of Ext2(Li, Ri), Zi (resp. U (i), Zi).
This concludes the proof of the fact that (LA←tn ×LA←tn → Stm, t · 2−(n−2m−2)/4), as all variables in
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the left (resp. right) hand side of Equation (9) are deterministic functions of the same corresponding
variables from left (resp. right) hand side of Equation (10).

Note that it is trivial to see that the reduction of this Section also gives

(FOR2t
n → FORtm, 2−(n−m−1)/2) .

This is because by the strong extractor property of Ext2, for any i, Ext2(Li, Ri) is 2−Ω(n) close to
uniform given

L1, . . . , Li−1, Li+1, . . . , Lt, R1, . . . , Ri−1, Ri+1, . . . , Rt ,

and one of Li, Ri.

5.4 From transformation to reduction for t-split state tampering (proof of The-
orem 28)

Let F ⊂ AA and T be a function given by definition of non-malleable transformation (F → Stn, ε).
We start with definitions of encoding and decoding functions that we claim satisfy the definition
of a non-malleable reduction. Let E : {0, 1}tn → A× {0, 1}tn : be a random experiment defined as
follows:

E(x) :=
{
y

$←− A ; x∗ := T (y) ; d := x⊕ x∗ ; Output (y, d)
}

and corresponding decoding:
D(y, d) := T (y)⊕ d.

It is obvious that both encoding and decoding are efficient and that D(E(x)) = x for all x ∈ {0, 1}tn.

Proof of reduction property. We need also to prove Equation (1). Let us fix x, and tampering
functions f ∈ F and g ∈ Sn. We denote the tampered values with primed letters. Since T (y) = x∗

and F transforms to Stn, Equation (2) implies that with probability at least (1 − ε) all the values
(x∗i )

′ = fi(x
∗
i ) (for some functions (f1, . . . , ft) distributed over Stn). Also let d′ := g(d) be the

tampered value of the last part. Then, ignoring the ε-failure event above (for which we will pay ε
in the statistical distance), we have:

x′i = d′i ⊕ (x∗i )
′ = g(d)i ⊕ fi(x∗i ) = g(d)i ⊕ fi(xi ⊕ di) = hi(xi, d)

for some function hi. To complete the argument, it remains to argue that d is “ε-independent” from
x (i.e., (x, d) ≈ε (x, Utn)), meaning that hi is ε-close to a valid independent tampering function.
However, this follows again from Equation (2), since d = x ⊕ x∗, and x∗ is ε-close to Utn (even
given x, since y ← A is random and independent from x).

Thus, x′ is indeed 2ε-close to a convex combination of functions from Stn applied to x.

5.5 Proof Sketch for Forgetful Property

Note that to prove Theorem 18, we additionally need to argue that our scheme (E,D) from this
section gives

(FOR5
6t2n ⇒ S

t
n, 2
−Ω(tn)) .

Let the five parts encoding x be (Q,R0),W, (P,L0), V, d such that T1((Q,R0),W ) = (R1, . . . , Rt),
T1((P,L0), V ) = (L1, . . . , Lt), and x = d ⊕ T2(L,R). We observe that a stronger 5-out-of-5 secret
sharing property holds, i.e., that any 4 of the 5-parts, it is impossible to guess x except with
probability 2−Ω(tn).
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This is obvious if we are given the first four parts but “forget” the fifth part. We sketch here
why this is sufficient even if we forget one of the other four parts. Without loss of generality, assume
that we are given (P,L0), V and one of (Q,R0) or W . Thus, L1, . . . , Lt is completely known, but
we show that conditioned on this information, R1, . . . , Rt is like a block-source, i.e. for all i ∈ [t],
if we are additionally given R1, . . . , Ri−1, then the string Ri still has sufficient min-entropy. This
implies that Ext2(Li, Ri) is close to uniform given Ext2(L1, R1), . . . ,Ext2(Li−1, Ri−1), and hence the
required result follows by a hybrid argument. To argue that R1, . . . , Rt is indeed a block-source we
proceed as follows.

CASE 1: We are given W . In this case, a stronger condition holds, i.e. that R1, . . . , Rt is close to
uniform. This follows from Theorem 29.

CASE 2: We are given (Q,R0) Assume that R1, . . . , Rt is not a block-source. In this case, Ri
has small min-entropy given R1, . . . , Ri−1. This implies that at the end of i − 1 rounds of
the alternating extraction protocol, Quentin can guess Ri with high probability. Now assume
that Aw is honest, and Aq honestly follows the protocol for the first i− 1 rounds, and sends
R0, . . . , Ri−2, but then in the i-th round, guesses and sends Ri. This contradicts the fact that
(V i
w, Ri) ≈2tε (V i

w, Un).

6 Non-Malleable Reduction from 2 parts to t parts

In this Section, we prove Theorem 19. We observe that Theorem 19 immediately follows by applying
the composition Theorem 15 to Theorem 26 and the following result:

Theorem 30. (S2
10t(t2+t+1)(n+3ts) ⇒ (LA←t/2n × LA←t/2n ) ∪ FORtn, O(t4 · 2−s)).

This result (whose proof will take the remainder of this section, and which is by far the most
complicated individual reduction that we construct) can be seen as strengthening of Theorem 25.
Namely, while Theorem 25 reduced 2-split-state tampering to a single lookahead tampering, in our
new reduction we manage to reduce it to two independent lookahead tamperings.2

To prove Theorem 30, we need to define encoding and decoding functions (see Definition 11) and
prove that they satisfy the required conditions for non-malleable reductions. Correspondingly, in
Section 6.1 we will first define our efficient reduction, and then prove its security in Sections 6.2-6.4
(namely, first state the high-level proof structure, then define the intermediate “partition objects”
we need, and finally prove the low-level technical lemmas about these “partition objects”).

6.1 Construction

Now, we will define an encoding from {0, 1}nt to {0, 1}tα(n+3ts)×{0, 1}tα(n+3ts) for α = 10t2 +10t+
10.3 For brevity we will consider L = R = {0, 1}tα(n+3ts) and write E : ({0, 1}n)t 7→ L × R for
encoding.

For any integer i, let Ext : {0, 1}i(n+3ts) × {0, 1}i(n+3ts) → {0, 1}(n+3ts) be the inner-product
extractor, which is an

(
i(n+ 3ts), (i+ 1)(n+ 3ts) + 2 log

(
1
ε

)
, n+ 3ts, ε

)
-two-source extractor. We

slightly abuse notation here, and any element in {0, 1}(n+3ts)i for any integer i should be considered

2It is this strengthening which will eventually allow us to construct 2-part non-malleable codes as opposed to
5-part non-malleable codes.

3The bound is somewhat loose, since our goal is to only achieve constant rate, we do not try to optimize various
parameters including α. See Section 7 for more details.
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as the corresponding element (w.r.t. any bijective mapping) to an element in Fi2n+3ts , whenever we
take inner products.

For i ∈ {1, 2, ..., t} let hi : {0, 1}(n+3ts) 7→ {0, 1}n ∪ {⊥} be defined as hi(x) = (x)n if x is the
binary expansion of an integer less than 2n+3(i−1)s, and hi(x) = ⊥, otherwise. (Where (.)λ denotes
truncation to λ least significant bits.) Using this, our encoding and decoding functions are defined
as follows.

Definition 31. For any ` ∈ L, let ` = `1‖ . . . ‖`t, where `i ∈ {0, 1}α(n+3ts) for 1 ≤ i ≤ t. Similarly,
define r = r1‖ . . . ‖rt. Then the decoding function D : L ×R 7→ {0, 1}n ∪ {⊥} is defined as

D(`, r) :=

{
⊥ if ∃i ∈ [t], hi(Ext(`i, ri)) = ⊥
h1(Ext(`1, r1))‖ . . . ‖ht(Ext(`t, rt)) otherwise .

Definition 32. The encoding function E : ({0, 1}n)t 7→ L×R, on input x ∈ ({0, 1}n)t, is naturally
defined as the output of the following sampling procedure.

1. Choose uniformly random (L,R) such that D(L,R) = x.

2. Return (L,R).

Our construction uses some ideas from a recent result [ADKO14], which showed a reduction
from 2-split non-malleable codes with leakage to 2-split non-malleable codes (with the possibility
that the two tampered parts are swapped). Also, our proof uses a similar framework. In particular,
the partitioning procedure is similar. The crucial difference is that the proof of [ADKO14] was
tailor-made to work for a reduction from 2 parts to 2 parts, and does not generalize easily. We
crucially needed to introduce the intermediate two-lookahead family and then compose it with our
reduction in Theorem 26 in order to generalize it to a reduction from 2 parts to t parts and hence
conclude our result.

We would like to mention here that although we manage to prove a weaker result (which is
sufficient for our purpose), we believe that our reduction from Theorem 30 is actually a reduction
from S2

10t(t2+t+1)(n+3ts) to Stn∪FORtn. If one manages to prove this, then this immediately implies
Theorem 19 without having to compose it with the reduction in Theorem 26. In addition to
simplifying the proof, this will result in saving a constant factor in the overall code rate.

6.2 Proof Structure of Theorem 30

From the definition, it is obvious that for all x ∈ ({0, 1}n)t, we have that Pr(D(E(x)) = x) = 1.
So, to prove theorem 30, we need to prove that for all f ∈ LL, g ∈ RR, and for all x ∈ ({0, 1}n)t,

there exists a random function P distributed over (LA←t/2n × LA←t/2n ) ∪ FORtn such that

∆(D(f(L), g(R)) ; P (x)) = O(t4 · 2−s) , (11)

where E(x) = (L,R).
For the rest of this section, we fix the following notation. Let x ∈ ({0, 1}n)t, and f ∈ LL, g ∈ RR.

Let (L,R) = E(x). For ` ∈ L, we write f(`) as f(`) = f1(`)‖ . . . ‖ft(`), where fi(`) ∈ {0, 1}α(n+3ts).
We use similar notation for the parts of g(r). Similarly, we write L = L1‖ . . . ‖Lt. Also, we use
similar notation for R.

The following simple lemma shows that it suffices to prove (11) for partitions of the ambient
space. A similar idea was used both in [DKO13], and in [ADL14].
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Lemma 33. Let f ∈ LL and let S ⊆ L × R. Let S1, . . . ,Sj be a partition of S. Also, let

P1, . . . , Pj be some random functions distributed over (LA←t/2n × LA←t/2n ) ∪ FORtn. Assume that
for all 1 ≤ i ≤ j,

∆
(
D(f(L), g(R))|(L,R)∈Si ; Pi(x)

)
≤ εi.

Then

∆
(
D(f(L), g(R))|(L,R)∈S ; P (x)

)
≤
∑

εi
|Si|
|S|

,

for some P distributed over (LA←t/2n × LA←t/2n ) ∪ FORtn.

Proof. The Lemma follows immediately from the definitions. Let pi = |Si|/|S| denote the probabil-
ity that (L,R) ∈ Si conditioned on (L,R) ∈ S. Then D(f(L), g(R)) is (

∑
piεi)-close in statistical

distance to P (x) where P is a random function which is a convex combination of P1, . . . , Pj , that
chooses Pi for all i ∈ [j] with probability pi.

The main idea is to use Lemma 33 for a specific partition of L×R. In fact, we give a partition
for L and independently a partition for R. Then the final partition of L×R is a Cartesian product
of these two partitions.

More precisely, we partition the set L into the following t2+3t+2
2 sets for i, j ∈ [t]

Lffb,i, Lmix,i, LId, Lperm,i←j , Lrem .4

Similarly, we partitionR (specific definitions are gathered in Section 6.3). Thus, the total number of
parts of L×R we consider are O(t4). From Lemma 36, 37, 38, 39, 40, 41, 42, 43, 44 (see Section 6.4),

we have that for each part L∗×R∗ considered, either |L
∗×R∗|
|L×R| ≤ 2−s, or D(f(L), g(R))|(L,R)∈L∗×R∗

is O(2−s)-close to P ∗(x) for some function P ∗ distributed over (LA←t/2n × LA←t/2n ) ∪ F tn. Thus,
using Lemma 33 we have that

∆
(
D(f(L), g(R))|(L,R)∈S ; P (x)

)
≤ O(t4) ·O(2−s) ,

for some P distributed over (LA←t/2n × LA←t/2n ) ∪ FORtn which finishes the proof.
The partitioning procedure is quite extensive but then the proof for each partition will follow

relatively easily from the two-source extractor property of Ext.

6.3 Partition

Now we define a partition of L based on f . Let β1 = 2t2(n + 3ts) + 2ts + t, and let β2 =
(2t+ 4)(n+ 3ts) + 4s+ 2.

”Far from bijection” parts. First, we partition L into Lffb,1, . . . ,Lffb,t, and L1. We will define
Lffb,1, . . . ,Lffb,t inductively as follows. The set Lffb,i is obtained by the following algorithm.

1. Initialize Lffb,i to be empty, and L∗ = L \
⋃i−1
k=1 Lffb,k.

2. Let M be a largest subset of L∗ such that for any two `, `′ ∈M, `i 6= `′i, and f(`) = f(`′).

3. If |M| ≥ 2β1/t, then set L∗ = L∗ \M, set Lffb,i = Lffb,i ∪M, and go to step 2.

4Subscripts are abbreviations for intuitive meaning of the sets. Respectively: far from bijection, mixed, id,
permuted and remaining.
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4. Return Lffb,i.

The set L1 is defined to be

L1 = L \
t⋃
i=1

Lffb,i .

and will be partitioned later.
The justification for this choice is that for L̃ chosen uniformly at random from Lffb,i, we have

H∞(L̃i|f(L̃)) ≥ β1

t
.

Also, we have that for any y ∈ {0, 1}α(n+3ts), the total number of ` ∈ L1 such that f(`) = y is at

most
(

2
β1
t

)t
= 2β1 .

One more definition. We further partition the set L1 depending on how different parts of f(`)
depend on different parts of ` for ` ∈ L1. However, first we need one definition more:

Definition 34. Define T i→j ⊂ L as the set of all ` ∈ L such that∣∣∣{`∗ ∈ L ∣∣∣ `i = `∗i and fj(`) = fj(`
∗)
}∣∣∣ ≥ 2(t−1)α(n+3ts)−β2 .

We will define a partitioning of L1 using Definition 34, but before we do this, we prove the
following simple result justifying the definition of T i→j . Intuitively, this result shows that if it is
given that ` ∈ T i→j , then fj(`) can be computed given `i and just a little more information.

Lemma 35. Let ` ∈ T i→j for some i, j ∈ [t]. Then there exists some functions ai,j : T i→j 7→
{0, 1}β2 and bi,j : {0, 1}α(n+3ts) × {0, 1}β2 7→ {0, 1}α(n+3ts) such that for all ` ∈ T i→j,

fj(`) = bi,j(`i, ai,j(`)) .

Proof. Given ` ∈ T i→j , let T ′ = {`∗ ∈ T i→j | `∗i = `i}. Then, clearly |T ′| ≤ 2(t−1)α(n+3ts).
Consider a partition of T ′ into sets T ′1, . . . , T

′
m such that for any u, v ∈ [m], and any `′ ∈ T ′u,

`′′ ∈ T ′v, we have that fj(`
′) = fj(`

′′) if and only if u = v. By definition of T i→j , we have that
|T ′u| ≥ 2β2 for all u ∈ [m]. Thus

m ≤ |T ′|
2(t−1)α(n+3ts)−β2

≤ 2β2 .

We define ai,j(`) as the binary representation of k such that ` ∈ T ′k. Now, it is easy to see that we
can determine fj(`) given `i and ai,j(`).

”Mixed” parts. Now we define disjoint subsets Lmix,1, . . . ,Lmix,t of L1 as follows.

Lmix,j =

{
` ∈ L1 \

j−1⋃
k=1

Lmix,k

∣∣ ` /∈ t⋃
i=1

T i→j

}
for j = 1, . . . , t .

Informally speaking, ` ∈ Lmix,j implies that fj(`) depends on more than one `i. Now, let

L2 = L1 \
t⋃

k=1

Lmix,k .
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”id”, ”permuted” and ”remaining” parts. We denote T (`, i) to be the set of all j ∈ [t] such
that ` ∈ T i→j . Note that if A ⊂ L2 then by the definition of Lmix,j , we have that for every j ∈ [t]
must belong to some T (`, i).

Let Bi←j be set of permutations π of [t] such that ∀i′ < i, π(i′) = i′ and π(j) = i. Also let ≺
denote standard lexicographic order. We further partition L2 into LId, and Lperm,i←j for i, j ∈ [t],
and Lrem as follows.

LId =
{
` ∈ L2

∣∣ ∀i ∈ [t], T (`, i) = {i}
}

and

Lperm,i←j =

` ∈ L2 \ (LId ∪
⋃

(i′,j′)≺(i,j)

Lperm,i′←j′)
∣∣ ∃π ∈ Bi←j , ∀i ∈ [t], T (`, i) = {π(i)}

 for j > i

and
Lrem = L2 \ (LId ∪

⋃
i,j

Lperm,i←j)

Final partition. We similarly define the partitioning of R based on g. The final partition of
L ×R is a Cartesian product of these two partitions.

6.4 Proofs for lemmas for different cases

6.4.1 f or g is far from bijection

Lemma 36. For all i ∈ [t], for all R∗ ⊆ R, if |Lffb,i × R∗| ≥ 22αt(n+3ts)−s then there exists F
distributed over F tn, such that

∆(D(f(L), g(R))|(L,R)∈Lffb,i×R∗ ;F (x)) ≤ 2−s .

Proof. Let |Lffb,i × R∗| ≥ 22αt(n+3ts)−s for some i ∈ [t]. Let L̃, R̃ be distributed uniformly over
Lffb,i and R∗ respectively. Note that by the assumption we have that |Lffb,i| ≥ 2αt(n+3ts)−s and
|R∗| ≥ 2αt(n+3ts)−s. Thus, for all k ∈ [t],

H∞(L̃k|L̃1, . . . , L̃k−1) ≥ α(n+ 3ts)− s , (12)

and
H∞(R̃k|R̃1, . . . , R̃k−1) ≥ α(n+ 3ts)− s . (13)

Denote Ext(L̃k, R̃k) by Xk for k ∈ [t]. Also, let X−i = X1, . . . , Xi−1, Xi+1, . . . , Xt. Similarly
define L̃−i and R̃−i. We have that

H∞(L̃i|X−i, f(L̃)) ≥ β1

t
− (t− 1)(n+ 3ts) = (t+ 1)(n+ 3ts) + 2s+ 1 .

Also, using Lemma 9 by setting A = L̃, B = R̃, V1 = f(L̃), V2 = R̃−i, V2 = X−i, we get that L̃ and
R̃ (and hence L̃i and R̃i) are independent given f(L̃), R̃−i, and X−i. Thus, using the fact that Ext
is a strong two-source extractor, we have that

Xi, R̃i, X−i, f(L̃), R̃−i ≈2−t(n+3ts)−(s+1) Ui, R̃i, X−i, f(L̃), R̃−i ,

where Ui is uniformly random in {0, 1}α(n+s). This implies that

Xi, X−i, D(f(L̃), g(R̃)) ≈2−t(n+3ts)−(s+1) Ui, X−i, D(f(L̃), g(R̃)) . (14)
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Now, D(f(L̃), g(R̃)) can be seen as a randomized function of X−i. Let

X−i, D(f(L̃), g(R̃)) ≡ X−i, h(X−i, Z) ,

where Z is an independent random variable and h is some function. Using Equation 12 and 13, and

that Ext is a two-source randomness extractor, we have that Xk is 2−
(α−1)(n+3ts)−2s

2 -close to uniform
given L̃1, . . . , L̃k−1, R̃1, . . . , R̃k−1, and hence using the hybrid argument, we have that

X−i ≈
t·2−

(α−1)(n+3ts)−2s
2

U−i ,

where U−i = U1, . . . , Ui−1, Ui+1, . . . , Ut for Uk, k ∈ [t] being independent and uniformly distributed
in {0, 1}α(n+3ts). Using Equation 14 and then applying Lemma 2, we get that

Xi, X−i, D(f(L̃), g(R̃)) ≈2−t(n+3ts)−(s+1) Xi, U−i, D(f(L̃), g(R̃)) ≡ Ui, X−i, h(X−i, Z)

≈
t·2−

(α−1)(n+3ts)−2s
2

Ui, U−i, h(U−i, Z) .

Thus, using Lemma 8, we get that the statistical distance between D(f(L), g(R)) conditioned on
(L,R) ∈ Lffb,i ×R∗ and h(x1, xi−1, xi+1, . . . , xt, Z) is at most

2t(n+3ts)
(
t · 2−

(α−1)(n+3ts)−2s
2 + 2−t(n+3ts)−(s+1)

)
≤ 2−s .

Similarly, we get that

Lemma 37. For all i ∈ [t], for all L∗ ⊆ L, if |L∗ × Rffb,i| ≥ 22αt(n+3ts)−s then there exists F
distributed over F tn, such that

∆(D(f(L), g(R))|(L,R)∈L∗×Rffb,i
;F (x)) ≤ 2−s .

6.4.2 Output of f or g is mixed

Lemma 38. For all j ∈ [t], for all R∗ ⊆ R1, if |Lmix,j ×R∗| ≥ 22αt(n+3ts)−s then

∆(D(f(L), g(R))|(L,R)∈Lmix,j×R∗ ;⊥) ≤ 2−s+1 .

Proof. Let |Lmix,j ×R∗| ≥ 22αt(n+3ts)−s for some i ∈ [t]. Note that by the assumption we have that
|Lffb,i| ≥ 2αt(n+3ts)−s and |R∗| ≥ 2αt(n+3ts)−s. Let L̃, R̃ be distributed uniformly over Lmix,i and R∗
respectively. Denote Ext(L̃k, R̃k) by Xk for k ∈ [t]. Using a similar argument as in Lemma 36, we

have that Xk is 2−
(α−1)(n+3ts)−2s

2 -close to uniform given L̃1, . . . , L̃k−1, R̃1, . . . , R̃k−1, and hence using
the hybrid argument, we have that

X1, . . . , Xt ≈
t·2−

(α−1)(n+3ts)−2s
2

U1, . . . , Ut , (15)

where Uk, k ∈ [t] being independent and uniformly distributed in {0, 1}α(n+3ts). We now give a
lower bound for H∞(L̃i|fj(L̃)) for any i using the definition of Lmix,j .

H∞(L̃i|fj(L̃)) = − log

 ∑
y∈{0,1}α(n+3ts)

max
`i∈{0,1}α(n+3ts)

Pr(L̃i = `i ∧ fj(L̃) = y)


≥ − log

 ∑
y∈{0,1}α(n+3ts)

2α(t−1)(n+3ts)−β2

|Lmix,j |


≥ − log

(
2α(n+3ts) · 2α(t−1)(n+3ts)−β2

|Lmix,j |

)
≥ β2 − s .
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Thus, we have that for all i, Xi is 2−
β2−n−3s

2 -close to uniform given fj(L̃), R̃, and hence,

∆
(
Xi,Ext(fj(L̃), gj(R̃)) ; Ui,Ext(fj(L̃), gj(R̃))

)
≤ 2−

β2−n−3s
2 .

Also, since Lmix,j and R∗ are subsets of L1, and R1, respectively, we have that

H∞(fj(L̃)) ≥ H∞(f(L̃))− α(t− 1)(n+ 3ts) ≥ α(n+ 3ts)− β1 − s ,

and
H∞(gj(R̃)) ≥ α(n+ 3ts)− β1 − s .

This implies that

∆
(
Xi,Ext(fj(L̃), gj(R̃)) ; Ui, U

′
j

)
≤ 2−

β2−n−3s
2 + 2−

(α−1)(n+3ts)−2β1−2s
2 , (16)

where U ′j is uniform in {0, 1}α(n+3ts). Now, we claim that

∆(X1, . . . , Xt,Ext(fj(L̃), gj(R̃)) ; U1, . . . , Ut, U
′
j) ≤ 2−t(n+3ts)−s . (17)

If not, then by the generalized XOR Lemma (10), there exist a1, . . . , at+1 such that
∑t

i=1 aiXi +

at+1Ext(fj(L̃), gj(R̃)) is not 2−
(2t+3)(n+3ts)+2s

2 close to uniform. By Equation 15, we have that at+1 6=
0, and by equation 16, we have that at least two of a1, . . . , at are non-zero. Now, let i1, . . . , ik be
all elements in [t] such that aij 6= 0. We know that k ≥ 2. Consider two sources in Fk+1 as

(ai1L̃i1 , . . . , aik L̃ik , at+1fj(L̃)) and (R̃i1 , . . . , R̃ik , gj(R̃)). Applying Ext to these two sources gives∑
i aiXi + at+1Ext(fj(L̃), gj(R̃)). The two sources have min-entropy at least kα(n + 3ts)− s, and

hence
∑t

i=1 aiXi + at+1Ext(fj(L̃), gj(R̃)) is

2−
2kα(n+3ts)−(k+1)α(n+3ts)−(n+3ts)

2 ≤ 2−
(α−1)(n+3ts)

2 < 2−
(2t+3)(n+3ts)+2s

2 ,

which is a contradiction.
Thus, using Lemma 8 and Equation 17, we get that the statistical distance between Ext(fj(L̃), gj(R̃))

conditioned on (L,R) ∈ Lmix,j × R∗ and U ′j is at most 2t(n+3ts) · 2−t(n+3ts)−s = 2−s. Thus, from
Definition 31, we get that

Pr(D(f(L), g(R)) = ⊥ | (L,R) ∈ Lmix,j ×R∗) ≤ 2−s + 2−3s ≤ 2−s+1 .

Similarly, we get that

Lemma 39. For all j ∈ [t], for all L∗ ⊆ L1, if |L∗ ×Rmix,j | ≥ 22αt(n+3ts)−s then

∆(D(f(L), g(R))|(L,R)∈L∗×Rmix,j
;⊥) ≤ 2−s+1 .

6.4.3 Both f and g are close to Identity

Lemma 40. If |LId × RId| ≥ 2αt(n+3ts)−s then there exists distribution H on functions LA←tn ×
LA←tn such that

∆
(
D(f(L); g(R))|(L,R)∈LId×RId

;H(x)
)
≤ 2−s+1
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Proof. Let |LId ×RId| ≥ 22αt(n+3ts)−s for some i ∈ [t]. Note that by the assumption we have that
|LId| ≥ 2αt(n+3ts)−s and |RId| ≥ 2αt(n+3ts)−s. Let L̃, R̃ be distributed uniformly over LId and RId

respectively. Denote Ext(L̃k, R̃k) by Xk, and Ext(fk(L̃), gk(R̃)) by X ′k for k ∈ [t].

Let afi and agi be such that fi(L̃) is a function of afi and L̃i, and gi(R̃) is a function of agi and
R̃i, as defined in Lemma 35 (we shorthand ai,i by ai and the superscript f, g are to distinguish
between the corresponding functions for the two parts).

We define a few random variables. Let Y be a random variable defined as follows:

Y := L̃1, . . . , L̃t/2, R̃t/2+1, . . . , R̃t, af1 , . . . , a
f
t , ag1, . . . , a

g
t .

We first show that

X1, . . . , Xt, Y ≈
t·2−

(α−1)(n+3ts)−tβ2−2s
2

U1, . . . , Ut, Y , (18)

where U1, . . . , Ut are independent and uniform in {0, 1}n+3ts. For i ∈ [t/2], we have that

H∞(L̃i) ≥ α(n+ 3ts)− s ,

and
H∞(R̃i|Y, R̃i+1, . . . , R̃t/2) ≥ α(n+ 3ts)− tβ2 − s .

Similarly, for i ∈ {t/2 + 1, . . . , t}, we have that

H∞(L̃i|Y, L̃i+1, . . . , L̃t/2) ≥ α(n+ 3ts)− tβ2 − s ,

and
H∞(R̃i) ≥ α(n+ 3ts)− s ,

Thus, for all i ∈ [t], using Lemma 7, we have that

U1, . . . , Ui−1, Xi, . . . , Xt, Y ≈
2−

(α−1)(n+3ts)−tβ2−2s
2

U1, . . . , Ui−1, Xi, . . . , Xt, Y .

Using the hybrid argument, this implies Equation 18.
Note that conditioned on Y , (R̃1, . . . , R̃t/2) is independent of (L̃t/2+1, . . . , L̃t), and X1, . . . , Xt/2

(resp. Xt/2+1, . . . , Xt) is a deterministic function of (R̃1, . . . , R̃t/2) (resp. (L̃t/2+1, . . . , L̃t)).
Define a sequence of random variables W1, . . . ,Wt/2 iteratively as follows. Let Wi be indepen-

dent randomness required to sample R̃i conditioned on Y,W1, . . . ,Wi−1, X1, . . . , Xi.
Similarly, define a sequence of random variables Z1, . . . , Zt/2 iteratively as follows. Let Zi be in-

dependent randomness required to sample L̃t/2+i conditioned on Y,Z1, . . . , Zi−1, Xt/2+1, . . . , Xt/2+i.

Since X ′i is a function of Y and R̃i for i ∈ {1, . . . , t/2}, and that of Y and L̃i for i ∈ {t/2 +
1, . . . , t}, we have that conditioned on X1, . . . , Xt,

X ′1, . . . , X
′
t ≡ h1(X1,W1, Y ), . . . , ht/2(X1, . . . , Xt/2,W1, . . . ,Wt/2, Y ) ,

ht/2+1(Xt/2+1, Z1, Y ), . . . , ht(Xt/2+1, . . . , Xt, Z1, . . . , Zt/2, Y ) ,

for some functions h1, . . . , ht.
Note thatW1, . . . ,Wt/2, Z1, . . . , Zt/2 are mutually independent and also independent ofX1, . . . , Xt,

Y . Thus, using equation 18, and Lemma 2, we get that X1, . . . , Xt, X
′
1, . . . , X

′
t has statistical dis-

tance at most t · 2−
(α−1)(n+3ts)−tβ2−2s

2 from

U1, . . . , Ut, h1(U1,W1, Y ), . . . , ht/2(U1, . . . , Ut/2,W1, . . . ,Wt/2, Y ), ht/2+1(Ut/2+1, Z1, Y ),

. . . , ht(Ut/2+1, . . . , Ut, Z1, . . . , Zt/2, Y ) .
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Thus, using Lemma 8, we get that the statistical distance between D(f(L), g(R)) conditioned on

(L,R) ∈ LId ×RId and a function H (described by h1, . . . , ht) distributed over LA←t/2n × LA←t/2n

is at most
2t(n+3ts)

(
t · 2−

(α−1)(n+3ts)−tβ2−2s
2

)
≤ 2−s .

6.4.4 f or g is Close to a non-identity Permutation

Lemma 41. For all i, j ∈ [t], such that j > i, and for all R∗ ⊆ R1, if |Lperm,i←j × R∗| ≥
22αt(n+3ts)−s then

∆
[
D(f(L), g(R))|(L,R)∈Lperm,i←j×R∗ ;⊥

]
≤ 6 · 2−s,

where ⊥ denotes constant function equal ⊥.

Proof. Let L̃, R̃ be distributed uniformly over Lperm,i←j and R1 respectively. For purpose of this
proof let us define two random vectors:

C =
[
R̃, (L̃k)k 6=j , aj,i(L̃)

]
,

C ′ =
[
(L̃k)k 6=j , aj,i(L̃)

]
,

where aj,i is defined in Lemma 35. Let us observe :

∆
[
D(f(L), g(R))|(L,R)∈Lperm,i←j×R1

;⊥
]
≤ ∆

[
D(f(L̃), g(R̃)) ;⊥

∣∣ C] =

=
∑
c

Pr
[
C = c

]
· Pr

[
D(f(L̃), g(R̃)) 6= ⊥

∣∣ C = c
]
≤

≤
∑
c

Pr
[
C = c

]
· Pr

[
hi(Ext(fi(L̃), gi(R̃)) 6= ⊥

∣∣C = c, hj(Ext(L̃j , R̃j) 6= ⊥
]

=

=
∑
c

Pr
[
C = c

]
·

Pr
[
hi(Ext(fi(L̃), gi(R̃)) 6= ⊥ andhj(Ext(L̃j , R̃j) 6= ⊥

∣∣C = c
]

Pr
[
hj(Ext(L̃j , R̃j) 6= ⊥

∣∣C = c
] = (∗)

Let us notice that by Lemma 35 and size of |Lperm,i←j ×R1| by similar argument as in Lemma 36
for every c we get

H∞(fi(L̃)|C ′ = c′) = H∞(bj,i(L̃j , aj,i(L̃)|C ′ = c′) ≥ α(n+ 3ts)− s− β1 − β2

and analogously
H∞(gi(R̃)|C ′ = c′) ≥ α(n+ 3ts)− s− β1 − β2.

Therefor by strong extractor properties we obtain

∆
[
Ext(fi(L̃), gi(R̃)) ; U

∣∣C ′ = c′, R̃
]
≤ 2−

[
1/2(α−2)(n+3ts)−s−β1−β2

]
≤ 2−3ts

and similarly
∆
[
Ext(L̃j , R̃j) ; U

∣∣C ′ = c′, R̃
]
≤ 2−3ts.

Thus above we obtain that

∆
[
hi(Ext(fi(L̃), gi(R̃))) ; ⊥

∣∣ C ′ = c′, R̃
]
≤ 2−3[t−i+1]s + 2−3ts ≤ 2 · 2−3(t−i+1)s,

while
∆
[
hj(Ext(L̃j , R̃j)) ; ⊥

∣∣ C ′ = c′, R̃
]
≥ 2−3[t−j+1]s − 2−3ts ≥ 1/2 · 2−3(t−j+1)s.
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Since

2 · 2−(t−i+1)s ≥ ∆
[
hi(Ext(fi(L̃), gi(R̃))) ; ⊥

∣∣ C ′ = c′, R̃
]

=

=
∑
r

Pr(R̃ = r) · Pr
[
hi(Ext(fi(L̃), gi(R̃))) ; ⊥

∣∣ C ′ = c′, R̃ = r
]
.

Let us define set A of all r such that

Pr
[
hi(Ext(fi(L̃), gi(R̃))) = ⊥

∣∣ C ′ = c′, R̃ = r
]
> 2 · 2−3(t−i+1)s+s

by Markov argument we obtain that Pr(R̃ ∈ A) ≤ 2−s. Similarly for set B of all r such that

Pr
[
hj(Ext(L̃j , R̃j)) = ⊥

∣∣ C ′ = c′, R̃ = r
]
< 1/2 · 2−3(t−j+1)s−s

we obtain that Pr(R̃ ∈ B) ≤ 2−s. To finish the proof we notice that

(∗) =
∑

c′,r∈A∪B
Pr
[
C ′ = c′ and R̃ = r

]
·∆
[
D(f(L̃), g(R̃)) ;⊥

∣∣ C ′ = c′, R̃ = r, hj(Ext(L̃j , R̃j) 6= ⊥
]
+

+
∑

c′,r /∈A∪B

Pr
[
C ′ = c′ and R̃ = r

]
·

Pr
[
hi(Ext(fi(L̃), gi(R̃)) 6= ⊥ andhj(Ext(L̃j , R̃j) 6= ⊥

∣∣C = c
]

Pr
[
hj(Ext(L̃j , R̃j) 6= ⊥

∣∣C = c
]

≤
∑

c′,r∈A∪B
Pr
[
C ′ = c′ and R̃ = r

]
·∆
[
D(f(L̃), g(R̃)) ;⊥

∣∣ C ′ = c′, R̃ = r, hj(Ext(L̃j , R̃j) 6= ⊥
]
+

+
∑

c′,r /∈A∪B

Pr
[
C ′ = c′ and R̃ = r

]
·

Pr
[
hi(Ext(fi(L̃), gi(R̃)) 6= ⊥

∣∣C ′ = c′, R̃ = r
]

Pr
[
hj(Ext(L̃j , R̃j) 6= ⊥

∣∣C ′ = c′, R̃ = r
] ≤

≤ 2 · 2−s +
2 · 2−3(t−i+1)s+s

1/2 · 2−3(t−j+1)s−s =

now notice that j ≥ i+ 1

= 2 · 2−s + 4 · 2−s = 6 · 2−s .

Similarly, we have that

Lemma 42. For all i, j ∈ [t], such that j > i, and for all L∗ ⊆ L1, if |L∗ × Rperm,i←j | ≥
22αt(n+3ts)−s then

∆
[
D(f(L), g(R))|(L,R)∈L∗×Rperm,i←j ;⊥

]
≤ 6 · 2−s,

where ⊥ denotes constant function equal ⊥.

6.4.5 Remaining case happens with small probability

Lemma 43. |Lrem| ≤ 22αt(n+3ts)−s.

Proof. Consider any ` ∈ Lrem. For any j ∈ [t], we know that ` /∈ Lmix,j , and hence j ∈ T (`, i) for
some i. Thus, ∪ti=1T (`, i) = [t]. Also, since ` /∈ Lperm,π for any π, there exists some k ∈ [t], such
that |T (`, k)| ≥ 2. Let j1, j2 ∈ T (`, k). For any j ∈ [t] \ {j1, j2}, let e(j) be some i ∈ [t] such that
j ∈ L(T, e(j)). Thus, using Lemma 35, we have that f(`) can be determined given `k, ak,j1 , ak,j2
and `e(j), ae(j),j for all j ∈ [t] \ {j1, j2}. This implies that f(`) can be determined given at most

(t− 1)α(n+ 3ts) + tβ2 ≤ tα(n+ 3ts)− s bits. This implies |Lrem| ≤ 2tα(n+3ts)−s.
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Similarly,

Lemma 44. |Rrem| ≤ 22αt(n+3ts)−s.

7 Conclusions and Open Problems

We have built the first efficient, information-theoretically secure non-malleable codes in the split-
state model with constant encoding rate. Although asymptotically optimal, the constant we achieve
appears astronomical, as it relies on some results in additive combinatorics from [CZ14]. In
contrast, we know existentially that the optimal rate is equal to 2. Closing this gap is an interesting
open problem.

We have also introduced the notion of non-malleable reductions, and showed that they allow
to build non-malleable codes in a modular manner. We hope that our modularity will find further
applications in the design of other non-malleable codes.

Acknowledgments. We would like to thank Eshan Chattopadhyay and David Zuckerman for
sharing with us an early version of their work.
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A Proofs of Lemmata from Section 2

Lemma 8 Let X1, Y1 ∈ A1, and Y1, Y2 ∈ A2 be random variables such that ∆((X1, X2) ; (Y1, Y2)) ≤
ε. Then, for any non-empty set A′ ⊆ A1, we have

∆(X2 | X1 ∈ A′ ; Y2 | Y1 ∈ A′) ≤
2ε

Pr(X1 ∈ A′)
.

Proof.

∆(X2 | X1 ∈ A′ ; Y2 | Y1 ∈ A′) =
1

2

∑
x∈A2

∣∣∣Pr(X2 = x | X1 ∈ A′)− Pr(Y2 = x | Y1 ∈ A′)
∣∣∣

≤ 1

2

∑
x∈A2

(∣∣∣Pr(X2 = x ∧ X1 ∈ A′)
Pr(X1 ∈ A′)

− Pr(Y2 = x ∧ Y1 ∈ A′)
Pr(X1 ∈ A′)

∣∣∣
+ Pr(Y2 = x ∧ Y1 ∈ A′)

∣∣∣ 1

Pr(Y1 ∈ A′)
− 1

Pr(X1 ∈ A′)

∣∣∣)

≤ ε

Pr(X1 ∈ A′)
+

ε ·
∑
x∈A2

Pr(Y1 ∈ A′ ∧ Y2 = x)

Pr(Y1 ∈ A′) · Pr(X1 ∈ A′)

=
2ε

Pr(X1 ∈ A′)
.
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Lemma 9 Let A ∈ A and B ∈ B be two independent random variables. Let V1, V2, . . . be
random variables defined as functions of A,B satisfying the following property. For all i ∈ N, if i is
even then Vi = φi(V1, . . . , Vi−1, A) and if i is odd, then Vi = φi(V1, . . . , Vi−1, B) for some function
φi. Then for all i, A is independent of B given V1, . . . , Vi.

Proof. For any even j, and any fixed values v1, . . . , vj in the support of V1, . . . , Vj , respectively,
define the set φ−1

j (vj |v1, . . . , vj−1) as follows:

φ−1
j (vj |v1, . . . , vj−1) = {a ∈ A | φj(v1, . . . , vj−1, a) = vj} .

Similarly define φ−1
j (vj |v1, . . . , vj−1) for odd j with A replaced by B. Now, we show the result when

i is even. The result follows similarly for odd i. The event (call it Ev1,...,vi) that V1 = v1, . . . , Vi = vi
is the same as

B ∈ φ−1
1 (v1) ∧ A ∈ φ−1

2 (v2|v1) · · · ∧A ∈ φ−1
i (vi|v1, . . . , vi−1) ,

which is the same as

A ∈
i/2⋂
j=1

φ−1
2j (v2j |v1, . . . , v2j−1) ∧ B ∈

i/2⋂
j=1

φ−1
2j−1(v2j−1|v1, . . . , v2j−2) .

Thus, A and B are independent given the event Ev1,...,vi for all v1, . . . , vi, which implies the result.

Lemma 10 Let X = (X1, . . . , Xt) ∈ Ft be a random variable, where F is a finite field of order
q. Assume that for all a1, . . . , at ∈ Ft not all zero, ∆(

∑t
i=1 aiXi ; U) ≤ ε, where U is uniform in

F. Then ∆(X1, . . . , Xt ; U1, . . . , Ut) ≤ εq(t+2)/2, where U1, . . . , Ut are independent and uniform in
Ft.

Proof. The proof uses basic Fourier analysis. Assume F has characteristic p. Let ω = e2πi/p be a
primitive p-th root of unity. Let Tr : F→ Fp denote the trace operator from F to Fp. The additive
characters of F are given by {χa(x) : F→ C : a ∈ F} defined as

χa(x) = ωTr(ax).

The additive characters of Ft are given by χa1,...,at(x1, . . . , xt) = Πt
i=1χai(xi) for a1, . . . , at ∈ F.

First, we bound the Fourier coefficients of the distribution of X = (X1, . . . , Xt). The (a1, . . . , at)
Fourier coefficient, for all non-zero (a1, . . . , at), is given by

E[χa1,...,at(X1, . . . , Xt)] = E[ωTr(
∑t
i=1 aiXi)] =

∑
b∈F

ωTr(b) Pr[
t∑
i=1

aiXi = b]

=
∑
b∈F

ωTr(b)

(
Pr
X

[

t∑
i=1

aiXi = b]− 1

|F|

)
,

where we used the fact that
∑

b∈F ω
Tr(b) = 0. Hence for all non-zero (a1, . . . , at),

∣∣E[χa1,...,at(X1, . . . , Xt)]
∣∣ ≤∑

b∈F

∣∣∣∣∣Pr[

t∑
i=1

aiXi = b]− 1

|F|

∣∣∣∣∣ ≤ 2ε · |F| .
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Let pa1,...,at = Pr[(X1, . . . , Xt) = (a1, . . . , at)]. By Parseval’s identity,∑
a1,...,at∈F

(
pa1,...,at −

1

|F|

)2

=
∑

(a1,...,at)6=0

E[χa1,...,at(X1, . . . , Xt)]
2 ≤ 4ε2|F|t+2 ,

B Equivalence of our definition with [DPW10]

We first recall the definition of non-malleable codes from [DPW10].

Definition 45. A coding scheme consists of two functions: a randomized encoding function E :
{0, 1}k 7→ {0, 1}n, and a deterministic decoding function D : {0, 1}n 7→ {0, 1}k ∪ {⊥} such that, for
each x ∈ {0, 1}k, Pr(D(E(x)) = x) = 1 (over the randomness of the encoding algorithm).

Definition 46. Let F be some family of tampering functions. For each f ∈ F , and x ∈ {0, 1}k,
define the tampering-experiment

Tamperfx :=

{
c← E(x), c̃← f(c), x̃ = D(c̃)

Output: x̃.

}
which is a random variable over the randomness of the encoding function E. We say that a
coding scheme (E,D) is ε-non-malleable w.r.t. F if for each f ∈ F , there exists a distribution
(corresponding to the simulator) Df over {0, 1}k∪{⊥, same}, such that, for all x ∈ {0, 1}k, we have
that the statistical distance between Tamperfx and

Simf
x :=

{
x̃← Df

Output: x if x̃ = same, and x̃, otherwise.

}
is at most ε.

We now show that Definition 12 and Definition 46 are equivalent.

Theorem 47. There is a coding scheme E : {0, 1}k 7→ {0, 1}n, D : {0, 1}n 7→ {0, 1}k ∪ {⊥}
that is ε-non-malleable w.r.t. F according to Definition 46 if and only if there is a coding scheme
E′ : {0, 1}k 7→ {0, 1}n, D′ : {0, 1}n 7→ {0, 1}k that is ε-non-malleable w.r.t. F according to
Definition 12.

Proof. Consider the coding scheme E : {0, 1}k 7→ {0, 1}n and D : {0, 1}n 7→ {0, 1}k that is non-
malleable according to Definition 46. Define E′ to be identical to E and D′ to be such that for all
c ∈ {0, 1}n, D′(c) = D(c), if D(c) 6= ⊥, and D′(c) = 0k, otherwise. Consider an arbitrary f ∈ F ,
x ∈ {0, 1}k.

Let Df be as in Definition 46. Then, we need to define G such that it is a non-malleable
reduction from F to NMk. We define G as follows. The function

G =


fx′ if Df = x′ ∈ {0, 1}k
f0k if Df = ⊥
I if Df = same .

Then, it is easy to see that G(x) = Simf
x, if Simf

x 6= ⊥, and G(x) = 0k, otherwise. Similarly,
D′(f(E′(x)) = Tamperfx, if Tamperfx 6= ⊥, and D′(f(E′(x))) = 0k, otherwise. Thus, using Defini-
tion 46, and Lemma 2, we have that

∆(D′(f(E′(x))), G(x)) ≤ ε .
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Now assume E′ : {0, 1}k 7→ {0, 1}n, D′ : {0, 1}n 7→ {0, 1}k is any coding scheme that is ε-non-
malleable w.r.t. F according to definition 12. We now show that E′, D′ is also non-malleable
according to Definition 46. The proof is even simpler for this case. Consider an arbitrary f ∈ F ,
x ∈ {0, 1}k. We define distribution Df with support {0, 1}k ∪ {same} (i.e., it never outputs ⊥) as
follows.

Df =

{
x′ if G = fx′ , for some x′ ∈ {0, 1}k
same if G = I .

Then, clearly, Simf
x = G(x), and Tamperfx = D′(f(E′(x)), and hence the result follows from Defini-

tion 12.

Note that the definition in [DPW10] also had an additional requirement that Df is efficiently
samplable given oracle access to f . We did not include this in Definition 46 since it is implied by
the fact that E,D are efficient, as shown below.

Lemma 13. Let (E,D) be an (F , k, ε)-non-malleable code for some tampering family F . Then
for all f ∈ F , there exists a random function G distributed over NMk such that for all x ∈ {0, 1}k,

∆
(
D(f(E(x))) ; G(x)

)
≤ 2ε+

1

2k
,

and G is efficiently samplable given oracle access to f .

Proof. By Theorem 47, E,D is also ε-non-malleable w.r.t. F acording to Definition 46. We will
use this definition for this proof. Fix f ∈ F , and let Df distributed over {0, 1}k ∪ {same} be as in
the proof of Theorem 47. Then for all x ∈ {0, 1}k, we have

2ε ≥ |Pr (D(f(E(x))) = x)− Pr(Df = same)− Pr(Df = x)|

+
∑

x′∈{0,1}k\{x}

∣∣Pr
(
D(f(E(x))) = x′

)
− Pr(Df = x′)

∣∣ .
Summing over all x ∈ {0, 1}k, this implies that

2k+1ε ≥
∑

x∈{0,1}k
|Pr (D(f(E(x))) = x)− Pr(Df = same)| −

∑
x∈{0,1}k

|Pr(Df = x)|

+
∑

x,x′∈{0,1}k
x′ 6=x

∣∣Pr
(
D(f(E(x))) = x′

)
− Pr(Df = x′)

∣∣ .
This implies

2k+1ε+ 1 ≥
∑

x∈{0,1}k
|Pr (D(f(E(x))) = x)− Pr(Df = same)|

+
∑

x,x′∈{0,1}k
x′ 6=x

∣∣Pr
(
D(f(E(x))) = x′

)
− Pr(Df = x′)

∣∣ . (19)

Now consider the following distribution D̃f defined by the following sampling procedure.

1. Sample uniformly random element Uk ← {0, 1}k.

2. Compute D(f(E(Uk)))).
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3. If D(f(E(Uk))) = Uk, then output same, else output D(f(E(Uk))).

Clearly, D̃f is efficiently samplable given oracle access to f . We now bound ∆(D̃f , Df ).

2 ·∆(D̃f , Df ) ≤ |Pr(D(f(E(Uk))) = Uk)− Pr(Df = same)|

+
∑

x∈{0,1}k
|Pr(D(f(E(Uk))) = x, Uk 6= x)− Pr(Df = x)|

=

∣∣∣∣∣∣ 1

2k

∑
x∈{0,1}k

Pr(D(f(E(x))) = x)− Pr(Df = same)

∣∣∣∣∣∣
+

∑
x∈{0,1}k

∣∣∣∣∣∣ 1

2k

∑
x′ 6=x

Pr(D(f(E(x′))) = x)− Pr(Df = x)

∣∣∣∣∣∣
≤ 1

2k

∑
x∈{0,1}k

|Pr (D(f(E(x))) = x)− Pr(Df = same)|

+
1

2k

∑
x,x′∈{0,1}k
x′ 6=x

∣∣Pr
(
D(f(E(x))) = x′

)
− Pr(Df = x′)

∣∣+

∑
x∈{0,1}k Pr(Df = x)

2k

≤ 2ε+
1

2k
+

1

2k
= 2ε+

2

2k
,

where the last inequality uses Equation 19. Thus, ∆(D̃f , Df ) ≤ ε+ 1
2k

, which implies the result.

C Proof of Theorem 23 using [CZ14]

Cheraghchi and Guruswami [CG14b] showed that it is sufficient to construct t-source non-malleable
extractors with sources of length n in order to construct non-malleable codes against the tampering
family Stn. We observe here that if the non-malleable extractor is also a strong extractor, then the
corresponding coding scheme is also non-malleable against the t-part forgetful tampering family.
The following is a definition of a t-source strong non-malleable extractor.

Definition 48. A function nmExt : ({0, 1}n)t 7→ {0, 1}k is a t-source ε-strong non-malleable
extractor if, for X1, . . . , Xt uniformly distributed in {0, 1}n, and Y distributed uniformly in {0, 1}m
it satisfies the following properties.

• For any f1, . . . , ft : {0, 1}n 7→ {0, 1}n, there exist some G ∈ NMk such that

∆ ((nmExt(X1, . . . , Xt), nmExt(f1(X1), . . . , ft(Xt))) ; (Y,G(Y ))) ≤ ε .

• For any i ∈ [t],

∆ (nmExt(X1, . . . , Xt) ; Y | X1, . . . , Xi−1, Xi+1, . . . , Xt) ≤ ε .

The following result follows almost immediately from the definitions.

Lemma 49. If there exists an efficiently computable t-source ε-strong non-malleable extractor
nmExt : ({0, 1}n)t 7→ {0, 1}k, then

(Stn ∪ FORtn → NMk, ε) .
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If nmExt is efficiently invertible, then using Theorem 16, this implies

(Stn ∪ FORtn ⇒ NMk, ε · 2k+1) .

Proof. The transformation T is simply nmExt. From the first condition in Definition 48, it is clear
that for this transformation, (Stn → NMk, ε).

Now, consider the forgetful tampering family. Let (X1, . . . , Xt) be distributed uniformly in
({0, 1}n)t. Fix i ∈ [t], and let X ′1, . . . , X

′
t ∈ {0, 1}n be random variables that depend arbitrarily on

X1, . . . , Xi−1, Xi+1, . . . , Xt .

Then using the second condition of Definition 48, and Lemma 2, we have that

∆
(
T (X1, . . . , Xt) ; Y | T (X ′1, . . . , X

′
t)
)
≤ ε ,

where Y is uniformly random in {0, 1}k, and independent of X1, . . . , Xt, X
′
1, . . . , X

′
t. This implies

that for the transformation T , we have (FORtn → NMk, ε) (In fact, for this we don’t even need the
identity function in the family NMk).

The result then follows from Observation 1.

Now, we mention the result obtained by an independent work by Chattopadhyay and Zucker-
man [CZ14] that gives an efficient (and efficiently invertible) construction of a 9-source strong non-
malleable extractor. The property that the extractor is strong is proved in Appendix B of [CZ14].

Theorem 50 ([CZ14]). There exists an efficient and efficiently invertible 9 source 2−k−Ω(k)-
strong non-malleable extractor nmExt : ({0, 1}n)t 7→ {0, 1}k with n = O(k).

Using Lemma 49, this implies Theorem 23.
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