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Abstract

This letter proposes a formal definition of ballot secrecy in the computa-
tional model of cryptography. The definition builds upon and strengthens
earlier definitions by Bernhard et al. (ASIACRYPT’12, ESORICS’11 &
ESORICS’13). The new definition is intended to ensure that ballot se-
crecy is preserved in the presence of malicious bulletin boards, whereas
earlier definitions by Bernhard et al. only consider honest bulletin boards.

1 Introduction

Voters should be able to express their free-will in elections without fear of retri-
bution; this property is known as privacy. Ballot secrecy1 has emerged as a de
facto standard privacy requirement of election schemes.

• Ballot secrecy. A voter’s vote is not revealed to anyone.

Bernhard et al. [SB14,SB13,BPW12a,BPW12b,BCP+11] formally define ballot
secrecy in the computational model of cryptography. Their definitions assume
the bulletin board is honest and provide no privacy guarantees if this trust
assumption is violated. This letter builds upon and strengthens the definitions
by Bernhard et al. to ensure that ballot secrecy is preserved in the presence of
malicious bulletin boards.

2 Preliminaries

Standard notation is adopted for the application of probabilistic algorithms
A, namely, A(x1, . . . , xn; r) is the result of running A on input x1, . . . , xn and
coins r. Moreover, A(x1, . . . , xn) denotes A(x1, . . . , xn; r), where r is chosen at

1The terms privacy and ballot secrecy occasionally appear as synonyms in the literature
and ballot secrecy is favoured here because it avoids confusion with other privacy notions,
such as receipt-freeness and coercion resistance, for example.
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random. The assignment of α to x is written x ← α and the assignment of a
random element from set S to x is written x←R S. Vectors are denoted using
boldface, for example, x. Set membership notation is extended to vectors: x is
an element (respectively, x is not an element) of the vector x is written x ∈ x
(respectively, x 6∈ x).

2.1 Definitions by Bernhard et al.

The syntax and security definitions for election schemes are recalled2 from
Smyth & Bernhard [SB14,SB13]:

Definition 1 (Election scheme). An election scheme is a tuple of efficient
algorithms (Setup,Vote,BB,Tally) such that:

• The setup algorithm Setup takes a security parameter 1n as input and
outputs a bulletin board bb, vote space m, public key pk, and private key
sk, where bb is a set and m is a set.

• The vote algorithm Vote takes a public key pk and vote v ∈ m as input,
and outputs a ballot b.

• The bulletin board algorithm BB takes a bulletin board bb and ballot b as
input, where bb is a set. It outputs bb ∪ {b} if successful (i.e., b is added
to bb) or bb to denote failure (i.e., b is not added).

• The tally algorithm Tally takes a private key sk and bulletin board bb as
input, where bb is a set. It outputs a multiset v representing the election
result if successful or the empty set ∅ to denote failure, and auxiliary data
aux .

Moreover, the scheme must satisfy the following correctness property: for all
parameters (bb0,m, pk , sk) ← Setup(1n), votes v ∈ m, sets bb, ballots b ←
Votepk (v), bulletin boards bb′ ← BB(bb, b) and tallying data (v, aux )← Tallysk (bb)
and (v′, aux ′) ← Tallysk (bb′), it holds with overwhelming probability that bb′ =
bb ∪ {b} and if v 6= ∅, then v′ = v ∪ {v} and |v| = |bb|, otherwise, v′ = ∅.

Definition 2 (Ballot secrecy with a trusted bulletin board). Let Γ = (Setup,
Vote,BB,Tally) be an election scheme, A = (A1, A2) be an adversary, and
IND-SECA,Γ(n) be the quantity defined below, where n is the security param-
eter.

2 ·Pr [L0 ← ∅;L1 ← ∅; (bb0,m, pk , sk)← Setup(1n); bb1 ← bb0; β ←R {0, 1};
s← AO1 (m, pk) : A2(v, aux , s) = β]− 1

In the above game, L0 and L1 are multisets, the oracle O is defined below, and
v and aux are defined as follows: if L0 = L1, then (v, aux ) ← Tallysk (bbβ),
otherwise, aux ←⊥; (v, aux ′)← Tallysk (bb0).

2The definitions assume that the bulletin board is a set – rather than a multiset, à la
Smyth & Bernhard – to prevent the construction of election schemes which are vulnarable to
ballot secrecy attacks, when the bulletin board is a multiset [CS11,CS13].
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• O(v0, v1) computes L0 ← L0∪{v0};L1 ← L1∪{v1}; b0 ← Votepk (v0); b1 ←
Votepk (v1); bb0 ← BB(bb0, b0); bb1 ← BB(bb1, b1), where v0, v1 ∈ m.

• O(b) computes bb′β ← bbβ ; bbβ ← BB(bbβ , b) and if bbβ 6= bb′β, then also
computes bb1−β ← BB(bb1−β , b).

• O() outputs bbβ.

Election scheme Γ satisfies ballot secrecy with a trusted bulletin board if for
all probabilistic polynomial-time adversaries A and security parameters n, there
exists a negligible function negl such that IND-SECA,Γ(n) ≤ negl(n).

The use of algorithm BB in Definition 2 implies that real-world elections must
use this algorithm to ensure privacy. This may introduce an unnecessary trust
assumption: voters must trust the system to only add ballots to the bulletin
board using algorithm BB. The next section proposes a new definition of ballot
secrecy that does not use this algorithm.

3 Ballot secrecy with malicious bulletin boards

A stronger definition of ballot secrecy is proposed:

Definition 3 (Ballot secrecy). Let Γ = (Setup,Vote,BB,Tally) be an election

scheme, A = (A1, A2) be an adversary, and IND-SEC#
A,Γ(n) be the quantity

defined below, where n is the security parameter.

2 · Pr [(bb,m, pk , sk)← Setup(1n); β ←R {0, 1}; L← ∅;
(bb′, s)← AO1 (bb,m, pk); (v, aux )← Tallysk (bb′) :

{v0 | b ∈ bb′ ∧ (b, v0, v1) ∈ L} = {v1 | b ∈ bb′ ∧ (b, v0, v1) ∈ L}
∧ A2(v, aux , s) = β]− 1

Oracle O is defined as follows:

• O(v0, v1) computes b ← Votepk (vβ);L ← L ∪ {(b, v0, v1)} and outputs b,
where v0, v1 ∈ m.

Election scheme Γ satisfies ballot secrecy if for all probabilistic polynomial-time
adversaries A and security parameters n, there exists a negligible function negl
such that IND-SEC#

A,Γ(n) ≤ negl(n).

Informally, the above game proceeds as follows. First, the challenger executes
the setup algorithm to construct a bulletin board bb, a vote space m, a public
key pk , and a private key sk . The challenger also selects a random bit β and ini-
tialises L as the empty set. Secondly, the adversary executes the algorithm A1.
The algorithm A1 has access to an oracle O which outputs challenge ballots as
follows: O(v0, v1) records chosen votes v0 and v1, and outputs a ballot for can-
didate vβ . Thirdly, the challenger computes the election result v and auxiliary
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data aux . The challenger requires that the tallies of chosen votes are equivalent,
thus preventing the adversary from trivially revealing β. (The distinction be-
tween β = 0 and β = 1 is trivial when the tallies of chosen votes differ, because
the adversary can test for the presence of chosen votes in the election result.)
Formally, equivalence between the tallies of chosen votes is captured by equality
of the multisets {v0 | b ∈ bb′∧(b, v0, v1) ∈ L} and {v1 | b ∈ bb′ ∧ (b, v0, v1) ∈ L}.
Finally, the adversary executes the algorithm A2 on the election result v, auxil-
iary data aux , and any state information s provided by A1. The election scheme
satisfies ballot secrecy if the adversary has less than a negligible advantage over
guessing the challenge ballots she interacted with. Intuitively, if the adversary
loses the game, then the adversary is unable to distinguish between ballots for
different candidates, hence, voters’ votes cannot be revealed. On the other hand,
if the adversary wins the game, then there exists a strategy to distinguish ballots
for different candidates.

Theorem 1. If an election scheme satisfies ballot secrecy, then the election
scheme satisfies ballot secrecy with a trusted bulletin board.

The proof of Theorem 1 appears in Appendix A.
The inverse of Theorem 1 does not hold, as a variant of Bernhard et al.’s

Backdoor-Enc2Vote construction [SB14,SB13,BPW12b,BCP+11] demonstrates:

Definition 4 (Backdoor-Enc2Vote). Given an asymmetric encryption scheme
Π = (Gen,Enc,Dec), the election scheme Backdoor-Enc2Vote(Π) is defined as
follows.

• Setup takes a security parameter 1n as input and outputs (∅,m, pk , sk),
where (pk , sk)← Gen(1n) and m is the encryption scheme’s message space.

• Vote takes a public key pk and vote v ∈ m as input, and outputs Encpk (v).

• BB takes a bulletin board bb and ballot b as input, where bb is a multiset. If
b ∈ bb∪ {⊥}, then the algorithm outputs bb (denoting failure), otherwise,
the algorithm outputs bb ∪ {b}.

• Tally takes as input a private key sk and a bulletin board bb, where bb is
a multiset. If ⊥ ∈ bb, then aux ← {(b,Decsk (b)) | b ∈ bb}, otherwise,
aux ←⊥. It outputs the multiset {Decsk (b) | b ∈ bb} and auxiliary data
aux .

Intuitively, given an asymmetric encryption scheme Π satisfying NM-CPA, the
construction Backdoor-Enc2Vote(Π) preserves ballot secrecy from Π until tal-
lying. Moreover, if the bulletin board does not contain ⊥, then algorithm
Tally maintains ballot secrecy by returning the number of votes for each can-
didate as an unordered multiset of votes. However, if the bulletin board con-
tains ⊥, then the auxiliary data produced by algorithm Tally maps ballots to
votes. Algorithm BB prevents ⊥ from appearing on the bulletin board, hence,
Backdoor-Enc2Vote(Π) preserves ballot secrecy with a trusted bulletin board.
However, a malicious bulletin board may not use algorithm BB and, hence,
ballot secrecy is not preserved:
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Proposition 1. Given an encryption scheme Π satisfying NM-CPA, the elec-
tion scheme Backdoor-Enc2Vote(Π) satisfies ballot secrecy with a trusted bulletin
board, but not ballot secrecy.

A proof that Backdoor-Enc2Vote(Π) satisfies ballot secrecy with a trusted bul-
letin board can be constructed similarly to the proof of [BPW12b, Theorem 4.2].
And a proof that Backdoor-Enc2Vote(Π) does not satisfy ballot secrecy can be
constructed by formalising an adversary that adds ⊥ to the bulletin board.

4 Conclusion

This letter shows that malicious bulletin boards can violate privacy in a manner
that cannot be detected by Bernhard et al.’s definitions of ballot secrecy. This
problem is overcome by proposing a stronger definition of ballot secrecy.

Acknowledgements. I am particularly grateful to Susan Thomson for dis-
cussion that helped simplify the new definition of ballot secrecy. This work
has been partly supported by the European Research Council under the Euro-
pean Union’s Seventh Framework Programme (FP7/2007-2013) / ERC project
CRYSP (259639).

A Proof of Theorem 1

Suppose Γ = (Setup,Vote,BB,Tally) is an election scheme that does not sat-
isfy ballot secrecy with a trusted bulletin board. By Definition 2, for all neg-
ligible functions negl, there exists a probabilistic polynomial-time adversary
A = (A1, A2) and security parameter n such that IND-SECA,Γ(n) > negl(n).

An adversary B = (B1, B2) against IND-SEC# is constructed below. Let OA
denote A’s oracle and OB denote B’s oracle.

Algorithm B1. On input bb, m and pk , the algorithm proceeds as follows.
Initialise multiset L ← ∅ and compute s ← AOA

1 (m, pk), handling any
oracle calls from A1 as follows:

• OA(v0, v1): compute b ← OB(v0, v1);L ← L ∪ {(b, v0, v1)}; bb ←
BB(bb, b).

• OA(b): compute bb← BB(bb, b).

• OA(): output bb.

Let L0 ← {v0 | b ∈ bb∧(b, v0, v1) ∈ L} and L1 ← {v1 | b ∈ bb′∧(b, v0, v1) ∈
L}. If L0 = L1, then output (bb, (s, L0, L1)). Otherwise, compute bb ←
bb \ {b | b ∈ bb ∧ (b, v0, v1) ∈ L} and output (bb, (s, L0, L1)).

The embedded adversary A1 sees the same distibution of all elements as in the
IND-SEC game, in particular, the simulation of OA() ensures that A1’s view
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of the bulletin board is consistent with IND-SEC. The simulation of OA() also
ensures that the multiset L generated byB1 is the same as the multiset generated
by OB.

Algorithm B2. Given input v, aux and (s, L0, L1), the algorithm computes g
as follows:

g ←

 A2(v, aux , s) if L0 = L1

A2(∅,⊥, s) else if v = ∅, denoting failure
A2(v ∪ L0,⊥, s) otherwise

Output g.

It is sufficient to show that the adversary B guesses β correctly with the same
advantage as A in the following two cases. Case I: L0 = L1. By definition
of B1, the bulletin board bb contains exactly the ballots added by OA(·) and
OA(·, ·) queries. Moreover, we have {v0 | b ∈ bb ∧ (b, v0, v1) ∈ L} = {v1 |
b ∈ bb ∧ (b, v0, v1) ∈ L}, as required by the challenger. It follows that the
embedded adversary A2 sees the same distibution of all elements as in IND-SEC,
hence, adversary B guesses β correctly with the same advantage as A, i.e.,
IND-SEC#

A,Γ(n) ≤ negl(n). Case II: L0 6= L1. By definition of B1, the bulletin
board bb contains exactly the ballots added by OA(·) queries. Since bb does
not contain any ballots added by OA(·, ·) queries, we have ∅ = {v0 | b ∈ bb ∧
(b, v0, v1) ∈ L} = {v1 | b ∈ bb ∧ (b, v0, v1) ∈ L}. Suppose bb′ is such that
bb = bb′ \ {b | b ∈ bb ∧ (b, v0, v1) ∈ L}, i.e., bb′ is the bulletin board after
B1 computed s ← AOA

1 (m, pk). By the correctness property of Γ, we have
(v′, aux ′)← Tallysk (bb′) such that either: v = ∅∧v′ = ∅, v 6= ∅∧v′ = v∪L0∧β =
0, or v 6= ∅∧v′ = v∪L1∧β = 1. It follows that the embedded adversary A2 sees
the same distibution of all elements as in IND-SEC, hence, adversary B guesses
β correctly with the same advantage as A, i.e., IND-SEC#

A,Γ(n) ≤ negl(n). By
Definition 3, election scheme Γ does not satisfy ballot secrecy, concluding our
proof.
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