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Abstract

We propose a definition of ballot secrecy in the computational model
of cryptography. The definition builds upon and strengthens earlier defini-
tions by Bernhard et al. (ASIACRYPT’12, ESORICS’11 & ESORICS’13).
The new definition is intended to ensure that ballot secrecy is preserved
in the presence of malicious bulletin boards, whereas earlier definitions
only consider trusted bulletin boards. It follows that the new definition
prevents more attacks in comparison with earlier definitions.

1 Introduction
Ballot secrecy is a standard privacy requirement of voting systems.

• Ballot secrecy. A voter’s vote is not revealed to anyone.

Many electronic voting systems — including systems that have been deployed
in real-world, large-scale public elections — attempt to satisfy ballot secrecy by
placing extensive trust in software and hardware. Unfortunately, many systems
are not trustworthy and are vulnerable to attacks that could compromise bal-
lot secrecy [GH07,Bow07,WWH+10,WWIH12, SFD+14]. Such vulnerabilities
can be avoided by formulating ballot secrecy as a rigorous and precise security
definition, and proving that systems satisfy the definition.

Bernhard et al. propose definitions of ballot secrecy [SB14,SB13a,BPW12a,
BPW12b, BCP+11a]. In their model, the participants are voters, an admin-
istrator, and a bulletin board. The definitions focus on detecting attacks by
adversaries that control some voters. Attacks by adversaries that control the
bulletin board are not detected, hence, the bulletin board is implicitly assumed
to operate in accordance with the election scheme’s rules. Unfortunately, this
introduces a trust assumption and no privacy guarantees are provided if this
trust assumption is violated.
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Contribution. We examine definitions of ballot secrecy by Bernhard et al.
and show that they do not prevent attacks by adversaries controlling the bul-
letin board. We propose a new definition of ballot secrecy that builds upon and
strengthens these definitions and show that our definition prevents such attacks.
In addition, we define a notion of extractability, which assert that election out-
comes correspond to votes encapsulated inside ballots. Moreover, we show that
extractability is implied by correctness.

2 Election schemes
We adopt the definition of election schemes from Smyth & Bernhard [SB14,
SB13a], with one refinement: we define bulletin boards as sets, rather than
multisets.

Definition 1 (Election scheme). An election scheme is a tuple of efficient
algorithms (Setup,Vote,BB,Tally) such that:

• Setup takes a security parameter 1n as input and outputs a bulletin board
bb, vote space m, public key pk , and private key sk , where bb is a set and
m is a set.

• Vote takes a public key pk and vote v ∈ m as input, and outputs a ballot
b.

• BB takes a bulletin board bb and ballot b as input. It outputs bb ∪ {b}
if successful (i.e., b is added to bb) or bb to denote failure (i.e., b is not
added). This algorithm must be deterministic1.

• Tally takes a private key sk and bulletin board bb as input. It outputs
a multiset v representing the election outcome if successful or the empty
multiset to denote failure. It also outputs auxiliary data aux .

Moreover, the scheme must satisfy correctness, which we define in Section 2.1.

We refer the reader to Bernhard et al. for demonstrations of the definition’s
applicability. They propose a construction (Enc2Vote) for election schemes from
any non-malleable encryption scheme [SB14,SB13a,BPW12b,BCP+11a]. They
also show that real voting systems, such as Helios, can be modelled as election
schemes [BPW12b,BCP+11a].

Refinement: Bulletin boards as sets. Cortier & Smyth [CS13, CS11]
demonstrate the following malleability attacks against election schemes that
permit meaningfully related ballots on bulletin boards: an adversary observes
a voter’s ballot, casts a meaningfully related ballot, and exploits the relation to

1Bernhard et al. implicitly assume algorithm BB is deterministic and use this property in
proofs, e.g., [BCP+11b, Appendix B], [BPW12a, Section 4], and [SB13b, Section 6]. Moreover,
real schemes – such as Helios [Adi08] and Civitas [JCJ02] – define deterministic BB algorithms.
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recover the voter’s vote from the election outcome. For instance, in an election
with voters Alice, Bob and Charlie, if Bob can cast a ballot that contains the
same vote as Alice’s ballot, then he can deduce Alice’s vote by checking which
candidate obtained at least two votes. A special case of malleability attacks are
replay attacks, whereby an adversary casts an exact copy of a voter’s ballot. We
prevent replay attacks by assuming the bulletin board is a set. By comparison,
Smyth & Bernhard [SB14, SB13a] assume the bulletin board is a multiset. It
follows that our syntax for election schemes refines the definition by Smyth &
Bernhard.

2.1 Correctness
Smyth & Bernhard [SB14,SB13a] formalise correctness.2 Their definition is in-
tended to ensure that a ballot can contribute a single vote to the tally and
cannot influence the tally in any other way (e.g., by altering or removing votes).
Furthermore, the contribution of a ballot for vote v is to add a vote for v to
the tally. Unfortunately, the formalisation by Smyth & Bernhard implies that
every board tallies to the empty multiset, which is clearly a mistake. We revise
their correctness definition to eliminate this mistake.

Definition 2 (Correctness). A tuple of algorithms (Setup,Vote,BB,Tally) sat-
isfy correctness, if for any (bb0,m, pk, sk) output by Setup(1n) and any bulletin
board bb, the following conditions are satisfied.

1. If computing Tallysk (bb) twice produces (v, aux ) and (v′, aux ′), then v = v′.

Let algorithm τ be defined as follows: τsk(bb) computes (v, aux ) ← Tallysk (bb)
and outputs v. By Condition 1, τ is deterministic.

2. If b is output by Votepk (v) and b /∈ bb, then BB(bb, b) = bb ∪ {b}.

3. If bb 6= ∅ and τsk(bb) = ∅M (i.e., bb is invalid), then for all ballots b we
have τsk(bb ∪ {b}) = ∅M too.

4. If bb = ∅ or τsk(bb) 6= ∅M (i.e., bb is valid), then for any vote v ∈ m and
any ballot b output by Votepk (v) such that b /∈ bb, we have τsk(bb∪{b}) =
τsk(bb) ∪M {| v |}.

5. If τsk(bb) 6= ∅M , then |τsk(bb)| = |bb|.
2Let A(x1, . . . , xn; r) denote the result of running probabilistic algorithm A on input

x1, . . . , xn and coins r.
We write “for any x output byA(x1, . . . , xn)” for the universal quantification over x such that

x is a result of running probabilistic algorithm A on input x1, . . . , xn, i.e., x = A(x1, . . . , xn; r)
for some coins r.

We denote multisets as {|x1, . . . , xn |} and write ∅M for the empty multiset. The multiset
union operator is denoted ∪M and the multiset intersection operator is denoted ∩M . We write
|S| for the cardinality of multiset S.
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Condition 1 asserts that the non-deterministic algorithm Tally always computes
the same election outcome for a particular bulletin board. This allows us to
speak of the result of tallying a particular board. Condition 2 asserts that
ballots output by Vote are always accepted by algorithm BB, if they are not
already present. Condition 3 asserts that if a non-emptyt board is invalid (i.e.,
produces the empty result), then adding more ballots to the board will never
make it valid again. Condition 4 asserts that adding a ballot generated by Vote
to a board increases the election outcome by exactly the vote in that ballot,
except if the board is already invalid (in which case the previous condition says
it stays invalid). Condition 5 asserts that on any valid board, the size of the
result matches the number of ballots on the board. Note that this condition
implies that the result of tallying an empty board is empty too.

Comparison with Smyth & Bernhard. The formulation of correctness by
Smyth & Bernhard omitted the precondition bb 6= ∅ in Condition 3, which
unfortunately implies that tallying always fails.

2.2 Honest-Ballot Extractability
Bernhard et al. [BCG+15] define strong correctness, which, among other things,
asserts that there exists an extraction algorithm that inputs a private key and
a ballot, and outputs a vote (or declares the ballot to be invalid). For ballots
output by Vote, extraction returns the vote used to create the ballot. It follows
that the extractor can be applied to bulletin boards to recover the election
outcome. Moreover, each ballot contributes at most one vote to the election
outcome. Our correctness property ensures a weaker result: ballots output by
Vote contribute the vote used to create the ballot to the election outcome, and
any remaining m ballots contribute at most m votes to the outcome (i.e., we do
not ensure that each ballot contributes at most one vote).

Definition 3 (Honest-ballot extractability). An election scheme (Setup,Vote,
BB,Tally) has honest-ballot extractability, if there exists a deterministic extrac-
tion algorithm E, which takes a private key and a ballot as input and outputs a
vote, such that for any (bb0,m, pk, sk) output by Setup(1n), the following con-
dition holds.

1. For any b output by Votepk (v), we have E(sk, b) = v.

2. For any bulletin board bb = bb1∪bb2 with bb1∩bb2 = ∅ (i.e., bb1 and bb2

are any partition of bb), bb 6= ∅, τsk(bb) 6= ∅M (i.e., bb is valid), and all
ballots in bb1 are outputs of Vote, we have τsk (bb1) = {|E(sk , b) | b ∈ bb1 |}
and τsk (bb) = τsk (bb1) ∪M τsk (bb2).

Proposition 1. (Correct) Election schemes have honest-ballot extractability.

The proof of Proposition 1 appears in Appendix A.
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3 Ballot secrecy with a trusted board
Our informal definition of ballot secrecy (Section 1) could be formulated as an
indistinguishability game similar to indistinguishability games for asymmetric
encryption (e.g., IND-CPA and IND-CCA): we could challenge the adversary to
determine whether a ballot is for one of two possible votes. This formalisation
is too weak, because election schemes also output the election outcome and
auxiliary data, which needs to be incorporated into the game. Unfortunately, it
is insufficient to simply grant the adversary access to an oracle that provides an
election outcome and auxiliary data corresponding to some ballots, because such
a game is unsatisfiable, in particular, the adversary can use the oracle to reveal
the vote encapsulated inside the challenge ballot. This reveals some limitations
in our informal definition of ballot secrecy.

For simplicity, our informal definition of ballot secrecy deliberately omits
some side-conditions, which are necessary for satisfiability, in particular, we
did not stress that a voter’s vote may be revealed in the following scenarios:
unanimous election outcomes reveal how everyone voted and, more generally,
election outcomes can be coupled with partial knowledge about the distribution
of voters’ votes to reveal voters’ votes. For example, suppose Alice, Bob and
Mallory vote in a referendum and the outcome is two “yes” votes and one “no”
vote. Mallory can collude with Alice to reveal Bob’s vote. Similarly, Mallory
can collude with Bob to reveal Alice’s vote. Moreover, Mallory can reveal that
Alice and Bob both voted yes, if she voted no. Accordingly, ballot secrecy must
concede that election outcomes reveal partial information about voters’ votes3,
hence, we refine our informal definition of ballot secrecy as follows:

A voter’s vote is not revealed to anyone, except when the vote can
be deduced from the election outcome and any partial knowledge on
the distribution of votes.

This refinement ensures that the aforementioned examples are not violations of
ballot secrecy. By comparison, if Mallory votes yes and can reveal the vote of
either Alice or Bob without collusion, then she violates ballot secrecy.

Bernhard et al. use a bulletin board in their games and derive the elec-
tion outcome and auxiliary data from the ballots on this board. The bulletin
board is maintained in accordance with the election scheme’s rules. The adver-
sary can read the bulletin board, and can write ballots to the bulletin board
on behalf of some voters, assuming such a write conforms to conditions de-
fined by the scheme. In addition, the adversary has access to a left-right ora-
cle [BDJR97,BR05] which can construct and write ballots to the bulletin board
on the adversary’s behalf. Ballots can be computed by the left-right oracle in
two ways, corresponding to a randomly chosen bit β. If β = 0, then, given a
pair of votes v0, v1, the oracle computes a ballot for v0 and writes the ballot to

3We acknowledge that alternative formalisms of election schemes may permit different
results. For instance, election schemes which only announce the winning candidate [BY86,
HK02,HK04,DK05], rather than the breakdown of the votes for each candidate, could offer
stronger notions of ballot secrecy.
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the bulletin board. Otherwise (β = 1), the oracle writes a ballot for v1 to the
bulletin board. The left-right oracle essentially allows the adversary to control
the distribution of votes cast by voters, but ballots cast by the oracle are always
constructed using the prescribed Vote algorithm. This essentially corresponds
to trusting the bulletin board.

At the end of an election, the adversary is given an election outcome and
auxiliary data, and must determine whether β = 0 or β = 1. The computation
of the election outcome and auxiliary data depends on whether the game is
consistent : whether the inputs (v1, v

′
1), . . . , (vn, v

′
n) to the left-right oracle are

equivalent, i.e., {| v1, . . . , vn |} = {| v′1, . . . , v′n |}. If the game is consistent, then
the election outcome and auxiliary data are computed from the bulletin board.
Otherwise (the game is inconsistent), the outcome is computed from the bulletin
board that would have been produced if β had been 0, and no auxiliary data is
returned.

The consistency condition prevents trivial distinctions. For example, sup-
pose an adversary makes a single left-right oracle query with input (0, 1), hence,
the game is inconsistent. In this case, tallying the ballot resulting from the
left-right oracle query would allow the adversary to trivially determine whether
β = 0 or β = 1, yet this is not a privacy violation. Our consistency condition
prevents the adversary from winning the game this way. By comparison, the
consistency condition does not prevent distinctions due to the following two
attacks that violate privacy.

1. Suppose the adversary inputs (0, 1) and (1, 0) to the left-right oracle,
hence, the game is consistent. Further suppose that an adversary can
recover the vote in the first ballot. This scheme cannot satisfy IND-SEC
(defined below). (Cf. Benaloh’s notion ballot secrecy [Ben96] which infor-
mally asserts that an adversary should not be able to detect if two voters
swap their votes.)

2. Once again, suppose the adversary inputs (0, 1) and (1, 0) to the left-right
oracle. Further suppose the adversary transforms the first ballot output by
the left-right oracle into a new ballot for the same vote, without learning
whether the first ballot is for 0 or 1. Moreover, suppose the adversary
writes the new ballot to the bulletin board. The game is consistent: only
the left-right oracle can affect consistency. The adversary can derive β
from the tally by checking which candidate got two votes. This scheme
cannot satisfy IND-SEC either. (Cf. malleability attacks à la Cortier &
Smyth.)

It follows that the consistency condition does not prevent distinctions due to
the above attacks.
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3.1 Security definition
We recall4 the security definition for ballot secrecy from Smyth & Bernhard [SB14].

Definition 4 (Ballot secrecy with a trusted board). Given an election scheme
Γ = (Setup,Vote,BB,Tally), a security parameter n and an adversary A =
(A1, A2), let IND-SECA,Γ(n) be the following quantity5:

2 · Pr


M0 ← ∅M ;M1 ← ∅M ; (bb0,m, pk , sk)← Setup(1n);
bb1 ← bb0;β ←R {0, 1}; s← AO1 (m, pk);
if M0 = M1 then {(v, aux )← Tallysk (bbβ)}
else {aux ←⊥; (v, aux ′)← Tallysk (bb0)}

: A2(v, aux , s) = β

− 1

Oracle O is defined as follows:

O(): output bbβ.

O(b): bb′β ← bbβ; bbβ ← BB(bbβ , b); if bbβ 6= bb′β then bb1−β ← BB(bb1−β , b).

O(v0, v1): M0 ← M0 ∪M {| v0 |}; M1 ← M1 ∪M {| v1 |}; b0 ← Votepk (v0); b1 ←
Votepk (v1); bb0 ← BB(bb0, b0); bb1 ← BB(bb1, b1). We assume v0, v1 ∈
m.

We say Γ satisfies ballot secrecy with a trusted board (IND-SEC) if for all
probabilistic polynomial time adversaries A we have IND-SECA,Γ(n) is negligible
in n.

The game captures a setting where an administrator generates a key pair using
the scheme’s Setup algorithm, publishes the public key, and only uses the pri-
vate key to compute the election outcome at the end of an election6. Moreover,
the administrator generates a bulletin board using algorithm Setup and uses
algorithm BB to ensure that any writes to the bulletin board conform to condi-
tions defined by the scheme, for instance, BB(bb, b) might only write to bulletin
board bb when ballot b is not meaningfully related to any other ballot on the
bulletin board, thereby preventing the class of malleability attacks highlighted
by Cortier & Smyth [CS13,CS11].

Adversarial read and write capabilities are captured by the oracle:

• Oracle O() allows the adversary to read the bulletin board.
4Our presentation revises notation to explicitly distinguish sets and multisets, Smyth &

Bernhard do not. And we present the entire experiment as code, whereas Smyth & Bernhard
mix code with descriptions in natural language.

5We write A(x1, . . . , xn) for A(x1, . . . , xn; r), where r is chosen uniformly at random. As-
signment of α to x is written x← α. The assignment of a random element from set S to x is
written x←R S.

6The administrator is assumed to be trusted, in particular, the administrator is assumed
not to compute the election outcome for individual ballots. Generalising the definition to
multiple administrators is a possible direction for future work.
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• Oracle O(b) allows the adversary to write b to the bulletin board, assum-
ing it conforms to conditions defined by the scheme, i.e., algorithm BB
succeeds.

• Left-right oracle O(v0, v1) allows the adversary to write a ballot b to the
bulletin board such that: in case β = 0 ballot b is for v0 whereas in case
β = 1 ballot b is for v1.

In essence, the oracles allow the adversary to cast ballots on behalf of some
voters and control the distribution of votes cast by the remaining voters.

The adversary is given the election outcome and auxiliary data, and chal-
lenged to determine the bit β. We stress that a unanimous election outcome
will always reveal all voters’ votes and we tolerate this factor in our game by
challenging the adversary to determine the bit β, rather than the distribution of
votes. Intuitively, if the adversary loses the game, then the adversary is unable
to distinguish between the bulletin boards bb0 and bb1, hence, the adversary
cannot distinguish between a ballot b0 ∈ bb0 and a ballot b1 ∈ bb1, therefore,
voters’ votes cannot be revealed. On the other hand, if the adversary wins the
game, then there exists a strategy to distinguish ballots.

3.2 Limitations of trusted boards
Bernhard et al. assume the bulletin board is maintained in accordance with
the election scheme’s rules, in particular, ballots written to the bulletin board
must conform to conditions defined by the scheme. This can be assured by
insisting that all ballots written to the bulletin board are written using algo-
rithm BB. The security game (Definition 4) enforces conformance by restricting
the adversary’s write capabilities to oracle calls which only write to the bul-
letin board using algorithm BB. It follows that ballot secrecy with a trusted
board only offers privacy guarantees when the adversary’s write capability is
restricted in this manner. Unfortunately, an unnecessary trust assumption is
introduced: voters must trust the system to only add ballots to the bulletin
board using algorithm BB. If this trust assumption is violated, then an election
scheme satisfying ballot secrecy with a trusted board may fail to provide pri-
vacy. We give an example of this using a variant of Bernhard et al.’s Enc2Vote
construction [SB14,SB13a,BPW12b,BCP+11a].

Definition 5 (Backdoor-Enc2Vote). Given an asymmetric encryption scheme
Π = (Gen,Enc,Dec), the election scheme Backdoor-Enc2Vote(Π) is defined as
follows.

• Setup takes a security parameter 1n as input and outputs (∅,m, pk , sk),
where (pk , sk)← Gen(1n) and m is the encryption scheme’s message space.

• Vote takes a public key pk and vote v ∈ m as input, computes b ←
Encpk (v), and outputs b.
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• BB takes a bulletin board bb and ballot b as input. If b ∈ bb∪{ε}, then the
algorithm outputs bb (denoting failure), otherwise, the algorithm outputs
bb ∪ {b}.

• Tally takes as input a private key sk and a bulletin board bb. If ε ∈ bb,
then aux ← {(b,Decsk (b)) | b ∈ bb}, otherwise, aux ←⊥. It outputs the
multiset {|Decsk (b) | b ∈ bb |} and auxiliary data aux .

Informally, given an asymmetric encryption scheme Π satisfying NM-CPA, the
encryption scheme enables election scheme Backdoor-Enc2Vote(Π) to ensure bal-
lot secrecy until tallying. Moreover, if the bulletin board does not contain ε,
then algorithm Tally maintains ballot secrecy by returning the number of votes
for each candidate as a multiset of votes. Since algorithm BB prevents ε from ap-
pearing on the bulletin board, election scheme Backdoor-Enc2Vote(Π) preserves
ballot secrecy with a trusted board.

Proposition 2. Given an encryption scheme Π satisfying NM-CPA, the elec-
tion scheme Backdoor-Enc2Vote(Π) satisfies ballot secrecy with a trusted board.

A proof that Backdoor-Enc2Vote(Π) satisfies ballot secrecy with a trusted board
can be constructed similarly to the proof of [BPW12b, Theorem 4.2]. Nonethe-
less, privacy can be violated if the bulletin board contains ε, since this causes
algorithm Tally to output auxiliary data which maps ballots to votes. This may
occur in practice if the bulletin board is not trustworthy. We overcome this
limitation in a new definition of ballot secrecy.

4 Ballot secrecy with malicious boards
The definition of ballot secrecy by Bernhard et al. assumes the bulletin board
is trusted. We remove this trust assumption by assuming that the adversary
controls the bulletin board, i.e., we remove restrictions on the adversary’s write
capabilities. This essentially corresponds to the bulletin board being malicious.
We additionally reformulate the left-right oracle to output ballots to the adver-
sary, rather than writing them to the bulletin board.

The adversary is once again supplied with the election outcome and aux-
iliary data, and challenged to guess the randomly chosen bit β which con-
trols the left-right oracle’s behaviour. The computation of the election out-
come and auxiliary data uses a refined notion of consistency that is satis-
fied if: inputs to the left-right oracle are equivalent when the correspond-
ing left-right oracle’s outputs appear on the bulletin board constructed by
the adversary. For example, suppose the inputs to the left-right oracle are
(v1,0, v1,1), . . . , (vn,0, vn,1) and the corresponding outputs are b1, . . . , bn, further
suppose that the bulletin board bb = {b1, . . . , b`} and ` ≤ n, the game is con-
sistent if {| v1,0, . . . , v`,0 |} = {| v1,1, . . . , v`,1 |}.
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4.1 Security definition
We formulate a new definition of ballot secrecy based upon our informal discus-
sion above.

Definition 6 (Ballot secrecy). Given an election scheme Γ = (Setup,Vote,
BB,Tally), a security parameter n and a two-stage adversary A = (A1, A2), let
IND-SEC#

A,Γ(n) be the following quantity:

2 · Pr


(bb,m, pk , sk)← Setup(1n);β ←R {0, 1};S ← ∅;
(bb′, s)← AO1 (bb,m, pk); (v, aux )← Tallysk (bb′)

: A2(v, aux , s) = β ∧ ∀v ∈ m .
|{b | b ∈ bb′ ∧ ∃v1 . (b, v, v1) ∈ S}| =
|{b | b ∈ bb′ ∧ ∃v0 . (b, v0, v) ∈ S}|

− 1

Oracle O is defined as follows:

• O(v0, v1) computes b ← Votepk (vβ);S ← S ∪ {(b, v0, v1)} and outputs b,
where v0, v1 ∈ m.

We say Γ satisfies ballot secrecy (IND-SEC#) if for all probabilistic polynomial
time adversaries A we have IND-SEC#

A,Γ(n) is negligible in n.

Informally, an adversary who cannot win this game, cannot distinguish a
ballot for vote v0 from a ballot for vote v1. Therefore, such an adversary cannot
discover voters’ votes from looking at their ballots.

4.2 Overcoming limitations of trusted boards
Ballot secrecy (IND-SEC#) is strictly stronger than ballot secrecy with a trusted
bulletin board (IND-SEC). We prove this result as follows. First, we show that
any election scheme satisfying IND-SEC# also satisfies IND-SEC (Theorem 1).
Secondly, we have seen that Backdoor-Enc2Vote can be used to construct an
election scheme Backdoor-Enc2Vote(Π) satisfying IND-SEC (Proposition 2) and
we show that Backdoor-Enc2Vote(Π) does not satisfy IND-SEC# (Proposition 3).
It follows that IND-SEC# is strictly stronger than IND-SEC.

Theorem 1 (IND-SEC# is stronger than IND-SEC). If an election scheme satis-
fies ballot secrecy, then the election scheme satisfies ballot secrecy with a trusted
board.

The proof of Theorem 1 appears in Appendix B.

Proposition 3. Given an encryption scheme Π satisfying NM-CPA, the elec-
tion scheme Backdoor-Enc2Vote(Π) does not satisfy ballot secrecy.

A proof that Backdoor-Enc2Vote(Π) does not satisfy ballot secrecy can be con-
structed by formalising an adversary that adds ε to the bulletin board.

Our definition of ballot secrecy improves upon existing definitions by Bern-
hard et al. by detecting attacks that arise when the bulletin board is controlled
by the adversary, in particular, we can detect attacks against our Backdoor-Enc2Vote
construction.
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4.3 Implementation notes
Definitions of ballot secrecy by Bernhard et al. have used three different data
structures to model bulletin boards:

• List [BCP+11a, BPW12a, BPW12b]: bulletin board entries are ordered
and may contain duplicates.

• Multiset [SB13a, SB14]: bulletin board entries are unordered and may
contain duplicates.

• Set (this work): bulletin board entries are unordered and do not contain
duplicates.

As discussed in Section 2, the shift to data structures which do not contain du-
plicates prevents the class of replay attacks identified by Cortier & Smyth [CS13,
CS11] (variants of their attack that exploit malleable ballots are not eradicated).
Hence, the data structure helps ensure ballot secrecy. It follows that implemen-
tors should ensure that the bulletin board is a set. Alternatively, the bulletin
board should be converted to a set before input to algorithm Tally.

5 Conclusion
This paper shows that malicious bulletin boards can violate privacy in a manner
that cannot be detected by Bernhard et al.’s definition of ballot secrecy. We
have proposed a new definition of ballot secrecy to overcome this problem. Our
definition builds upon the games by Bernhard et al. as follows. First, we refine
their syntax for election schemes: we model the bulletin board as a set, rather
than a multiset. Secondly, we remove restrictions on writing to the bulletin
board: we assume the bulletin board is controlled by the adversary, rather
than the administrator. Thirdly, we reformulate the left-right oracle: the oracle
outputs ballots to the adversary, rather than writing them to the bulletin board.
The resulting definition strengthens definitions by Bernhard et al. to ensure that
ballot secrecy is preserved in the presence of malicious bulletin boards.
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secrecy. We are also grateful to the anonymous reviewers for constructive criti-
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A Proof of Proposition 1
We define the extractor E(sk, b) to run (v, aux)← Tallysk ({b}); if v is a multiset
{| v |} of cardinality 1, then we let E return v, otherwise, it returns ⊥. Condition
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1 of correctness guarantees that this is well-defined: Tally always returns the
same election result for the same board. Correctness condition 4 shows that the
extractor works as desired for correctly generated ballots (i.e. generated using
Vote).

For a non-empty and valid bb, take any partition into bb1 and bb2 such that
all ballots in bb1 are hoenstly generated (i.e. such b was produced by Votepk (v)
for some v ∈ m). Let v2 be the result of tallying bb2. Correctness’ condition
1 guarantees that multiple runs of Tally return the same result on any board,
so “the” result v2 is well-defined. We add the ballots of bb1 to bb2 one by one.
Condition 4 of correctness says that this will add exactly the vote v from which
each of these ballots was created to the result each time, since all ballots in bb1

are outputs of Vote. We have established above that this is exactly the same
vote as the extractor E returns on such ballots.

We have shown v = v2 ∪M {|E(sk, b) | b ∈ bb1 |}. So we define v1 = v \M v2;
since all ballots in bb1 are are outputs of Vote, it follows that v1 is also the
result of tallying bb1.

B Proof of Theorem 1
In brief, the proof is a reduction from IND-SEC to IND-SEC#. If an adversary
creates a consistent game, the reduction is trivial. If an adversary creates an
inconsistent game however then we need to be more careful: an inconsistent
IND-SEC will just return the left result with no auxiliary data but an inconsistent
IND-SEC# will not let the adversary win. If the game is inconsistent when the
tally should be computed, the reduction passes only the dishonest ballots (from
O(b) queries) to the IND-SEC# challenger, restoring consistency. The reduction
then adds the “left” honest votes from O(v0, v1) queries back into the returned
result itself.

Suppose Γ = (Setup,Vote,BB,Tally) is an election scheme that does not
satisfy ballot secrecy with a trusted board. By Definition 4, there exists a prob-
abilistic polynomial-time adversary A = (A1, A2) such that for every negligible
function negl, we have IND-SECA,Γ(n) > negl(n) for infinitely many n. An ad-
versary B = (B1, B2) against IND-SEC# is constructed below. Let OA denote
A’s oracle and OB denote B’s oracle.

Algorithm B1. On input bb, m and pk , the algorithm proceeds as follows.
Initialise set L ← ∅ and compute s ← AOA

1 (m, pk), handling any oracle
calls from A1 as follows:

• OA(v0, v1): compute b ← OB(v0, v1);L ← L ∪ {(b, v0, v1)}; bb ←
BB(bb, b).

• OA(b): compute bb← BB(bb, b).
• OA(): output bb.

Let L0 be the multiset in which each vote v appears with multiplicity
|{b ∈ bb | ∃v′.(b, v, v′) ∈ L}| and similarly let L1 be the multiset in which
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each v appears with multiplicity |{b ∈ bb | ∃v′.(b, v′, v) ∈ L}|. These
multisets have the same role as the ones used to evaluate the consistency
condition in IND-SEC#.

If L0 = L1, then output (bb, (s, L0, L1)). Otherwise, compute bb′ ←
bb \ {b | b ∈ bb ∧ ∃v0, v1.(b, v0, v1) ∈ L} and output (bb′, (s, L0, L1)).

We show by induction that the embedded adversary A1 sees the same distibution
of all elements as in the IND-SEC game.

When A1 makes an O() call, the board bb is returned, so we have to show
that this is consistent with what A1 expects. At the start of the game, bb is
empty, which is what A1 would see at the start of the IND-SEC game if it asked
for the board before adding any ballots. In an O(b) query, b is appended to the
board if and only if it passes BB(bb, b) validation, which is the same as in the
IND-SEC game since BB is a pure function7. In an O(v0, v1) query, a ballot b is
added to bb (again with validation), and this ballot comes from the IND-SEC#

oracle which produces ballots identical to the IND-SEC two-parameter oracle.
So the board bb is kept consistent for all calls.

Algorithm B2. Given input v, aux and (s, L0, L1), the algorithm computes g
as follows:

g ←

 A2(v, aux , s) if L0 = L1

A2(∅M ,⊥, s) else if v = ∅M , denoting failure
A2(v ∪M L0,⊥, s) otherwise

Output g.

It is sufficient to show that the adversary B chooses g correctly with the same
advantage as A in the following two cases. Case I: L0 = L1. By definition
of B1, the bulletin board bb contains exactly the ballots added by OA(·) and
OA(·, ·) queries. Further, the game is consistent (from the challenger’s point
of view). It follows that the embedded adversary A2 sees the same distibution
of all elements as in IND-SEC, hence, adversary B chooses g correctly with the
same advantage as A.

Case II: L0 6= L1. By definition of B1, the bulletin board bb′ returned by B1

contains exactly the ballots added by OA(·) queries. Since bb′ does not contain
any ballots added by OA(·, ·) queries, no ballots in bb′ appear in elements of L.
The key point here is that by passing only bb′ back to the challenger, the game
is consistent again from the challenger’s point of view.

We partition the board bb into bb1 consisting of all ballots from O(v0, v1)
queries and bb2 consisting of the ballots from O(b) queries. By construction, all
ballots in bb1 are outputs of Vote and bb2 = bb′.

In the IND-SEC game, we have τ(bb) = τ(bb1) ∪M τ(bb2) by honest-ballot
extractability. A quick observation shows that L0 in the reduction is identical

7This is why we are explicit about BB being pure. The IND-SEC game runs BB twice on
O(b) ballots (once on each board) and our reduction runs BB a third time, which could cause
problems if BB were stateful or randomised. Earlier proofs seem to take this for granted.
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to M0 = τ(bb1) in the IND-SEC game for any execution: both these multisets
collect v0 from each O(v0, v1) query. The result L0∪M τ(bb′) that the reduction
computes is threefore the same value as the adversary would see in the IND-SEC
game, showing that the distribution of the tallies is the same in both cases (the
auxiliary data is always ⊥ in the inconsistent case).
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