
Learning with Errors in the Exponent
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Abstract

We initiate the study of a novel class of group-theoretic intractability problems.
Inspired by the theory of learning in presence of errors [Regev, STOC’05] we ask if
noise in the exponent amplifies intractability. We put forth the notion of Learning with
Errors in the Exponent (LWEE) and rather surprisingly show that various attractive
properties known to exclusively hold for lattices carry over. Most notably are worst-
case hardness and post-quantum resistance. In fact, LWEE’s duality is due to the
reducibility to two seemingly unrelated assumptions: learning with errors and the
representation problem [Brands, Crypto’93] in finite groups. For suitable parameter
choices LWEE superposes properties from each individual intractability problem. The
argument holds in the classical and quantum model of computation.

We give the very first construction of a semantically secure public-key encryption
system in the standard model. The heart of our construction is an “error recovery”
technique inspired by [Joye-Libert, Eurocrypt’13] to handle critical propagations of
noise terms in the exponent.

Keywords: Lattice theory, group theory, public-key encryption, existential relations,
double hardness
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1 Introduction

Since the introduction of public-key cryptography in the ground-breaking paper of Diffie and
Hellman [DH76], cryptographic systems with versatile functionality have been introduced.
Deeming the system secure is a delicate task. One typically conducts a polynomial-time
reduction to a computational problem conjectured to be intractable. Proofs of such nature
give the strongest qualitative and quantitative arguments. On the flip side, reductions reveal
the Achilles’ heel of any cryptosystem. Security holds as long as no polynomial-time algo-
rithm solves the underlying problem. Since the introduction of contemporary cryptography
a central concern has been to identify computational-intractable problems and assess their
hardness.

Among the most carefully scrutinized cryptographic problems are probably the discrete
logarithm in finite groups and factorization. Shor’s celebrated theorems [Sho94, Sho97a]
curtailed for the first time the confidence of founding cryptosystems on group-theoretic as-
sumptions. He showed the existence of polynomial-time solvers for integer factorization
and discrete logarithm computation in the non-classical quantum computation model. Re-
searchers have then begun to look for alternative computational problems. In this line of
work Regev explored a lattice problem class known as learning with errors (LWE) [Reg05].
Given a distribution of noisy equations (a, b = 〈a, s〉 + e) ∈ Znq × Zq where e is taken from
a small Gaussian error distribution, the problem comes in two flavors. The search problem
is to compute s whereas the decisional pendant asks to distinguish (a, b) from random ele-
ments in Znq ×Zq. There are several convincing arguments to believe in LWE’s intractability
[Reg10]: First, the best known solvers run in exponential time and even quantum algorithms
do not seem to help. Second, learning with errors is a generalization of learning from parity
with error, which is a well-studied problem in coding theory. Any major progress in LWE
will most likely cause significant impact to known lower bounds of decoding random lin-
ear codes. Lastly and most importantly, breaking certain average-case problem instances of
LWE breaks all instances of certain standard lattice problems [Reg05, Pei09, LM09, BLP+13].
Against the background an armada of cryptosystems has been proposed with versatile prop-
erties [Reg05, LP11, GPV08, Gen09, ABB10a, ABB10b, CHKP10, BV11a, BGV12, Bra12].

Taking the findings from lattices in presence of errors into account we carry on the
study of noise as a non-black box intractability amplification technique. Specifically, we ask
does noise effect the intractability of group-theoretic problems as well? If so, is cryptogra-
phy possible in groups where noise terms propagate in the system and may easily distort the
cryptographic task? Apart from the theoretical interest, our work has concrete practical mo-
tivation. Recently, large-scale electronic surveillance data mining programs put in question
the security provided by present cryptographic mechanisms. (See also the IACR statement
and mission on mass surveillance.1) One of the problems is that many security protocols in
the wild are based on a single intractability problem and we do not know the exact security.
What if somebody has found a clever way to factor numbers? This already suffices to decrypt
most of the TLS-protected Internet traffic and eavesdrop emails, social network activities,

1 http://www.iacr.org/misc/statement-May2014.html
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and voice calls.2 Note, answering any of the above questions in an affirmative way advertises
a novel family of computational assumptions with hardness and robustness properties in the
superposition of group and lattice theory.

1.1 Our Contribution

Blending Group and Lattice Theory. As an initial step towards approaching above
questions, we introduce the notion of learning with errors in the exponent (LWEE). The
assumption reconciles the group theoretic structure of discrete-log related problems with
the algebraic simplicity of lattice theory. The technical idea behind can be summarized as
planting an LWE sample (a, b = 〈a, s〉+e) ∈ Znq ×Zq in the exponent of a generator g of some

group G of order q. More precisely, the distribution consists of samples (ga, g〈a,s〉+e) ∈ Gn×G
where a is sampled uniformly from Znq , and s ←R χns , e ←R χe from some distributions
χs, χe. Similar to LWE, learning with errors in the exponent comes in two versions: The
search version asks to compute the secret vector s while in the decisional variant one is
supposed to distinguish LWEE samples from a randomly sampled group elements.

Existential Relations. In an attempt to confine learning in presence of errors in the
exponent, we prove that the assumptions inherits the hardness from both theories. While
striving for the existential relation to the family of group-theoretic assumptions, we infer
a rather surprising connection to the (search) representation problem (`-SRP), introduced
by Brands [Bra93]. Given a tuple of uniformly sampled elements g1, . . . , g`, h from G, the
`-SRP asks to compute x1, . . . , x` ← χ for some distribution χ such that Π`

i=1g
xi
i = h. Note

that the `-SRP problem for ` = 1 is essentially identical to the computational Diffie-Hellman
problem. We give a tight reduction from `-SRP to the search version of the LWEE problem.

Looking at the decisional learning with errors in the exponent problem, we first put
forth the decisional pendant of the representation problem (`-DRP): Given a tuple g, g1, . . . ,
g`, g

x1 , . . . , gx` , h from G, where x1, . . . , x` ← χ are sampled from some distribution χ, `-DRP
asks to distinguish between Π`

i=1g
xi
i = h and a randomly sampled value h in G. Observe that

`-DRP coincides with the decisional Diffie-Hellman (DDH) problem for ` = 1 and uniform
distribution over Zq. In the same vain as done for the k-linear assumption [Sha07], we show
(in Appendix A) that `-DRP becomes progressively harder to solve in Shoup’s generic group
model [Sho97b]. We then show that DRP reduces to LWEE which implies that if we select a
group G for which DDH is believed to be hard, the hardness carries over to an instantiation
of LWEE in that group G. It is worth mentioning that both of our reductions from the RP
problem are tight. They hold for (potentially non-uniform) distributions χ, if the underlying
RP problem is hard for representations sampled from the same distribution.

Investigating the relation to lattices, we show that an algorithm solving either the search
or decisional LWEE problem efficiently can be turned into a successful attacker against the
search or decisional LWE problem. Our reductions are tight and hold as well for (potentially

2TLS’s preferred cipher suite makes use of RSA-OAEP to transport the (master) key in the key estab-
lishment process. Once the ephemeral master key for the session is known it is possible to derive session
keys and decrypt all encrypted messages.
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non-uniform) distribution χ if LWE is hard for secret s sampled from the same distribution.
A concrete Cryptosystem. We give a construction of a public-key encryption

scheme. One may size the magnitude to which the RP and LWE intractability contribute to
the overall security of the system. The selection of parameters (e.g., modulus, dimension)
offers a flexibility to fine-tune the cryptosystem’s resilience against progress in attacking the
underlying RP or LWE problem or the evolution of quantum computers. Concretely, one
may choose to make the scheme short, post-quantum secure, or double-hard. We discuss
candidate parameter choices in Section 4.3. We remark that our construction serves the sole
purpose of showcasing the possibility of designing cryptosystems based on “errors in the ex-
ponent”. In practical applications, a combination of two encryption systems, say El-Gamal
and Regev encryption, and each system encrypting information-theoretically a share of the
message, would be given the preferred choice.

1.2 Our Techniques

The idea behind our scheme is reminiscent of Regev’s public-key encryption scheme. In a
nutshell, the public key is an LWEE instance (gA, gAs+x) ∈ Gn×n ×Gn. Ciphertexts consist
of two LWEE instances C = (c0, c1) where c0 = gAr+e0 encapsulates a random key r ∈ Znq
and c1 = g〈b,r〉+e1 · gαµ encrypts the message µ (we discuss the exact value of α below). The
tricky part is the decryption algorithm. All known LWE-based encryption schemes require
some technique to handle the noise terms. Otherwise, decryption is prone to err. Regev’s
technique ensures small error terms. One simply rounds c1 − c0s to some reference value
cb indicating the encryption of bit b. While rounding splendidly works on integers, the
technique fails in our setting. In contrast to addition and multiplication of group elements,
there are no known polynomial-time algorithms for geometric operations. In fact, recovering
the most significant bit—a basic operation for rounding—is conjectured to be a hard problem
[FPSZ06].

Our first attempt thus was to scale the noise with some scalar t such that all error terms
are even. The advantage of even noise terms has been demonstrated in many constructions of
fully homomorphic encryption as a technique to “round to the closest” bit [BV11b, BV11a,
BGV12, CCK+13]. We would then round to the closest bit “in the exponent” using the
Goldwasser-Micali trick of computing the Jacobi symbol [GM82]. (Essentially, the Jacobi
symbol computes the least significant bit of the exponent). The crux of the technique is
that it works as long as the error in the exponent does not wrap around the order q of
the group. Otherwise, error terms might become odd and decryption fails (since 2 - q).
To solve the problem one might feel tempted to also choose even q. However, Brakerski
and Vaikuntanathan prove that the scaled version of LWE, where samples are of the form
(ai, ai · s + t · ei) for some scalar t, is equivalent to the standard LWE assumption as long as
scalar t and modulus q are coprime [BV11b]. In other words, if t is even in our construction,
q must be odd. For both t and q even, unfortunately, there exists an efficient least significant
bit recovery algorithm (without any trapdoor) and the whole encryption system collapses.

In our second approach we traverse a considerably different path. Instead of rounding,
we synthesize the pesky error terms. To this end, we adapt the trapdoor technique of Joye
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and Libert [JL13] and recover partial bits of the discrete logarithm. The main idea is to
tweak the modulus in a smart way. Given composite modulus N = pq with p′, q′, such that
p = 2kp′ + 1 and q = 2kq′ + 1 are prime, there exists an efficient algorithm for recovering
the k least significant bits of the discrete logarithm. We choose the parameters so that the
sum of all error terms in the exponent is (with high probability) at most 2k−`. This leads
to a “gap” between error bits and those bits covert by the discrete log instance. We plant
the message in this gap by shifting it to the 2k−`’s bit, where ` is the size of the message we
want to decrypt. Hence, we choose α = 2k−` in our construction to shift the message bits
accordingly.

1.3 Previous Work

Brickell and McCurley [BM92] to the best of our knowledge were the first to study cryp-
tographic algorithms under hedged hardness assumptions. The authors propose a variant
of Schnorr’s identification scheme [Sch90] secure assuming the intractability of discrete log-
arithms in a group of composite order N . Their scheme is witness-hiding and sound if
factoring and computing discrete logarithms are simultaneously hard. Assuming factoring is
easy, their scheme degenerates to soundness under the DL assumption.

Learning with errors in the exponent has a different nature. LWEE remains intractable
despite the fact that there exists an attacker breaking either of the underlying problems as
long as the peer assumption remains hard in presence of the breaker. It is well known that to
factor N , it suffices to be able to compute the discrete log modulo N ; to compute the discrete
log moduloN , it suffices to factor and compute the discrete log modulo primes. Learning with
errors in the exponent builds upon two orthogonal assumptions. For appropriate parameter
choices breaking one assumption will not degenerate the security of the system, unless the
partner assumption is secure in presence of the breaker or significant progress is made in
reconciling the representation and learning with errors problem.

We also mention the work of Gentry and Halevi [GH11]. They give a fully homomor-
phic encryption construction from a lattice-based somewhat homomorphic encryption and
ElGamal encryption scheme. Instead of squashing the decryption function, they compress
ciphertexts from the homomorphic scheme into a single ElGamal ciphertext. Similar to our
work, their work attempts to build encryption schemes upon lattice and group-theoretic as-
sumptions, but it provides no hedged security. For the proof to come through they require
both the LWE and DDH assumption to simultaneously hold.

1.4 Extensions and Open Problems

While learning with errors in the exponent is an interesting concept in its own right, it
requires further thorough inspection. Here we point out a few possible directions for future
research:

• It would be interesting to cryptanalyze the assumption. This would help nail down
concrete security parameters, in particular for the case of double-hardness where both
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underlying assumptions contribute to the overall security.

• We are unaware of any existential relation between the representation and learning
with errors assumption neither in the classical nor quantum model of computation.
In fact, any insight would require progress in solving the hidden subgroup problem
(HSP) in certain finite Abelian and non-Abelian groups. Shor’s discrete-log quantum
algorithm crucially relies on the HSP in Abelian groups. However, efficient quantum
algorithms for the HSP in non-Abelian groups are unknown as they would give an
efficient algorithm for solving the unique shortest-vector problem, being a special case
of the shortest vector problem (SVP) [Reg04].

• Clearly, building further cryptosystems based on the search or decisional variant of
learning with errors in the exponent is an interesting direction. A candidate to look at
is the Naor-Reingold pseudorandom function which bears reminiscence to the structure
of learning with errors in the exponent [NR04]. Recall, the NR pseudorandom function
is defined as fs(a) = gΠaisi where g generates a group G of prime order q, the input
to the function a is an integer in bit representation ai ∈ {0, 1} and the seed is s ∈ Znq .
It would be interesting, if one can get a tight reduction to LWEE from a slightly
modified construction fs(a) = g

∑
aisi where an = 1 and sn is the error term. Further,

it would be interesting to investigate, if one could derive security for weak secrets,
leakage-resilience, or key-dependence thanks the embedded LWE instance. Goldwasser
et al. have shown that LWE bears many attractive robustness guarantees for this
purpose [GKPV08].3

2 Preliminaries

In this section we introduce some notation and recall the representation and learning with
errors problem for both the search and decision variant. No decisional pendant of the rep-
resentation problem has been introduced. We give a formal definition and show that the
decisional version is as least as hard as the decisional Diffie-Hellman problem.

2.1 Notation

Random Sampling, Negligibility and Indistinguishability. If D is a probability dis-
tribution, we denote by d←R D the process of sampling a value d randomly according to D.
In case S is a set, then s ←R S means that the value s is sampled according to a uniform
distribution over the set S. We write [m] for the set {0, 1, . . . ,m − 1}. The expression dxc
denotes the nearest integer to x ∈ R, i.e., dxc = dx− 0.5e.

A function ε() is called negligible (in the security parameter κ) if it decreases faster than
any polynomial poly(κ) for some large enough κ. An algorithm A runs in probabilistic

3In a nutshell, this is so because LWE as ”assumption” can be shown to hard despite weak secrets, i.e.
keys where a fraction of bits leaked.
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polynomial-time (PPT) if A is randomized—uses internal random coins— and for any input
x ∈ {0, 1}∗ the computation of A(x) terminates in at most poly(|x|) steps. If the running
time of an algorithm is t′ ≈ t, we mean that the distance between t′ and t is negligible.

Let X = {Xκ}κ∈N and Y = {Yκ}κ∈N be two distribution ensembles. We say X and Y
are (t, ε)-computationally indistinguishable if for every PPT distinguisher A with running
time t, there exists a function ε(κ) such that |Pr[A(X) = 1]− Pr[A(Y ) = 1]| ≤ ε(κ) (and
we write X ≈(t,ε) Y ). If A is PPT and ε(κ) is negligible, we simply say X and Y are
(computationally) indistinguishable (and we write X ≈ Y ). We say a distribution ensemble
X = {Xκ}κ∈N has (high) min-entropy, if for all large enough κ, the largest probability of an
element in Xκ is 2−κ. We say a distribution ensemble X = {Xκ}κ∈N is well-spread, if for
any polynomial poly(·) and all large enough κ, the largest probability of an element in Xκ

is smaller than poly(κ). (In other words, the max-entropy of distributions in X must vanish
super-logarithmatically.) Under the Gaussian distribution Dσ with parameter σ > 0, the
probability of sampling an integer x ∈ Z is proportional to exp[−x2/(2σ2)].

Vectors and Matrices in the Exponent. We denote vectors by bold lower case letters
and matrices by bold upper case letters. The ith row of a matrix A is denoted by A[i], the
jth element of a vector a is denoted by aj, To ease notation we sometimes write ai for the
ith row vector, and ai,j for the element in the ith row and jth column of matrix A. Let G be
a group of order q, g a generator of G, a a vector in Znq , and A a matrix in Zm×nq . We use

the notation ga ∈ Gn to denote the vector ga
def
= (ga1 , · · · , gan) and gA ∈ Gm×n to denote

the matrix gA
def
= (ga1 , · · · , gam)>.

Computations in the Exponent. Given ga and b, the inner product of vectors a and b
in the exponent, denoted by g〈a,b〉, is

n∏
i=1

(gai)bi =
n∏
i=1

gai·bi = g
∑n
i=1 ai·bi = g〈a,b〉 .

Likewise, a matrix-vector product in the exponent, given a vector v and gA for a matrix
A =

(
a1 a2 . . . an

)
can be performed by

n∏
i=1

(gai)vi =
n∏
i=1

gai·vi = g
∑n
i=1 ai·vi = gAv .

Adding (and subtracting) in the exponent is computed via element-wise multiplication (and
division) of the group elements ga · gb = ga+b.

Quadratic Residuosity. Let G be a group of prime order p. The Legendre symbol verifies
whether an element a ∈ G is a quadratic residue, i.e., x2 ≡ a mod p for some x. If L(a, p) :=
a(p−1)/2 = 1, this is the case; otherwise L(a, p) = −1. More generally, for n ≥ 2, we define
L(a, p)n := a(p−1)/gcd(n,p−1). For a group of composite order N = p1 · · · pk where the pi
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are odd primes, one uses its generalization, namely the Jacobi symbol, which is defined as
J(a,N) =

∏k
i=1 L(a, pi). Note that J(a,N) = 1 does not imply that a is a quadratic residue

modulo N . However, if J(a,N) = −1, a is certainly not. The set of quadratic residues
modulo N is denoted by QRN := {a2 : a ∈ Z∗N}. By JN we denote the subgroup of all
elements from Z∗N with Jacobi symbol 1, i.e., JN = {a ∈ Z∗N : J(a,N) = 1}. Note that
QRN is a subgroup of JN . It is widely believed that one cannot efficiently decide whether
an element a ∈ JN is a quadratic residue modulo N if the prime factors of N are unknown.
(For more details, we refer to Appendix B.1.)

2.2 Standard Group-Theoretic Problems

We recall in the meanwhile standard assumptions of discrete log and Diffie-Hellman. For our
proofs, we need slightly generalized versions of the problem statements to handle exponents
chosen from some distribution χ with (at least) minimal entropy. Throughout the paper, let
G be a group of order q and g be a generator of G. We implicitly include g and q in the
description of G when the meaning is clear from the context.

Definition 2.1 (Discrete Log). Let χ be a distribution over Z∗q, and let x ←R χ. The
Discrete Logarithm (DLG,χ) problem is (t, ε)-hard if any algorithm A, running in time t, upon
input gx, outputs x with probability at most ε.

We now formulate a slightly generalized version of the Diffie-Hellman problem for distri-
butions with (minimal) entropy.

Definition 2.2 (Diffie–Hellman). Let χ be a distribution over Z∗q, and let y ←R χ. Further,
let x, z be uniformly sampled from Z∗q.

• The Computational Diffie–Hellman (CDHG,χ) problem is (t, ε)-hard if any algorithm A,
running in time t, upon input (gx, gy), outputs gxy with probability at most ε.

• The Decisional Diffie–Hellman (DDHG,χ) problem is (t, ε)-hard if

(gx, gy, gxy) ≈(t,ε) (gx, gy, gz) .

The idea of taking into account well-spread and min-entropy distributions χ in groups G
of prime order q is due to Canetti [Can97]. There, the assumption is an essential ingredient
towards implementing the random oracle in the standard model.

We will also make use of the rank hiding assumption introduced by Naor and Segev [NS09]
(and later extended by Agrawal et al. [ADVW13]). It was proven to be equivalent to the
DDHG,χ assumption for groups of prime order and uniform χ [NS09].

Definition 2.3 (Rank Hiding). Let G be a group of order q with generator g, and i, j, n,m ∈
N satisfying i, j ≥ 1. The Rank Hiding problem (RHG,i,j,m,n) is (t, ε)-hard if

{(G, q, g, gM) : M←R Rki(Zm×nq )} ≈(t,ε) {(G, q, g, gM) : M←R Rkj(Zm×nq )}

where Rkk(Zm×nq ) returns an m × n matrix uniformly random from Zn×mq with rank k ≤
min(n,m).
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2.3 Representation Problem

The representation problem in a group G assumes that given l random group elements
g1, . . . , gl ∈ G and h ∈ G it is hard to find a representation x ∈ Z`q such that h =

∏`
i=1 g

xi
i

holds. Brands builds an electronic cash system based on the problem. The assumption has
found little application since then, until its applicability to leakage-resilient cryptosystems
have been investigated [KV09, ADVW13, DV14].

We now state a more general version of the search representation problem where vector
x←R χ

` is sampled from a distribution χ with (at least) min-entropy and where an adversary
is given m ≥ 1 samples instead of a single one.

Definition 2.4 (Search Representation Problem). Let χ be a distribution over Zq, and
`,m be integers. Sample M ←R Zm×`q , h ←R Zmq , and x ←R χ`. The Search Representa-
tion Problem (SRPG,χ,`,m) is (t, ε)-hard if any algorithm A, running in time t, upon input
(g, gM, gx, gMx), outputs x′ ∈ Z`q such that gMx′ = gMx with probability at most ε. If χ is the
uniform distribution, we sometimes skip χ in the index and say that SRPG,`,m is (t, ε)-hard.

Brands proves the equivalence of the representation problem and the discrete logarithm
problem for uniform χ and m = 1. It is easy to verify that the reduction holds for every
distribution for which the discrete logarithm problem holds.

For establishing the relations to the learning with errors in the exponent problem (cf.
Section 3.2), we need a decisional variant of the representation problem. To our surprise, the
decisional version has not been defined before, although the assumption is a natural gener-
alization of the decisional Diffie-Hellman problem to `-tuples (similar in spirit as the `-linear
problem in G [Sha07]). Given ` random group elements g1, . . . , g` ∈ G and gx1 , . . . , gx` ∈ G
where x1, . . . , x` ←R Z∗q, it is hard to decide if h =

∏`
i=1 g

xi
i or h is a random group element

in G. Our definition below generalizes this problem to the case, where m ≥ 1 samples are
given to an adversary and x1, . . . , x` are sampled from any min-entropy distribution χ.

Definition 2.5 (Decisional Representation Problem). Let χ be a distribution over Z∗q, and
`,m be integers. Sample M←R Zm×`q , h←R Zmq , and x←R χ

`. The Decisional Representa-
tion (DRPG,χ,`,m) problem is (t, ε)-hard if

(g, gM, gx, gMx) ≈(t,ε) (g, gM, gx, gh) .

If χ is the uniform distribution over Z∗q, we say DRPG,`,m is (t, ε)-hard.

Note that the DRPG,χ,`,m problem can be stated in the framework of the Matrix-DDH
assumption recently introduced by Escala et al. [EHK+13]. We give evidence that the family
of DRPG,χ,`,m problems is a class of progressively harder problems (with increasing `) and
thus put another class of hardness problems to the arsenal of [EHK+13]. We defer proofs
of following propositions to Appendix A and C.1.

Proposition 2.6. If DRPG,χ,`,m is (t, ε)-hard, then for any `,m ≥ 1 with t′ ≈ t and distri-
bution χ with min-entropy DRPG,χ,`+1,m is (t′, ε)-hard.
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Proposition 2.7. In the generic group model DRPG,χ,`+1,m is hard for distribution χ with
minimal entropy, even in presence of a DRPG,χ,`,m-oracle.

Note that the DRPG,χ,1,1-problem with χ being the uniform distribution over Zq coincides
with the decisional Diffie-Hellman (DDH) problem. Hence, we obtain the corollary that for
uniform distributions χ, the decisional Diffie-Hellman problem implies the representation
problem DRPG,χ,`,1 for ` ≥ 1. In fact, Proposition 2.6 suggests a stronger argument. Assum-
ing the decisional Diffie-Hellman problem holds for well-spread and min-entropy distributions
χ, then the DRPG,χ,`,1 holds for χ and ` ≥ 1.

While Propositions 2.6 and 2.7 show that the hardness of the DRP problem progres-
sively increases with `, the following proposition states that the problem remains hard with
increasing number of samples m. More precisely, we show that DRPG,χ,`,m is hard as long as
DRPG,χ,`,1 and the rank hiding problem (cf. Definition 2.3) is hard. The proof can be found
in Appendix C.

Proposition 2.8. If RHG,m,m+1,m+1,2`+1 is (t, ε)-hard and DRPG,χ,`,m is (t′, ε′)-hard in a cyclic
group G of order q, then for any distribution χe and any m > 0 with t′ ≈ t and ε′′ ≤ (1−ε)−1ε′

DRPG,χ,`,m+1 is (t, ε′′)-hard.

2.4 Learning with Errors

The learning with errors assumption comes as a search and decision lattice problem. Given
a system of m linear equations with random coefficients ai ∈ Znq in the n indeterminates s
sampled from some distribution χs and biased with some error ei from the error distribution
χe, it is hard to compute vector s or distinguish the solution bi =

∑n
i ais+ei from a uniform

element in Zq.

Definition 2.9 (Learning with Errors). Let n,m, q be integers and χe, χs be distributions
over Z. For s←R χs, define the LWE distribution LLWE

n,q,χe to be the distribution over Znq ×Zq
obtained such that one first draws a←R Znq uniformly, e←R χe and returns (a, b) ∈ Znq ×Zq
with b = 〈a, s〉+ e. Let (ai, bi) be samples from LLWE

n,q,χe for 0 ≤ i < m = poly(κ).

• The Search Learning With Errors (SLWEn,m,q,χe(χs)) problem is (t, ε)-hard if any algo-
rithm A, running in time t, upon input (ai, bi)i∈[m], outputs s with probability at most
ε.

• The Decisional Learning with Error (DLWEn,m,q,χe(χs)) problem is (t, ε)-hard if

(ai, bi)i∈[m] ≈(t,ε) (ai, ci)i∈[m]

for a random secret s←R χs.

If χs is the uniform distribution over Zq, we simply write LWEn,m,q,χe.
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A typical distribution for the error is a discrete Gaussian distribution with an appropriate
standard deviation. There are several proposals for the distribution of the secret. While the
uniform distribution is the most standard one, it is shown that setting χs = χe, known as
the “normal form”, retains the hardness of LWE [Mic01, ACPS09]. We also note that the
learning with errors problem where the error is scaled by a constant α relatively prime to q
is as hard as the original definition [BV11b]. The “scaled” LWE distribution then returns
(a, b) with a←R Znq and b = 〈a, s〉+ αe.

2.5 Public-Key Encryption

In a public-key encryption, the encryptor holds a public key and encrypts a message such
that the holder of the corresponding secret key reconstructs the message plaintext.

Definition 2.10. A public-key encryption scheme (PKE) is a tuple of three algorithms PKE
= (Setup, Encrypt, Decrypt) such that:

• The key-generation algorithm KeyGen takes as input a security parameter 1κ. It outputs
a public key pk and a secret key sk.

• The encryption algorithm Encrypt takes as input the public key pk and a message m ∈
M. It outputs a ciphertext c.

• The decryption algorithm Decrypt takes as input the secret key sk and a ciphertext c. It
outputs a message m.

We require that for all security parameters κ, all tuples (pk, sk)←R KeyGen(1κ), all messages
m ∈M, we have m = Decrypt(sk,Encrypt(pk,m)) with probability negligibly close to 1.

Semantic security of a public-key encryption scheme against chosen-plaintext attacks is
defined as an experiment between the challenger and adversary as follows:

Experiment ExpIND-CPA-b

PKE,A (κ):

Setup: The challenger runs Setup on input 1κ. A is given pk.

Challenge: At some point, A comes up with two messages m0,m1 subject to the restriction
that |m0| = |m1|. A is given Encrypt(pk,mb).

Guess: A comes up with a guess b′. The output of the experiment is defined as b′.

The advantage of adversaryA in violating plaintext privacy of the PKE scheme is the absolute
value of the difference between the experiment for b = 0 and the experiment for b = 1.

AdvIND-CPA

PKE,A(κ) = | Pr [ExpIND-CPA-0

PKE,A (κ) = 1]− Pr [ExpIND-CPA-1

PKE,A (κ) = 1] | .

Definition 2.11 (IND-CPA Security). A public-key encryption system PKE = (Setup, En-
crypt, Decrypt) is indistinguishable under chosen-plaintext attacks or simply plaintext private, if
for all polynomial-time adversaries A we have that AdvIND-CPA

PKE,A(κ) is a negligible function in κ.
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3 Learning with Errors in the Exponent

In this section we define learning with errors in the exponent and explore relations to known
intractability problems.

3.1 Definition

For self-containment, the assumption is stated both as a search and decision problem over a
group G of order q, and exponents sampled from distributions χe, χs over Z. We demonstrate
the versatility and general utility of the assumption in Section 4.

Definition 3.1 (Learning with Errors in the Exponent). Let G be a group of order q where
g is a generator of G. Let n,m, q be integers and χe, χs be distributions over Z. For any
fixed vector s ∈ Znq , define the LWEE distribution LLWEE

G,n,q,χe to be the distribution over Gn×G
obtained such that one first draws vector a←R Znq uniformly, e←R χe and returns (ga, gb) ∈
Gn×G with b = 〈a, s〉+e. Let (gai , gbi) be samples from LLWEE

G,n,q,χe and ci be uniformly sampled
from Z∗q for 0 ≤ i < m = poly(κ).

• The Search Learning With Errors in the Exponent (SLWEEG,n,m,q,χe(χs)) problem is (t, ε)-
hard if any algorithm A, running in time t, upon input (gai , gbi)i∈[m], outputs s with
probability at most ε.

• The Decision Learning With Errors in the Exponent (DLWEEG,n,m,q,χe(χs)) problem is
(t, ε)-hard if

(gai , gbi)i∈[m] ≈(t,ε) (gai , gci)i∈[m]

for a random secret s ←R χns . If χs is the uniform distribution over Zq, we write
DLWEEG,n,m,q,χe.

We let AdvDLWEE/SLWEE

G,n,m,q,χe,χs(t) denote a bound on the value ε for which the decisional/search LWEE
problem is (t, ε)-hard.

One may interpret learning with errors in the exponent in two ways. One way is to
implant an error term from a distribution χe into the Diffie-Hellman exponent. Another way
to look at LWEE is as compressing an LWE instance within some group G of order q.

3.2 Relations to Group and Lattice Problems

To clarify the hardness of LWEE, we establish a connection to the representation and learning
with errors problem. We summarize our main results in following four propositions. Proofs
appear in Appendix C.

Proposition 3.2. If SRPG,χs,`,m is (t, ε)-hard in a cyclic group G of order q, then for any
distribution χe and any number of samples m > 0 SLWEEG,`,m,q,χe(χs) is (t′, ε)-hard with
t′ ≈ t.
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Proposition 3.3. If SLWEn,m,q,χe(χs) is (t, ε)-hard, then for any cyclic group G of order
q with known (or efficiently computable) generator SLWEEG,n,m,q,χe(χs) is (t′, ε)-hard with
t′ ≈ t.

Proposition 3.4. If DRPG,χs,`,m is (t, ε)-hard in a cyclic group G of order q, then for any
distribution χe and any number of samples m > 0 DLWEEG,`,m,χe(χs) is (t′, ε)-hard with
t′ ≈ t.

Proposition 3.5. If DLWEn,m,q,χe(χs) is (t, ε)-hard, then for any cyclic group G of order q
with known (or efficiently computable) generator DLWEEG,n,m,χe(χs) is (t′, ε)-hard with t′ ≈ t.

Discussion. The essence from above propositions is that there exist tight reductions
from the search (resp. decision) learning with errors in the exponent problem to either
the search (resp. decision) representation problem and the search (resp. decision) learning
with errors problem. This has several interesting property preserving implications. As a
corollary we infer that for appropriate parameter choices LWEE preserves the hardness and
robustness properties of the representation and/or learning with errors problem. Essentially
then LWEE boils down to the security of either of the two underlying problems. This way, the
cryptosystem can be instantiated to leverage leakage resistance and post-quantum hardness
thanks LWE [GKPV08, Reg05]. On the flip side, the cryptosystem may offer short instance
sizes through the underlying RP problem (when instantiated on elliptic curves). Of particular
interest for many emerging applications is the partnering of the two hardness assumptions.
One may choose parameters such that both RP and LWE hold. We call the case double-hard,
which appeals to provide in some sense hedged security.

3.3 On the Generic Hardness of LWEE

With Proposition 3.2-3.5 in our arsenal we conjecture LWEE to be harder than either of the
underlying RP or LWE problems. The argument is heuristic and based on what is known
about the hardness of each intractability problem. We refer to Appendix B for a recap and
concrete security parameters.

Fix parameters such that RP and LWE problem instances give κ bits security. The only
obvious known approach today to solve the LWEE instance is to first compute the discrete
logarithm of samples (gai , gbi) and then solve the LWE problem for samples (ai, bi). Note
that an adversary must solve n2 + n many discrete logarithms because the secret vector
s is information-theoretically hidden, if less than n samples of LWE are known. Solving
N := n2+n discrete logarithms in generic groups of order q takes time

√
2Nq while computing

a single discrete logarithm takes time
√
πq/2 [KS01, HMCD04].4 In fact, this bound is

proven to be optimal in the generic group model [Yun14]. Note, parameters for LWEE are
chosen such that computing a single discrete logarithm takes time 2κ. Hence, in order to
solve the LWEE instance for N = O(κ2), one requires time 2√

π

√
N · 2κ + 2κ > 2κ+2 log(κ).

This shows that generically the concrete instance of LWEE is logarithmically harder in the
security parameter κ.

4Solving N -many discrete logarithms is easier than applying N times a DL solver for a single instance.
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4 Public-Key Encryption from LWEE

In this section we give a construction of a provably secure public-key bit encryption scheme
with a reduction to the decisional learning with errors in the exponent assumption in the
standard model.

4.1 Our Construction

The scheme is parameterized by positive integers n, k, ` < k and Gaussian parameters σs, σe.

KeyGen: Sample prime numbers p′ and q′, such that p = 2kp′+ 1 and q = 2kq′+ 1 are prime.
Set N = pq and M = 2kp′q′. Sample s ←R Dn

σs , A ←R Zn×nM and x ←R Dn
σe and

compute b = A>s + x. Sample g ∈ JN \QRN of order M . The public key consists of
pk = (g, gA, gb, N), and the secret key of sk = (p, s).

Encrypt(pk, µ): To encrypt ` bits µ ∈ {0, 1, . . . 2` − 1} given public key pk choose r←R Dn
σs ,

e0 ←R Dn
σe and e1 ←R Dσe . Use gA, r and e0 to compute gAr+e0 , and gb, r and e1 to

compute g〈b,r〉+e1 . The ciphertext is c0, c1 with

c0 = gAr+e0 , c1 = g〈b,r〉+e1 · g2k−`µ .

Decrypt(sk, (c0, c1)): To decrypt the ciphertext (c0, c1) given secret key sk = (p, s), first
compute g〈s,Ar+e0〉 and then h = c1/g

〈s,Ar+e0〉. Run Algorithm 1 to synthesize v =
logg(h) mod 2k and return

⌊
v

2k−`−1

⌉
.

Algorithm 1:

Input: Generator g of a group with order p− 1 = 2kp′, p and k
Output: k least significant bits of logg(h)

begin
a = 0, B = 1;
for i ∈ {1, . . . , k} do

z ← L(h, p)2i mod p;
t← L(g, p)a2i mod p;
if z 6= t then

a← a+B;
end
B ← 2B;

end
return a

end

To show correctness of our construction we build upon two facts. First, Algorithm 1
synthesizes the k least significant bits of a discrete logarithm. The algorithm’s correctness
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for a modulus being a multiple of 2k is proven in [JL13, Section 3.2]. Second, noise in the
exponent does not overlap with the message. To this end, we need to bound the size of the
noise.

Lemma 4.1 (adapted from [LP11][Lemma 3.1]). Let c, T be positive integers such that

σs · σe ≤
π

c

T√
n ln(2/δ)

and

(
c · exp(

1− c2

2
)

)2n

≤ 2−40 .

Then, for x, s ←R Dn
σe , r, r0 ←R Dn

σe , e1 ←R Dσe, we have |〈x, r〉 − 〈s, e0〉+ e1| < T with
probability at least 1− δ − 2−40.

We are now ready to prove the following theorem.

Theorem 4.2. Let c, T be as in Lemma 4.1. Then, the decryption is correct with probability
at least 1− δ − 2−40.

Proof. To see that the above scheme decrypts properly the message µ, observe first that
canceling out the term g〈s,u〉 from c1 gives the encryption of µ with some small noise term
in the exponent. That is,

h = g〈b,r〉+e1+2k−`µ−〈s,Ar+e0〉 = g〈A
>s,r〉+〈x,r〉+e1−〈s,Ar〉−〈s,e0〉+2k−`µ = g〈x,r〉−〈s,e0〉+e1+2k−`µ.

As Algorithm 1 recovers the k least significant bits of

〈x, r〉 − 〈s, e0〉+ e1 + 2k−`µ mod p′q′2k,

we have
v = 〈x, r〉 − 〈s, e0〉+ e1 + 2k−`µ mod 2k.

Lemma 4.1 for T = 2k−`−1 shows that 〈x, r〉 − 〈s, e0〉+ e1 < 2k−`−1, and therefore⌊ v

2k−`

⌉
=

⌊
〈x, r〉 − 〈s, e0〉+ e1 + 2k−`µ mod 2k

2k−`

⌉
=

⌊
〈x, r〉 − 〈s, e0〉+ e1

2k−`

⌉
+ µ = µ

4.2 Security Analysis

We now proceed to the security analysis. In the forthcoming Section 4.3, we discuss concrete
parameter choices for different security levels

Theorem 4.3. Let G = 〈g〉 be the cyclic group generated by g. If DLWEEG,n,n+1,q,Dσe (Dσs) is
(t, ε)-hard, then the above cryptosystem is (t, 2ε)-indistinguishable against chosen plaintext
attacks.
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Proof. In a high level, our proof works as follows. Instead of showing IND-CPA security
via a direct argument we show that the distribution (pk, c0, c1) is indistinguishable from the
uniform distribution over (Gn×n × G2n+1). That is, a ciphertext (c0, c1) under public key
pk appears completely random to an adversary. This holds, in particular, in the IND-CPA
experiment when the adversary chooses the underlying plaintext. We prove the theorem via
a series of hybrid arguments, Hybrid0 to Hybrid2, where in each consecutive argument we
make some slight changes with the provision that the adversary notices the changes with
negligible probability only. In the following, we use the abbreviations u = Ar + e0 and
v = 〈b, r〉+ e1 + 2k−`µ.

Hybrid0: In this hybrid we consider the original distribution of the tuple

(pk, (c0, c1)) = (gA, gb, gu, gv).

Hybrid1: In this hybrid we modify the distribution and claim

(gA, gb, gu, gv) ≈c (gA
′
, gb

′
, gA

′r+e0 , g〈b
′·r〉+e1 · g2k−`µ)

for a uniformly sampled elements gA
′
, gb

′ ∈ Gn×n ×Gn. We argue that any successful
algorithm distinguishing between Hybrid0 and Hybrid1 can be easily turned into a suc-
cessful distinguisher B in the DLWEEG,n,n,q,Dσe (Dσs) problem. The DLWEE-adversary
B is given as challenge the tuple (gA, gb) and is asked to decide whether there exist
vectors s←R Dσs , x←R Dn

σe such that gb = gA
>s+x or gb was sampled uniformly from

Gn.

Let Pr[Hybridi(t)] denote the probability of any algorithm with runtime t to win the
IND-CPA experiment in hybrid i. Then, we have

Pr[Hybrid0(t)] ≤ Pr[Hybrid1(t)] + AdvDLWEE

G,n,n,q,Dσe ,Dσs (t) .

Hybrid2: In this hybrid we modify the distribution and claim

(gA
′
, gb

′
, gA

′r+e0 , g〈b
′·r〉+e1 · g2k−1µ) ≈c (gA

′′
, gb

′′
, gu

′
, gv

′ · g2k−1µ)

for a uniformly sampled elements gA
′′
, gb

′′
, gu

′
, gv

′ · gµ ∈ G(n+1)×n × Gn+1. We argue
that any successful algorithm distinguishing between Hybrid1 and Hybrid2 can be eas-
ily turned into a successful distinguisher B in the DLWEEG,n,n+1,q,Dσe (Dσs) problem.
Note that gb

′
, g〈b

′·r〉+e1 is an additional sample from the LWEE distribution from which
gA
′
, gA

′r+e0 is sampled.

We have
Pr[Hybrid1(t)] ≤ Pr[Hybrid2(t)] + AdvDLWEE

G,n,n+1,q,Dσe ,Dσs
(t) .

Note that now all exponents are uniformly distributed, and, in particular, independent
of µ and thus, independent of b in the IND-CPA game. Hence, any algorithm has in
Hybrid2 exactly a success probability of 1/2.

This completes the proof of semantic security.
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4.3 Candidate Instantiations of our Encryption Scheme

We give three possible instantiation to derive a system with short key sizes, post-quantum
security or double hardness. Throughout this section we instantiate our scheme such that
the encryption scheme from Section 4.1 encrypts only a single bit. Wlog, parameters can
easily be upscaled to many bits.

The Classical Way. We obtain the shortest key and ciphertext sizes when instantiating
LWEE parameters such that the underlying DRP is intractable, and neglecting the hardness
of the underlying LWE.5 In Appendix B.1 we recall some groups where we believe DRP is
hard to solve. Our encryption scheme works in the group JN := {x ∈ ZN : J(x,N) = 1} for
N = pq with p, q being k-safe primes. In fact, we can even take safe primes p, q (i.e., k = 1)
since we do not need any noise in the exponent if we neglect the underlying LWE hardness.
Thus, we embed the message to the least significant bit in the exponent. For this reason, we
can sample g ←R JN/QRN where 〈g〉 has order 2p′q′. Since the LWE instance within LWEE
is not an issue here we select n = m = 1, σs =∞ and σe = 0.

We obtain 80-bit security for the underlying DRP problem if we choose safe primes p and
q such that log p = log q = 565 (see Table 3 in Appendix B.1). Table 1 lists possible key
sizes for our encryption scheme. Recall that the public key consists of pk = (g, gA, gb, k,N)
(i.e., 4 group elements if we fix k = 1) and the secret key of sk = (p, s).

Sizes / Security ≈ 80-bit ≈ 128-bit ≈ 256-bit

public-key size 0.565 kbytes 1.500 kbytes 7.500 kbytes
secret-key size 0.212 kbytes 0.563 kbytes 2.813 kbytes
ciphertext size 0.283 kbytes 0.750 kbytes 3.750 kbytes

Table 1: Key sizes for our encryption scheme basing security on DRP.

The Post-Quantum Way. Here we give example instantiations of our encryption scheme
when it is based on a presumably quantum-resistant LWEE assumption. That is, we select
parameters such that the underlying LWE assumption is intractable without relying on the
hardness of DRP. For this, we modify the scheme slightly by choosing fixed values for p′ and
q′ instead of sampling. A good choice is k = 15, since it allows to choose p′ = 2 and q′ = 5,
which are very small prime numbers such that 2kp′+ 1 and 2kq′+ 1 are prime. For the LWE
modulus, this leads to M = 2kp′q′ = 327680. Like Lindner and Peikert [LP11], we choose
the Gaussian parameter such that the probability of decoding errors is bounded by 1%. We
choose furthermore the same parameter for error and secret distribution (i.e. σs = σe = σ),
since a standard argument reduces LWE with arbitrary secret to LWE with secret chosen
according to the error distribution. For this choice of k, p′ and q′, we obtain 80-bit security

5Admittedly the keys are only shorter for 80-bit security. This is the case, as there exists subexponential
attacks against DL in our group.
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by choosing n = 240 and σ = 33.98. Table 2 lists the key sizes when our encryption scheme
is instantiated with parameters corresponding to Table 4 in Appendix B.2.

Sizes / Security ≈ 80-bit ≈ 128-bit ≈ 256-bit

public-key size 235 kbytes 417 kbytes 1233 kbytes
secret-key size 0.976 kbytes 1.302 kbytes 2.237 kbytes
ciphertext size 0.980 kbytes 1.306 kbytes 2.241 kbytes

Table 2: Key sizes for our encryption scheme basing security on LWE.

The Hardest Way (Double-Hardness). The most secure instantiation of our encryp-
tion is such that even if one of the problems DRP or LWE is efficiently solvable at some
point, our encryption scheme remains semantically secure. Selecting parameters for double
hardness, however, is non-trivial.

To select appropriate parameters for the case of double hardness, we apply the following
approach: For a given security level (say κ = 80), we select N such that the Number
Field Sieve needs at least 2κ operations to factor N . Following Table 3, we choose logN =
1130. Since factoring N must also be hard for McKee-Pinch’s algorithm, which works well
when (p-1) and (q-1) share common factor, k must be chosen such that N1/42−k ≥ 2κ,

i.e. k ≤ log(N)
4
− κ. This leads to k = 203. Given N and k, we can calculate the sizes

of the primes log(p′) ≈ log(q′) ≈ 362 and log(p) ≈ log(q) ≈ 565 and the LWE modulus
log(M) ≈ 927. Taking n = 67000 and σ = 297 from Table 5, Lemma 4.1 shows that the
algorithm decrypts correctly with high probability. Other security levels κ (e.g., κ = 128
and κ = 256) can be achieved with the LWE instances depicted in Table 5 in Appendix B.2.
We note that extrapolation to such large dimensions hardly give a good estimation for the
hardness of LWE. Hence, one has to take these parameters for double hardness with care.
The corresponding key and ciphertext sizes of our scheme are admittedly very large and
unpractical, but they shall serve as a feasibility of double hardness in the first place.
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A Justifying the DRP assumption in the Generic Group

Model

To gain confidence about the decisional representation problem we justify the assumption in
the generic group model [Sho97b]. We emphasize however that proofs in the generic group
model have to be considered with much care. They do not provide a lower complexity bound
in any specific group. It is also known that there exist operations that are easy to compute
when instantiated in a specific group, but they are hard in the generic group [JS13]. To
sum up, proofs in the generic group model should be treated as proofs in related idealized,
but imperfect models, such as the random oracle or ideal cipher model: They give stronger
confidence than no security argument at all.

A.1 Complexity Lower Bound

In the generic model, elements in G are encodings of random strings. Algorithms are not
given “actual” representations of the group elements, but rather operate via their “handles”.
Admissible group operations are performed by oracles that maintain a list of handles and
encodings. Note that this formalism allows an algorithm for testing equality, since two
elements are identical if they have the same handle. Two oracles perform operations between
the elements, computing the group actions (multiplication and exponentiation) in G. We
also provide an oracle which allows an algorithm to make use of a (` − 1)-DRP solver. We
show thereby that the `-decisional representation assumption becomes strictly weaker by
increasing `. For sake of simplicity, in the proof below we assume that m = 1. We note
that one can easily extend it to the case where multiple samples (m > 1) are given to an
adversary.

Let ξ : Z∗q → {0, 1}∗ be the encodings of elements in G which maps all X ∈ Z∗q to

the string representation ξ(X) of gX ∈ G. Let {ai}`i=1
r←− Z∗q, {xi}`i=1

r←− Z∗q, c
r←− Z∗q,

Tb = g
∑
i aixi , T1−b = gc for b

r←− {0, 1}. We show that no generic algorithms A given
g, g{ai}

`
i=1 , g{xi}

`
i=1 , T0, T1 making at most q oracle queries can guess the value of b with prob-

ability greater that 1/2 + O((q + 2` + 2)2/p) where p is the group order. Note that g{ai}

captures the role of the generator gi in the `-decisional representation problem.
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Theorem A.1. Let A be an algorithm that solves the `-Decisional Representation Problem
in a group of order p in the generic group model while making at most q oracle queries.

Then, its success probability is upper bounded by 1
2

+ (q+2`+2)2

p
.

Proof. Assume that ξ is a random encoding function for G where G is of prime order p. We
show that if A makes at most q oracle queries, then

Pr

A( p, ξ(1), {ξ(ai)}`i=1, {ξ(xi)}`i=1,
ξ(t0), ξ(t1)

)
= b

∣∣∣∣∣∣
{ai}`i=1, {xi}`i=1

r←− Zp,
c

r←− Zp, b
r←− {0, 1},

tb =
∑

i aixi, t1−b = c

 ≤ 1

2
+

(q + 2`+ 2)2

p
.

We will simulate the view of A. The simulation proceeds as follows. We maintain a
list of pairs, L = {(Fk, ξk) : k = 0, . . . , τ1 − 1}, under the invariant that at the τ th-step, it
holds that τ1 = τ + (2` + 3). Informally, list L contains the handles and encodings of the
group elements during the game. More precisely, we keep track of elements handled by A as
polynomials Fk in the commutative ring R = Zp[A1, . . . , A`, X1, . . . , X`, C] ; the ξk ∈ {0, 1}∗
are random encodings of the polynomials.

We initialize at step τ = 0 the list L by setting F0 = 1, {Fi = Ai}`i=1, {F`+i = Xi}`i=1,
F2`+1 = T0, and F2`+2 = T1. Note that all polynomials except Tb are of degree at most 1.
For the corresponding encoding ξk we choose distinct strings from {0, 1}∗. We assume that
A makes only queries on strings previously retrieved from her oracles, since we can make
them arbitrarily hard to guess. We then begin the game by giving A the encodings ξk for
k ∈ [1, 2`+ 2] while keeping the corresponding internal handles Fk secret. The oracle queries
as simulated as follows.

Multiplication/Division. A query consists of two operands ξi, ξj with 1 ≤ i, j ≤ τ1 and
a flag bit interpreted as multiplication or division of the two group elements. Let
τ ′1 = τ1 + 1. To perform the group operation, perform the polynomial addition or
subtraction Fτ ′1 = Fi±Fj depending on whether multiplication or division is requested.
If the result Fτ ′1 = Fk for some k ≤ τ1 matches a polynomial already stored in the list L,
then set ξτ ′1 ← ξk. Otherwise, sample a fresh random string from {0, 1}∗\{ξ1, . . . , ξτ1}.
Finally, add (Fτ ′1 , ξτ ′1) to list L.

Exponentiation. A query consists of one operand ξi with i ∈ [τ1] and an integer r ∈ Zp
interpreted as raising the group element behind ξi to the power of r. Let τ ′1 = τ1 + 1.
To perform the group operation, perform a scalar multiplication to the polynomial Fi,
i.e., Fτ ′1 = Fi · r. If the result Fτ ′1 = Fk for some k ≤ τ1 matches a polynomial already
stored in the list L, then set ξτ ′1 ← ξk. Otherwise, sample a fresh random string from
{0, 1}∗\{ξ1, . . . , ξτ1}. Finally, add (Fτ ′1 , ξτ ′1) to list L.

Decide `− 1-DRP. A query consists of 2 · (`− 1) + 1 encodings ξi1 , . . . ξi2·(`−1)+1
with ij < τ1

for all j. The oracle checks whether the group elements for those encoding represent a
genuine (`− 1)-DRP tuple. To this end, check whether Fi2·(`−1)+1

=
∑`−1

j=1 Fij · Fij+`−1
.

If so, return 1; else return 0.
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After at most q queries A eventually outputs a guess b′. At this point, we select random
a1, . . . , a`, x1, . . . , x`, c

r←− Zp and set tb =
∑

i aixi and t1−b = c. For i = 1, . . . , `, we set
Ai = ai, Xi = xi, T0 = t0 and T1 = t1. It is easy to see that the simulation is perfect unless
the chosen random values for the variables A1, . . . , A`, X1, . . . , X`, C result in an equality
relation between intermediate values that is not an equality of polynomials. In other words,
the simulation is perfect unless for some i, j the following holds:

Fi(a1, . . . , a`, x1, . . . , x`, c)− Fj(a1, . . . , a`, x1, . . . , x`, c) = 0 ∧ Fi 6= Fj (1)

We call the adversary A is successful, if she finds such a collision or if she guesses correctly
b. Note that the random variables are initialized by values all independent of each other
except Tb, which takes the value

∑
i aixi. Hence, without a collision as described above, the

probability to guess b is (at most) 1/2.
We now bound the probability that such a collision occurs, denoted by the event fail.

When event fail occurs, then our responses to A’s queries deviate from the real oracles’
responses when the input tuple is derived from a1, . . . , a`, x1, . . . , x`, c. We need to argue
that the adversary is unable to engineer the above equality, so that they can occur only due
to an unfortunate choice of a1, . . . , a`, x1, . . . , x`, c. Note that only Tb =

∑
i aixi is dependent

on the other values. Thus, an independent collision can be caused only if A manages to
produce a polynomial that is a multiple of

∑
iAiXi, say α

∑
iAiXi for some α ∈ Zp.

First, observe that the adversary can manipulate the polynomials Fk through additions
and subtractions (as a result of the interplay with the multiplication oracle); thus, the degree
of resulting polynomials remain equal. The oracle for exponentiation does not increase the
degree either since the group elements are raised by scalars. Hence, all polynomials remain
of same degree through the oracles. Note that the (` − 1)-DRP oracle does not give the
adversary any new encodings.

Given the available operations, the adversary is unable to generate a polynomial Fk out
of given polynomials F1, . . . , F2` which contains at least one of the monomials αAiXi for
any α ∈ Zp since all those polynomials are of degree 1. Unfortunately, this is necessary to
synthesize a multiple of Tb. Since the polynomial difference in (1) are linear combinations
of the arguments, it is easy to see that the adversary will not cause to trivially cancel out
identical multiples of monomials αAiXi.

It remains to bound the probability that a random choice of values a1, . . . , a`, x1, . . . , x`, c
will cause two distinct polynomials Fi, Fj, for i 6= j, to have the same image. All polynomials
Fk have degree at most 1. Using the Schwartz-Zippel Lemma, the probability that Fi() = Fj()
is 1/p over the choice of values. Since the list is initially set up with 2`+ 2 elements and the
adversary makes at most q oracle queries, a sum over all pairs of entries gives a lower bound
on the success probability:

Pr[fail] ≤
(
q + 2`+ 2

2

)
1

p
≤ (q + 2`+ 2)2

p
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B Hardness of Assumptions

Here, we review the decisional representation and learning with errors problem. Our aim
is to give empirical arguments of the hardness of learning with errors in the exponent and
justify the parameter choices in Section 4.3.

B.1 Hardness of the Decisional Representation Problem

Little is known about the decisional representation problem. Proposition 2.6 shows that
(` + 1)-DRP for any ` is generically at least as hard as the `-DRP problem. As `-DRP for
` = 1 coincides with DDH, we lay our argumentation on the well-studied decisional Diffie-
Hellman problem.

Decisional Diffie-Hellman. We start by recalling groups in which the DDH problem is
believed to be instractable. Boneh gives several examples in [Bon98]. Among them are the
following ones:

1. In the cyclic subgroup QR(p) ⊂ Z∗p of quadratic residues in Z∗p, where p = 2p′+ 1 with
p and p′ both prime, DDH is believed to be intractable.

2. Let N = pq for primes p, q, (p−1)
2
, (q−1)

2
. The cyclic subgroup T in Z∗N of non-prime

order (p − 1)(q − 1)/2 is believed to be a DDH-hard group. The same is claimed for
subgroup QRN ⊂ Z∗N of order (p− 1)(q − 1)/4, which even holds if p, q is known, and
thus, the hardness of DDH is independent of the factorization [KY05].

3. The elliptic curve Ea,b/Fp where |Ea,b| and p are prime is believed to resist against
DDH attacks.

Note that one might believe that the multiplicative group Z∗p with prime p is a safe choice.
However, this group has an even order which is also publicly known. Hence, one can evaluate
the Legendre symbol on ga and gb and compare the result with the given challenge gc. This
gives a significant non-negligible advantage to a distinguisher. Moreover, the group of signed
quadratic residues QR+

N := {|x| : x ∈ QRN}, introduced in [FS97] and revisited in [HK09]
is publicly recognizable and thus non DDH-hard.

Trapdoor Decisional Diffie-Hellman. While many cryptographic applications can be
instantiated in the above groups, our encryption scheme in Section 4 requires a special
DDH-hard group where DDH is easy given a secret trapdoor. The requirement is reminis-
cent of trapdoor decisional Diffie-Hellman (TDDH) groups, introduced by Dent and Gal-
braith [DG06] and studied further by Seurin [Seu13]. Informally, TDDH groups satisfy two
properties: (i) the DDH problem is assumed to be hard without a trapdoor, (ii) DDH becomes
easy but CDH remains hard given a trapdoor. Thus, anyone in possession of the trapdoor
is able to efficiently solve the DDH problem. We remark that for our construction groups
satisfying property (i) suffice, and we do not necessarily require hardness of CDH.

Looking at TDDH groups, there are several candidates:
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1. Dent and Galbraith [DG06] gave two constructions based on hidden pairings. Here, the
trapdoor permits to compute pairings on a specific elliptic curve what is assumed to be
infeasible without the trapdoor. One such construction of a TDDH is as follows. Let
N = pq be an Blum integer, i.e., the product of two primes p ≡ q ≡ 3 mod 4, where
there exists two large primes p′ and q′ such that p′|(p + 1) and q′|(q + 1). The order
of an elliptic curve E : y2 = x3 + x over the ring ZN is |E(ZN)| = (p+ 1)(q + 1). The
group E(ZN) with the generator point P = (xP , yP ) ∈ E(ZN) of order p′q′ is assumed
DDH-hard. However, if one is given the trapdoor τ = (p, p′, q, q′), one can solve the
DDH problem by the Chinese Remainder Theorem. A tuple (A,B,C) ∈ E(ZN)3 is a
true DDH tuple iff the elements reduce modulo p and q to valid tuples in the subcurve
E(Fp) and E(Fq). Those two checks can be performed with the knowledge of the
trapdoor using Weil or Tate pairing [MOV93, FMR99]. In fact, given the trapdoor
one can also efficiently test subgroup memberships. Dent and Galbraith [DG06] also
consider an elliptic curve E over F2mn with mn being odd. Again, a hidden pairing
allows one to solve DDH with the knowledge of a trapdoor.

2. Seurin [Seu13] continues the study and identifies additional trapdoor groups. Let
N = pq where p, q are safe primes, i.e., p and q are of the form p = 2p′ + 1 and
q = 2q′ + 1 where p′, q′ are prime. The DDH problem in the group QRN2 of quadratic
residues modulo N2 is hard given the description of Z∗N if factoring N is hard. The
use of a trapdoor τ = (p, q) which is the factorization of N enables to solve the DDH
efficiently. QRN2 is a cyclic group of order ord(QRN2) = Np′q′.

3. Let N be as before. The subgroup JN of Z∗N consists of all elements x ∈ Z∗N such
that J(x,N) = 1. This subgroup has order ord(JN) = φ(N)/2 = 2p′q′. Moreover,
JN is cyclic because all prime factors of φ(N)/4 = p′q′ are (pairwise) distinct [HK09].
Given the description of JN with generator g ∈ JN , it is assumed one cannot solve
the DDH problem in JN without knowledge of the factorization of N . The trapdoor
here is thus defined as τ = (p, q) or τ = ord(JN). The assumption known as the
quadratic residues problem appeared first in the security proof of the Goldwasser and
Micali cryptosystem [GM82]. Joye and Libert [JL13] generalize the Goldwasser-Micali
encryption scheme to groups JN where p and q are k-quasi-safe-primes. That is, p
(resp. q) are of the form p = 2kp′+ 1 (resp. q = 2kq′+ 1) where p, p′, q, q′ are all prime.
They assume that without knowing the factorization of N , random elements of QRN

are computationally indistinguishable from elements in JN/QRN . This assumption is
believed to hold for the group even when the distinguisher is given k.

Parameters. For all the above groups, there exists no specialized DDH distinguisher. In
fact, the best algorithms to solve the DDH problem is to solve the DL problem in that group.
Some groups above are assumed to be hard only if also factoring a composite number N = pq
of two large primes is hard or the quadratic residue assumption holds.

In Table 3 we give instantiations for four of the above groups for different security levels.
We select
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Security / Group
Ea,b/Fp QR(p) ⊂ Z∗p JN ⊂ Z∗N JN ⊂ Z∗N

a, b←R Fp p safe prime p, q safe primes p, q k-safe-primes

80-bit log p ≈ 160 log p ≈ 1130
logN = 1130 logN = 1130 with k < 202

log p ≈ log q ≥ 160 log p ≈ log q ≥ 565

128-bit log p ≈ 256 log p ≈ 3000
logN = 3000 logN = 3000 with k < 622

log p ≈ log q ≥ 256 log p ≈ log q ≥ 1500

256-bit log p ≈ 512 log p ≈ 15000
logN = 15000 logN = 15000 with k < 3494

log p ≈ log q ≥ 512 log p ≈ log q ≥ 7500

Table 3: Example instantiation of some DDH-hard groups for different security levels

(a) the elliptic curve Ea,b/Fp where |Ea,b| and p are prime,

(b) the subgroup QR(p) of quadratic residues in Z∗p, where p = 2p′ + 1 with p and p′ both
prime,

(c) the subgroup JN of Z∗N defined as {x ∈ Z∗N | J(x,N) = 1} where N = pq and p, q being
safe primes, and

(d) the subgroup JN of Z∗N defined as {x ∈ Z∗N | J(x,N) = 1} where N = pq and p, q being
k-quasi-safe-primes,

where the latter subgroup is particularly important for the instantiation of our encryp-
tion scheme. Note that the remaining groups are appealing to instantiate LWEE in other
applications.

When instantiating the group in finite fields or in elliptic curves, one chooses the Number
Field Sieve (NFS) algorithm (for finite fields such as in (b)) or the Pohlig-Hellman [PH78]
(and resp. Pollard-Rho [Pol78]) algorithm (in a generic group such as in (a)). For the groups
(c) and (d) we use the results from [Mil75, Bac84]. Bach [Bac84] and Miller [Mil75] show that
if there exists a PPT algorithm A solving the DL problem for a composite modulus on all
inputs, then a PPT algorithm exists which solves the Factoring problem with arbitrarily high
probability. Hence, we demand that factoring is hard for which the best algorithm is NFS,
too. If we consider the computation of discrete logarithms in subgroups T (of order p) of a
multiplicative group G (of order q), DL in T is hard if the NFS attack in G and the generic
Pollard-Rho attack for groups of order |T | = p is hard. Moreover, in the group JN in (d) we
have that (p−1) and (q−1) share common factors, namely 2k, for which one can apply McKee
and Pinch’s algorithm [MP98], factoring N = pq in essentially O(N1/4/2k) operations. This
is also observed in [Gir91, LL95, JL13]. Furthermore, the Coppersmith algorithm [Cop96,
Cop97] (based on LLL) factors N efficiently if k > 1

2
min(log2 p, log2 q). For this reason we

pick primes p, q of similar bit length and hinder both attack algorithms. NFS [CS06] has the
running time Lp[1/3,

3
√

64/9] for modulus p where the complexity function Lp[t, s] is defined

by Lp[t, s] = es(1+o(1))(ln p)t(ln ln p)1−t . The Pohlig-Hellman [PH78] and Pollard-Rho [Pol78]
algorithms take time roughly

√
p for computing individual discrete logarithms.

When estimating security parameters we take previously known attacks and timings into
account by saying that if computing discrete logarithms in groups of order p takes time t, then
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we expect that computing DLs in groups of order p′ takes time roughly t′ ≈ t
Lp′ [1/3,

3
√

64/9]

Lp[1/3, 3
√

64/9]
.

If the difference between p′ and p is not too large, the term o(1) goes to zero. A similar
strategy has been recommended in [LV00].

We take as reference the 2009 factorization of a 768-bit modulus, which offers roughly 66
security bits (t ≈ 266). We stress that the parameters suggested in Table 3 should be handled
with care. If one selects parameters for cryptographic constructions based on the hardness
of DRP or LWEE, respectively, then the tightness of security reduction to the underlying
problem takes an important role. Assume the security reduction says that if an adversary A
breaks the security of the cryptographic scheme in time t with probability ε, then one can
solve the DRPG,` problem in time t′ with probability ε′. In order that the scheme offers κ
security bits, the parameters have to be chosen such that (t′ε)/(tε) ≤ 2κ. Thus, one has to
compensate a non-tight reduction by strengthening the underlying hardness assumption.

B.2 Hardness of the Learning with Errors Problem

Determining the hardness of lattice-based problems is a delicate issue. There are several
reasons for this. First, lattice problem instances typically are defined over multiple param-
eters. Thus solvers rather depend on the particular configuration of the problem instance.
Second, there are few theoretical results known about the behavior and running time of
lattice algorithms.

In this work, we review Lindner and Peikert’s “nearest-plane approach” [LP11] (revisited
and improved by Liu and Nguyen [LN13]) which is considered these days as the status-quo.

Nearest-Plane Approach. Linder-Peikert’s attack is a generalizes Babai’s nearest plane
algorithm [Bab86]. The attack consists of two steps: (a) a basis reduction to precompute
a good basis of a lattice defined by the matrix A, and (b) a probabilistic search algorithm
with a success probability related to the quality of the basis. Lindner-Peikert’s approach
inherently allows a trade-off between the time spend on the basis reduction and the search
algorithm. That trade-off is controlled by the Hermite factor δ, which measures the quality of
the basis. We say that a basis B = {b0, . . . , bm−1} of an m-dimensional lattice Λ has Hermite
factor δ, if ‖b0‖ = δm det(Λ)1/m. For a given probability p and Hermite factor δ, one can
compute the effort of the search algorithm needed to succeed at least with success p. Lindner
and Peikert claim in [LP11] that it takes about 2−16 seconds to perform one ”search-step” (for
readers familiar with the nearest-plane algorithm: to search one parallelepiped spanned by
the Gram-Schmidt orthogonalized basis). This allows us to estimate the running time of the
search step, given p and δ. It is folklore that the running time of a basis reduction depends
mainly on the desired Hermite factor of the reduced basis. The original paper considers
the BKZ basis-reduction algorithm [SE94]. There have however been several improvements
to BKZ. Most improvements are summarized in the remarkable work by Chen and Nguyen
[CN11]. The BKZ 2.0 algorithm comes together with a simulation algorithm that can be
used to predict its behavior. Albrecht et al. [AFG13] used the results of [LN13] to give an
easy formula that roughly estimates the running time t necessary to compute a basis with
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given Hermite factor. They conjecture that the time t can be approximated by

log2(t) = 0.009/ log2
2 δ0 − 27.

Parameters. Since we are now able to estimate the total running time of the attack,
given the desired success probability and Hermite factor, we can use a numerical method
to obtain the best parameters and thereby the expected running time necessary to break
the LWE instance. Given that the computers used for these experiments execute about 210

operations per second, this can be used to estimate the bit security of LWE instances. Table 4
summarizes the results.

Security / Parameters n modulus σ

80-bit 240 327680 33.98
128-bit 320 327680 32.01
256-bit 550 327680 28.55

Table 4: Example instantiation of LWE for different security levels

Exponential Gap Between Error and Modulus. For our double hardness instantia-
tion, we have to estimate the security of LWE instances with an exponential gap between
the error size and the modulus. The hardness of LWE with exponentially small gap between
error and modulus is not well understood today. Brakerski and Vaikuntanathan [BV11b]
say that if the error is a 1/2n

ε
fraction of the modulus N , the best known algorithm runs in

time approximately 2n
1−ε

. With the methodology, we can perform a binary search for the
smallest dimension that suits our needs. Table 5 gives LWE instances that are suitable for
double hardness instantiation of our scheme.

Security / Parameters n log(modulus) log(σ)

80-bit 67000 927 97
128-bit 270000 2378 306
256-bit 2500000 11506 1741

Table 5: Example instantiation of LWE for different security levels

C Proofs

C.1 Proposition 2.6

Proof. Suppose there exists an adversary A which solves the DRPG,χ,`+1,m problem in time
t with probability ε. We show that in this case, there exists an adversary B with black-box
access to A which solves the DRPG,χ,`,m problem with probability ε.
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Adversary B is given as challenge the tuple (g, gM, gx, gh) ∈ G×Gm×` ×G` ×Gm. She
invokes adversary A with input the group G and its generator g. Adversary A expects as
challenge a tuple (g, gM, gx, gh) ∈ G × Gm×`+1 × G`+1 × Gm. To this end, B samples x`+1

according distribution χ, and a = (a1, . . . , am) uniformly from Zmq . Adversary B provides

A with the challenge (g, gM
′
, gx

′
, gh

′
) where gM

′
= (gM

′
, ga), gx

′
= (gx, gx`+1), and gh

′
i =

ghi · gaix`+1 for i ∈ [m]. Note that gx`+1 is distributed as expected as we choose x`+1 ←R χ.
Moreover, ga is uniformly distributed in Gm. If the DRPG,χ,`,m tuples are such that gh =∏`

i=1 g
xi
i , then gh

′
in the DRPG,χ,`+1,m distribution is computed correctly. This follows from

the fact that for all i ∈ [m] we have

gh
′
= gh · (ga)x`+1 = gMx · (ga)x`+1 = gM

′x′

given gh = gMx. In case gh is a random group element, so is gh
′
, since a, x`+1 are sampled

independently of h. Hence, B outputs in her game what A guesses, and wins with A’s
advantage ε. The running time of B is essentially the same as A merely adding the time to
sample O(m) uniform group elements.

C.2 Proposition 2.8

Proof. We prove this theorem by contradiction. We assume that RHG,m,m+1,m+1,2`+1 is (t, ε)-
hard and DRPG,χ,`,m is (t′, ε′)-hard. However, we assume that there is an algorithm A which
solves DRPG,χ,`,m+1 in time t with probability ε′′ > (1− ε)−1ε′.

We then build an algorithm B with black-box access to A which solves the DRPG,χ,`,m
problem in time t′ ≈ t with probability larger than ε′ as follows. The algorithm B is given a
DRP instance (g, gM, gx, gh) for uniform matrix M←R Zm×`q and has to decide whether gh

equals gMx or was chosen uniformly from Gm. Algorithm B now prepares a DRP instance
for A by adding a row to the matrix gM and vector gh as follows. It chooses a random index
0 ≤ i ≤ m and samples a random coefficient vector y ∈ Zmq . Let u = gy

>M = gy1m1 ·. . .·gymmm

and v = g〈hi,y〉. Create the matrix gM
′ ∈ G(m+1)×` by inserting u before the ith column of

gM, and h′ ∈ Gm+1 by inserting v before the ith entry of h. Now, B invokes A upon input
(g, gM

′
, gx, gh

′
).

At this point, we stress that A will accept the input and work properly even if (g, gM
′
, gx,

gh
′
) is of different rank. In fact, an honestly generated DRP instance for the DRPG,χ,`,m+1

problem will have a rank min(`,m + 1) matrix (with overwhelming probability), while our
input matrix has rank min(`,m) (with overwhelming probability). Since by assumption
there is no algorithm that can distinguish those two inputs (matrices) in time t with a
probability greater than ε, algorithm A, which also runs in time t, must work for the given
input with probability greater than (1 − ε). Algorithm A returns a guess b ∈ {0, 1} for its
challenge which in turn constitutes the guess of B for its challenge instance (g, gM, gx, gh).
Since A successfully wins its challenge in time t with probability ε′′, we have constructed
an algorithm B which breaks DRPG,χ,`,m in time t′ ≈ t with probability (1 − ε)ε′′ > ε′.
This leads to a contradiction to DRPG,χ,`,m being (t′, ε′)-hard. Hence, DRPG,χ,`,m+1 must be
(t′, (1− ε)−1ε′)-hard.
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C.3 Proposition 3.2

Proof. Suppose there exists an adversary A which solves the SLWEEG,`,m,q,χe(χs) problem
in time t with probability ε. We show that in this case, there exists an adversary B with
black-box access to A which solves the SRPG,χs,`,m problem in time ≈ t with probability ε.

Adversary B is given as challenge a SRP instance (g, gM, gx, gMx) and is asked for a
vector x ∈ Z`q such that gMx′ = gMx. Adversary B invokes A with input the group G
and its generator g. Whenever A asks for the i-th sample from the LLWEE

G,`,m,χe distribution,

adversary B returns the i-th row of gM and the i-th element of gMx with some noise ei ← χe,
i.e., gai := gM[i] and gbi := g(Mx)i ·gei . Note that (gai , gbi) as such corresponds to the LLWEE

G,`,m,χe
distribution. The vector gai is uniformly distributed as the input gM for SRP is uniformly
distributed. Moreover, we have

gbi = g(Mx)i · gei = g〈M[i],x〉+ei .

Note that B can provide A enough samples since both algorithms get m samples from their
respective distributions.

Eventually, adversary A will output an element s ∈ Z`q such that for all i ∈ {1, . . . ,m} it

holds g〈ai,s〉+e
′
i = gbi where e′i ←R χe. Now, since there can exist only a single vector s which

can fulfill the equation g〈ai,s〉+e
′
i = gbi for errors e′ ←R χe, we must have s = x = (x1, . . . , x`).

Hence, B outputs s as the solution vector for her instance.
The running time of B is almost identical to A, and the success probability is equal, too.

The proposition follows accordingly.

C.4 Proposition 3.3

Proof. Suppose there exists an adversary A which solves the SLWEEG,n,m,χe(χs) problem in
time t with probability ε. We show that in this case, there exists an adversary B with black-
box access to A which solves the SLWEn,m,q,χe(χs) problem in time ≈ t with probability ε.

Adversary B is allowed to ask for samples (ai, bi) which are distributed either according
to the LLWE

n,m,q,χe distribution or distributed uniformly in (Gn × G). Adversary B invokes
adversary A with input G (the group of order q) and samples a random generator g for that
group. When A asks for i-th sample (gai , gbi), B asks for samples (ai, bi) in his own game
and returns to A the tuple (gai , gbi).

Eventually, A outputs the secret s, which B forwards to his own game as output. Time
complexity of B is the time required by A plus taking exponentiations, which is a negligible
cost.

C.5 Proposition 3.4

Proof. Suppose there exists an adversary A which solves the DLWEEG,`,m,χe(χs) problem
in time t with probability ε. We show that in this case, there exists an adversary B with
black-box access to A which solves the DRPG,χs,`,m problem in time ≈ t with probability ε.
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Adversary B is given as challenge a DRP instance (g, gM, gx, gh) and has to decide whether
h equals Mx or was chosen uniformly at random from Zmq . Adversary B invokes A with
input the group G. Whenever A asks for the i-th sample from the LLWEE

G,`,m,χe distribution,

adversary B returns the i-th row of gM and the i-th element of gh with some noise ei ← χe,
i.e., gai := gM[i] and gbi := ghi · gei . Note that (gai , gbi) as such corresponds to the LLWEE

G,`,m,χe
distribution. The vector gai is uniformly distributed as the input gM for DRP is uniformly
distributed. Moreover, we have

gbi = ghi · gei = g(Mx)i · gei = g〈M[i],x〉+ei

if gh = gMx. Otherwise, gbi is distributed uniformly in G since h is. Note that B can provide
A enough samples since both algorithms get m samples from their respective distributions.

Hence, when adversary A outputs a bit d, adversary B outputs d in her decisional rep-
resentation problem. If A guessed correctly, so does B. The running time of B is almost
identical to A, and the success probability is equal, too. The proposition follows accordingly.

C.6 Proposition 3.5

Proof. Suppose there exists an adversary A which solves the DLWEEG,n,m,χe(χs) problem in
time t with probability ε. We show that in this case, there exists an adversary B with black-
box access to A which solves the LWEn,m,q,χe(χs) problem in time ≈ t with probability ε.

Adversary B is allowed to ask for samples (ai, bi) which are distributed either according
to the LLWE

n,m,q,χe distribution or distributed uniformly in (Gn × G). Adversary B invokes
adversary A with input G (the group of order q) and samples a random generator g for that
group. When A asks for i-th sample (gai , gbi), B asks for samples (ai, bi) in his own game
and returns to A the tuple (gai , gbi).

Eventually, A outputs a bit b, which B forwards to his own game as output. It is easy
to verify that the samples (ai, bi) are distributed according to LLWE

n,m,q,χe if and only if the
samples (gai , gbi) are distributed according to LLWEE

G,n,m,χe . Hence, B wins whenever A does
while having approximately the same running time ≈ t.
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