
Remarks on Quantum Modular Exponentiation and

Some Experimental Demonstrations of Shor’s Algorithm

Zhengjun Cao1,∗, Zhenfu Cao,2,3 Lihua Liu4

Abstract. An efficient quantum modular exponentiation method is indispensible

for Shor’s factoring algorithm. But we find that all descriptions presented by Shor,

Nielsen and Chuang, Markov and Saeedi, et al., are flawed. We also remark that some

experimental demonstrations of Shor’s algorithm are misleading, because they violate

the necessary condition that the selected number q = 2s, where s is the number of

qubits used in the first register, must satisfy n2 ≤ q < 2n2, where n is the large number

to be factored.

Keywords. Shor’s factoring algorithm; quantum modular exponentiation; super-

position; continued fraction expansion.

1 Introduction

The problem of factoring integers is widely believed to be hard. The famous public key cryptosys-

tem, RSA, is directly based on the difficulty of factorization. Notice that factoring an integer n can

be reduced to finding the order of an integer x with respect to the module n (G. Miller [1]). The

order is usually denoted by the notation ordn(x). So far, there is not a polynomial time algorithm

run on classical computers which can be used to compute ordn(x).

In 1994, P. Shor [2] proposed the first quantum algorithm which can compute ordn(x) in poly-

nomial time. The factoring algorithm requires two quantum registers. At the beginning of the

algorithm, one has to find q = 2s for some integer s such that n2 ≤ q < 2n2, where n is to be

factored. The followed steps are:

Initialization. Put register-1 in the following uniform superposition

1√
q

q−1∑

a=0

|a〉|0〉.

1Department of Mathematics, Shanghai University, Shanghai, China. ∗ caozhj@shu.edu.cn
2Department of Computer Science and Engineering, Shanghai Jiao Tong University, China.
3Software Engineering Institute, East China Normal University, Shanghai, China.
4Department of Mathematics, Shanghai Maritime University, Shanghai, China.

A part of this paper appeared as the report http://arxiv.org/abs/1408.6252v1

1

http://arxiv.org/abs/1408.6252v1

Computation. Keep a in register-1 and compute xa in register-2 for some randomly chosen

integer x. We then have the following state

1√
q

q−1∑

a=0

|a〉|xa〉.

Fourier transformation. Performing Fourier transform on register-1, we obtain the state

1

q

q−1∑

a=0

q−1∑

c=0

exp(2πiac/q)|c〉|xa〉.

Observation. It suffices to observe the first register. The probability p that the machine

reaches the state |c, xk〉 is ∣∣∣∣∣
1

q

∑

a:xa≡xk
exp(2πiac/q)

∣∣∣∣∣

2

where 0 ≤ k < r = ordn(x), the sum is over all a (0 ≤ a < q) such that xa ≡ xk.
Continued fraction expansion. If there is a d such that −r2 ≤ dq−rc ≤ r

2 , then the probability

of seeing |c, xk〉 is greater than 1/3r2. Hence, we have

∣∣∣∣
d

r
− c

q

∣∣∣∣ ≤
1

2q
.

:::::
Since

::::::::
q ≥ n2,

:::
we

::::
can

::::::
round

::::
c/q

:::
to

::::::
obtain

:::::
d/r. Thus r can be obtained.

P. Shor has specified the operations for the process |0〉|0〉 → 1√
q

∑q−1
a=0 |a〉|0〉, but not specified

the operations for the process 1√
q

∑q−1
a=0 |a〉|0〉 → 1√

q

∑q−1
a=0 |a〉|xa(modn)〉. His original description

specifies only the process (a, 1)→ (a, xa modn). Nielsen and Chuang in their book Ref.[3] specify

that

|a〉|y〉 → |a〉Uat−12t−1 · · ·Ua020 |y〉 = |a〉|xat−12t−1 × · · · × xa020y(modn)〉 = |a〉|xay(modn)〉

where a’s binary representation is at−1at−2 · · · a0, U is the unitary operation such that U |y〉 ≡
|xy(modn)〉, y ∈ {0, 1}`, ` is the bit length of n.

We find the Nielsen-Chuang quantum modular exponentiation method requires a unitary oper-

ations. Apparently, it is inappropriate for the process

1√
q

q−1∑

a=0

|a〉|0〉 → 1√
q

q−1∑

a=0

|a〉|xa(modn)〉

where n2 ≤ q < 2n2 and n is the large number to be factored, because the total amount of unitary

operations required for this process is O(q2), not O(log n). So far, there are few literatures to

investigate the above mysterious process. In view of that O(q2) unitary operations can not be

implemented in polynomial time, we do not think that Shor’s factoring algorithm is completely

understandable and universally acceptable.

2

Since 2001, some teams have reported that they had successfully factored 15 into 3 × 5 using

Shor’s algorithm. We shall have a close look at these experimental demonstrations and remark

that these demonstrations are misleading, because they violate the necessary condition that the

selected number q must satisfy n2 ≤ q < 2n2.

2 Preliminaries

A quantum analogue of a classical computer operates with quantum bits involving quantum states.

The state of a quantum computer is described as a basis vector in a Hilbert space. A qubit is a

quantum state |Ψ〉 of the form

|Ψ〉 = a|0〉+ b|1〉,

where the amplitudes a, b ∈ C such that |a|2 + |b|2 = 1, |0〉 and |1〉 are basis vectors of the Hilbert

space. Here, the ket notation |x〉 means that x is a quantum state. The state of a quantum system

having n qubits is a point in a 2n-dimensional vector space. Given a state

2n−1∑

i=0

ai|χi〉,

where the amplitudes are complex numbers such that
∑2n−1

i=0 |ai|2 = 1 and each |χi〉 is a basis

vector of the Hilbert space, if the machine is measured with respect to this basis, the probability

of seeing basis state |χi〉 is |ai|2.
Two quantum mechanical systems are combined using the tensor product. For example, a system

of two qubits |Ψ〉 = a1|0〉+ a2|1〉 and |Φ〉 = b1|0〉+ b2|1〉 can be written as

|Ψ〉|Φ〉 =

(
a1
a2

)
⊗
(
b1
b2

)
=

a1b1

a1b2

a2b1

a2b2

We shall also use the shorthand notations |Ψ,Φ〉. We call a quantum state having two or more

components entangled state, if it is not a product state. According to the Copenhagen interpre-

tation of quantum mechanics, measurement causes an instantaneous collapse of the wave function

describing the quantum system into an eigenstate of the observable state that was measured. If

entangled, one object cannot be fully described without considering the other(s).

Operations on a qubit are described by 2 × 2 unitary matrices. Of these, some of the most

important are

X =

[
0 1

1 0

]
, Y =

[
0 −i
i 0

]
, Z =

[
1 0

0 −1

]
, H =

1√
2

[
1 1

1 −1

]
,

3

where H denotes the Hadamard gate. Clearly, H|0〉 = 1√
2
(|0〉+ |1〉).

Operations on two qubits are described by 4×4 unitary matrices. Of these, the most important

operation is the controlled-NOT, denoted by CNOT. The action of CNOT is given by |c〉|t〉 →
|c〉|c⊕ t〉, where ⊕ denotes addition modulo 2. The matrix representation of CNOT is

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

.

Likewise,
::::::::::
operations

:::
on

::
n
:::::::
qubits

::::
are

:::::::::
described

:::
by

::::::::
2n × 2n

::::::::
unitary

:::::::::
matrices.

There is another method to describe linear operators performed on multiple qubits. Suppose that

V and W are vector spaces of dimension 2µ and 2ν (they describe quantum systems corresponding

to µ and ν qubits, respectively). Suppose |v〉 and |w〉 are vectors in V and W , and A and B are

linear operators on V and W , respectively. Then we can define a linear operator A⊗B on V ⊗W
by the equation

(A⊗B)(|v〉 ⊗ |w〉) ≡ A|v〉 ⊗B|w〉.

3 Remarks on quantum modular exponentiation method

3.1 The Shor’s original description

P. Shor has specified the operations for the process

|0〉|0〉 → 1√
q

q−1∑

a=0

|a〉|0〉,

where q = 2s for some positive integer s such that n2 ≤ q < 2n2, n is to be factored. Notice that

the first register consists of s qubits. He wrote: “this step is relatively easy, since all it entails

is putting each qubit in the first register into the superposition 1√
2
(|0〉 + |1〉).” (This can be done

using the Hadamard gate s times.)

Shor has not specified the operations for the process

1√
q

q−1∑

a=0

|a〉|0〉 → 1√
q

q−1∑

a=0

|a〉|xa(modn)〉.

By the way, he has not specified how many qubits are required in the second register. His original

description specifies only the process (a, 1) → (a, xa modn). For convenience, we now relate it as

4

follows.

The technique for computing xa (mod) is essentially the same as the classical method.

First, by repeated squaring we compute x2
i
(mod) for all i < l. Then, to obtain xa (mod)

we multiply the powers xa (mod) where 2i appears in the binary expansion of a. In our

algorithm for factoring n, we only need to compute xa (mod) where a is in a superposition

of states, but x is some fixed integer. This makes things much easier, because we can use a
reversible gate array where a is treated as input, but where x and n are built into the
structure of the gate array. Thus, we can use the algorithm described by the following
pseudocode; here, ai represents the ith bit of a in binary, where the bits are indexed from

right to left and the rightmost bit of a is a0.

power :=1
for i = 0 to l − 1

if (ai == 1) then

power :=power ∗ x2i (modn)
endif

endfor

The variable a is left unchanged by the code and xa (mod) is output as the variable power.

Thus, this code takes the pair of values (a, 1) to (a, xa (mod)).

Remarks on the Shor’s description:

• The description indicates only the conventional process

(a, 1)→ (a, xa modn),

rather than the quantum process

|a〉|0〉 → |a〉|xa modn〉,

let alone the more complicated quantum process

1√
q

q−1∑

a=0

|a〉|0〉 → 1√
q

q−1∑

a=0

|a〉|xa(modn)〉.

• Since ai is required to compute xa(modn) which represents the ith bit of a in binary, one has

to measure the superposition 1√
q

∑q−1
a=0 |a〉|0〉 to obtain a. But it is impossible to practically

compose pure states

|a〉|xa(modn)〉, a = 0, 1, · · · , q − 1,

into the superposition 1√
q

∑q−1
a=0 |a〉|xa(modn)〉, because q ≥ n2 and n is the large number to

be factored.

• Although it specifies the Hadamard gate on each qubit in the first register,
::
it

::::
does

::::
not

:::::::
specify

::::
how

::::::
many

::::
and

:::::
what

::::::::::
quantum

:::::
gates

:::
or

::::::::
unitary

::::::::::
operations

::::
are

:::::
used

:::
on

:::::
each

::::::
qubit

::
or

::
a
::::::
group

::
of

::::::
qubits

:::
in

::::
the

:::::::
second

:::::::::
quantum

::::::::
register.

:

5

3.2 The Nielsen-Chuang description

Nielsen and Chuang in their book Ref.[3] specify that

|a〉|y〉 → |a〉Uat−12t−1 · · ·Ua020 |y〉 = |a〉|xat−12t−1 × · · · × xa020y(modn)〉 = |a〉|xay(modn)〉

where a’s binary representation is at−1at−2 · · · a0, U is the unitary operation such that

U |y〉 ≡ |xy(modn)〉,

y ∈ {0, 1}`, ` is the bit length of n. They wrote:

Using the techniques of Section 3.2.5, it is now straightforward to construct a
reversible circuit with a t bit register and an ` bit register which, when started

in the state (a, y) outputs (a, xay(modn)), using O(`3) gates, which can be

translated into a quantum circuit using O(`3) gates computing the transformation

|a〉|y〉 → |a〉|xay(modn)〉.

Although they indicate that the classical circuit for the conventional process

(a, y)
O(`3) classical gates
−−−−−−− −→ (a, xay(modn))

can be translated into a quantum circuit for the quantum process

|a〉|y〉
O(`3) quantum gates
−−−−−−− −→ |a〉|xay(modn)〉,

we now want to remark that the quantum circuit has to invoke U , the unitary operation, a times.

Thus, the wanted process

1√
q

q−1∑

a=0

|a〉|0〉 → 1√
q

q−1∑

a=0

|a〉|xa(modn)〉

has to invoke the unitary operation 1 + 2 + · · · + (q − 1) ≈ O(q2) times, if all terms |a〉|0〉, a =

0, · · · , q − 1, are processed one by one. Even worse, the transformation for the process

|q − 1〉|y〉 → |a〉|xq−1y(modn)〉

has to invoke the unitary operation q−1 times according to the Nielsen-Chuang description. Clearly,

:
it
::::
can

::::
not

:::
be

::::::::::::::
accomplished

::
in

::::::::::::
polynomial

:::::
time

::::::::
because

:
q
:::

is
::
a

:::::
large

::::::::
number.

3.3 The Markov-Saeedi quantum circuit

In recent, Markov and Saeedi [4, 5] have proposed a quantum circuit for modular exponentiation.

We refer to the following Figure 1 for the outline of their circuit.

6

H · · · •

QFT−1

.

.

.|00 . . . 0〉 H • · · · |m〉

H • · · ·

(
b2

0
)
%M

(
b2

1
)
%M

· · ·
(
b2

2n−1
)
%M|0 . . . 01〉 · · ·

.

.

. · · ·

Figure 1: An outline of the quantum part of Shor’s algorithm.

1.1 Shor’s algorithm

Shor’s algorithm seeks to factor a given value M > 0, which we assume to be semiprime M = pq with
unknown factors. The strategy is to consider the functions fb(x) = xb%M2, potentially with several
different 1 < b < M values and determine their periods in case gcd(b,M) = 1. When the period is
determined to be even b2π%M = 1, we have (bπ − 1)(bπ + 1)%M = 0, thus either (bπ − 1) or (bπ + 1)
must share at least one prime factor with M . If bπ%M 6= −1, such a factor can be found using
gcd(bπ ± 1,M), otherwise it leads to the trivial factors 1 and M . When the period is determined to be
odd, another b value is tried.

The period-finding procedure relies on a quantum circuit (Figure 1), instantiated for a given value
1 < b < M coprime with M . The circuit operates on two 0-initialized quantum registers [15] with

• a block of parallel Hadamard gates on Register 1,

• a circuit for modular exponentiation (mod-exp) evaluates f(y) = by%M by mapping |y〉|0〉 7→
|y〉|f(y)〉, where y is read from Register 1 and f(y) is written to Register 2; Register 1 can be
temporarily modified, but must be restored at the end,

• a circuit for the Quantum Fourier Transform (QFT) on Register 1,

• a block of parallel measurements on Register 1.

The first and last blocks cannot be optimized any further. QFT circuits are understood fairly well
and are much smaller than circuits for modular exponentiation [15]. Therefore, our focus is on mod-exp
circuits. They typically consist of reversible gates — NOT (N), CNOT (C) and Toffoli (T) — which can
be modeled and optimized entirely in terms of Boolean logic [17]. However, in physical implementations,
Toffoli gates must be decomposed into smaller gates directly implementable in a given technology [18].
Reversible circuits for modular exponentiation start with an inverter on Register 2 that changes the
|000 · · ·0〉 value to |000 · · ·1〉, and otherwise exhibit the following structure: each (i-th) bit of Register

1 enables (controls) a circuit block that multiplies Register 2 by Ci = b2
i

%M and reduces the result
%M . When b and M are known, Ci can be pre-computed without quantum computation. Therefore,
we refer to Cix%M -blocks below. They are typically implemented using shift and addition circuits, and
a number of relevant quantum adders are known [9, 19]. The selection of appropriate adder types is
discussed in [20, 10].

Each controlled modular multiplication is traditionally implemented separately. When dealing with
reversible logic and quantum circuits, we note that the coprimality of C and M makes x 7→ Cx%M a
reversible transformation. The number of coprime C values is ϕ(M) = (p− 1)(q− 1), where ϕ(M) is the
Euler’s totient function and gives the size of (Z/MZ)× — the multiplicative group of integers mod-M .
For M = 15, modular multiplication circuits for the eight C coprime values are illustrated in Figure 2.
Figure 3 shows circuits for f(x) = bx%15, gcd(b, 15) = 1.

When not knowing p and q, one should also not assume any knowledge that would make it easy to
find them. For example, one should not choose C that satisfies C2π = 1%M with a known (small) π
because such solutions would allow one to factorize M via gcd(Cπ ± 1,M). Also recall that (Z/MZ)× is
a product of two cyclic groups Z/pZ and Z/qZ, and thus (Z/MZ)× admits a generating set with only
two elements. However, knowing such generators is tantamount to knowing p and q. When working
with specific small M = pq, it is sometimes difficult to avoid using the knowledge of p and q, but results
obtained this way do not necessarily scale to large values. The same can be said about results produced
through exhaustive search.

2Here and in the remaining text, the percent sign % denotes the modulo (remainder) operation, as it does in the C and
C++ languages.

2

The Markov-Saeedi quantum circuit for modular exponentiation is flawed, too. The unitary

matrix corresponding to (b2
i
)%M for some integer i, which is performed on all qubits in the sec-

ond quantum registers, has a tremendous dimension (not less than the modular M). To implement

the operator practically,
:::
one

::::::
must

:::::::::::
decompose

::
it
:::::
into

::::
the

::::::
tensor

:::::::::
product

::
of

::::::
some

::::::
linear

::::::::::
operators

::::
with

::::
low

:::::::::::
dimension. Regretfully, they had not specified these low dimension linear operators at all.

Moreover, they had not specified the output of the operator (b2
0
)%M . We now want to ask:

(1) what are the inputting states of the unitary operator (b2
2n−1

)%M ?

(2) how to decompose the operator (b2
2n−1

)%M into the tensor product of some low di-

mension linear operators?

(3)
::::
how

::::::
many

:::::::::::
executable

::::::::
unitary

:::::::::
operators

::::
are

:::::::::
required in the quantum modular exponenti-

ation process?

In our opinion, their proposed quantum circuit for modular exponentiation is incorrect and mis-

leading.

3.4 On Scott Aaronson’s explanation

We have reported the flaw to some researchers including P. Shor himself, but only received a

comment made by MIT professor Scott Aaronson. He explained that (personal communication,

2014/09/02):

The repeated squaring algorithm works (and works in polynomial time)

for any single |a〉|0〉, mapping it to |a〉|xa (modn)〉. But, because of the
linearity of quantum mechanics, this immediately implies that the algorithm
must also work for any superposition of |a〉’s, mapping

∑
a |a〉 to

∑
a |a〉|xa (modn)〉.

We do not think that his answer is convincing, because it is too vague to specify how many and

what quantum gates or unitary operations are used on each qubit or a group of qubits in the second

quantum register. Besides, according to the Nielsen-Chuang description, the process

|a〉|y〉 → |a〉Uat−12t−1 · · ·Ua020 |y〉 = |a〉|xat−12t−1 × · · · × xa020y(modn)〉 = |a〉|xay(modn)〉

7

depends on the binary representation of the exponent a. Which integer should be extracted in the

superposition 1√
q

∑q−1
a=0 |a〉|0〉 for computing the wanted state 1√

q

∑q−1
a=0 |a〉|xa(modn)〉? He did not

pay more attentions to the difference between two linear operators performed on a pure state and a

superposition.

4 It is difficult to modulate the wanted state in the second register

We know the wanted superposition in the first register is modulated by the following procedure.

First, a Hadamard gate H = 1√
2

[
1 1

1 −1

]
is performed on each qubit to obtain the s intermediate

states of 1√
2
(|0〉+ |1〉). Second, combine all these states using the tensor product.

1√
2

(|0〉+ |1〉)⊗ 1√
2

(|0〉+ |1〉) =
1

2
(|00〉+ |01〉+ |10〉+ |11〉)

1√
2

(|0〉+ |1〉)⊗ 1√
2

(|0〉+ |1〉)⊗ 1√
2

(|0〉+ |1〉)

=
1

2
√

2
(|000〉+ |001〉+ |010〉+ |011〉+ |100〉+ |101〉+ |110〉+ |111〉)

...

1√
2

(|0〉+ |1〉)⊗ · · · ⊗ 1√
2

(|0〉+ |1〉)
︸ ︷︷ ︸

s qubits

=
1√
q

q−1∑

a=0

|a〉

Note that the procedure works well because all those involved pure states are in binary form.

We would like to stress that if two pure states are in decimal representations |x〉, |x2〉, then we

can not directly combine them to obtain |x3〉. Suppose that the binary strings for integers x, x2

are bk · · · b0, b′i · · · b′0. We have

|x〉 ⊗ |x2〉 = |bk · · · b0b′i · · · b′0〉 = |2i+1x+ x2〉.

Thus,

1√
2

(|1〉+ |x〉)⊗ 1√
2

(|1〉+ |x2(modn)〉)⊗ · · · ⊗ 1√
2

(
|1〉+ |x2s−1

(modn)〉
)
6= 1√

q

q−1∑

a=0

|xa(modn)〉,

where q = 2s, although there is a corresponding conventional equation

(1 + x)(1 + x2)(1 + x2
2
) · · · (1 + x2

s−1
) =

q−1∑

a=0

xa.

::
It

::::::
seems

:::::
that

::::::
some

:::::::
people

:::
are

:::::::::
confused

::::
by

::::
the

::::::
above

:::::::::
equation

::::
and

::::::::
simply

::::
take

::::
for

::::::::
granted

:::::
that

:::::::::
quantum

::::::::
modular

:::::::::::::::
exponentiation

::
is
:::
in

:::::::::::
polynomial

::::::
time.

8

5 On some experimental demonstrations of Shor’s algorithm

In 2001, it is reported that Shor’s algorithm was demonstrated by a group at IBM, who factored

15 into 3× 5, using a quantum computer with 7 qubits, 3 qubits for the first register and 4 qubits

for the second register (see Figure-2) [6].

In 2007, a group at University of Queensland reported an experimental demonstration of a

compiled version of Shor’s algorithm. They factored 15 into 3 × 5, using 7 qubits either, 3 qubits

for the first register and 4 qubits for the second register (see Figure-3) [7].

In 2007, a group at University of Science and Technology of China reported another experimental

demonstration of a complied version of Shor’s algorithm. They factored 15 into 3×5 using 6 qubits

only, 2 qubits for the first register and 4 qubits for the second register (see Figure-4) [8].

In 2012, a group at University of California, Santa Barbara, reported a new experimental

demonstration of a compiled version of Shor’s algorithm. They factored 15 into 3×5 using 3 qubits

either, 1 qubits for the first register and 2 qubits for the second register (see Figure-5) [9].

Demonstrations qubits used in the first register qubits used in the second register

Figure 2, Ref.[6] 3 4

Figure 3, Ref.[7] 3 4

Figure 4, Ref.[8] 2 4

Figure 5, Ref.[9] 1 2

15

Figure 1
L. Vandersypen NATURE 07-Sep-01

inverse

QFT

a
ver
ag
i
n
gl

a
r
o
p
m
e
t

1:

3:
2:

4:
5:
6:
7:

0

1

90

A F G H

9045

H

H
H

H
H

H

b.

a.

m
1

x x

modxa

n
H

n

B C D E

N

(3) (4)(2)(1)(0)a.

Figure 2: Detailed quantum circuit for the case N = 15 and a = 7.

9

2

application of the order-finding function produces the

entangled state
∑2n−1

x=0 |x〉|CxmodN〉; iii) the inverse
Quantum Fourier Transform (QFT) followed by mea-
surement of the argument-register in the logical basis,
which with high probability extracts the order r after fur-
ther classical processing. If the routine is standalone, the
inverse QFT can be performed using an approach based
on local measurement and feedforward [21]. Note that
the inverse QFT in [14] was unnecessary: it is straight-
forward to show this is true for any order-2l circuit [22].

Modular exponentiation is the most computationally-
intensive part of the algorithm [13]. It can be realised by
a cascade of controlled unitary operations, U , as shown
in the nested inset of Fig. 1a). It is clear that the reg-
isters become highly entangled with each other: since
U is a function of C and N , the entangling operation is
unique to each problem. Here we choose to factor 15 with
the first two co-primes, C=2 and C=4. In these cases en-
tire sets of gates are redundant: specifically, U2n=I when

xx

1

H

Uc
20

Uc
21

Uc
2n-1

QFT-1

...

b)

H
H

a

b

c

d
e

f

g

H

H
H

a

b

c

d

e

argument

function

0

x

a

b

c

d

e

f
g X

H

T

H
H

H

H
H

H

c)

d) e)

f) g)

U
20

4

U
20

4

U
20

4

U
20

2 U
21

2

U
20

2

U
20

2

U
21

2

U
21

2

X

X

a)

C

Initialisation Modular exponentiation
Inverse Quantum
Fourier Transform

x

x

x

H

H
H

T

H

H
H

T

FIG. 1: a) Conceptual circuit for the order-finding routine of
Shor’s algorithm for number N and co-prime C [13]. The ar-
gument and function registers are bundles of n and m qubits;
the nested order-finding structure uses U |y〉=|CymodN〉,
where the initial function-register state is |y〉=1. The algo-
rithm is completed by logical measurement of the argument-
register, and reversing the order of the argument qubits. b),c)
Implementation of a) for N=15 and C=4, 2, respectively; the
unitaries are decomposed into controlled-swap gates (cswap),
marked as x; controlled-phase gates are marked by dots; h and
t represent Hadamard and π/8 gates. Many gates are redun-
dant, e.g. the second gate in b), the first and second gates in
c). d),e) Partially-compiled circuits of b),c), replacing cswap
by controlled-not gates. n.b. e) is equivalent to the N=15
C=7 circuit in Ref.[14]. f),g) Fully-compiled circuits of d),e),
by evaluating logC [C

xmodN] in the function-register.

n>0 for C=4, and U2n=I when n>1 for C=2. Figs 1b),c)
show the remaining gates for C=4 and C=2, respectively,
after decomposition of the unitaries into controlled-swap
gates—this level of compiling is equivalent to that in-
troduced in Ref. [14]. Further compilation can always
be made since the initial state of the function-register
is fixed, allowing the cswap gates to be replaced by
controlled-not (cnot) gates as shown in Figs 1d),e) [23].

We implemented the order-2-finding circuit, Fig. 1d).
The qubits are realised with simultaneous forward and
backward production of photon pairs from parametric
downconversion, Fig. 2a): the logical states are encoded
into the vertical and horizontal polarisations. This circuit
required implementing a recently-proposed three-qubit
quantum-logic gate, Fig. 2b), which realises a cascade of
n controlled-z gates with exponentially greater success
than chaining n individual gates [24]. The controlled-
not gates are realised by combining Hadamards and
controlled-z gates based on partially-polarising beam-
splitters. The gates are nondeterministic, with one third
success probability when fully prebiased [8, 9, 10]. A run
of each routine is flagged by a fourfold event, where a
single photon arrives at each output. Dependent pho-
tons from the forward pass interfere non-classically at

V

H

F1

F2B2

B1

F1

F2

B1

F1

F2

B1

B2

V

H

H
V

H
V

V

H

a)

b) c)
V

H

H
V

H
V

H

V

Laser

d) e)

F1

F2 B1

1/3

F1

F2

B1

B2

RV =1/3

RH =1
!

RV =1

RH =0
!

!
!

"/2

"/4

b

e

g

b

c

d

e

b e

g

b c

d

e

1/3

1/3

1/3

SHG PDC

FIG. 2: Experimental schematic. a) Forward and backward
photons pairs are produced via parametric downconversion
(PDC) of a frequency-doubled mode-locked Ti:Sapphire laser
(820 nm→410 nm, ∆τ=80 fs at 82 MHz repetition rate)
through a Type-I 2 mm Bismuth Borate (BiB3O6) crystal.
Photons are input to the circuits via blocked interference
filters (820±3 nm) and single-mode optical fibres, and de-
tected using single photon counting modules, (PerkinElmer
AQR-14FC). Coincidences are measured using a quad-logic
card driven by a four-channel constant fraction discrimina-
tor. With 500 mW at 410 nm this yielded 60 kHz and 25 kHz
twofold coincidence rates for direct detection, which differed
due to mismatched pump focus sizes; the measured fourfold
coincidence rate was 35 Hz. b),c) Linear optical circuits for
order-2 and order-4 finding algorithms, with inputs from a)
labelled; the letters on the detectors refer to the Fig. 1 qubits.
d),e) Physical optical circuits for b),c), replacing the classical
interferometers with partially-polarising beamsplitters.

Figure 3: Conceptual circuit for Shor’s algorithm for number N = 15 and co-prime C = 4.
2

a) b)

n

m
n

n

c)

Z

PBS

PBS

HWP

CNOT

1

2

3

4

3

1

4

2

FIG. 1: Quantum circuit for the order-finding routine of Shor’s algorithm. (a). Outline of the quantum circuit. (b). Quantum
circuit for N = 15 and a = 11. The MEF is implemented by two CNOT gates and the QFT is implemented by Hadamard
rotations and two-qubit conditional phase gates. The gate-labeling scheme denotes the axis about which the conditional rotation
takes place and the angle of rotation. (c). The simplified linear optics network using HWPs and PBSs to implement the MEF
circuit and the semiclassical version of the QFT circuit. The double lines denote classical information.

Implementations of this algorithm, even for factoriza-
tion of a small number, place a lot of challenging exper-
imental demands, e.g., coherent manipulations of multi-
ple qubits and creations of highly-entangled multiqubit
registers. Here we aim to demonstrate the simplest in-
stance of Shor’s algorithm, i.e., the factorization of 15.
Quantum networks for evaluating the MEF have been
designed which involve O(n3) operations [15, 17]. Since

ax = a2
n−1xn−1 · · · a2x1ax0 , the execution of MEF can be

decomposed into a sequence of controlled multiplications.
A general purpose algorithm to factorize 15 would require
at least n = 8, m = 4, thus total 12 qubits [15]. Several
observations allow us to reduce the resources substan-
tially for the purpose of a proof-of-principle demonstra-
tion. First we choose to implement the algorithm with
a = 11, this was identified in [5] as the “easy” case. Since
a2mod15 = 1, MEF can be simplified to multiplications
controlled only by x0, which can be implemented by two
controlled-NOT (CNOT) gates [18]. A QFT then fol-
lows to read out the period r. Such a circuit is shown in
Fig. 1b. We note there are two qubits in the second reg-
ister which evolve trivially during computation and can
thus be left out.

To demonstrate the circuit of Fig. 1b we use single pho-
tons as qubits, where |0〉 and |1〉 are encoded with the
photon’s horizontal (H) and vertical (V) polarization re-
spectively. The difficulty in implementing this circuit lies
in the CNOT gates and conditional π/2-phase shift gate.
Although such entangling gates are possible for photons
in principle using measurement-induced nonlinearity [7],
currently they are still experimentally expensive [9, 19].
Here we note that since the target qubits of the CNOT
gates are always fixed at |H〉, so the gate could be re-
alized in an easier and more efficient fashion. Such a
CNOT gate use only a polarizing beam splitter (PBS)
and a half-wave plate (HWP), through which an arbi-
trary control qubit (α|H〉 + β|V 〉) and the target qubit
|H〉 evolve into α|H〉|H〉 + β|V 〉|V 〉 upon post-selection
[20], that is, conditioned on that there is one and only one
photon out of each output (see Fig. 1c). Furthermore, the

QFT circuit can also be implemented with a more effi-
cient method. It was observed by Griffiths and Niu [21]
that when immediately followed by measurements, the
fully coherent QFT can be replaced by a semiclassical
version that employs only single-qubit rotations condi-
tioned on measurement outcomes. This eliminates the
need for entangling gates and reduces the numbers of
gates quadratically. Thus we finally arrive at the simpli-
fied linear optics MEF and QFT network in Fig. 1c. We
note despite of these simplifications, our circuit suffices to
demonstrate the underlying principles of this algorithm.

Now we proceed with the experimental demonstration.
Our experimental set-up is illustrated in Fig. 2, where
a pulsed ultraviolet laser passes through two β-barium
borate (BBO) crystals to create two pairs of entangled
photon [22]. We use polarizers to disentangle the photons
and prepare them in the states |H〉i with i denoting the
spatial modes (see Fig. 1c). The photons pass through
the HWPs and are superposed on the PBSs (see Fig. 2) to
implement the necessary single- and two-qubit gates. To
ensure good spatial and temporal overlap, the photons
are spectrally filtered (∆λFWHW = 3.2 nm) and coupled
by single-mode fibers [23].

How could one experimentally verify a valid demon-
stration of Shor’s algorithm? First let us see the the-
oretical predictions. After a = 11 is chosen, the
first step of this algorithm, the MEF should evolve
as (1/2)

∑3
x=0 |x〉|11xmod15〉 = (1/2)(|0〉|1〉 + |1〉|11〉 +

|2〉|1〉+ |3〉|11〉). As we rewrite it in binary representation
(|000001〉+ |011011〉+ |100001〉+ |111011〉)/2, it shows
that a nontrivial Greenberger-Horne-Zeilinger (GHZ) [24]
entangled state |ψ〉 = (1/

√
2)(|0〉2|0〉3|0〉4 + |1〉2|1〉3|1〉4)

is created between the two registers. For Shor’s algo-
rithm as well as some others, multiqubit entanglement is
a necessary condition if the quantum algorithm is to offer
an exponential speed-up over classical computation [6].
In our experiment, as the photons pass through the MEF
circuit, we first observe the Hong-Ou-Mandel type inter-
ference [25] of three photons in arms 2-3-4 (see Fig. 3b).
Then, after fixing the delays at the zero positions, we ex-

Figure 4: Outline of quantum circuit for Shor’s algorithm for N = 15 and a = 11.4

g

"1""0"

h

"1""0"

e

ggg
eee ggg

eee
0

1/2
2 GHZ

gg
ee

ee
gg

1/2

0

-1/2

1

d

HQ2

Q3

H

H
Cz

H

armod(N)

Init Quantum
Fourier

Transform

Modular
Exponentiation

H H

H H
Cπ/2

Q2

Q3

Q4

Q1 |0>

|0>

|0>

|0>

H HQ2

Q3

Q4

|0>

|0>

|0>

"0" "1"

a

b 1 2 3

"00" "10"

c

i

"1""0"

0
1 0

1

1/2

0

1

3

f

1/4

0

ggg
eee ggg

eee
-1/4

0
1 0

1

1/2

0

1

0
1 0

1

1/2

0

1

ψs

ψ3

FIG. 3: Compiled version of Shor’s algorithm. a, Four-qubit circuit to factor N = 15, with co-prime a = 4. The three steps in
the algorithm are initialization, modular exponentiation, and the quantum Fourier transform, which computes armod(N) and
returns the period r = 2. b, “Recompiled” three-qubit version of Shor’s algorithm. The redundant qubit Q1 is removed by
noting that HH = I. Circuits a and b are equivalent for this specific case. The three steps of the runtime analysis are labeled
1,2,3. c, CNOT gates are realized using an equivalent controlled-Z (CZ) circuit. d, Step 1: Bell singlet between Q2 and Q3

with fidelity, FBell = 〈ψs| ρBell |ψs〉 = 0.75±0.01 and EOF = 0.43. e, Step 2: Three-qubit |GHZ〉 = (|ggg〉+ |eee〉)/
√

2 between
Q2, Q3, and Q4 with fidelity FGHZ = 〈GHZ| ρGHZ |GHZ〉 = 0.59± 0.01. f, Step 3: QST after running the complete algorithm.
The three-qubit |GHZ〉 is rotated into |ψ3〉 = H2 |GHZ〉 = (|ggg〉 + |egg〉 + |gee〉 − |eee〉)/2 with fidelity, F = 0.55. g,h The
density matrix of the single-qubit output register Q2 formed by: (g), tracing-out Q3 and Q4 from f, and (h) directly measuring
Q2 with QST, both with F =

√
ρ σm

√
ρ = 0.92± 0.01 and SL = 0.78. From 1.5× 105 direct measurements the output register

returns the period r = 2, with probability 0.483 ± 0.003, yielding the prime factors 3 and 5. (i), The density matrix of the
single-qubit output register without entangling gates, H2H2 |g〉 = I |g〉. The algorithm fails and returns r = 0 100 % of the
time. Compared to the single quantum state |ψout〉 = |g〉, the fidelity Fcheck = 〈ψg| ρcheck |ψg〉 = 0.83± 0.01, which is less than
unity due to the energy relaxation.

“10” (including the redundant qubit) with equal proba-
bility, where the former represents a failure and the latter
indicates the successful determination of r = 2. We use
three methods to analyze the output of the algorithm:
Three-qubit QST, single-qubit QST, and the raw proba-
bilities of the output register state. Figures 3g, h are the
real part of the density matrices for the single qubit out-
put register from three-qubit QST and one-qubit QST
with fidelity F =

√
ρ σm

√
ρ = 0.92 ± 0.01 for both den-

sity matrices. From the raw probabilities calculated from
150,000 repetitions of the algorithm, we measure the out-
put “10” with probability 0.483 ± 0.003, yielding r = 2,
and after classical processing we compute the prime fac-
tors 3 and 5.

The linear entropy SL = 4[1−Tr(ρ2)]/3 is another met-
ric for comparing the observed output to the ideal mixed

state, where SL = 1 for a completely mixed state[30]. We
find SL = 0.78 for both the reduced density matrix from
the third step of the runtime analysis (three-qubit QST),
and from direct single-qubit QST of the register qubit.

As a final check of the requisite entanglement, we run
the full algorithm without any of the entangling oper-
ations and use QST to measure the single-qubit output
register. The circuit reduces to two H-gates separated by
the time of the two entangling gates. Ideally Q2 returns
to the ground state and the algorithm fails (returns “0”)
100 % of the time. Figure 3i is the real part of the density
matrix for the register qubit after running this check ex-
periment. The fidelity of measuring the register qubit in
|g〉 is Fcheck = 〈g| ρcheck |g〉 = 0.83±0.01. The algorithm
fails, as expected, without the entangling operations.

In conclusion, we have implemented a compiled ver-

Figure 5: A three-qubit compiled version of Shor’s algorithm to factor N = 15.

10

We now want to remark that:

• All these demonstrations are flawed because they violate the necessary condition that 152 <

28 < 2 × 152,
:::::
which

:::::::
means

::
8

:::::::
qubits

:::::::
should

:::
be

:::::
used

::
in

::::
the

:::::
first

::::::::
register. Obviously, the last

step of continued fraction expansion in Shor’s algorithm can not be accomplished if less qubits

are used in the first register. It seems that these groups have misunderstood the necessary

condition that n2 ≤ q < 2n2 in Shor’s algorithm.

• In Figure 3, it directly denotes the output of the second register by Cx mod N . Clearly,

the authors confused the number Cx mod N with the state |Cx mod N〉. By the way, the

wanted state in the second register is the superposition 1√
8

∑7
x=0 |Cx mod N〉 instead of the

pure state |Cx mod N〉.

• In Figure 5, only 3 qubits are used. Clearly, the modular 15 can not be represented by the 3

qubits. In such case, how to ensure that the modular is really involved in the computation?

In our opinion, the demonstration is unbelievable.

6 Conclusion

Shor’s factoring algorithm is interesting. But its subroutine for quantum modular exponentiation

is not specified. We remark that both the Shor’s original description and the Nielsen-Chuang de-

scription for quantum modular exponentiation are flawed. They can be used only for the pure state

|a〉|0〉, not for the superposition 1√
q

∑q−1
a=0 |a〉|0〉. We also remark that some experimental demon-

strations of Shor’s algorithm are meaningless and misleading because they violate a necessary

condition for Shor’s algorithm.

Acknowledgements. This work was supported by the National Natural Science Foundation of

China (Grant Nos. 60970110, 60972034), and the State Key Program of National Natural Science

of China (Grant No. 61033014).

References

[1] Miller G.: Riemann’s hypothesis and tests for primality. J. Comput. System Sci., 13: 300-317 (1976)

[2] Shor P.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum
computer. SIAM J. Comput. 26 (5): 1484-1509 (1997)

[3] Nielspen M., and Chuang I.: Quantum Computation and Quantum Information. Cambridge University
Press (2000)

[4] Markov I., and Saeedi M.: Constant-Optimized Quantum Circuits for Modular Multiplication and Ex-
ponentiation. Quantum Information and Computation, Vol. 12, No. 5&6, pp. 361-394 (2012)

[5] Markov I., and Saeedi M.: Faster Quantum Number Factoring via Circuit Synthesis, Physical Review A
87, 012310 (2013)

[6] Vandersypen L., et al.: Experimental realization of Shor’s quantum factoring algorithm using nuclear
magnetic resonance, Nature 414 (6866): 883-887, arXiv:quant-ph/0112176 (2001)

11

[7] Lanyon B., et al.: Experimental Demonstration of a Compiled Version of Shor’s Algorithm with Quantum
Entanglement”, Physical Review Letters 99 (25): 250505. arXiv:0705.1398 (2007)

[8] Lu Chao-Yang, et al.: Demonstration of a Compiled Version of Shor’s Quantum Factoring Algorithm
Using Photonic Qubits, Physical Review Letters 99 (25): 250504, arXiv:0705.1684 (2007)

[9] Lucero E., et al.: Computing prime factors with a Josephson phase qubit quantum processor. Nature
Physics 8, 719-723, 2012. arXiv:1202.5707 (2012)

12

	Introduction
	Preliminaries
	Remarks on quantum modular exponentiation method
	The Shor's original description
	The Nielsen-Chuang description
	The Markov-Saeedi quantum circuit
	On Scott Aaronson's explanation

	It is difficult to modulate the wanted state in the second register
	On some experimental demonstrations of Shor's algorithm
	Conclusion

