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Abstract. We propose the first UC secure commitment scheme with (amortized) computational complexity linear in
the size of the string committed to. After a preprocessing phase based on oblivious transfer, that only needs to be
done once and for all, our scheme only requires a pseudorandom generator and a linear code with efficient encoding.
We also construct an additively homomorphic version of our basic scheme using VSS. Furthermore we evaluate
the concrete efficiency of our schemes and show that the amortized computational overhead is significantly lower
than in the previous best constructions. In fact, our basic scheme has amortised concrete efficiency comparable with
previous protocols in the Random Oracle Model even though it is constructed in the plain model.

1 Introduction

A commitment scheme is a very basic but nevertheless extremely powerful cryptographic primitive. Intuitively,
a commitment scheme is a digital equivalent of a secure box: it allows a prover P to commit to a secret s
by putting it into a locked box and giving it to a verifier V . Since the box is locked, V does not learn s at
commitment time and we say the commitment is hiding. Nevertheless, P can later choose to give V the key
to the box to let V learn s. Since P gave away the box, he cannot change his mind about s after commitment
time and we say the commitment is binding.

Commitment schemes with stand-alone security (i.e., they only have the binding and hiding properties)
can be constructed from any one-way function and already this most basic form of commitments implies
zero-knowledge proofs for all NP languages. Commitments with stand-alone security can be very efficient as
they can be constructed from cheap symmetric cryptography such as pseudorandom generators [Nao91].

However, in many cases one would like a commitment scheme that composes well with other primitives,
so that it can be used as a secure module that will work no matter which context it is used in. The strongest
form of security we can ask for here is UC security [Can01]. UC commitments cannot be constructed without
set-up assumptions such as a common reference string [CF01]. On the other hand, a construction of UC
commitment in such models implies public-key cryptography [DG03] and even multiparty computation
[CLOS02] (but see [DNO10] for a construction based only on one-way functions, under a stronger set-up
assumption).

With this in mind, it is not surprising that constructions of UC commitments are significantly less efficient
than those of stand-alone secure commitments. Until recently, the most efficient UC commitment schemes
were based on the DDH assumption and required several exponentiations in a large group [Lin11,BCPV13].
Therefore, even though the communication complexity for committing to k strings was O(k), the computa-
tional complexity was typically Ω(k3).
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However, in [DDGN14] and independently in [GIKW14], it was observed that even though we cannot
build UC commitments without using public-key technology, we can still hope to confine the use of it to a
once-and-for-all set-up phase, the cost of which can then be amortized over many uses of the commitment
scheme.

While [GIKW14] focused on the rate of the commitment scheme, [DDGN14] concentrated on the
computational complexity. More specifically, a UC commitment scheme was proposed based on the following
idea: the committer will secret-share the string s to commit to using a linear secret sharing scheme (LSSS),
encrypt the shares and send them to the receiver. The encryption is done in such a way that the receiver will
be able to decrypt an unqualified subset (and hence will not learn s). However, the committer will not know
which subset the receiver has seen. We can achieve this efficiently using a combination of oblivious transfers
(done only in a set-up phase) and a pseudorandom generator. To open s, the committer will send s and the
randomness used for the sharing and the receiver can then check if the resulting shares match those he already
knows. Intuitively, we can hope this will be binding because any two sets of shares for different secrets must
be different in many positions (they cannot agree on any qualified subset). Furthermore since the committer
does not know which subset the receiver checks, it is likely that the receiver will see a mismatch for at least
one of the sets of shares.

The most natural way to construct a suitable LSSS is to use the standard construction from a linear
code C, where we choose a random codeword subject to the condition that the secret s appears in the first k
coordinates and the shares are then the values appearing in the rest of the codeword. This approach requires
that both C and its dual have large minimum distance. But unfortunately, all known codes with linear time
encoding have very bad dual codes. Therefore, [DDGN14] resorted to using Reed-Solomon codes which
gives a complexity of O(k log k) for both parties.

Our contribution. In this paper, we propose a different way to construct an LSSS from a linear code C: we
encode the secret s in C, and then additively share each entry in the codeword to form t shares, thus we get
nt shares for a code of length n. We show that already for t ≥ 2, using this LSSS in the above template
construction results in a secure UC commitment scheme. Note that the LSSS we construct is not of the usual
threshold type where any sufficiently large set can reconstruct, but instead we have a more general access
structure where the qualified sets are those that can get enough entries in the underlying codeword to be able
to decode.

Since we can now choose C without any conditions on the dual code, we can plug in known constructions
of codes with linear time encoding and get complexityO(k) for both parties. Furthermore we show a particular
instantiation of the building blocks of our basic protocol for security parameter τ = 60 and message length
k = 256 that achieves an amortized computational complexity which is 5500 times lower than in the most
efficient previous constructions [BCPV13,Lin11] (see Section 6 for details on the implementation). In fact,
our basic scheme achieves amortised concrete effieciency comparable to previous schemes [HM04,DSW08]
in the Random Oracle Model [BR93] even though it is constructed in the plain model. Concretely, it has an
amortized computational cost 41% lower than the one of [HM04].

Commitment schemes can be even more useful if they are homomorphic. An additively homomorphic
commitment scheme, for instance, has the following property: from commitments to s and s′, the receiver
can on his own compute a commitment to s + s′, such that if the committer opens this new commitment,
s + s′ (and no other information on s, s′) will be revealed. Our basic construction above is not additively
homomorphic. The reason is that a corrupt committer may submit sets of values in the commit phase that are
not consistent sharings of any value. Nevertheless, when some of these shares are added, we may get values
that do in fact form valid commitments, and this may allow the committer to cheat. To solve this problem, we
start from an idea that was introduced in [GIKW14]: they construct a very compact linear verifiable secret
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sharing scheme (VSS) from any LSSS. The idea is now that the committer will execute the VSS “in his
head” and send to the receiver the resulting views of each VSS-player, encrypted in the same way as we
encrypted shares before: the receiver can decrypt some subset of the views. The receiver will now be able to
execute some of those consistency checks that honest players would normally do in the VSS, and will reject
if anything is wrong. The hope is that this will force the committer to submit views from a correctly executed
instance of the VSS, which in particular means that the sets of shares he submits will be consistent, thus
implying the additive homomorphic property.

This idea was shown to work in [DDGN14], but unfortunately the proof works only if the underlying
LSSS is a threshold scheme, and our LSSS is not threshold. However, in this paper, we give a different
proof showing that we do in fact get a secure commitment scheme if we choose the parameter t from our
LSSS to be at least 3. This yields a UC secure and additively homomorphic commitment scheme with linear
complexity, albeit with larger hidden constants than our first scheme. We also instantiate this scheme for
concrete parameters, see Section 6.

It is interesting to note that there is strong relation between the way the VSS is used here and the
“MPC-in-the-head” line of work [IPS09]. Roughly speaking, MPC-in-the-head is a general technique for
turning a multiparty protocol into a 2-party protocol for the same purpose. A VSS is essentially a multiparty
commitment scheme, so one can use the so-called IPS compiler on the VSS from [DDGN14] to get a UC
secure commitment scheme. This commitment scheme is quite similar to (but not the same as) the one from
[DDGN14]. Previously, the IPS compiler was only known to work for protocols with threshold security.
However, our proof technique also applies to IPS, so from this point of view, our result is the first to show that
the IPS compiler can also be used to transform a non-threshold multiparty protocol into a 2-party protocol. It
is an interesting open problem to characterise the adversary structures for which it will work.

2 Preliminaries

2.1 Notation

We denote uniformly sampling a value r from a set D as r ← D and {r1, . . . , rn} ← D indicates that
we sample from D a uniformly random subset of n elements. We denote concatenation by ‖ and vectors
of elements of some field by bold symbols. For z ∈ Fk, z[i] denotes the i’th entry of the vector. We use
1-indexing, meaning that z[1] is the first element of z and we write [n] = {1, 2, . . . , n}. We will use πk to
denote the projection that outputs the first k coordinates of a vector, i.e. πk(z) = (z[1], . . . ,z[k]). Finally we
will denote by ek,i the row vector of k components whose i-th entry is 1 while all other entries are 0 and with
0k the row vector of k components whose all entries are 0.

We say that a function ε is negligible in n if for every polynomial p there exists a constant c such
that ε(n) < 1

p(n) when n > c. Two ensembles X = {Xκ,z}κ∈N,z∈{0,1}∗ and Y = {Yκ,z}κ∈N,z∈{0,1}∗ of
binary random variables are said to be indistinguishable, denoted by X ≈ Y , if for all z it holds that
| Pr[Xκ,z = 1]− Pr[Yκ,z = 1] | is negligible in κ.

2.2 Universal Composability

The results presented in this paper are proven secure in the Universal Composability (UC) framework
introduced by Canetti in [Can01]. Definitions can be found in Appendix A.2 of this paper.

Adversarial Model: In this work we consider security against static adversaries, i.e. corruption may only
take place before the protocols starts execution. We consider active adversaries who may deviate from the
protocol in any arbitrary way.
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Setup Assumption: It is known that UC commitment protocols (as well as most “interesting” functionalities)
cannot be obtained in the plain model [CF01]. In order to overcome this impossibility, UC protocols
require a setup assumption, that basically models a resource that is made available to all parties before
execution starts. The security of our protocols is proved in the FOT-hybrid [Can01,CLOS02], where all
parties are assumed to have access to an ideal 1-out-of-2 OT functionality (see Figure 8).

Ideal Functionalities: In Section 4, we construct a simple string commitment protocol that UC-realizes the
functionality FCOM as presented in [CLOS02] and recalled here in Figure 6. In Section 5, we extend this
simple scheme to allow homomorphic operations over commitments. The extended protocol UC-realizes
the functionality FHCOM in Figure 7, that basically adds a command for adding two previously stored
commitments and an abort command in the Commit Phase to FCOM. The abort is necessary to deal with
inconsistent commitments that could be sent by a corrupted party. In fact, our additively homomorphic
commitment protocol is constructed in the F t−1,t

OT -hybrid model (i.e. assuming access to (t− 1)-out-of-t
OT where t ≥ 2 is an integer parameter). Notice that F t−1,t

OT is basically a special case of a k-out-of-n OT
where k = n− 1, which can be subsequently reduced to the FOT-hybrid model via standard techniques
[Nao91,BCR86,NP99]. We define FOT in Figure 8 and F t−1,t

OT in Figure 9 following the syntax of
[CLOS02]. Notice that FOT can be efficiently UC-realized by the protocol in [PVW08], which can be
used to instantiate the setup phase of our commitment protocols.

2.3 Linear Secret-Sharing Scheme

We briefly recall here the definition of linear secret-sharing scheme (LSSS) following the approach of
[CDP12].

Definition 1. A linear secret sharing scheme for N players P1, . . . , PN over the finite field F is defined by
the pair (k,M), where k is the length of a secret and M is a N ×m matrix with entries in F (and m > k).
If k > 1, then the scheme is called packed. The row number i of M is denoted by mi and, if A is a subset of
players, then MA denotes the matrix consisting of rows mi such that Pi ∈ A.

In order to share a secret s ∈ Fk, the dealer of the LSSS given by (k,M) takes a random column vector
f ∈ Fm such that πk(f) = s> and computes c = M · f . The column vector c is called the share vector of
s, and its i-th component c[i] is the share sent by the dealer to the player Pi.

Definition 2. A subset of players A is called unqualified if the distribution of MA · f is independent of s,
while a subset of players B is called qualified if s is uniquely determined from MB · f .

It is the case that A is unqualified if and only if there exists, for each position j in s, a column vector of
m components wA,j (called sweeping vector) such that wA,j ∈ ker(MA) and πk(wA,j) = e>k,j . Similarly,
B is qualified if and only if there exists, for each position j in s, a row vector of |B| components rB,j (called
reconstruction vector) such that rB,j ·MB = em,j .

Given two positive integers a and b, if any subset of players A with |A| = a is unqualified, then we say
that the LSSS has a-privacy. If any subset of players B with |B| = b is qualified, then we say that the LSSS
has b-reconstruction.

Example 1. The additive secret-sharing scheme for N players over F is the linear secret-sharing scheme
where in order to share a secret s ∈ F among N players, the dealer chooses random values s1, . . . , sN in
F such that

∑N
i=1 si = s and sends the value si to player i. It is clear that the set of all the players can

reconstruct the secret from the received values, while any set of at most N − 1 players has no info on the
value s held by the dealer. With the previous notation, this LSSS can be defined by the pair (1,M), where
M has the following N rows: mi = eN−1,i+1 for i = 1, . . . , N − 1 and mN = eN−1,1 −

∑N−1
i=1 mi.
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3 Linear-Time Secret Sharing and Coding Scheme

In this section we describe the coding scheme Ct that stands in the core of our commitment protocols. We
depart from any error correcting code and apply a simple transformation that yields a code that can also
be seen as a linear secret sharing scheme for an specific access structure. Intuitively, this makes it possible
to reveal a large fraction of a codeword generated by Ct without revealing any information on the encoded
message.

Standard generic constructions of general linear secret sharing schemes from error correcting codes,
require a code whose dual code has high minimum distance. On the other hand, our construction does not
require any specific property from the underlying error correcting code. This conceptual difference is of
fundamental importance for the asymptotic and concrete efficiencies of our constructions, since it allows
a secret sharing scheme to be constructed from very efficient linear error correcting codes whose dual
codes’ minimum distance are mostly unfit for the standard generic constructions. In particular, our coding
scheme Ct inherits the underlying code C’s complexity. achieving linear-time encoding and/or decoding when
constructed from appropriate codes [GI01,GI02,GI03,GI05,Spi96,DI14].

Intuitively, the encoding procedure EncCt of Ct first encodes a message m under the underlying code C
obtaining a codeword v. In the next step, each element of v is secret shared into t shares under a simple
additive secret sharing scheme (i.e. taking random vectors v1, . . . ,vt such that

∑t
i=1 vi = v). The final

codeword c is defined as c = (v1[1], . . . ,vt[1], . . . ,v1[n], . . . ,vt[n])>, i.e., each t successive elements of c
sum up to the corresponding element of v. The decoding procedure DecCt basically reconstructs each element
of v from c and then uses the decoding algorithm of C to decode v into the original message m. Figure 5
illustrates the inner workings of our coding scheme.

Notice that only the encoding procedure EncCt is used in the actual commitment schemes, while the
decoding procedure DecCt is used in the simulators. Moreover, Ct basically applies a linear transformation on
codewords generated by the underlying code C, since EncCt uses a LSSS to divide each component of the
codeword into t shares. Hence, if C is linear, so is Ct. Finally, we show in Remark 1 that EncCt itself can be
seen as a LSSS. Intuitively, after a message m is encoded through EncCt , an element v[i] of the underlying
codeword can only be recovered if all shares v1[i], . . . ,vt[i] are known. Hence, no information on m is
revealed as at least one share is missing for every underlying codeword element.

Before we formally outline the coding scheme Ct Figure 1, we need to define the auxiliary functions Σt
and Λt:

– Σt : Fn −→ Ftn is a randomized function that takes as input a row vector v in Fn and does the
following: sample v1, . . . ,vt−1 ← Fn and compute vt = v − (v1 + · · · + vt−1). For j = 1, . . . , n,
define wj = ‖ti=1vi[j] = (v1[j], . . . ,vt[j]) and set Σt(v) = ‖nj=1wj = (w1, . . . ,wn). Note that this
means each consecutive t-tuple of Σt(v) sums to the corresponding element in the vector v.

– Λt : Ftn → Fn takes as input a vector h and adds each consecutive t components of h. That is,
Λt(h) gives as output the row vector in Fn whose i’th component is

∑t
j=1 h[(i − 1)t + j]. Note that

Λt (Σt(m)) = m.

Remark 1. It is possible to see the entire encoding procedure EncCt as a LSSS for N = tn players: let
C ∈Matn×k be the transpose of a generator matrix for the code C and let cj be its jth row, then the vector
EncCt (m) can be seen as a share vector of m ∈ Fk in the LSSS defined by the pair (k,MC

t ), where m =
k+ (t−1)n and MC

t is a N ×m matrix with rows given by mi = em,i+k−bi/tc for i ∈ [nt]\{t, 2t, . . . , nt}
and mjt =

(
cj ,0(t−1)n

)
−
∑t−1
i=1 m(j−1)t+i for j ∈ [n].
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Coding Scheme Ct

Let C : Fk → Fn be a linear error correcting code over a field F of dimension k, length n and minimum distance d, and let
t ≥ 2 be a fixed integer. Let m be a row vector in Fkand c be a column vector in Ftn The coding scheme is composed by the
pair of algorithms

(
EncCt ,DecCt

)
described as follows:

– EncCt (m): the encoding procedure EncCt : Fk → Ftn takes as input a message m and proceeds as follows:
1. Encode m using C, thus obtaining v = C(m) ∈ Fn.
2. Use the randomized function Σt(v) to additively secret share each component of the codeword v into t shares.

Output the column vector c = Σt(v)>. When we need to remember the randomness used in Σt, we will write
EncCt (m; v1, . . . , vt−1).

Let τ =
⌊
d−1

2

⌋
and let D : Fn → Fn ∪ {⊥} be a τ -bounded decoding algorithm for the underlying code C. That is, D either

decodes a received word r into the unique codeword c ∈ C at distance not more than τ from r (if such codeword exists) or
indicates that no such codeword exists, declaring a decoder failure.

– DecCt (c): the decoding procedure DecCt : Ftn → Fk ∪ {⊥} takes as input a codeword c and proceeds as follows:
1. Compute Λt(c) to obtain a vector v′ ∈ Fn.
2. Decode v′ using the decoding algorithm D for the underlying code C. If D fails, output ⊥. Otherwise output

m = C−1(D(v′)).

Fig. 1. Coding Scheme Ct

The set of tn players can be divided in n groups of t players each: define Tj =
{
P(j−1)t+1, . . . , Pjt

}
for all j ∈ [n]. Thus we can rephrase the encoding procedure EncCt for a vector m ∈ Fk as: first compute
the codeword v = C(m) and then, for all j ∈ [n], share the component v[j] between the players in Tj using
the additive LSSS for t players (see Example 1). From the (t− 1)-privacy property of the additive LSSS, it
follows that any subset of players A ⊆ {P1, . . . , Pn} such that |A ∩ Tj | ≤ t− 1 for all j ∈ [n] is unqualified
for the scheme (k,MC

t ). Instead, if B ⊆ {P1, . . . , Pn} satisfies B ∩ Tj = Tj for at least n− (d− 1) indices
j, then it is a qualified set for (k,MC

t ). Indeed, the players in B can compute at least n− (d− 1) components
of the codeword v and then they can apply an erasure correction algorithm for C and recover m. In particular
if |B| ≥ nt− (d− 1), then B is qualified.

4 Basic Construction

In this section we present our basic commitment scheme. We will work in the F t−1,t
OT -hybrid model (t being

a fixed integer greater or equal than 2) and we will phrase our protocol in terms of a Setup and an Online
phase. This decoupling is motivated by the fact that the Setup phase can be run at any time and independently
of the inputs of the parties. Once the Setup phase is completed, polynomially many commitments can be
executed in the Online phase, when the inputs are known. Moreover, the Setup phase is also completely
independent of the number of commitments executed in the Online phase. Finally our scheme is based on a
[n, k, d] linear error correcting code C over F used in the encoding procedure EncCt defined in Figure 1 (we
consider τ =

⌊
d−1

2

⌋
the security parameter).

A commitment to a message m ∈ Fk will be obtained by sending to the receiver Pr a subset of
components (watch-list) of the vector w = EncCt (m) computed by the sender Ps. The watch-list has to be
chosen in such a way that the components of w contained in it give no information on the message m (hiding
property). To open the commitment, the sender Ps has to send to the receiver both m and the randomness
used in the procedure EncCt , so that the receiver can compute by itself w and check if it is consistent with the

6



components it already knows from the watch-list. If we design the protocol in such a way that the sender
doesn’t know which components the receiver will check, then, since Ps can not change the message it
committed to without changing a substantial amount of entries, Pr will see a mismatch and catch the cheating
opening with high probability (binding property).

The watch-list mechanism is created in the Setup phase. The idea is that the sender and the receiver run n
(t− 1)-out of t OTs on n groups of tn seeds for a PRG, in such a way that for each group the verifier will
know only (t− 1) of the seeds chosen by the sender. The expanded strings produced by the PRG are used to
form a matrix Y . After that, in the Online phase, for each new commitment, the sender choses a new column
yη in Y and use it as one-time pad for sending to Pr the encoding EncCt (m). This will allow the receiver Ps
to view (t− 1)n entries of the encodings without the sender knowing which these entries are. Furthermore,
in this way we can allow many commitments while using the OT-functionality only once. For every new
commitment, the sender and receiver can obtain new one-time pads for the watch-list by simply expanding
the PRG seeds into a larger pseudorandom string up to a polynomially bounded length.

Protocol ΠCOM in the F t−1,t
OT -hybrid model

Let G : {0, 1}l
′
→ {0, 1}l be a pseudorandom generator, C : Fk → Fn be a linear error correction code over F and t ≥ 2 a

fixed integer. The procedure EncCt is defined in Figure 1.

A sender Ps and receiver Pr interact between themselves and with F t−1,t
OT as follows:

OT-Setup phase:
For i = 1, t+ 1, 2t+ 1, . . . , (n− 1)t+ 1:

1. Ps samples t strings xi,xi+1, . . . ,xi+t−1 ← {0, 1}l
′

and sends (sender, sid, ssid, (xi, . . . ,xi+t−1)) to F t−1,t
OT .

2. Pr samples {ci1, . . . , cit−1} ← {0, 1, . . . , t− 1} and sends (receiver, sid, ssid, ci1, . . . , cit−1) to F t−1,t
OT .

3. Pr receives (received, sid, ssid,xi+ci
1
, . . . ,xi+ci

t−1
) from F t−1,t

OT .

Let W (watch-list) be the set of indices W =
{
i+ ci1, . . . , i+ cit−1 | i = 1, t+ 1, 2t+ 1, . . . , (n− 1)t+ 1

}
and let

Y ∈Mattn×l be the tn× l matrix with rows yj’s consisting of the row vectors G(xj)’s for j = 1, . . . , tn. Denote by
yj the j’th column of Y . Ps knows the entire matrix Y , Pr knows the watch-list W and only (t− 1)n rows of Y , but in
a structured way: for each groups of t rows yjt+1, . . . ,y(j+1)t it holds exactly t− 1 of thosea.

Commit phase:
1. Upon input (commit, sid, ssid, Ps, Pr,m) for m ∈ Fk, Ps samples v1, . . . , vt−1 ← Fn and computes w =

EncCt (m; v1, . . . , vt−1). Then Ps chooses an unused column yη from the matrix Y defined in the Setup phase,
computes c = w + yη and sends (sid, ssid, η, c) to Pr .

2. Pr stores (sid, ssid, η, c) and outputs (receipt, sid, ssid, Ps, Pr).

Open phase:
1. Upon input (reveal, sid, ssid, Ps, Pr), Ps sends (sid, ssid,m, v1, . . . , vt−1) to Pr .
2. Pr receives (sid, ssid,m, v1, . . . , vt−1), computes w = EncCt (m; v1, . . . , vt−1) and checks if w[i]+yη[i] = c[i]

for all i ∈W . If this check fails Pr rejects the opening and halts. Otherwise Pr outputs (reveal, sid, ssid, Ps, Pr,m).

a We remark that the parties do not need to hold the entire matrices at any one point in time, but can generate it on demand
using an appropriate pseudorandom generator.

Fig. 2. Protocol ΠCOM

Statistical binding property: if the sender wants to open two different messages m and m′ for the same
commitment (η, c), then it has to produce randomness consistent with two vectors w and w′ such that
C(m) = Λt(w) and C(m′) = Λt(w′). Since the code has minimal distance d and d ≥ 2τ + 1, at least
one of the two different codewords Λt(w) and Λt(w′) is at distance strictly greater than τ from Λt(c− yη)
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(Hamming distance). Assume w. l. o. g. that dHam(Λt(w), Λt(c− yη)) ≥ τ + 1, then in w − c + yη there
are at least τ + 1 groups of consecutive entries in which at least one entry is not zero. Since the receiver
checks t− 1 entries chosen at random in each group, the probability that he doesn’t see any mismatch is at

most
(

1
t

)τ+1
.

Computational hiding property: from the security of the PRG G, we can claim that the receiver knows only
t− 1 entries in each group of consecutive entries of wη = EncCt (m). That is, Pr knows only t− 1 shares of
each component of the codeword C(m). Thus, the hiding property follows from the (t− 1)-privacy property
of the additive secret-sharing scheme for t players used to share each component of the codeword C(m).

The protocol ΠCOM UC-realizes the ideal functionality FCOM in the F t−1,t
OT -hybrid model, as stated in

the following two propositions. See Appendix A.3 for the proofs.

Proposition 1 (Statistical Binding Property). Let G : {0, 1}l′ → {0, 1}l be a pseudorandom generator
and C : Fk → Fn be a [n, k, d] error correction code over F. For every static active adversary A corrupting
only Ps in the F t−1,t

OT -hybrid execution of ΠCOM and for every environment1 Z , there exists a simulator S
such that:

IDEALFCOM,S,Z ≈ HYBRIDF
t−1,t
OT

ΠCOM,A,Z

where the security parameter is τ =
⌊
d−1

2

⌋
.

Proposition 2 (Computational Hiding Property). Let G : {0, 1}l′ → {0, 1}l be a pseudorandom gener-
ator and C : Fk → Fn be a [n, k, d] error correction code over F. For every static active adversary A
corrupting only Pr in the F t−1,t

OT -hybrid model execution of ΠCOM and for every environment Z , there exists
a simulator S such that:

IDEALFCOM,S,Z ≈ HYBRIDF
t−1,t
OT

ΠCOM,A,Z

where the security parameter is τ =
⌊
d−1

2

⌋
.

5 Additive Homomorphic Property

Notice that in the protocol ΠCOM a commitment (i, c) may be accepted in the Open phase by an honest
receiver even if Λt(wi) is not a codeword, but it is near enough to a codeword. More precisely, if a cheating
sender computes wi in such a way that Λt(wi) = C(m) + e for some error vector e with Hamming weight
equal to e, then an honest receiver will accept the commitment (i, c) for the message m with probability
equal to

(
1
t

)e
.

Because of this, a cheating sender can setup an attack where with non negligible probability the sum
of two commitments can be opened to a message that is different to the sum of the message contained in
the individual commitments. Given the vectors m,m′ and m̃ where m̃ 6= m + m′, Ps can compute the
vectors e, e′ and ẽ such that e + e′ + ẽ = C(m + m′)− C(m̃) and the Hamming weight of each of them
is less or equal than τ (note that this is possible to achieve as long as d ≤ 3τ , which is not disallowed
by our assumption d ≥ 2τ + 1). In the Commit phase the corrupted Ps defines w = Σt(C(m) − e) and
w′ = Σt(C(m′)− e′) and sends (α, c) and (β, c′), where c = w + yα and c′ = w′ + yβ . Recall that Σt is
the outer additive code in our encoding. From the above argument, in the Open phase, an honest receiver will

1 Note that in the proof of Proposition 1 the requirement for the environment to be polynomial-time is not necessary. Indeed the
proof holds for any environment that interacts with each system only a polynomial number of times.
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accept (α, c) or (β, c′) as commitment for m or for m′ respectively, with probability strictly greater than(
1
t

)τ+1
in both cases. Furthermore with the same probability, Ps can also open the sum c + c′ to m̃ because

by construction w + w′ = Σt(C(m̃) + ẽ).
While we could prevent the attack above by imposing the stronger condition d ≥ 3τ + 1, it is easy to see

that the same problem would still apply to the additions of at least d dτ e − 1 commitments.

To deal with this problem, we need to assure that for any vector w computed by the sender in the Commit
phase, it holds that Λt(w) is an actual codeword. Since a correct vector w can be seen as a share-vector in
the LSSS given by (k,MC

t ) (Remark 1), a standard way to achieve this guaranty is to convert (k,MC
t ) into a

verifiable secret-sharing scheme (VSS). The latter is a secret-sharing scheme for which, together with the
standard privacy property for unqualified sets of players, a stronger reconstruction property holds for the
qualified sets. Indeed, in a VSS, even when the dealer is corrupted, any qualified set of honest players can
determine a secret that is consistent with the share held by any honest player in the scheme. In order to obtain
the additive homomorphic property for our commitment protocol, the basic idea we will use in Section 5.2
consists in forcing the sender to compute the vector w using a verifiable version of the encoding procedure
EncCt . In this way the receiver can verify that w has been properly constructed (i.e. Λt(w) is a codeword)
with overwhelming probability.

5.1 Packed Verifiable Secret-Sharing Scheme

In this section we recall the packed verifiable secret-sharing protocol described in [DDGN14]. We refer to
the latter for the proof of the following lemmas. The protocol can be based on any linear secret-sharing
scheme (k,M) for N players as defined in Section 2 and it secret-shares k vectors s1, . . . , sk ∈ Fk in each
its execution (the LSSS is over the field F). In the following, F will be a m×m matrix with entries in F (m
is the number of columns in M ) and f b will be its the b-th column. For any index i = 1, . . . , N define the
column vector hi = F ·m>i and the row vector gi = mi · F (where mi is the i-th row in M ). It is then
clear that mj · hi = gj ·m>i for all i, j ∈ [N ]. The VSS protocol is shown in Figure 3.

Protocol ΠVSS (M )
1. Let s1, . . . , sk ∈ Fk be the secrets to be shared. The dealer chooses a random m×m matrix F with entries in F, subjecta

to πk(f i) = s>i , for any i = 1, . . . , k.
2. For any i = 1, . . . , N , the dealer computes hi and gi and sends them to Pi
3. Each player Pj sends gj ·m>i to Pi, for i = 1, . . . , N .
4. Each Pi checks, for j = 1, . . . , N , that mj · hi equals the value received from Pj . He broadcasts (accept, sid, ssid,) if

all checks are satisfied, otherwise he broadcasts (reject, sid, ssid,).
5. If all players said (accept, sid, ssid,), then each Pj stores gj [i] as his share of si, for i = 1, . . . , k. Otherwise the protocol

aborts.

a Recall that we use πk to denote the projection that outputs the first k coordinates of a vector

Fig. 3. Packed Verifiable Secret-Sharing Scheme

For a column vector v ∈ Fm, we will say that v shares s ∈ Fk, if πk(v) = s and each honest player Pj
holds mj · v. It is clear the the scheme ΠVSS is complete, i.e. if the dealer is honest, then all honest players
accept and the column vector f i shares si, for any i = 1, . . . , k. Moreover, the scheme has the following
reconstruction property:
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Lemma 1. Let B be a qualified subset of b honest players and assume that the protocol ΠVSS doesn’t abort.
Then, for all i = 1, . . . , k, the vector f̃

i
(defined by f̃

i =
∑b
j=1 rB,i[j]hj) shares πk(f̃

i). The vectors rB,i
are the reconstruction vectors defined in Section 2.3.

Lemma 1 assures that if the protocol ΠVSS doesn’t abort, then, even when the dealer is corrupted, for
all i = 1, . . . , k the info held by a qualified set of honest players at the end of the protocol determine the
secret si = πk(f̃

i)> and the randomness f̃
i

used by the dealer to share it in such a way that (M · f̃ i)[j] =
mj · f̃

i = gj [i] for any j with Pj honest.
Finally, since ΠVSS shares k secrets in one execution, the privacy property can be stated in an extended

form which also guarantees that making public any linear combination of the shared secrets doesn’t reveal
extra info on the individual secrets.

Lemma 2. If the dealer in ΠVSS is honest, then for any unqualified set of playersA and for any λ1, . . . , λ` ∈
F, the distribution of {F ·M>

A,MA · F ,
∑`
j=1 λjs

j} is independent of the secrets held by the dealer.

5.2 Homomorphic Commitment Scheme

In this section we present our additively homomorphic commitment scheme. The protocol is designed in
the F t−1,t

OT -hybrid model using preprocessing and it will be based on the instantiation of the ΠVSS protocol
in which the underlying LSSS is the one that is equivalent to our encoding procedure EncCt . The result is a
commitment scheme that can be seen as a concrete exemplification of the homomorphic commitment scheme
described in [DDGN14]. Note that in this section, for technical reasons, the fixed integer t has to be strictly
greater than 2.

Given the [n, k, d] linear error-correcting code C, we have already noted in Remark 1 that computing
the vector w = EncCt (m; v1, . . . ,vt−1) is equivalent to computing the share-vector for m in the LSSS
defined by (k,MC

t ) for N = tn players. In particular w = MC
t · f where the vector f is given by

f = (m,f1, . . . ,fn)> with f j = (v1[j], . . . ,vt−1[j]) for any j ∈ [n].
The protocol ΠHCOM is presented in Figure 4. In the Setup phase, firstly the same watch-list mechanism

of ΠCOM is created and after the sender runs ΠVSS on some random messages r1, . . . , rk computing the
vectors hi, gi for all i = 1, . . . , N . In particular Ps computes EncCt (ri) = (g1[i], . . . , gN [i])>. Thanks to
the watch-list mechanism, the receiver sees all the vectors hi, gi such that i is in the watch-list set W and
therefore it can check the relation mj ·hi = gj ·m>i for all i, j in W . If all these checks are satisfied, then it
follows from the strong reconstruction property of the VSS, that the vectors EncCt (ri) have been properly
constructed (i.e. Λt(EncCt (ri)) is a codeword) with overwhelming probability. Nevertheless, since the set
of players {Pi | i ∈ W} is unqualified for the LSSS (k,MC

t ), the receiver has no info about the vectors
r1, . . . , rk.

In the Online phase, to commit to m ∈ Fk, the sender takes an unused rη and sends c = m + rη
to the sender. The commitment is represented by the pair (η, c). To open it, the sender reveals m and the
randomness used to compute w = EncCt (rη), thus the receiver can check if the entries he already knows of
the encoding of rη match the ones of w.

As in the basic protocol, the hiding property follows easily from the privacy of the VSS scheme and the
security of the PRG. The binding property, again, follows from the fact that in order to change ri in r′i the
sender has to change a large amount of entries in EncCt (ri) without knowing which entries the receiver checks.
Finally, in this protocol we can implement additions: given a commitment (α, c1) to m1 and a commitment
(β, c2) to m2, both the parties can just compute c3 = c1 + c2 and store ((α, β), c3) as new commitment. To
open c3 to m1 + m2 the senders sends to Pr the vector m1 + m2 and the sum of the randomness used in
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EncCt (rα) an in EncCt (rβ). While the receiver will check the received randomness as in an usual Open phase
but considering the sum of the encodings of rα and rβ .

Note that now a commitment will be represented by (η, c), where η can also be a tuple of indices instead
of just one index in [k] = {1, . . . , k}. Indeed, if c is the commitment obtained by the sum of ` standard
commitments (i.e. commitments created in the Commit phase), then η ∈ [k]`. For this reason, in order to
implement the Addition command in the description of the protocol, we will use the following notation: if
α ∈ [k]i and β ∈ [k]j , then γ = α ‖ β = (α, β) ∈ [k]i+j .

Protocol ΠHCOM in the F t−1,t
OT -hybrid model

Let G : {0, 1}l
′
→ {0, 1}2m be a pseudorandom generator, C : Fk → Fn be a [n, k, d] code over F and t ≥ 3 a fixed integer.

We recall that N = tn, m = k + (t− 1)n and the matrix MC
t , whose i-th row is called mi, is defined in Remark 1.

A sender Ps and receiver Pr interact between themselves and with F t−1,t
OT as follows:

Setup phase:
OT-Setup:

For i = 1, t+ 1, 2t+ 1, . . . , (n− 1)t+ 1:
1. Ps samples t strings xi,xi+1, . . . ,xi+t−1 ← {0, 1}l

′
and sends (sender, sid, ssid, (xi, . . . ,xi+t−1)) to

F t−1,t
OT .

2. Pr samples {ci1, . . . , cit−1} ← {0, 1, . . . , t− 1} and sends (receiver, sid, ssid, ci1, . . . , cit−1) to F t−1,t
OT .

3. Pr receives (received, sid, ssid,xi+ci
1
, . . . ,xi+ci

t−1
) from F t−1,t

OT .

Let Y ∈MatN×2m be the N × 2m matrix with rows yj’s consisting of the row vectors G(xj)’s for j = 1, . . . , N
and W =

{
i+ ci1, . . . , i+ cit−1 | i = 1, t+ 1, 2t+ 1, . . . , (n− 1)t+ 1

}
.

Pre-commitment:
1. Upon receiving (received, sid, ssid) from F t−1,t

OT , Ps samples r1, . . . , rk ← Fk and runs ΠVSS (MC
t ) using

r1, . . . , rk as input and constructing the row vectors wi =
(
gi, (hi)>

)
∈ F2m for i = 1, . . . , N . Let

W ∈MatN×2m be the matrix consisting of the rows wi.
2. Ps computes A = W + Y and sends (sid, ssid,A) to Pr . Denote with ai the i-th row of A.
3. Pr computes

(
gi, (hi)>

)
= ai − yi for all i ∈ W and checks if mj · hi = gj ·m>i for all different indices

i, j ∈W . If all the checks are satisfied, then Pr accepts the Setup phase, otherwise it halts.

Commit phase:
1. Upon input (commit, sid, ssid, Ps, Pr,m) for m ∈ Fk, Ps chooses an unused rη from the Setup phase, computes

c = m + rη and sends (sid, ssid, η, c) to Pr .
2. Pr stores (sid, ssid, η, c) and outputs (receipt, sid, ssid, Ps, Pr).

Addition:
If the tuples (sid, ssid1, α, c1), (sid, ssid2, β, c2) were previously sent by Ps and recorded by Pr , then:

1. Upon input (add, sid, ssid1, ssid2, ssid3, Ps, Pr), both the players Ps and Pr define and store (sid, ssid3, γ, c3)
where γ = α ‖ β and c3 = c1 + c2.

Open phase:
If (sid, ssid, δ, c′) was stored and δ = (δ1, . . . , δ`) ∈ [k]`, then:

1. Upon input (reveal, sid, ssid, Ps, Pr) to reveal message m′, Ps sends (sid, ssid,m′, v1, . . . , vt−1) to Pr , where
vi =

∑`

j=1 v
δj

i for all i = 1, . . . , t− 1 and the vectora EncCt (rδj ; v
δj

1 , . . . , v
δj

t−1) is the column number δj in the
matrix W (for all j = 1, . . . , `).

2. Pr receives (sid, ssid,m′, v1, . . . , vt−1) and computes w = EncCt (c′ −m′; v1, . . . , vt−1). Then, Pr checks if
w[j] =

∑`

i=1 gj [δi] for all the entries j ∈W . If this check fails Pr rejects the commitment and halts. Otherwise Pr
outputs (reveal, sid, ssid, Ps, Pr,m′).

a Since the LSSS defined by (k,MC
t ) is equivalent to the encoding procedure EncCt , Ps already knows the vectors {vδj

i }i
used to encode rδj from the Pre-commitment phase

Fig. 4. Protocol ΠHCOM
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The protocol ΠHCOM UC-realizes the ideal functionality FHCOM in the F t−1,t
OT -hybrid model, as stated

in the following two propositions. See Appendix A.4 for the proofs.

Proposition 3 (Statistical Binding Property). Let G : {0, 1}l′ → {0, 1}2m be a pseudorandom generator
and C : Fk → Fn be a [n, k, d] error correction code over F. For every static active adversary A corrupting
only Ps in theF t−1,t

OT -hybrid world execution of ΠHCOM and for every environmentZ , there exists a simulator
S such that:

IDEALFHCOM,S,Z ≈ HYBRIDF
t−1,t
OT

ΠHCOM,A,Z

where the security parameter is τ =
⌊
d−1

2

⌋
.

Also in the protocol ΠHCOM it is possible to implement polynomial many commitments, after having
run the OT-Setup phase only once. Indeed, after that the watch-list W has been settled, the sender can always
sample new random vectors r∗1, . . . , r

∗
k ← Fk and, together with the receiver, repeat the execution of the

Pre-commitment phase on this new input. We have already recalled in Section 4 that it is possible to expand
the PRG output in order to have new one-time keys to use in the each execution of the Pre-commitment phase.
After that, Ps and Pr can continue the protocol following the instructions in ΠHCOM. Moreover, this doesn’t
create any restriction about the Addition command: we can allow the sum of commitments that use one-time
keys coming from different Pre-commitment phases.

Proposition 4 (Computational Hiding Property). Let G : {0, 1}l′ → {0, 1}2m be a pseudorandom gen-
erator and C : Fk → Fn be a [n, k, d] error correction code over F. For every static active adversary A
corrupting only Pr in the F t−1,t

OT -hybrid world execution of ΠHCOM and for every environment Z , there
exists a simulator S such that:

IDEALFHCOM,S,Z ≈ HYBRIDF
t−1,t
OT

ΠHCOM,A,Z

where the security parameter is τ =
⌊
d−1

2

⌋
.

6 Complexity and Concrete Efficiency

In this section we discuss the computational and communication complexities of the commitment schemes
proposed in Sections 4 and 5. We also estimate concrete parameters and compare the efficiency of our
schemes with previous works.

6.1 Complexity

The commitment scheme presented by Damgård et al. in [DDGN14] suffered from a quadratic computational
overhead in order to achieve optimal communication overhead. This issue stems from the fact that their
scheme requires an underlying LSSS that operates over constant size fields [CDP12] whose sharing operations
consist in matrix multiplications. Our homomorphic scheme circumvents that by constructing the VSS scheme
from a linear error correcting code with linear-time encoding where one can compute shares by computing
encodings.

The core component of both commitment schemes is the coding scheme EncCt . This construction can be
seen both as an error correcting code (ECC) and a linear secret secret sharing scheme for a specific access
structure. EncCt can be built from any linear error correcting code, differently from previous results, which
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require codes whose dual codes have high minimum distance in order to construct LSSS. This fundamental
difference in construction allows us to obtain a coding scheme EncCt (and consequently a LSSS) that runs in
linear time on the input length from any linear-time encodable error correcting code. There exist constructions
of linear-time encodable codes with constant rate and good (i.e., linear in the codeword length) minimum
distance, see [GI01,GI02,GI03,GI05,Spi96]. However, these may even be more sophisticated than what we
need since all we require about the minimum distance is that it is at least 2τ + 1, where τ is the security
parameter.

The encoding and decoding procedures of EncCt inherit the complexity of the underlying code. Notice
that in our constructions we only utilize the encoding procedure of EncCt , since sharing and verifying share
consistency in the VSS scheme of Figure 3 can be seen as encoding. Hence, our constructions can even take
advantage of recent advances in linear-time encodable codes [DI14].

Combining a linear-time encoding procedure EncCt with a PRG where we pay only a constant number of
elementary bit operations per output bit (see, e.g., [VZ12]), we obtain UC-secure commitments with optimal
computational complexity. Notice that the setup phase (where OTs are needed) is only run once, allowing for
an arbitrary number of posterior commitments. Thus, the cost of this phase is amortized over the number of
commitments. Communication complexity is also linear in the message length if C has constant rate.

6.2 Concrete Parameters and Efficiency

Even though our schemes can achieve optimal asymptotic computational and communication complexities,
we are also interested in obtaining highly efficient concrete instantiations. As an example, we estimate
parameters for a concrete instantiation of our schemes with message length k = 256 bits and statistical
security parameter τ = 60.

Bulding Blocks: The basic building blocks of our commitment scheme are the coding scheme EncCt , a PRG
and a UC-secure OT protocol. We select the following constructions of these building blocks for our concrete
instances:

– OT: The UC-secure protocol presented in [PVW08]. This protocol is round optimal and requires commu-
nicating 6 group elements and computing 11 exponentiations per transfer.

– PRG: AES in counter mode, using the IV as a PRG seed. AES implementations are readily available in
modern hardware (e.g. Intel’s AES-NI) making the cost of this PRG negligible.

– EncCt : For the basic scheme of Figure 2 we will need a EncC2 coding scheme, while for the additively
homomorphic scheme of Figure 4 we need a EncC3 coding scheme. Both schemes are constructed using
a binary [796, 256,≥ 121] BCH code (see, e.g., [MS78]) 2 as C according to the generic construction
of Section 3. This code has parameters k = 256, n = 796 and d ≥ 121, which corresponds to τ = 60.
We obtain EncC2 : F256 → F1592 and EncC3 : F256 → F2388. Even though this code doesn’t have linear
encoding complexity, it was chosen because it is readily available in the Linux Kernel and it achieves
good concrete performance.

Concrete Parameters: Table 1 presents the communication, round and computational complexities in terms
of the parameters [n, k, d] of the code C used to instantiate the encoding scheme EncCt . The commitment

2 More precisely, the [796, 256,≥ 121] code is actually obtained by shortening a BCH-code with parameters [1023, 483,≥ 121].
This code was in turn selected by first fixing the message size k = 256, the statistical security parameter τ = 60 and the minimum
distance d ≥ 2τ + 1 ≥ 121, then using MAGMA to compute concrete code parameters that fit these constraints.

13



message length is k and the statistical security parameter follows from code C’s minimum distance d following
the relation τ =

⌊
d−1

2

⌋
.

Notice that the homomorphic scheme of Figure 4 requires a pre-commitment phase after which it is
possible to execute k commitments to messages of length k. Hence, the communication and computational
complexities of an individual commitment are computed by dividing the total cost of the pre-commitment
phase by the number of commitments that can be executed after this phase3. In practice the whole pre-
commitment must be run before additively homomorphic commitments can be executed. Nevertheless, the
pre-commitment phase can be preprocessed, since it is independent of the actual messages.

The setup phase for both schemes requires n executions of a t − 1-out-of-t OT. Its cost in terms of
exponentiations/encodings depends on the OT protocol used.

Scheme

Communication
Complexity

(in field elements)

Round
Complexity

Computational
Complexity

Commit Open Total Commit Open Commit Open Total
Fig. 4

(homomorphic)
2mnt
k

+ k m 2mnt
k

+ k +m 1 1 4n(t−1)
k

+ 2 Enc. 1 Enc. 4n(t−1)
k

+ 3 Enc.

Fig. 2
(basic)

nt m m+ nt 1 1 1 Enc. 1 Enc. 2 Enc.

Table 1. Concrete efficiency in terms of coding scheme EncCt parameter t and code C parameters dimension k, and length n. Message
length is k and statistical security follows from the relation τ =

⌊
d−1

2

⌋
, depending on code C’s minimum distance d. Enc. stands for

encodings and m = k + n(t− 1).

Preprocessing: Both the basic scheme of Figure 2 and the homomorphic scheme of Figure 4 can benefit
from preprocessing. In this model, the commitment phase is preprocessed before the messages are known in
a so called offline phase. Later on, in the online phase, the sender can commit to its actual messages virtually
for free. Using this trick, the sender can pre-compute a number of commitments before they are actually
needed during his idle time, dramatically speeding up the online phase where he receives his actual inputs.
This strategy is particularly fit for scenarios where a large number of commitments are known to be needed at
some point, such as cut-and-choose protocols.

Notice that, in pre-commitment phase of the additively homomorphic scheme of Figure 4, the sender uses
the VSS scheme to share several random strings of the same size as the messages and sends a fraction of the
resulting shares to the receiver for verification. Later on, in the online phase, the sender can simply encrypt
its actual messages using this random strings as one-time pads. A similar trick can be applied to the basic
scheme in Figure 2 by using the regular commit phase steps to pre-commit to a series of random strings of
the same size as the actual messages before they are known.

Table 2 presents the communication and computational complexities of our schemes in the preprocessing
model in terms of the parameters [n, k, d] of the code C used to instantiate the encoding scheme EncCt . The
commitment message length is k and the statistical security parameter follows from code C’s minimum
distance d following the relation τ =

⌊
d−1

2

⌋
. Notice that pre-commitments are run as offline phase.

3 Computing and checking the consistency of shares under the VSS scheme ΠVSS (MC
3 ) used for the additively homomorphic

scheme of Figure 4 can be seen as computing a number of encodings under EncC3 .
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Scheme

Communication
Complexity

(in field elements)

Round
Complexity

Computational
Complexity

Offline Commit Open Offline Commit Open Offline Commit Open
Fig. 4

(homomorphic)
2mnt
k

k m 1 1 1 4n(t−1)
k

+ 2 Enc. 0 Enc. 1 Enc.

Fig. 2
(basic)

nt k m 1 1 1 1 Enc. 0 Enc. 1 Enc.

Table 2. Preprocessing model concrete efficiency in terms of coding scheme EncCt parameter t and code C parameters dimension k,
and length n. Message length is k and statistical security follows from the relation τ =

⌊
d−1

2

⌋
, depending on code C’s minimum

distance d. Enc. stands for encodings and m = k + n(t− 1).

Evaluating Efficiency: Previous efficiency comparisons between UC-secure commitment schemes have
been based on the number of exponentiations required by each scheme. This choice of comparison parameters
is justified by the fact that this is usually the most costly operation that dominates the concrete execution time
of such schemes. However, apart from the setup phase involving OTs, our protocols require no exponentiations
at all. After the setup phase of our protocols, the most expensive operation is the encoding procedure of the
EncCt coding scheme (the other operation required is addition).

We compare the efficiency of our schemes with the most efficient previous works [BCPV13,Lin11] by
estimating the execution time of the encoding procedure of the BCH code and comparing that to the execution
time of exponentiations on the same platform. While the encoding scheme of the ECC and the PRG are used
proportionally to the number of commitments one wishes to make and open, the OT protocol is only used for
a fixed number of times during the setup phase. Hence, it is interesting to estimate the concrete efficiency of
the setup phase separately from the other steps of the protocols, since the cost of running the OT protocol is
amortized over the number of commitments.

The concrete computational, round and communication complexities for our schemes when instantiated
using the previously described building blocks are presented in Table 3. In this case we consider message
length k = 256 and statistical security parameter τ = 60, using the [796, 256,≥ 121] BCH code as the
building block for EncC2 and EncC3 .

Scheme
Communication

Complexity (in bits)
Round

Complexity
Computational

Complexity
Commit Open Total Commit Open Commit Open Total

[BCPV13] (Fig. 6) 1024 2048 3072 1 5 10 Exp. 12 Exp. 22 Exp.
[Lin11] (Protocol 2) 1024 2560 3584 1 3 5 Exp. 18 1

3 Exp. 23 1
3 Exp.

Fig. 4
(homomorphic, t = 3)

34733 1848 36580 1 1 27 Enc. 1 Enc. 28 Enc.

Fig. 2
(basic, t = 2)

1592 1052 2644 1 1 1 Enc. 1 Enc. 2 Enc.

Table 3. Concrete efficiency with message length k = 256 bits, statistical security parameter τ = 60 and 128-bit computational
security (for the schemes of [BCPV13,Lin11]). Exp. and Enc. stand for exponentiations and encodings, respectively.

The execution time of an elliptic curve “exponentiations” over a field of size 256 bits offering 128-
bit security is evaluated through an implementation in SCAPI 2.3 [EFLL12] using an underlying curve
implementation provided by OpenSSL 1.1.0. The execution time of the encoding procedure of the [796, 256,≥
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121] BCH code is evaluated using the implementation present in the Linux kernel. The platform used for
estimating the running time of these operations is based on a Intel(R) Core(TM) i5-2400 CPU at 3.10 GHz
with 4 GB of RAM running a Linux Kernel version 3.13.0.

Our experiments showed that the elliptic curve “exponentiations” take an average of 375 µs while the
encodings take an average of 0.75 µs on the same platform. Hence, in this scenario, computing one encoding
is on average 500 times faster than computing one exponentiation on the same platform. These data show that
our basic commitment scheme is 5500 times more computationally efficient than the scheme of [BCPV13],
also achieving 14% lower communication complexity. On the other hand, our additively homomorphic
commitment scheme is 392 times faster than the scheme of [BCPV13], though its communication complexity
is 12 times higher.

The Random Oracle Model [BR93] has historically been used to construct cryptographic schemes with
very high efficiency. Surprisingly, our scheme achieves amortised concrete efficiency comparable to previous
universally composable schemes based on the ROM [HM04,DSW08] even though it is constructed in the
plain model. The average execution time of a SHA-256 hash function in our evaluation platform is of 0.63µs
for the fastest implementation (BouncyCastle) available on SCAPI 2.3, while the OpenSSL implementation
runs in 0.835µs. The protocol introduced in [HM04] requires four evaluations of the ROM, which translates
into a total execution time 1.68 times higher than of our basic scheme if SHA-256 is used to instantiate the
ROM.

Implementing the setup phase required by our basic scheme in Figure 2 requires n = 796 executions of
a 1-out-of-2 OT, yielding a cost of 8756 exponentiations. With the above timings and considering the OT
protocol of [PVW08], the computational complexity of this scheme is lower when at least 398 commitments
are computed, and gets increasingly better as the number of commitments increases. However, 4776 of these
exponentiations can be precomputed independently of the messages since it is enough for the receiver to
get random messages, lowering the online cost to 3980 exponentiations (i.e. the cost of 180 commitments.
The additively homomorphic scheme in Figure 4 requires n = 796 executions of a 2-out-of-3 OT, yielding a
higher cost in terms of exponentiations in the setup phase.
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A Appendix

A.1 Coding Scheme

The following figure illustrates the inner workings of the coding scheme EncCt introduced in Section 3.
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C(m)→ v ∈ F3

v = v1 + v2

v1[1]

v2[1]

v1[2]

v2[2]

v1[3]

v2[3]

v = v1 + v2

m← C−1(v)

Fig. 5. Coding scheme illustration for t = 2, n = 3

A.2 Universal Composability

The results presented in this paper are proven secure in the Universal Composability (UC) framework
introduced by Canetti in [Can01]. In this framework, protocol security is analyzed under the real-world/ideal-
world paradigm, i.e. by comparing the real world execution of a protocol with an ideal world interaction with
the primitive that it implements. The model has a composition theorem, that basically states that UC secure
protocols can be arbitrarily composed with each other without any security compromises. This desirable
property not only allows UC secure protocols to effectively serve as building blocks for complex applications
but also guarantees security in practical environments where several protocols (or individual instances of
protocols) are executed in parallel, such as the Internet.

In the UC framework, the entities involved in both the real and ideal world executions are modeled as
probabilistic polynomial-time Interactive Turing Machines (ITM) that receive and deliver messages through
their input and output tapes, respectively. In the ideal world execution, dummy parties (possibly controlled
by an ideal adversary S referred to as the simulator) interact directly with the ideal functionality F , which
works as a trusted third party that computes the desired primitive. In the real world execution, several parties
(possibly corrupted by a real world adversary A) interact with each other by means of a protocol π that
realizes the ideal functionality. The real and ideal executions are controlled by the environment Z , an entity
that delivers inputs and reads the outputs of the individual parties, the adversary A and the simulator S . After
a real or ideal execution, Z outputs a bit, which is considered as the output of the execution. The rationale
behind this framework lies in showing that the environment Z (that represents all the things that happen
outside of the protocol execution) is not able to efficiently distinguish between the real and ideal executions,
thus implying that the real world protocol is as secure as the ideal functionality.

We denote by REALπ,A,Z(κ, z, r̄) the output of the environment Z in the real-world execution of
protocol π between n parties with an adversary A under security parameter κ, input z and randomness r̄ =
(rZ , rA, rP1 , . . . , rPn), where (z, rZ), rA and rPi are respectively related to Z , A and party i. Analogously,
we denote by IDEALF ,S,Z(κ, z, r̄) the output of the environment in the ideal interaction between the simulator
S and the ideal functionality F under security parameter κ, input z and randomness r̄ = (rZ , rS , rF ),
where (z, rZ), rS and rF are respectively related to Z , S and F . The real world execution and the ideal
executions are respectively represented by the ensembles REALπ,A,Z = {REALπ,A,Z(κ, z, r̄)}κ∈N and
IDEALF ,S,Z = {IDEALF ,S,Z(κ, z, r̄)}κ∈N with z ∈ {0, 1}∗ and a uniformly chosen r̄.

In addition to these two models of computation, the UC framework also considers the G-hybrid world,
where the computation proceeds as in the real-world with the additional assumption that the parties have
access to an auxiliary ideal functionality G. In this model, honest parties do not communicate with the ideal
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functionality directly, but instead the adversary delivers all the messages to and from the ideal functionality.
We consider the communication channels to be ideally authenticated, so that the adversary may read but not
modify these messages. Unlike messages exchanged between parties, which can be read by the adversary,
the messages exchanged between parties and the ideal functionality are divided into a public header and a
private header. The public header can be read by the adversary and contains non-sensitive information (such
as session identifiers, type of message, sender and receiver). On the other hand, the private header cannot be
read by the adversary and contains information such as the parties’ private inputs. We denote the ensemble
of environment outputs that represents the execution of a protocol π in a G-hybrid model as HYBRIDGπ,A,Z
(defined analogously to REALπ,A,Z ). UC security is then formally defined as:

Definition 3. A n-party (n ∈ N) protocol π is said to UC-realize an ideal functionality F in the G-hybrid
model if, for every adversary A, there exists a simulator S such that, for every environment Z , the following
relation holds:

IDEALF ,S,Z ≈ HYBRIDGπ,A,Z

We say that the protocol is statistically secure if the same holds for all Z with unbounded computing power.

Adversarial Model: In this work we consider security against static adversaries, i.e. corruption may only
take place before the protocols starts execution. We consider active adversaries who may deviate from the
protocol in any arbitrary way.

Setup Assumption: It is known that UC commitment protocols (as well as most “interesting” functionalities)
cannot be obtained in the plain model [CF01]. In order to overcome this impossibility, UC protocols require a
setup assumption, that basically models a resource that is made available to all parties before execution starts.
The security of our protocols is proved in the FOT-hybrid [Can01,CLOS02], where all parties are assumed
to have access to an ideal 1-out-of-2 OT functionality (see Figure 8).

Ideal Functionalities: In Section 4, we construct a simple string commitment protocol that UC-realizes the
functionality FCOM as presented in [CLOS02] and recalled here in Figure 6. In Section 5, we extend this
simple scheme to allow homomorphic operations over commitments. The extended protocol UC-realizes
the functionality FHCOM in Figure 7, that basically adds a command for adding two previously stored
commitments and an abort command in the Commit Phase to FCOM. The abort is necessary to deal with
inconsistent commitments that could be sent by a corrupted party.

In fact, our additively homomorphic commitment protocol is constructed in the F t−1,t
OT -hybrid model

(i.e. assuming access to (t − 1)-out-of-t OT where t ≥ 2 is an integer parameter). Notice that F t−1,t
OT is

basically a special case of a k-out-of-n OT where k = n − 1, which can be subsequently reduced to the
FOT-hybrid model via standard techniques [Nao91,BCR86,NP99]. We define FOT in Figure 8 and F t−1,t

OT in
Figure 9 following the syntax of [CLOS02]. Notice that FOT can be efficiently UC-realized by the protocol
in [PVW08], which can be used to instantiate the setup phase of our commitment protocols.

A.3 UC security for ΠCOM

When both parties are honest, the protocol ΠCOM is trivially correct. Let A be a static active adversary
that interacts with the sender Ps and the receiver Pr running the protocol ΠCOM in the F t−1,t

OT -hybrid
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Functionality FCOM

FCOM interacts with a sender Ps, a receiver Pr and an adversary S and it proceeds as follows:
– Commit Phase: Upon receiving a message (commit, sid, ssid, Ps, Pr,m) from Ps, where m ∈ {0, 1}λ, record the

tuple (ssid, Ps, Pr,m) and send the message (receipt, sid, ssid, Ps, Pr) to Pr and S. (The lengths of the strings λ is
fixed and known to all parties). Ignore any future commit messages with the same ssid from Ps to Pr .

– Open Phase: Upon receiving a message (reveal, sid, ssid) from Ps: If a tuple (ssid, Ps, Pr,m) was previously recorded,
then send the message (reveal, sid, ssid, Ps, Pr,m) to Pr and S. Otherwise, ignore.

Fig. 6. Functionality FCOM

Functionality FHCOM

FCOM interacts with a sender Ps, a receiver Pr and an adversary S and it proceeds as follows:
– Commit Phase: Upon receiving a message (commit, sid, ssid, Ps, Pr,m) from Ps, where m ∈ {0, 1}λ, record the

tuple (ssid, Ps, Pr,m) and send the message (receipt, sid, ssid, Ps, Pr) to Pr and S. (The lengths of the strings λ is
fixed and known to all parties). Ignore any future commit messages with the same ssid from Ps to Pr . If a message
(abort, sid, ssid) is received from S, the functionality halts.

– Open Phase: Upon receiving a message (reveal, sid, ssid) from Ps: If a tuple (ssid, Ps, Pr,m) was previously recorded,
then send the message (reveal, sid, ssid, Ps, Pr,m) to Pr and S. Otherwise, ignore.

– Addition: Upon receiving a message (add, sid, ssid1, ssid2, ssid3, Ps, Pr) from Ps: If tuples (ssid1, Ps, Pr,m1),
(ssid2, Ps, Pr,m2) were previously recorded and ssid3 is unused, record (ssid3, Ps, Pr,m1 + m2) and send the
message (add, sid, ssid1, ssid2, ssid3, Ps, Pr, success) to Ps, Pr and S.

Fig. 7. Functionality FHCOM

Functionality FOT

FOT interacts with a sender Ps, a receiver Pr and an adversary S, and it proceeds as follows:
– Upon receiving a message (sender, sid, ssid,x0,x1) from Ps, where each xi ∈ {0, 1}λ , store the tuple (ssid,x0,x1)

(The lengths of the strings λ is fixed and known to all parties). Ignore further messages from Ps to Pr with the same ssid.
– Upon receiving a message (receiver, sid, ssid, c) from Pr , where c ∈ {0, 1}, check if a tuple (ssid,x0,x1) was recorded.

If yes, send (received, sid, ssid,xc) to Pr and (received, sid, ssid) to Ps and halt. If not, send nothing to Pr (but continue
running).

Fig. 8. Functionality FOT

Functionality F t−1,t
OT

F t−1,t
OT interacts with a sender Ps, a receiver Pr and an adversary S, and it proceeds as follows:
– Upon receiving a message (sender, sid, ssid,x0, . . . ,xt−1) from Ps, where each xi ∈ {0, 1}λ, store the tuple

(ssid,x0, . . . ,xt−1).(The lengths of the strings λ is fixed and known to all parties). Ignore further messages from
Ps to Pr with the same ssid.

– Upon receiving a message (receiver, sid, ssid, c1, . . . , ct−1) from Pr , where ci ∈ {0, 1, . . . , t − 1}, check if a tuple
(ssid,x0, . . . ,xt−1) was recorded. If yes, send (received, sid, ssid,xc1 , . . . ,xct−1 ) to Pr and (received, sid, ssid) to
Ps and halt. If not, send nothing to Pr (but continue running).

Fig. 9. Functionality F t−1,t
OT

model. Recalling the notation in Section A.2, we will prove that ΠCOM UC-realizes the functionality FCOM
by showing a simulator S that has access to a copy of FCOM and then arguing that no environment can
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distinguish with non-negligible probability between its interaction with S and FCOM and its interaction with
A and the real parties.

For the sake of simplicity we analyze separately the cases when only the sender Ps is corrupted and when
only the receiver Pr is corrupted.

Proposition 1 (Statistical Binding Property) Let G : {0, 1}l′ → {0, 1}l be a pseudorandom generator
and C : Fk → Fn be a [n, k, d] error correction code over F. For every static active adversary A corrupting
only Ps in the F t−1,t

OT -hybrid execution of ΠCOM and for every environment4 Z , there exists a simulator S
such that:

IDEALFCOM,S,Z ≈ HYBRIDF
t−1,t
OT

ΠCOM,A,Z

where the security parameter is τ =
⌊
d−1

2

⌋
.

Proof. The simulator S proceeds as follows: S internally runs a copy of A and delivers to it every input
received from Z . Likewise, every output from the internal copy of A is delivered to Z . After the activation,
S proceeds with the following steps:

1. Simulating the Setup phase: S receives (sender, sid, ssid,xi,xi+1, . . . ,xi+t−1) from A and samples
{c̃i1, . . . , c̃it−1} ← {0, 1, . . . , t− 1} for i = 1, t+ 1, 2t+ 1, . . . , (n− 1)t+ 1.
As in the protocol, define W =

{
i+ c̃i1, . . . , i+ c̃it−1 | i = 1, t+ 1, 2t+ 1, . . . , (n− 1)t+ 1

}
and Y

the tn× l matrix with rows consisting of the row vectors G(xj).
2. Simulating the Commit phase: S receives (sid, ssid, η, c) from A and computes w̃ = c − yη, where

yη is the column number η of the matrix Y . Then, S runs the decoding procedure DecCt (w̃). If
DecCt (w̃) outputs ⊥, S samples a random message m̃ ← Fk; otherwise it sets m̃ = DecCt (w̃). S
sends (commit, sid, ssid, Ps, Pr, m̃) to FCOM.

3. Simulating the Open phase: S receives (sid, ssid,m,v1, . . . ,vt−1) from A and computes the vector
w = EncCt (m; v1, . . . ,vt−1). If w[j] = w̃[j] for all j ∈ W , then S outputs (reveal, sid, ssid, Ps, Pr)
to FCOM. Otherwise S rejects the commitment and halts.

The simulator always behaves like an honest receiver Pr interacting with F t−1,t
OT in the hybrid model execution

of the protocol. Thus, if m = m̃, the distribution of the messages exchanged with A in the simulation is
exactly the same as in the execution of ΠCOM and Z can not distinguish between them.

If m 6= m̃, then in the Open phase Z can distinguish between the hybrid model execution and the
simulated execution when the value m is accepted by S . Indeed in this case only in the hybrid model execution
the value m̃ revealed by FCOM is different from the input value m. But we can show that this happens
with negligible probability. When DecCt (w̃) outputs ⊥ in step 2, then the Hamming distance of Λt(w̃) from
any codeword is strictly greater than τ by definition of DecCt , in particular dHam(Λt(w), Λt(w̃)) ≥ τ + 1.
If DecCt (w̃) doesn’t fail, then C(m̃) + e = Λt(w̃) (with e vector of weight less or equal than τ ) and the
Hamming distance of Λt(w̃) from Λt(w) is strictly greater than τ because

dHam(Λt(w), Λt(w̃)) ≥ dHam(Λt(w), Λt(w̃) + e)− dHam(e,0tn) =

= dHam(C(m), C(m̃))− dHam(e,0tn) ≥ d− τ ≥ τ + 1 .
Thus in both cases, there are at least τ + 1 groups of consecutive entries in w− w̃ in which at least one entry
is not zero and therefore the condition w[j] = w̃[j] for all j ∈ W for a random W holds with probability

equal or less than
(

1
t

)τ+1
.

4 Note that in the proof of Proposition 1 the requirement for the environment to be polynomial-time is not necessary. Indeed the
proof holds for any environment that interacts with each system only a polynomial number of times.
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Proposition 2 (Computational Hiding Property) Let G : {0, 1}l′ → {0, 1}l be a pseudorandom gener-
ator and C : Fk → Fn be a [n, k, d] error correction code over F. For every static active adversary A
corrupting only Pr in the F t−1,t

OT -hybrid model execution of ΠCOM and for every environment Z , there exists
a simulator S such that:

IDEALFCOM,S,Z ≈ HYBRIDF
t−1,t
OT

ΠCOM,A,Z

where the security parameter is τ =
⌊
d−1

2

⌋
.

Proof. As before, the simulator S internally runs a copy of A simulating for it a real-world execution of the
protocol ΠCOM. In particular S delivers all the messages received from Z to A and conversely as if they
were communicating directly. In this setting S is described by the following instructions:

1. Simulating the Setup phase: For i = 1, t + 1, 2t + 1, . . . , (n − 1)t + 1: S samples random strings
x̃i, x̃i+1, . . . , x̃i+t−1 ← {0, 1}l

′
and, acting as F t−1,t

OT , upon receiving (receiver, sid, ssid, ci1, . . . , cit−1)
from the internal copy of A, sends back to it (received, sid, ssid, x̃i+ci1 , . . . x̃i+cit−1

).

Denote byW the set
{
i+ ci1, . . . , i+ cit−1 | i = 1, t+ 1, 2t+ 1, . . . , (n− 1)t+ 1

}
and by Y the matrix

with rows consisting of the row vectors G(x̃j).
2. Simulating the Commit phase: After receiving (receipt, sid, ssid, Ps, Pr) from FCOM, S chooses an

index η such that the η-th column yη is unused, samples m̃, ṽ1, . . . , ṽt−1 ← Fk and computes w̃ =
EncCt (m̃; ṽ1, . . . , ṽt−1). Finally, S sends (sid, ssid, η, c̃) to A where c̃← Ftn such that c̃[j] = w̃[j] +
yη[j] for all j ∈W .

3. Simulating the Open phase: Upon input (reveal, sid, ssid, Pr, Ps,m) from FCOM, S computes v =
C(m). Then it sends (sid, ssid,m,v1, . . . ,vt−1) to A, where the vectors vk’s are defined in the follow-
ing way: fix j ∈ {1, 2, . . . , n} and let be i = (j− 1)t, if {ci1, . . . , cit−1} = {0, . . . , t− 2} then just define
vk[j] = ṽk[j] for all k = 1, . . . , t− 1, otherwise let kj be the element in {0, . . . , t− 2} \ {ci1, . . . , cit−1}
and define vk[j] = ṽk[j] for k 6= kj and vkj [j] = v[j]−

∑
k 6=kj vk[j]− w̃[jt].

In the Setup phase and in the Commit phase the simulator S behaves like an honest sender running the
protocol in the F t−1,t

OT -hybrid model, except for the fact that it chooses m̃ at random and the vector c̃ at
random under the constraint that it is consistent with the watch-list of A. In the hybrid model all the entries
of c are of the form w[j] + yη[j], while in the ideal-world some of the entries of c̃ are replaced by uniformly
random elements of F. Thus, if the environment was able to distinguish the distribution of c from the one
of c̃, then it would break the computational security property of the PRG used. Regarding the choice of m̃,
observe that A knows only t− 1 shares of each component of the codewords C(m̃) (shares in the additive
LSSS for t players). Thus by the (t− 1)-privacy property of the additive LSSS and Remark 1, the vector m̃
is perfectly hidden from A. This allows to conclude that the distribution of c in the hybrid model, given the
view of the adversary, is the uniform one over Fk.

Finally, in the Open phase, S uses its knowledge of the watch-list W in order to compute the vectors m
and v1, . . . ,vt−1 in such a way that they are consistent with the view of A from the Setup phase. That is, if
w = EncCt (m; v1, . . . ,vt−1), then w[j] = w̃[j] (the vector A already knows from the Setup phase) for all
j ∈W . This means that the opening values sent by S have exactly the same distribution as the values sent
in the hybrid model. Since again the distribution of the messages exchanged with A in all the phases in the
simulation is exactly the same as in the hybrid model execution of ΠCOM, Z can not distinguish between
them.
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A.4 UC security for ΠHCOM

In the following letA be a static active adversary that interacts with the sender Ps and the receiver Pr running
the protocol ΠHCOM in the F t−1,t

OT -hybrid model. For the simulators we will construct to prove the security
of the protocol ΠHCOM we will always assume that S invokes a copy of A running an internally simulated
interaction of A with the environments and the parties and that S delivers all messages exchanged between Z
and A as if they were communicating directly.

Proposition 3 (Statistical Binding Property) Let G : {0, 1}l′ → {0, 1}2m be a pseudorandom generator
and C : Fk → Fn be a [n, k, d] error correction code over F. For every static active adversary A corrupting
only Ps in theF t−1,t

OT -hybrid world execution of ΠHCOM and for every environmentZ , there exists a simulator
S such that:

IDEALFHCOM,S,Z ≈ HYBRIDF
t−1,t
OT

ΠHCOM,A,Z

where the security parameter is τ =
⌊
d−1

2

⌋
.

Proof. The simulator S is described by the following instructions:

1. Simulating the OT-Setup phase: S receives (sender, sid, ssid,xi,xi+1, . . . ,xi+t−1) fromA and samples
the values {c̃i1, . . . , c̃it−1} ← {0, 1, . . . , t − 1} for i = 1, t + 1, 2t + 1, . . . , (n − 1)t + 1. Define the
watch-list set to be W =

{
i+ c̃i1, . . . , i+ c̃it−1 | i = 1, t+ 1, 2t+ 1, . . . , (n− 1)t+ 1

}
.

2. Simulating the Pre-commitment phase: S also receives (sid, ssid,A) from A and it computes the matrix
W = A− Y where Y is the matrix with rows G(xi). If wi =

(
gi, (hi)>

)
is the i-th row of W , then

S checks if mj · hi = gj ·m>i for any i, j ∈ W . If all the checks succeed, S continues; otherwise it
sends abort to FHCOM and halts.
If it doesn’t abort, S uses all the vectors wi to construct a qualified set H of consistent VSS players as
follows: initially H contains all players. Now, if H contains a pair of inconsistent players Pi, Pj , i.e.,
where we have mj ·hi 6= gj ·m>i , then these two players are deleted from H . We repeat until no further
pairs can be deleted. If H has cardinality equal or greater than tn − τ , then H is qualified and S can
compute the set of vectors r̃1, . . . , r̃k (see Remark 1 and Lemma 1). Otherwise, it sends abort to FHCOM
and halts.

3. Simulating the Commit phase: S receives (sid, ssid, η, c) and computes m̃ = c − r̃η. It then sends
(commit, sid, ssid, Ps, Pr, m̃) to FHCOM.

4. Simulating the Addition: Assume that (sid, ssid1, α, c1) and (sid, ssid2, β, c2) has been already stored.
If S receives (add, sid, ssid1, ssid2, ssid3, Ps, Pr) from A, then it define and store (sid, ssid3, γ, c3)
where γ = α ‖ β and c3 = c1 + c2.

5. Simulating the Open phase: Assume that (sid, ssid, δ, c′) was stored and δ = (δ1, . . . , δ`) ∈ [k]`. If
S receives (sid, ssid,m′,v1, . . . ,vt−1) from A, it computes w = EncCt (c′ −m′; v1, . . . ,vt−1) and
checks if w[j] =

∑`
i=1 gj [δi] for all the entries j ∈W . If this check fails S rejects the commitment and

halts. Otherwise S outputs (reveal, sid, ssid, Ps, Pr) to FHCOM.

Given the previous instructions for S, we will now argue that the environment Z can not successfully tell
whether it is interacting with A and the parties running ΠHCOM, or with S and F t−1,t

OT in the ideal execution
more than negligible probability.

In the Setup phase, if the checks in step 2 don’t succeed or if they succeed and S can extract the vectors
r̃1, . . . , r̃k from his view, then S acts like a honest receiver Pr. So in this case the distribution of the messages
exchanged with A is the same as in the protocol ΠHCOM. Instead, if the checks in step 2 succeed but the
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reconstruction of the vectors r̃1, . . . , r̃k fails, then the simulator S has to abort and the environment will
see a difference between the two distributions. However we can prove that this last case only happens with
negligible probability. In other words we want to upper-bounded the probability of the event:H has cardinality
strictly less than tn− τ and the checks in step 2 are satisfied. And for this, it is enough to upper-bounded the
probability that the checks are satisfied, assuming that the complement of H has cardinality greater or equal
to τ + 1. It is clear that the probability that the checks in step 2 are satisfied is less or equal the probability
that W doesn’t contain pairs of indices i, j such that Pi, Pj are both in the complement of H . So we focus
our attention on the latter probability that will be called p in the following. Recall the definition of the players’
subsets Tj =

{
P(j−1)t+1, . . . , Pjt

}
for j ∈ [n] and consider a pair of players Pa ∈ Ti and Pb ∈ Tj . If i 6= j,

then the probability that the pair a, b is in W is
(
t−1
t

)2
. While if i = j, then the probability of the same event

is equal to t−2
t . Since

(
t−1
t

)2
> t−2

t , the worst case is when the complement of H is formed only by pairs of
players Pa, Pb both coming from the same subset Ti. Now, we observe that if in the complement of H there
are two pairs Pa, Pb and Pc and Pd coming from the same subset Ti (a, b, c and d all distinct by construction
of H), then by definition of W one of the two pairs {a, b}, {c, d} must stay in W , so p = 0. Otherwise we
can assume that for each i, in the complement of H there is at most one pair from the subset Ti. In this case

the probability p is less or equal to
(

2
t

) τ+1
2 .

In the Commit phase and in the Addition phase S behaves as an honest receiver, so also in these phases
the distribution of the messages exchanged with A is the same as in the protocol ΠHCOM. The only case
in which Z sees a discrepancy is in the Open phase when the message m′ sent by A is accepted but it is
different from the message m̃ reveled by FHCOM. Now we will argue that this happens with negligible
probability. Note that, if S doesn’t halt during step 2, then for all η = 1, . . . , k it computes r̃η together with
some randomness {ṽηj}j=1,...,t−1 in such a way that if w̃η = EncCt (r̃η; ṽη1, . . . , ṽ

η
t−1), then w̃η[j] = gj [η]

for any j such that Pj ∈ H (see Lemma 1). Therefore, Λt(
∑`
i=1 w̃δi) is a codeword and its distance from the

vector Λt(
∑`
i=1 wδi) is less or equal than τ . Recall that wη = (g1[η], . . . , gnt[η])> is the η-th column in the

matrix W . Thus, if m̃ 6= m′, it must hold that dHam
(
Λt(
∑`
i=1 wδi), Λt(w)

)
> τ , which implies that the

checks in step 3 are satisfied with negligible probability, less or equal than
(

1
t

)τ+1
.

Also in the protocol ΠHCOM it is possible to implement polynomial many commitments, after having
run the OT-Setup phase only once. Indeed, after that the watch-list W has been settled, the sender can always
sample new random vectors r∗1, . . . , r

∗
k ← Fk and, together with the receiver, repeat the execution of the

Pre-commitment phase on this new input. We have already recalled in Section 4 that it is possible to expand
the PRG output in order to have new one-time keys to use in the each execution of the Pre-commitment phase.
After that, Ps and Pr can continue the protocol following the instructions in ΠHCOM. Moreover, this doesn’t
create any restriction about the Addition command: we can allow the sum of commitments that use one-time
keys coming from different Pre-commitment phases.

Assume that in step 5 of the simulation for corrupted senders, (δ, c′) has been created by adding
commitments from different Pre-commitment phases. For the sake of simplicity, assume that δ = (δ1, δ2).
The two individual commitments (δ1, c1) and (δ2, c2) use one-time keys r̃δ1 and r̃∗δ2

that are part of the input
of two different executions of the ΠVSS protocol. In this case, in step 2 of the simulation we can have two
different qualified set H , H∗ used by S to compute r̃δ1 , r̃∗δ2

respectively. But if the cardinality of H ∩H∗

is greater or equal to nt− τ , then we can assure again that dHam(Λt(w̃δ1 + w̃∗δ2), Λt(wδ1 + w∗δ2)) ≤ τ
and we can conclude as in the proof of Proposition 3 (note that the watch-list W is the same in the two
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executions of ΠVSS). Now notice that, if the complement of H ∩H∗ has cardinality greater than τ , then we
can repeat the argument we had for step 2 and say that the probability that Pi and Pj are neither both in the
complement of H nor both in the complement of H∗ for all i, j in W is negligible. Indeed, in this analysis
only the numbers of inconsistent pairs matters, it doesn’t count from which execution the inconsistent pair
comes from. Therefore we can assure that if the checks in step 2 are satisfied for all the executions of the VSS
scheme, then with overwhelming probability |H ∩H∗| ≥ nt− τ . This argument can be easily generalized to
the sum of three or more commitments (i.e. ` ≥ 3).

Proposition 4 (Computational Hiding Property) Let G : {0, 1}l′ → {0, 1}2m be a pseudorandom gen-
erator and C : Fk → Fn be a [n, k, d] error correction code over F. For every static active adversary A
corrupting only Pr in the F t−1,t

OT -hybrid world execution of ΠHCOM and for every environment Z , there
exists a simulator S such that:

IDEALFHCOM,S,Z ≈ HYBRIDF
t−1,t
OT

ΠHCOM,A,Z

where the security parameter is τ =
⌊
d−1

2

⌋
.

Proof. The simulator S in this case is similar to the one described for proving the hiding property of the
protocol ΠCOM.

1. Simulating the OT-Setup phase: For i = 1, t+ 1, 2t+ 1, . . . , (n− 1)t+ 1: S samples random strings
x̃i, x̃i+1, . . . , x̃i+t−1 ← {0, 1}l

′
and, acting as F t−1,t

OT , upon receiving (receiver, sid, ssid, ci1, . . . , cit−1)
from the internal copy of A, sends back to it (received, sid, ssid, x̃i+ci1 , . . . x̃i+cit−1

).

Denote byW the set
{
i+ ci1, . . . , i+ cit−1 | i = 1, t+ 1, 2t+ 1, . . . , (n− 1)t+ 1

}
and by Y the matrix

with rows consisting of the row vectors G(x̃j).
2. Simulating the Pre-commitment phase: S uniformly samples k random strings r̃1, . . . , r̃k ∈ Fk and runs

the protocol ΠVSS (MC
t ) on them. In this way it constructs the row vectors w̃i =

(
(h̃i)>, g̃i

)
∈ F2m for

i = 1, . . . , N . Let W̃ be the matrix consisting of the rows w̃i. S samples a matrix M ←Mattn×2m
such that for any j ∈W the j-th row of M is given by w̃j +G(x̃j) and sends (sid, ssid,M) to A.

3. Simulating the Commit phase: After receiving (receipt, sid, ssid, Ps, Pr) from FHCOM, S chooses an in-
dex η such that random string r̃η is unused, samples a random message c̃ ∈ Fk and sends (sid, ssid, η, c̃)
to A.

4. Simulating the Addition: Assume that (sid, ssid1, α, c̃1) and (sid, ssid2, β, c̃2) has been created. If S re-
ceives the message (add, sid, ssid1, ssid2, ssid3, Ps, Pr, success) fromFHCOM, it stores (sid, ssid3, γ, c̃3)
where γ = α ‖ β and c̃3 = c̃1 + c̃2.

5. Simulating the Open phase: Assume that (sid, ssid, δ, c̃′) was stored and δ = (δ1, . . . , δ`) ∈ [k]`. Upon
input (reveal, sid, ssid, Pr, Ps,m′) from FHCOM, S computes v = C(c̃′ −m′). Note that from step
2, S knows the vectors ṽi1, . . . , ṽ

i
t−1 such that for i = 1, . . . , k the column i of W̃ satisfies w̃i =

EncCt (r̃i; ṽi1, . . . , ṽ
i
t−1). Thus, it can compute the vectors vh’s in the following way: fix j ∈ {1, 2, . . . , n}

and let i = (j − 1)t, if {ci1, . . . , cit−1} = {0, . . . , t − 2} then just define vh[j] =
∑`
s=1 ṽδsh [j] for

all h = 1, . . . , t − 1, otherwise let hj be the element in {0, . . . , t − 2} \ {ci1, . . . , cit−1} and define
vh[j] =

∑`
s=1 ṽδsh [j] for h 6= hj and vhj [j] = v[j] −

∑
k 6=hj vh[j] −

∑`
s=1 w̃δs [jt]. Finally, S sends

(sid, ssid3,m
′,v1, . . . ,vt−1) to A.

Notice that the set of players {Pi | i ∈W} is unqualified for the LSSS (k,MC
t ). Thus, thanks to Lemma 2

arguments similar to the ones used in the proof of Proposition 2 show that the distribution of the messages
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exchanged with A in the simulation is the same as in the hybrid-world execution of ΠHCOM. Thus the
environment Z can not distinguish between its interaction with S and FHCOM and its interaction with A and
the real parties.
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