
Adaptively Secure UC Constant Round Multi-Party
Computation

Ivan Damg̊ard1, Antigoni Polychroniadou1, and Vanishree Rao2

1 Department of Computer Science, Aarhus University
2 UCLA

Abstract. We present a universally composable multiparty computation protocol that is adap-
tively secure against corruption of n − 1 of the n players. The protocol has a constant number of
rounds and communication complexity that depends only on the number of inputs and outputs
(and not on the size of the circuit to be computed securely). Such protocols were already known
for honest majority. However, adaptive security and constant round was known to be impossible in
the stand-alone model and with black-box proofs of security. Here, we solve the problem in the UC
model using a set-up assumption. Our protocol is secure assuming LWE is hard and achieved by
building a special type of crypto system we call equivocal FHE from LWE. We also build adaptively
secure and constant round UC commitment and zero-knowledge proofs (of knowledge) based on
LWE.

1 Introduction

Secure multiparty computation is an extremely strong and important tool for making distributed
computing more secure. General solutions to the problem allows us to carry out any desired
computation among a set of players, without compromising, the privacy of their inputs or the
correctness of the outputs. This should even hold if some of the players have been corrupted
by an adversary. An important issue in this connection is how the adversary chooses which
players to target. In the static model, the adversary must choose who to corrupt before the
protocol starts. A more general and also more realistic model is the adaptive corruption where
the adversary may corrupt new players during the protocol.

Of course efficiency of the protocol is also important, and important measures in this re-
spect are the number of rounds we need to do, as well as the communication complexity (the
total number of bits sent). Obviously, achieving a constant number of rounds and small com-
munication complexity, while still getting the best possible security, is an important research
goal.

Unconditionally secure protocols such as [2] are typically adaptively secure. But these pro-
tocols are not constant round, and it is a major open problem if it is even possible to have
unconditional security and constant number of rounds for secure computation of any function.

If we are willing to make a computational assumptions, we can achieve constant round
protocols, the first example of this is Yao’s garbled circuits for two players, but on the other hand
this does not give us adaptive security. Another class of protocols based on Fully Homomorphic
Encryption (FHE) also naturally leads to constant round protocols, where we can tolerate that
a majority of players are corrupted. Here we also get very low communication complexity, that
depends only on the number of inputs and outputs. But also here, we only get static security
(see for instance [16], [1]).

We can in fact get adaptive security in the computational setting, as shown in [6] by intoduc-
ing the notion of Non-Commiting Encryption (NCE). Moreover, in [12], adaptive security was
obtained as well, but much more efficiently using additively homomorphic encryption. However,
neither [6] nor [12] run in constant number of rounds.

If we assume honest majority we can get both constant round and adaptive security. This
was shown in several papers [9], [10], [11], [17]. The idea here is to use an unconditionally secure
protocol to compute, for instance, a Yao garbled circuit, that is then used to compute the desired
function in a constant number of rounds. Since the computation leading to the Yao circuit is
easy to parallelise, this can be constant round as well and we inherit adaptive security from
the unconditionally secure “preprocessing”. On the other hand, this requires communication
that is proportional to the size of circuit to be computed securely. One may apply the IPS
compiler to one of these protocols to get a solution for dishonest majority. This preserves the
adaptive security and constant round, but unfortunately also preserves the large communication
complexity.

The question therefore becomes whether we can have adaptive security, constant round and
low communication complexity in the dishonest majority setting? In this paper we answer this
in the affirmative. More specifically, we achieve an adaptive UC-secure protocol that tolerate
corruption of n − 1 of the n players, it requires a constant number of rounds and its com-
munication complexity depends only on the number of inputs and outputs (and the security
parameter), and not on the size of the circuit computed. The protocol is secure if the LWE
problem is hard.

The most important tool we use to achieve the result is something we call Equivocal FHE.
An equivocal FHE scheme is a fully homomorphic encryption scheme (FHE) with additional
properties. Most importantly, it should be possible to generate “fake” public keys that look

1

like normal keys but where encryption leads to ciphertext that contain no information on the
plaintext. This is similar to the known notion of meaningful/meaningless keys, but in addition
we want that fake public keys come with a trapdoor that allows to “explain” (equivocate) a
ciphertext as an encryption of any desired plaintext. This is similar to (but not the same as)
what is required for non-commiting encryption (NCE): for NCE one needs to equivocate a
ciphertext even if the decryption key is also given (say, by corrupting the receiver), here we
only need to give the adversary valid looking randomness for the encryption. We give a concrete
instantiation of equivocal FHE based on the LWE problem, starting from the FHE scheme by
Brakerski et al. [5].

A second tool we need is constant round UC-secure commitments and zero-knowledge proofs.
For the commitments we start from a basic construction in [8], which was originally based on
claw-free trapdoor permutations (CFTP). We show that it can be instantiated based on LWE
(which is not known to imply CFTP). Zero-knowledge then follows quite easily from known
techniques.

To construct our protocol, we start from the well known blue-print for FHE-based MPC:
players encrypt their inputs under a common public key, evaluate the desired function locally
and then jointly decrypt the result. This is possible under an appropriate set-up assumption,
which is always needed for UC security and dishonest majority. Namely we assume that a public
key has been distributed, and players have been given shares of the corresponding secret key.

This approach has been used before and usually leads to static security. One reason for this
is is that encryptions are usually committing, so we are in trouble if the sender of a ciphertext
is corrupted later. This is solved using the equivocal property of the cryptosystem we use,
and this means that the input phase and evaluation phase of the protocol can be simulated,
even for adaptive corruptions. Players need, of course, to prove that they know the inputs they
contribute, but this is easy once we have constant round UC commitment and ZK proofs.

A harder problem is how to simulate the output phase where ciphertexts containing the
outputs are decrypted. In the simulation we cannot expect that these ciphertexts are correctly
formed and hold the actual outputs, so the simulator needs to “cheat”. However, each player
holds a share of the secret key which we have to give to the adversary if he is corrupted. If
this happens after some executions of the decryption protocol, we (the simulator) may already
be committed to this share. It is therefore not clear how the simulator can achieve the desired
decryption results by adjusting the shares of the secret key. To get around this, we adapt an
idea from Damg̊ard and Nielsen [12], who proposed an adaptively secure protocol based on
additively homomorphic threshold encryption in the honest majority scenario. The idea is to
add a step to the protocol where each ciphertext is re-randomised just before encryption. This
gives the simulator a chance to cheat and turn the ciphertext into one that contains the correct
result, and one can now simulate the decryption without having to modify the shares of the
secret key. The re-randomisation from [12] only works for honest majority, we show a different
method that works for dishonest majority.

We mention for completeness that there is also a more generic approach which will give
us adaptive security based only on Equivocal FHE: namely, we follow the same blueprint as
before, with input, evaluation and output phases. However, we implement the verification of
ciphertexts in the input phase and the decryptions in the output phase using generic adaptively
secure MPC a la [8]. This way, the communication and number of rounds do not depend on the
size of circuit to be computed securely. However, it would not be genuinely constant round, as
the number of rounds would depend on the circuits computing the encryption and decryption
functions of the underlying cryptosystem. Hence, unlike our protocol, the number of rounds
would in general depend on the security parameter.

2

We observe that in [18] an impossibility result was shown that suggests that if one wants to
rely only on FHE, n-1 corruptions is the best we can do: They show that adaptively secure FHE
where the receiver may be corrupted, cannot be achieved. This is based on the fact that when
the receiver is corrupted, the adversary learns the private key. We get around this by assuming
n-1 corruptions and secret sharing a private key among the players so that the adversary never
learns the private key. This means that we can make do with security against sender corruption
which is indeed possible. On the other hand, if all n players can be corrupted, we cannot hope
to hide any private key from the adversary and the impossibility result applies.

We note that in [15], adaptive security and constant round was obtained using a non-
blackbox proof in the stand-alone model. Also a solution with a blackbox proof was shown to
be impossible, but this does not, of course, apply to our case, where we go for UC security, and
therefore require a set-up assumption.

1.1 Roadmap

In section 3 we define our Equivocal fully homomorphic encryption scheme and it properties. A
concrete instantiation based on the scheme of [5] is given in Appendix B. In Section 4,5 we give
our construction for UC commitments and ZKPoK. Next in Section 6, we proceed presenting
our arithmetic multiparty computation (AMPC) protocol. The simulator and the security proof
of our protocol can be found in Section 7.

2 Notation

Throughout the paper λ ∈ N will denote the security parameter. We use d ← D to denote
the process of sampling d from the distribution D or, if D is a set, a uniform choice from it.
We say that a function f : N → R is negligible if ∀c ∃nc s.t. if n > nc then f(n) < n−c. We
will use negl(·) to denote an unspecified negligible function. We often use [n] to denote the set
{1, ..., n}. We write � and � to denote operation over encrypted data. If D1 and D2 are two
distributions, then we denote that they are statistically close by D1 ≈s D2; we denote that they
are computationally indistinguishable by D1 ≈c D2; and we denote that they are identical by
D1 ≡ D2. For a randomized algorithm A, we use a ← A(k, x; r) to denote running A on input
x and uniformly random bits r ∈ {0, 1}∗, producing output a.

Invertible Sampling [20]: We recall the notion of invertible sampling, which is closely connected
to adaptive security in simulation models where erasures are not allowed. We say that an algo-
rithm A with input space X has invertible sampling if there exists a PPT inverting algorithm,
denoted by InvA, such that for all input x ∈ X, the outputs of the following two experiments
are either computationally, or statistically indistinguishable:

y ← A(x, r) y ← A(x, r)
r′ ← InvA(y, x)

Return (x, y, r) Return (x, y, r′)

3 Equivocal Fully Homomorphic Encryption Scheme

We start by recalling the notions of (fully) homomorphic encryption. Next we define the new
notion of Equivocal fully homomorphic encryption and we specify the properties needed for such
an instantiation. We give a concrete instantiation of our Equicocal FHE scheme from the LWE
assumption, based on Brakerski and Vaikutanathan [5] FHE scheme, is described in section B.

3

3.1 Homomorphic Encryption

A homomorphic encryption scheme HE = (KeyGen,Enc,Eval,Dec) is a quadruple of PPT al-
gorithms. In this work, the message space M of the encryption schemes will be some (modulo
2) ring, and the functions to be evaluated will be represented as arithmetic circuits over this
ring, composed of addition and multiplication gates. The syntax of these algorithms is given as
follows.

– K ey-Generation. The algorithm KeyGen, on input the security parameter 1λ, outputs (pk, sk)←
KeyGen(1λ), where pk is a public encryption key and sk is a secret decryption key.

– Encryption. The algorithm Enc, on input pk and a message m ∈ M , outputs a ciphertext
ct← Encpk(m).

– Decryption. The algorithm Dec on input sk and a ciphertext ct, outputs a message m̃ ←
Decsk(ct).

– H omomorphic-Evaluation. The algorithm Eval, on input pk, an aritmetic circuit ckt, and a
tuple of ` ciphertexts (ct1, . . . , ct`), outputs a ciphertext ct′ ← Evalpk(ckt, ct1, . . . , ct`).

We note that we can treat the evaluation key as a part of the public key. The security notion
needed in this work is security against chosen plaintext attacks (IND-CPA security), defined as
follows.

Definition 1 (IND-CPA security). A scheme HE is IND-CPA secure if for any PPT ad-
versary A it holds that:

AdvCPAHE [λ] := |Pr[A(pk,Encpk(0)) = 1]− Pr[A(pk,Encpk(1)) = 1]| = negl(λ),

where, (pk, sk)← KeyGen(1λ).

3.2 Fully Homomorphic Encryption

A scheme HE is fully homomorphic if it is both compact and homomorphic with respect to a
class of circuits. More formally:

Definition 2 (Fully homomorphic encryption). A homomorphic encryption scheme FHE =
(KeyGen,Enc,Eval,Dec) is fully homomorphic if it satisfies the following properties:

1. Homomorphism: Let C = {Cλ}λ∈N be the set of all polynomial sized arithmetic circuits.
(sk, pk)← KeyGen(1λ), ∀ckt ∈ Cλ, ∀(m1, . . . ,m`) ∈M ` where ` = `(λ), ∀(ct1, . . . , ct`) where
cti ← Encpk(mi), it holds that:

Pr[Decsk(Evalpk(ckt, ct1, . . . , ct`)) 6= ckt(m1, . . . ,m`)] = negl(λ)

2. Compactness: There exists a polynomial µ = µ(λ) such that the output length of Eval is at
most µ bits long regardless of the input circuit ckt and the number of its inputs.

3.3 Equivocal fully homomorphic encryption scheme

Our Equivocal fully homomorphic encryption scheme consists of a tuple (KeyGen,KeyGen∗,QEnc,
Eval,Dec,Equivocate) of algorithms where the syntax of the procedures (KeyGen,QEnc,Eval,Dec)
is defined as in the above FHE scheme. Further our scheme is augmented with other two algo-
rithms (KeyGen∗,Equivocate) and needs to satisfy specific properties. More specifically:

4

Definition 3 (Equivocal fully homomorphic encryption). An Equivocal fully homomor-
phic encryption scheme QFHE = (KeyGen,KeyGen∗,QEnc,Eval,Dec,Equivocate) with message
space M is made up of the following PPT algorithms:

– (KeyGen,QEnc,Eval,Dec) is an FHE scheme with the same syntax as in section 3.1.
– The Equivocal key generation algorithm KeyGen∗(1λ), outputs ‘equivocal’ public-key secret-

key pair (P̃K, S̃K).

– The Equivocation algorithm Equivocate(P̃K, S̃K, ct, rct,m), given P̃K, S̃K, a plaintext m, a
ciphertext ct and random coins rct, outputs a value e in the randomness space.
We require the following properties:

1. Indistinguishability of equivocal keys. We say that the scheme has indistinguishability of
equivocal keys if the distributions of PK and P̃K are computationally indistinguishable,
where (PK, ·)← KeyGen(1λ) and (P̃K, ·)← KeyGen∗(1λ).

2. Indistinguishability of equivocation. Let Drand(λ) denote the distribution of randomness

used by QEnc. Let O(P̃K,m) and O′(P̃K, S̃K,m) be the following oracles:

Let O(P̃K,m) : Let O′(P̃K, S̃K,m) :
rct ← Drand(λ) rct ← Drand(λ)

ct = QEnc(P̃K,m; rct) ct = QEnc(P̃K,m; rct)

e = Equivocate(P̃K, S̃K, ct, rct,m)

Output (P̃K, ct, rct) Output (P̃K, ct, e)

There exists m ∈ M such that for any PPT adversary A with oracle access to O(P̃K, ·)
and O′(P̃K, S̃K, ·) the following holds.∣∣∣∣∣Pr

[
(P̃K, S̃K)← KeyGen∗(1λ)

1← AO(P̃K,·)

]
− Pr

[
(P̃K, S̃K)← KeyGen∗(1λ)

1← AO′(P̃K,S̃K,·)

] ∣∣∣∣∣ ≤ negl(λ)

In order to construct our equivocal QFHE scheme we use the following special FHE scheme
with some additional properties.

Definition 4. [Special fully homomorphic encryption] We call a fully homomorphic encryp-
tion scheme FHE = (KeyGen,Enc,Eval,Dec) special FHE scheme, if it is IND-CPA secure and
satisfies the following properties:
Let Drand(λ) denote the distribution of randomness used by Enc.

1. Additive homomorphism over random coins: ∀r1, r2 ∈ Supp(Drand(λ)) and ∀m ∈M , it holds
that

(
m� Encpk(0; r1)

)
� Encpk(0; r2) = Encpk(0;m · r1 + r2).

2. E-Hiding: There exists D′rand(λ) such that ∀m ∈M , if r0 ← Drand(1λ) and rK ← D′rand(1λ)
then the distribution of (r0 −m · rK) is statistically close to Drand(λ). 3

3. Invertible Sampling: The distribution Drand(1λ), has invertible sampling via the algorithm
InvDrand.

Recall that we defined invertible sampler of an algorithm A in Section 2 as an algorithm InvA
that takes as inputs the input x and output y of algorithm A and output the consistent random
coins. In our case, x = 1λ and y is a sample from the range of Drand.

Next, in Figure 1, we show how to build an equivocal FHE scheme using a special FHE
scheme.
3 Intuitively, E-Hiding can be argued in the same way as formula privacy for some FHE schemes. This requires

dwarfing in the sense that r0 should be large enough to dwarf mrK where Drand(1λ) and D′rand(1λ) are gaussian
distributions. Hence, rK ← D′rand(1λ) and r0 ← Drand(1λ) where the noise of Drand(1λ) is super-polynomially
larger than the noise of D′rand(1λ).

5

QFHE

Let FHE = (KeyGenFHE,Enc,Eval,Dec) be a special fully homomorphic encryption scheme. QFHE =
(KeyGen,KeyGen∗,QEnc,Eval,Dec,Equivocate) is defined as follows:

KeyGen(1λ):

1. (pk, sk)← KeyGenFHE(1λ).
2. K = Encpk(1; rK) where rK ← D′rand.
3. Return as public key PK = (pk,K) and secret key SK = sk.a

KeyGen∗(1λ):

1. (pk, sk)← KeyGenFHE(1λ).

2. K̃ = Encpk(0; rK̃) where rK̃ ← D′rand.
3. Return as public key P̃K = (pk, K̃) and secret key S̃K = (sk, rK̃).

QEncpk,K(m) :

1. Compute ctblind = Encpk(0; rblind) where rblind ← Drand .
2. Then output ct = (m�K) � ctblind.

Equivocate((pk, K̃), (sk, rK̃), ct, r0,m):

1. It holds that ct = QEncpk,K̃(0; r0) where r0 ← Drand.
2. Compute rblind := r0 −m · rK̃ such that ct = QEncpk,K̃(m; rblind)

3. Run rstate ← InvDrand(rblind).

Procedures (Eval,Dec) are as defined in normal FHE schemes.

a Note that procedure Dec, given sk, runs as in normal FHE schemes (see section 3.1), so there is no need
to provide rK in SK.

Fig. 1. Description of QFHE scheme

Theorem 1. Let FHE be a special fully homomorphic encryption scheme. Then QFHE =
(KeyGen,KeyGen∗,QEnc,Eval,Dec,Equivocate) in Figure 1 is an equivocal QFHE scheme.

Proof. Indistinguishability of equivocal keys. Let (PK, SK) ← KeyGen(1λ) and (P̃K, S̃K) ←
KeyGen∗(1λ), then the indistinguishability of the two pairs of public keys follows from the
IND-CPA security the FHE scheme.

Indistinguishability of equivocation. We will show that indistinguishability of equivocation holds
for m = 0. Let A be an adversary that breaks indistinguishability of equivocation; then
we construct a PPT algorithm R such that RA breaks E-hiding. R simulates the oracle for
every query mi as follows. R invokes A and receives some message mi and forwards it to the
E-hiding challenger. Next it receives the challenge rcti and computes cti = QEncpk,K̃(mi; rcti)

and forwards rcti to A and outputs whatever A does. Now, if rcti ← Drand(λ) then cti ←
QEncpk,K̃(mi), namely, the view of A follows the distribution which corresponds to the left
game in Definition 3 of indistinguishability of equivocation. On the other hand, if rcti =

(r0
i −mi · rK̃); then cti = (mi� K̃)�Encpk(0; r0

i −mi · rK̃) = Encpk(0; r0
i) = QEnc

pk,rK̃
(0; r0

i)
which implies that in this case the view of A follows the distribution of the right game
in Definition 3 of indistinguishability of equivocation. This means that the distinguishing
advantage of R is the same to that of A which leads to a contradiction.

Jumping ahead, we are interested in building an adaptively secure MPC protocol using an
equivocal QFHE scheme and gain in terms of round and communication efficiency. A property
needed for this purpose is the following:

Distributed Decryption: We assume that a common public key pk has been set up where the
secret key sk has been secret-shared among the players in such a way that they can collaborate
to decrypt. Notice that some setup assumption is always required to show UC security in the

6

dishonest majority setting. Roughly, we assume that a functionality is available, which we are
going to specify later, which generates a key pair and secret-shares the secret key among the
players using a secret-sharing scheme that is assumed to be given as part of the specification of
the cryptosystem. Since we allow corruption of all but one player, the maximal unqualified sets
must be all sets of n− 1 players. We point out that we could make a weaker set-up assumption,
such as a common reference string, and using a general UC secure multiparty computation
protocol for the common reference string model to implement the above functionality. While
this may not be very efficient, one only needs to run this protocol once in the life-time of the
system. The properties needed for the distributed decryption and its protocol are specified later.

4 UC Adaptive Commitments from LWE

Commitment schemes that satisfy both equivocality and extractability form useful tools in
achieving adaptive security. In this section, we show how using a QFHE scheme, one can build
equivocal and extractable commitments. Having realized a QFHE scheme based on the LWE
assumption, we consequently get equivocal and extractable commitments assuming the hardness
of LWE. Note that such commitments based on LWE can be of independent interest. We remark
that any encryption scheme that satisfies the properties specified in Definition 4 would have
sufficed for our purposes in this section – the multiplicative homomorphic property of our QFHE
scheme will not be of use here; however, since we are using our commitment scheme as a tool in
our adaptive MPC protocol based on QFHE, for simplicity of exposition we use the same QFHE
scheme in our commitment scheme too.

Since we are interested in UC security against adaptive adversaries, our commitment scheme
is in the CRS model. The scheme must satisfy the following two properties, polynomial equiv-
ocality and simulation extractability. The former guarantees that the simulator S needs to be
able to produce polynomially many equivocal commitments using the same CRS. More specif-
ically, S can open the equivocal commitments to any value of its choice and give consistent
randomness to adversary A. The latter property says that the simulator S needs to be able to
extract the contents of any valid commitment generated by adversary A, even after A obtains
polynomially many equivocal commitments generated by S. Note that there is only an apparent
conflict between equivocality and the binding property and between the extractability and the
hiding property, as the simulator is endowed with additional power (trapdoors) in comparison
with the parties in the real world execution. In the following we elaborate how our commitment
scheme satisfies the above properties.

Our Construction. Equivocation in our scheme is achieved via QFHE. In particular, the
commitment algorithm is the algorithm QEnc, defined in Figure 1. In order to add extractability
we must enhance our scheme in such away that we do not sacrifice equivocality. A failed attempt
is to include a public key for an encryption scheme secure against CCA2 attacks to the CRS. In
this case, the committer will send an encryption of the decommitment information along with
the commitment itself. Then, as the simulator has the associated decryption key, it can decrypt
the decommitment information and hence extract the committed value from any adversarially
prepared commitment. However, notice that such an encryption is binding even to the simulator,
so equivocality cannot be achieved.

The solution to the problem is to send the commitment along with two pseudorandom ci-
phertexts. One ciphertext is an encryption of the decommitment information and the other
ciphertext is a uniformly random string. In this way, the simulator can encrypt both decom-
mitment values and later show that it only knows the decryption to one and that the other was
uniformly chosen.

7

For security of our construction, the encryption scheme used to encrypt the decommitment
information has to be a CCA2-secure encryption scheme with the property that any produced
ciphertext is pseudorandom and has deterministic decryption. To this end, the CCA2 encryp-
tion scheme of Micciancio and Peikert [19] based on LWE satisfies the above properties. They
obtain their result via relatively generic assumptions using either strongly unforgeable one-
time signatures [14], or a message authentication code and weak form of commitment [3]. The
first assumption does not yield pseudorandom ciphertexts, thus another encryption producing
pseudorandom ciphertexts on top of the scheme of [19] could have been used, resulting to a
double encryption scheme. However, it turns out that their construction with the latter set of
assumptions has pseudorandom ciphertexts.

The reader might have observed that this bears some resemblance with the trick used in
the seminal work of [8], referred to as CLOS hereafter, to achieve extractability. In fact, CLOS
forms another starting point in a way described in the following. We begin by reviewing certain
aspects of their construction. Their scheme is based on enhanced trapdoor permutations, also
needed in order to get double encryption CCA2 security. Moreover, in order to build equivocal
commitments they need NP reduction to graph Hamiltonicity since the CRS of their commit-
ment scheme consists of a graph G sampled from a distribution such that it is computationally
hard to tell if G has a Hamiltonian cycle. Interestingly, the CLOS commitment scheme does
not give an instantiation based on LWE since, and to begin with, there are no known trapdoor
permutations based on LWE. On the other hand, assuming the hardness of LWE, we propose
an extractable and equivocal commitment with no need of an NP reduction, leading to a huge
improvement in efficiency. Our CRS consists of a pair of public keys for an FHE scheme.

More formally, given QFHE = (KeyGen,KeyGen∗,QEnc,Eval,Dec,Equiv,Equivocate) as de-
fined in Figure 1, a CCA2-secure scheme ECCA with encryption algorithm ENCCCA based on
LWE [19], with the property that any ciphertext is pseudorandom and has deterministic decryp-
tion, we construct the following equivocal and extractable UC bit-commitment scheme ΠCom.
We shall use ECCA in a black box manner. We note that the scheme naturally extends to a
setting where commitments are defined over strings instead of just bits.

Common Reference String: The CRS consists of the public key (pk,K) of the QFHE scheme
and the public key for the encryption scheme ENCCCA.

Commit Phase:

1. On input (Commit, sid, ssid, Pi, Pj , b) where b ∈ {0, 1}, party Pi computes z = QEncpk,K(b; r)
where r ← Drand. Next, Pi computes Cb = ENCCCA(Pi, Pj , sid, ssid, r; s) using random
coins s, and sets C1−b to a random string of length |Cb|. Then, Pi records (sid, ssid, Pj , r, s, b),
and sends c = (sid, ssid, Pi, z, C0, C1) to Pj .

2. Pj receives and records c, and outputs (Receipt, sid, ssid, Pi, Pj). Pj ignores any later
commit messages from Pi with the same (sid, ssid).

Reveal Phase:

1. On input (Reveal, sid, ssid), party Pi retrieves (sid, ssid, Pj , r, s, b) and sends (sid, ssid, r, s, b)
to Pj .

2. Upon receiving (sid, ssid, r, s, b) from Pi, Pj checks that it has a tuple (sid, ssid, Pi, z, C0, C1).
If yes, then it checks that z = QEncpk,K(b; r) and that Cb = ENCCCA(Pi, Pj , sid, ssid, r; s).
If both these checks succeed, then Pj outputs (Reveal, sid, ssid, Pi, Pj , b). Otherwise, it
ignores the message.

The above commitment scheme UC realizes the multi-session ideal commitment function-
ality FMCom, described in Figure 8 in Appendix C, which reuses the public string for multiple
commitments.

8

Proposition 1. Assuming the hardness of LWE, Protocol ΠCom UC realizes FMCom in the
FCRS-hybrid model.

The proof can be found in Appendix C.

5 Adaptive UC ZKPoK from LWE

Our UC commitment scheme serves towards the realization of a commit-and-prove functionality
FCom-ZK based on LWE. Such a functionality is generic and hence is quite useful – it allows
a party to prove NP statements relative to its commitment value in the setting where parties
commit to their inputs but they never decommit. The functionality FCom-ZK is presented in
Figure 8 and is comprised of two phases. In the first phase, a party commits to a specific
value. In the second phase, this party proves NP statements in zero-knowledge relative to the
committed value. It allows the committer to commit to multiple secret values wi, and then have
the relation R depend on all these values in a single proof. In addition, the committer may
ask to prove multiple statements with respect to the same set of secret values. Hence, once a
committer gives a new (Commit, sid, w) command, FCom-ZK adds the current w to the already
existing list w of committed values. Then, on receiving a (Proof, sid,R, x) request, FCom-ZK

evaluates R on x and the current list w.

Using the power of the UC commitment scheme we constructed in Section 4, we show how it
can be used to first construct UC Zero-Knowledge protocols from LWE. Canetti and Fischlin [7,
Theorem 5], show that in the FCom-hybrid model there exists a 3-round protocol that securely
realizes FZK with respect to any NP relation without any computational assumptions. Using
the composition theorem and [7, Theorem 5], we can instantate FCom with the UC commitment
protocol from LWE (see Section 4) in the CRS model and realize FZK from LWE. Also, as it is
noted by [7] we can replace FCom by the functionality FMCom.

We next obtain a protocol for UC realizing functionality FCom-ZK in the FZK-hybrid model,
in the presence of adaptive adversaries. In [8, Proposition 7.2], a protocol for UC realizing
FCom-ZK in the FZK-hybrid model, based on any one-way function is proposed. To guarantee
security against adaptive adversaries, they need equivocal and extractable commitments which
they instantiate assuming the existence of enhanced trapdoor permutations. Using [8, Propo-
sition 7.2] we can get such an instantiation assuming the hardness of LWE via our extractable
and equivocal commitment scheme described above and instantiation of the FZK functionality
from LWE.

6 Our Protocol

In Figure 2 we describe our protocol ΠAMPC realizing the functionality FAMPC, see Figure 5,
in the (Fbroadcast,FKey-Dist,FCom-ZK)-hybrid model. The functionality FKey-Dist is described
in Figure 4. The functionality FCom-ZK is described in Figure 3.

Output phase: As we discussed in Section 1, the simulator will not be able to cheat in the
distributed decryption protocol by decrypting a given ciphertext to any desired value. The key
setup for the decryption protocol fixes the shares of the private key even in the simulation.
Thus, a ciphertext can only be decrypted to the value it actually contains. Of course, when
decrypting the outputs, the correct results should be produced both in simulation and real life,
and so we have a problem since all ciphertexts in the simulation will contain encryptions of 0.
We solve this by randomizing all ciphertexts before they are decrypted. To this end, we include
another fixed encryption key R = Enc(0) in the public key. Then the parties will cooperate to

9

create the ciphertext S. In the simulation R is going to be an encryption of 1, by cheating in the
rerandomization process, we can have that S is an encryption of the final output, thus ensuring
that the final decryption leads to the actual output.

Protocol ΠAMPC

Protocol ΠAMPC uses the Equivocal fully homomorphic encryption scheme QFHE =
(KeyGen,KeyGen∗,QEnc,Eval,Dec,Equivocate) and runs in the (Fbroadcast

a,FKey-Dist,FCom-ZK)-hybrid
model with parties P1, . . . , Pn. It proceeds as follows:

Initialize:
On input (init, 1λ) from all parties, invoke the functionalities Fbroadcast,FKey-Dist and FCom-ZK. The invo-
cation of FKey-Dist results in every party Pi receiving

(
(pk, c1, . . . , cn,K,R), (ski, ri)

)
, where, (sk1, . . . , skn)

are shares of the secret key sk corresponding to the public key pk and (c1, . . . , cn) are commitments on
the corresponding shares. Recall that K = Encpk(1; rK) and R = Encpk(0; rR) where (rK , rR) ← D′2rand.
(While K will be used to encrypt the inputs of the parties, R will be used to encrypt some special values
when we reach the Output stage.)

Load:
To load its input xi, Pi does the following:
1. Pi computes Xi = QEncpk,K(xi; rxi), where rxi ← Drand, and broadcasts Xi via Fbroadcast.
2. For i 6= j, Pi sends (Commit, sid, cid1, Pi, Pj , xi) to FCom-ZK. At this point all other parties Pj receive

message (Receipt, sid, cid1, Pi, Pj) from FCom-ZK.
3. For i 6= j, Pi sends (Commit, sid, cid2, Pi, Pj , rxi) to FCom-ZK. At this point all other parties Pj

receive message (Receipt, sid, cid2, Pi, Pj) from FCom-ZK.
4. For j 6= i, Pi sends (Prover, sid, (cid1, cid2),Req, Xi) to FCom-ZK for the relation
Req = {((pk,K,Xi), (xi, rxi)) : Xi = QEncpk,K(xi; rxi)}, whereupon Pj receives
(Proof, sid, Pi,Req, (pk,K,Xi)).

5. For every Pj , Pi calls Fbroadcast to broadcast whether it accepts the proof by Pj or not.
6. If all the proofs are accepted then the parties define enc(xi) = Xi, otherwise output ⊥.

Evaluation:
Let ckt be the arithmetic circuit to be computed on the inputs (x1, . . . , xn) by n parties. Every party
executes the deterministic algorithm Eval as enc(z)← Evalpk(ckt, enc(x1), . . . , enc(xn)).

Output:

1. Pi generates yi ← Drand and Loads it into variable enc(yi) using the key K. Let cid1 and cid2 be
the identifiers of the commitment phase of this Load.

2. Now using R as the key, Pi computes ẽnc(yi) = QEncpk,R(yi; r̃yi), where r̃yi ← Drand, and broadcasts

ẽnc(yi) via Fbroadcast. Next, for j 6= i party Pi sends (Commit, sid, cid3, Pi, Pj , r̃yi) to FCom-ZK and

(Prover, sid, (cid1, cid3),Req, ẽnc(yi)) to FCom-ZK, where cid1 is the identifier of the commitment
phase of the Load of the above Step 1, where Pi commits to yi.

3. Let J be the set of indices of Pj ’s having defined enc(yi) and ẽnc(yi). Then compute S = �i∈J ẽnc(yi)
and T = enc(z) � S.

4. Every party Pi runs ΠDDec
b with the rest of the parties to decrypt T .

a Since we have (potential) dishonest majority, note that we cannot guarantee termination. For a concrete
implementation of the broadcast functionality we refer to [13].

b The protocol ΠDDec is described in Setion 6.1 and Figure 6.

Fig. 2. The ΠAMPC Protocol.

6.1 Distributed Function Evaluation

In order to achieve distributed decryption, we assume, as a set up assumption, that a common
public key pk has been set up where the secret key sk has been secret-shared between n parties
in such a way that they can compute their corresponding decryption evaluation shares and
then collaborate to decrypt while the sk is kept secret. We also need that to enforce honest
computation of the evaluation shares of a ciphertext, commitments to the shares of the secret key

10

Functionality FCom-ZK

The functionality FCom-ZK runs with parties P1, . . . , Pn and an adversary S. It proceeds as follows:
Commit Phase:

Upon receiving a message (Commit, sid, cid,P, w) from Pi where P is a set of parties and w ∈ {0, 1}∗,
append the value w to the existing list w, record P, and send the message (Receipt, sid, cid, Pi,P) to the
parties in P and S. (Initially, the list w is empty. Also, if a commit message has already been received,
then check that the recorded set of parties is P. If it is a different set, then ignore this message.)

Prove Phase:
Upon receiving a message (Prover, sid,R, x) from Pi, where x ∈ {0, 1}poly(k), compute R(x,w) : If
R(x,w) = 1, then send the message (Proof, sid,R, x) to the parties in P and S. Otherwise, ignore.

Fig. 3. The ideal functionality FCom-ZK.

Functionality FKey-Dist

The functionality FKey-Dist runs with parties P1, . . . , Pn and is parameterized by a statistically hiding
commitment scheme with commitment function Com. It proceeds as follows:

Generate:
On input (init, 1λ) from all honest parties, run KeyGen(1λ) of the QFHE scheme and obtain PK =
(pk,K) and SK = sk such that (pk, sk) ← KeyGenFHE(1λ) and then additively secret-share sk to obtain
(sk1, . . . , skn). Also, generate a key-pair (K,R) such that K = Encpk(1; rK) and R = Encpk(0; rR) where
(rK , rR)← D′2rand. Note that R is included in PK.
1. For i = 1, . . . , n, compute ci = Com(ski; ri).
2. In a round specified by the adversary, output

(
(pk, c1, . . . , cn,K,R), (ski, ri)

)
to Pi.

Incorrect inputs:
If in the first round were an honest party inputs a non-trivial value some honest party do not input init,
then break down. Also break down if an honest party inputs init twice or any other value than init.

Fig. 4. The ideal functionality FKey-Dist.

Functionality FAMPC

The functionality FAMPC runs with parties P1, . . . , Pn and an adversary S and is parametrised by an
arithmetic circuit ckt. It proceeds as follows.

Initialize:
On input (init, 1λ) from all parties, the functionality activates generating a random FHE key (SK,PK).
It outputs PK to all parties.

Load:
On input (Input, Pi, varid , x) from Pi and (Input, Pi, varid , ?) from all other parties, with varid a fresh
identifier, the functionality stores (varid , x) and outputs (cid, varid ,Defined) to all parties. If Pi is cor-
rupted before (cid, varid ,Defined) is output, and if the adversary outputs (cid, varid ,Fail), then output
(cid, varid ,Fail) to all parties.

Evaluation:
On input (Evaluation, varid1, . . . , varidn, varidn+1) from all parties (if varid1, . . . , varidn are present
in memory and varidn+1 is not), the functionality retrieves (varid1, x1), . . . ,(varidn, xn) and stores
(varidn+1, ckt(x1, . . . , xn)).

Output:
On input (Output, varidn+1) from all honest parties (if varidn+1 is present in memory), the functionality
retrieves (varidn+1, x) and outputs it to the environment. If the environment inputs OK then x is output
to all players. Otherwise ⊥ is output to all players.

Fig. 5. The ideal functionality for Arithmetic MPC.

are also made public, along with pk. Using these commitments, when parties are distributedly
decrypting a ciphertext, they can then prove (via FCom-ZK) that the evaluation shares were
computed honestly using the secret-key shares initially delegated to them.

To this end, the functionality FKey-Dist generates a key pair (pk, sk)← KeyGenFHE(1λ) and
secret-shares the secret key sk among the players using a secret-sharing scheme that is assumed
to be given as part of the specification of the cryptosystem. The validity of the evaluation shares
is tested inside the protocol ΠDDec calling the functionality FCom-ZK. In order to describe our
protocol ΠDDec, we next define the following distributed sharing scheme.

11

Definition 5. We call (ShareSK, ShareEval,Combine) a distributed function sharing scheme
for an encryption scheme (KeyGenFHE,Enc,Dec), with construction threshold c and corruption
threshold t, if (ShareSK,Combine) are PPT algorithms and ShareEval is a PPT function, and
the following hold:

Key sharing: The algorithm ShareSK on input (pk, sk) ← KeyGenFHE(1λ) and a construction
threshold c, outputs a tuple (sk1, . . . , skn)← ShareSK(sk).

Evaluation sharing: The evaluation function ShareEval on input (pk, ski) and an a ciphertext
Encpk(z), outputs an evaluation share evi = ShareEval(pk, ski,Encpk(z); revi) for i ∈ [n] where
revi ← Drand(λ).

Share combining: The algorithm Combine on input correctly computed evaluation shares {evi}i∈[n]

of the same ciphertext Encpk(z), constructs the output Decsk(Encpk(z)) = Combine({evi}i∈[n]).

For our purposes, the construction threshold c = n and the corruption threshold t = n− 1.
In Figure 6, we describe our protocol ΠDDec, parameterized by (ShareSK, ShareEval,Combine).

Protocol ΠDDec

The protocol runs in the (Fbroadcast,FKey-Dist,FCom-ZK)-hybrid model with parties P1, . . . , Pn and it is
parametrized by (ShareEval,Combine), as defined in definition 5. It proceeds as follows:

Key Sharing: On input (init, 1λ) from all parties, invoke the functionalities Fbroadcast,FKey-Dist and
FCom-ZK. The invocation of FKey-Dist results in every party Pi receiving

(
(pk, c1, . . . , cn,K,R), (ski, ri)

)
,

where, (sk1, . . . , skn) are shares of the secret key sk corresponding to the public key pk and (c1, . . . , cn)
are commitments on the corresponding shares.

Evaluation Sharing:
1. For i 6= j, Pi sends (Commit, sid, cid, Pi, Pj , ski) to FCom-ZK. At this point all other parties Pj receive

message (Receipt, sid, Pi, Pj) from FCom-ZK.
2. For i 6= j, Pi sends (Commit, sid, cid, Pi, Pj , ri) to FCom-ZK. At this point all other parties Pj receive

message (Receipt, sid, Pi, Pj) from FCom-ZK.
3. For i 6= j, Pi samples revi and sends (Commit, sid, cid, Pi, Pj , revi) to FCom-ZK. At this point all other

parties Pj receive message (Receipt, sid, Pi, Pj) from FCom-ZK.
4. Party Pi, on input ciphertext enc(z), computes its evaluation share evi ←

ShareEval(pk, ski, enc(z); revi) where revi ← Drand(λ) and broadcasts evi via Fbroadcast.
5. For j 6= i, Pi sends (Prover, sid, Pi, Pj ,Reval, (ci, pk, enc(z), evi)) to FCom-ZK for the relation Reval =
{((ci, pk, enc(z), evi), (ski, ri, revi)) : ci = Com(ski; ri) ∧ evi = ShareEval(pk, ski, enc(z); revi)}, where
ski, ri, revi are the values committed as above by Pi, and Com is the commitment scheme used in
FKey-Dist.

6. For i 6= j, Pj sends the message (Proof, sid,Reval, (ci, pk, enc(z), evi)).
7. For every Pj , Pi calls Fbroadcast to broadcast whether it accepts the proof by Pj or not.

Share Combining: If any party Pi outputs reject for a proof given by any party Pj , then output Abort.
Otherwise, output Combine({evi}i∈[n]).

A concrete instantiation of the protocol ΠDDec based on LWE is given in Appendix B.

Fig. 6. The threshold decryption protocol.

Definition 6. A sharing scheme (ShareSK, ShareEval,Combine) for an encryption scheme (KeyGenFHE,
Enc,Dec) is called a statistically secure distributed scheme for corruption threshold n−1 if there
exist PPT algorithm, SKeyDist,SEval such that the following hold:

Key distribution simulation: The algorithm SKeyDist on input (pk,C), where C ⊆ [n], out-
puts (pk, {ski}i∈C). We require that ∀C with |C| ≤ n− 1, the following two experiments are
statistically close.

(pk, ·)← KeyGenFHE(1λ) (pk, sk)← KeyGenFHE(1λ)
{ski}i∈C ← SKeyDist(pk,C) {ski}i∈[n] ← ShareSK(sk)

Return (pk, {ski}i∈C) Return (pk, {ski}i∈C)

12

Evaluation simulation: The algorithm SEval on input {pk, {ski}i∈C,Encpk(z), z, {evi}i∈C), where
C ⊆ [n], outputs {evi}i∈[n]\C. We require that ∀C with |C| ≤ n− 1, the following two exper-
iments are statistically close.

(pk, sk)← KeyGenFHE(1λ) (pk, sk)← KeyGenFHE(1λ)
{ski}i∈[n] ← ShareSK(sk) {ski}i∈[n] ← ShareSK(sk)

{evi}i∈[n] ← ShareEval(pk, ski,Encpk(z)) {evi}i∈C,← ShareEval(pk, ski,Encpk(z))
{evi}i∈[n]\C ← SEval(pk, {ski}i∈C,Encpk(z), z, {evi}i∈C).

Return (pk, {ski}i∈C,Encpk(z), z, {evi}i∈[n]) Return (pk, {ski}i∈C,Encpk(z), z, {evi}i∈[n])

Remark 1. The existence of SKeyDist in essence says that the values seen by at most t (n − 1
corrupted) parties could have been generated from pk alone.

Remark 2. The existence of SEval in essence says that if one knows the values that n− 1 parties
are entitled to see, and if one knows z = Decsk(Encpk(z)), then one can compute the evaluation
share of all parties. It is of course trivial to compute evi ← ShareEval(pk, ski,Encpk(z)) for the
n − 1 values {ski}i∈C one knows; but what the evaluation simulation property says is that
evi ← ShareEval(pk, ski,Encpk(z)) can be computed even for i 6∈ C, provided, the plaintext z,
the rest of the secret-key shares {ski}i∈C, and the rest of the decryption shares {evi}i∈C are
known.

7 Proof of Security

Theorem 2. Let QFHE = (KeyGen,KeyGen∗,QEnc,Equiv,Equivocate) be the equivocal fully ho-
momorphic encryption scheme described in Figure 1; let it be associated with a distributed func-
tion sharing scheme (ShareSK, ShareEval,Combine). Then the constant-round protocol ΠAMPC

UC-securely realises the ideal functionality FAMPC in the (Fbroadcast,FKey-Dist,FCom-ZK)-hybrid
model with computational security against any adaptive, active adversary corrupting at most all-
but-one parties.

Proof. We begin by giving a high-level intuition for the proof. As we shall see, the crucial
aspects of our protocol that we exploit in the proof are the properties listed in Definitions 3,4
and Theorem 1.

The proof is carried out by a sequence of hybrids. We shall begin with a hybrid that is iden-
tical to the ideal-world execution. Note that the main difference from the real-world execution
is that, while in the real world the keys K,R are encryptions of 1, 0, respectively, in the ideal
world, these keys are encryptions of 0, 1, respectively. Naturally, when we start from one world,
in order to move to the other, we would need to employ the CPA security of the underlying FHE
scheme. Hence, the natural direction would be to eliminate the steps which use the secret key
and, roughly speaking, somehow simulate these steps without the secret key. To this end, firstly,
we rely on the simulatable evaluation property of the FHE scheme. Here, the simulator first
learns the evaluation shares that the corrupted parties might send by intercepting the commit
commands sent by the corrupted parties. Then, as a function of these evaluation shares and the
supposed output, the hybrid would compute the evaluation shares of honest parties. Observe
that there is a possibility that the corrupted parties may not send the evaluation shares consis-
tent with the randomness it would have sent earlier through FCom-ZK; however, in this case, by
the security of FCom-ZK, the corrupted party could not have given convincing proofs, leading
to an abort. Thus, whenever conditioned on no abort, with this modification of simulating the
evaluation shares of honest parties, the deviation introduced in the view of the adversary is com-
putationally indistinguishable, by applying the simulatable evaluation property. Next, we can

13

also sample all the secret-key shares ski to be uniformly random. This introduces no deviation
in the view of the adversary for the following reason: the commitments made to the secret-key
shares are using a statistically hiding scheme; furthermore, no longer at any point in the execu-
tion do we use the secret key. With this, we can switch to R being an encryption of 0. With this,
we can switch to a hybrid where we can start executing as prescribed by the protocol, except
for simulating the evaluation shares. Next, we move to a hybrid which is given the actual inputs
of parties; therein, the hybrid would load the actual inputs. Next, we may switch to K being
an encryption of 1 and switch to loading the random coins used to distributedly decrypt the
ciphertext honestly. In this step, we need to deploy the indistinguishability of equivocation and
the indistinguishability of equivocal keys in various steps. Finally, we additively secret share the
secret key instead of choosing all shares at random and performing the distributed decryption
as prescribed by ΠDDec. We now proceed to provide a formal proof. We shall provide our proof
at a low level for clarity, while implementing certain generic algorithms such as ShareSK (with
additive secret sharing of the secret key).

LetA be an adaptive adversary who operates against the Protocol ΠAMPC in the (Fbroadcast,
FKey-Dist,FCom-ZK)-hybrid model. Our objective is to construct an ideal-process adversary,
called simulator, SAMPC such that no environment Z can tell with non-negligible probability
whether it is interacting withA and parties running Protocol ΠAMPC in the (Fbroadcast,FKey-Dist,
FCom-ZK)-hybrid model or with SAMPC in the ideal process for FAMPC. Generally, the chal-
lenging aspect in constructing a simulator for an adaptive adversary is the following. Since A
corrupts parties adaptively as the protocol progresses, the simulator SAMPC must deal with in-
structions from A to corrupt parties also as the simulation progresses. More specifically, to begin
with, SAMPC must simulate to the adversary the messages generated by honest parties, without
knowing the inputs of the honest parties. Then, if and when an honest party gets corrupted,
the simulator learns the input (and possibly the output also) of this party; then, it needs to
be able to equivocate and generate the state of the corrupted party in a way that is consistent
with the revealed input/output and with the already simulated messages. Below, we construct
our simulator SAMPC.

At a high level, the simulator SAMPC will run a simulated copy of A and will use A in
order to interact with SAMPC and FAMPC. For this purpose, SAMPC will “simulate for A” an
interaction with parties running Protocol ΠAMPC, where the interaction will match the inputs
and outputs seen by Z in its interaction with SAMPC in the ideal process for FAMPC.

More specifically, SAMPC behaves as follows. In the following we use ΠAMPC as a shorthand
of ΠAMPC

Fbroadcast,FKey-Dist,FCom-ZK .

Simulating the communication with Z: Every input value that SAMPC receives from Z is
written on A’s input tape (as if coming from A’s environment). Likewise, every output value
written by A on its output tape is copied onto SAMPC’s own output tape (to be read by SAMPC’s
environment Z).

Simulated CRS: The common reference string is chosen by S in the following manner (recall
that S chooses the CRS for the simulated A as we are in the FKey-Dist-hybrid model):

– SAMPC simulates the Key-Generation phase of the QFHE scheme as follows. It samples

(P̃K, S̃K)← KeyGen∗(1λ) where P̃K = (pk, K̃) and S̃K = (sk, rK̃). Recall that in QFHE (see

Figure 1), (pk, sk)← KeyGenFHE(1λ) and K̃ = Encpk(0; rK̃) where rK̃ ← D′rand.
– SAMPC computes additive secret shares (sk1, . . . , skn) of sk. (sk1). For i = 1, . . . , n, compute
ci = Com(ski; ri).

– It also simulates the key R used for the re-randomazation of the Output phase as follows.
R = Encpk(1; rR) where rR ← D′rand.

14

– Moreover, SAMPC generates randomness (r0
1, . . . , r

0
2n) ← Drand which may be used in the

Load commands for equivocation.

SAMPC sets the CRS equal to (P̃K, R) and locally stores (S̃K, rK̃ , rR, {ski}i∈[n]).

Simulating actual protocol messages in ΠAMPC: Note that there might be multiple ses-
sions executing concurrently. Let sid be the session identifier for one specific session. We will
specify the simulation strategy corresponding to this specific session. The simulator strategy
for all other sessions will be the same. Let P = {P1, . . . , Pn} be the set of parties participating
in the execution of Π corresponding to the session identified by the session identifier sid. Some
of the parties may be corrupted. Also, recall that we are in the setting of adaptive corruption
so more parties could be corrupted as the protocol proceeds. At any point S only generates
messages on behalf of the honest parties.

Simulation of the Load stage: Note that we describe how to simulate the Load stage only
for key K̃, since for all loads with key R, the simulator actually would be knowing the values
to load, and hence, loading into R can be performed honestly as per the protocol.

Load stage messages SAMPC → A: In this stage the simulator SAMPC must generate messages
on behalf of the honest parties. SAMPC for every honest party proceeds as follows:

Xi: If Pi is honest then SAMPC computes Xi = QEncpk,K̃(0; r0
i) (where, r0

i was generated by

SAMPC in the Initialize stage) and broadcasts Xi.

Commitment phase in FCom-ZK: Recall that in the protocol, if Pi is honest then, for ev-
ery j 6= i, it would send (Commit, sid, cid1, Pi, Pj , xi) to FCom-ZK upon which Pj receives
(Receipt, sid, cid1, Pi, Pj); SAMPC simulates this interaction simply by sending (Receipt, sid,
cid1, Pi, Pj). Furthermore, Pi would also send (Commit, sid, cid2, Pi, Pj , rxi) to FCom-ZK

upon which Pj receives (Receipt, sid, cid2, Pi, Pj); SAMPC simulates this interaction too sim-

ply by sending (Receipt, sid, cid2, Pi, Pj) to Pj . For j 6= i, Pi sends (Prover, sid,Req, (pk, K̃,Xi))

to FCom-ZK for the relation Req = {((pk, K̃,Xi), (xi, rxi)) : Xi = QEncpk,K̃(xi; rxi)}.
Prove phase in FCom-ZK: Recall that if Pi is honest, then, for every j 6= i, it would send

(Prover, sid,Req, (pk, K̃,Xi)) to FCom-ZK, such that Xi = QEncpk,K̃(xi; rxi), upon which Pj

receives (Proof, sid, Pi,Req, (pk, K̃,Xi)). SAMPC simulates this interaction by thus sending

(Proof, sid, Pi,Req, (pk, K̃,Xi)) to Pj .

Load stage messages A → SAMPC: Also in the load stage the adversaryA generates the messages
on behalf of corrupted parties. For each corrupted party Pi our simulator proceeds as follows:
Let us consider the case when Pi is corrupted before the honest parties output (cid,Xi,Defined).
If some proof is not accepted, then input (cid,Xi,Fail) to FAMPC. On the other hand, if the
proofs are accepted, Pi must have sent to FCom-ZK the messages (Commit, sid, cid1, Pi, Pj , xi) .
SAMPC, which intercepts these messages, learns xi and inputs (Input, Pi, Xi, xi) to FAMPC.

Simulating corruption of parties in Load stage: When A corrupts a real world party Pi, then
SAMPC first corrupts the corresponding ideal world party Pi and obtains its input xi. Next
SAMPC prepares the internal state on behalf of Pi such that it will be consistent with the
message Xi that it had provided to A earlier. In particular, it needs to present to A the random
coins rstatei ← InvDrand(r

blind
i) that it can claim as the ones used in generating Xi and that is

consistent with xi as plaintext, e.i. Xi = QEncpk,K̃(xi; r
blind
i). Specifically, SAMPC proceed as

follows:

15

Xi: SAMPC runs the algorithm Equivocate((pk, K̃), (sk, rK̃), Xi, r
0, xi) whereXi = QEncpk,K̃(0; r0

i)

in order to obtain rblindi and rstatei . Furthermore, if Pi is corrupted before Load begins, then
SAMPC inputs (Input, Pi, Xi, 0) to FAMPC on behalf of Pi and simulates the honest par-
ties for this Load by following the protocol. If any of the simulated honest parties outputs
(cid,Xi,Defined), then the simulator must at the end of the Load input (Change, x′i) to
FAMPC to define Xi. The value of x′i is determined as follows: Since FAMPC has output
(cid,Xi,Defined), Pi must have input (Input, Pi, Xi, s). The interface SAMPC thus learns s
and sets x′i to be s.

Commitment phase in FCom-ZK: If Pi gets corrupted after SAMPC sends (Receipt, sid, cid1, Pi, Pj)
to Pj , then SAMPC learns xi, and sends xi to A. If Pi gets corrupted before SAMPC sends
(Receipt, cid1, Pi, Pj) to Pj , then A specifies x′i, and (sid, cid1, Pi, Pj , x

′
i) is recorded. Fur-

thermore, if Pi gets corrupted after SAMPC sends (Receipt, sid, cid2, Pi, Pj) to Pj , then
SAMPC would run the algorithm Equivocate to patch rxi and sends rxi to A. If Pi gets
corrupted before SAMPC sends (Receipt, sid, cid2, Pi, Pj) to Pj , then A specifies r′xi , and

(sid, cid2, Pi, Pj , r
′
xi) is recorded. For j 6= i, Pi sends (Prover, sid,Req, (pk, K̃,Xi)) to FCom-ZK

for the relation Req = {((pk, K̃,Xi), (xi, rxi)) : Xi = QEncpk,K̃(xi; rxi)}.
Prove phase in FCom-ZK: If Pi gets corrupted after SAMPC sends (Proof, sid, Pi,Req, (pk, K̃,Xi))

to Pj , then SAMPC would learn xi and run the algorithm Equivocate((pk, K̃), (sk, rK̃), Xi, r
0, xi)

to obtain rstatei . Here, it would send (xi, rstatei) to A.

Simulation of the Evaluation stage: Recall that the Evaluation stage does not require
any interaction among the parties. Let ckt be the arithmetic circuit to be computed on the
n inputs of the parties. On behalf of every honest party, the simulator SAMPC computes
enc(z)← Evalpk(ckt, X1, . . . , Xn).

Simulation of the Output stage: Firstly, observe that the ciphertext enc(z) computed
by every corrupted party using Eval is an encryption of 0, for the following reason. Since
the simulator has simulated K̃ as an encryption of 0 (i.e., K̃ ∈ Encpk(0)), and since the

input xi by every corrupted party Pi is encrypted using K̃ as a key, (i.e., Xi = (xi �
K̃) � ctblindi , where also ctblindi ∈ Encpk(0)), Xi is an encryption of 0. On the other hand,
FAMPC outputs (Output, z), and z is not necessarily 0. Now, in order for the simulator to
be able to enforce the final output to be z, the simulator exploits the rerandomization step.
More specifically, the simulator will cheat in the randomization step in such a way that the
resultant ‘rerandomized’ ciphertext is an encryption of z. With this, the simulator can then
simulate the distributed decryption protocol by simply behaving honestly. In detail, SAMPC

proceeds as follows.

Output stage messages A → SAMPC: On behalf of every corrupted party Pi, the simulator
sends (Output, enc(z)) to FAMPC. Then, FAMPC returns (enc(z), z). SAMPC thus learns z.

Output stage messages SAMPC → A: SAMPC proceeds as follows.

1. For every honest party Pi, compute Yi = QEncpk,K̃(0; r0
n+i) (where, r0

n+i was generated

in the Initialize stage).
Simulating corruption of parties in this step: If Pi gets corrupted soon after, then SAMPC

patches Pi’s state to yi running the algorithm Equivocate((pk, K̃), (sk, rK̃), Yi, r
0
n+i, yi).

Also, from the Load performed by every corrupted party Pj , learn yj as in the simulation
of the Load stage.

16

2. Let Pk be an honest party. For every other honest party, assign yi ← M . Then for Pk,
set y′k = z −

∑
i∈[n]\{k} yi. Then, for every honest party Pi, proceed as per the protocol

to load ẽnc(yi).
Simulating corruption of parties in this step: If any honest party gets corrupted, then
the random coins used for generating the encryption using key R are patched running
the algorithm Equivocate so that the value encrypted is yi.

3. Now compute the randomizer S and randomize the ciphertext enc(z) from the Evalua-

tion stage as per the protocol. That is, compute S = �i∈I ẽnc(yi) and set T ← enc(z)�S,
where enc(z) is the resultant encryption from the Evaluation stage.

4. Run ΠDDec as in the protocol to decrypt T . At a high level, note that as every party
is required to prove the correctness in computing the evaluation shares, then with high
probability, all the evaluation shares correspond to being computed using a set of valid
shares of the secret key. This ensures towards correctness of the value decrypted and
output at the end.(sk2)

This completes the description of our simulator. We shall now prove via a hybrid argument
that the environment’s view generated by the simulator is indistinguishable from its view in
the real world. We begin by giving a high-level intuition of the proof.
Let us begin with the ideal world and then via hybrids migrate to the real world. In other
words, we will modify the simulator hybrid-by-hybrid such that we finally reach a modified
simulator that, on behalf of the honest parties, just honestly runs the protocol. Before we
embark on actual proof, we shall first list the obstacles in this migration that shall guide
us in designing the sequence of the hybrids. Firstly, observe the fact that, while in the real-
world the randomizing key R is an encryption of 0, the simulator sets R to be an encryption
of 1. Also, recall that the final ciphertext is randomized using R. This implies that an honest
execution of Output stage is not possible with R being an encryption of 1. In other words,
it is pertinent that before we get to a hybrid where the Output stage is performed honestly,
we need a hybrid where R turns into an encryption of 0. However, with both the keys K̃
and R as encryptions of 0, the final (rerandomized) output can also just be an encryption
of 0, hence we can not hope to get the final output to decrypt to the actual output value.
Thus, even before turning R into an encryption of 0, we need a hybrid where we can cheat
in the final decryption. That is, we first need to have a hybrid that, instead of running
the distributed decryption protocol, runs what we abstract as the simulator for distributed
decryption. Finally, in order to ensure indistinguishability between the hybrid where R is
an encryption of 1 and the hybrid where R is an encryption of 0, we need a reduction to
IND-CPA security of the FHE scheme. In light of this, we also need to ensure that, by the
time we reach the hybrid where R turns into an encryption of 0, the modified simulator does
not crucially use the secret key in any part of the execution. With this as our guide, we have
the following sequence of hybrids.

Hyb0: This hybrid is identical to the ideal-world.
Trivially,

Lemma 1. IDEALFbroadcast,FCom-ZK
FAMPC,SAMPC,Z ≡ Hyb0.

Hyb1: This hybrid is the same as Hyb0, except for the following modification in the way
the hybrid computes the evaluation shares for the final rerandomized ciphertext. Recall
that in Hyb0, ΠDDec was run. Now, we introduce certain changes in the steps of execu-
tion of ΠDDec. Recall that every party Pi is first required to commit through FCom-ZK,
the secret-key share ski and the commitment information ri, where ci = Com(ski; ri).

17

The hybrid first intercepts these commit messages from the corrupted parties and learns
ski, ri. If these values do not correspond to the actual values provided to the corrupted
party Pi during the onset of the execution, then, the hybrid aborts. Otherwise, it pro-
ceeds as follows. Recall that every party Pi is also required to commit to revi through
FCom-ZK. The hybrid intercepts this commit command from every corrupted Pi and
learns revi . Then it computes by itself the evaluation share that would result by using
ski and randomness revi on the final ciphertext. Let these values be {evi}i∈C. Hav-
ing also learnt the output z of loaded inputs of all the parties, the hybrid computes
{evi}i∈[n]\C ← SEval(pk, {ski}i∈C,Encpk(z), z, {evi}i∈C), where, SEval simulates the evalu-
ation in distributed decryption as per Definition 6 where an actual implementation of it
can be derived since we are using additive secret sharing and the adversary can corrupt
at most n − 1 parties. In the meanwhile, it simply simulates the commit messages it
needs to send by sending to the adversary, the corresponding Receipt messages. Then,
{evi}i∈[n]\C is presented as the evaluation shares of the honest parties.

Lemma 2. Hyb0 ≈s Hyb1.

Proof. Before we proceed, we shall analyze the potential abort by Hyb1 when it intercepts
the commit messages by a corrupted party Pi to ski, ri. Recall that if these values do not
match the corresponding values provided to Pi at the onset of the execution, then the
hybrid aborts. We argue that even in Hyb1, this would have resulted in a premature abort,
since, applying the security of FCom-ZK, the corrupted party Pi could not have provided a
convincing proof as the statement would be invalid. Here, we note that until this point in
the course of execution, both the hybrids in question are identical. Next, note that if the
corrupted parties provide the evaluation shares computed indeed using the randomness revi
committed via FCom-ZK, then, we have the following by applying the property of SEval. The
evaluation shares of the honest parties computed using SEval, jointly with the evaluation
shares of the corrupted parties, are distributed statistically close to their values in Hyb0. On
the other hand, that is if the evaluation shares computed by the corrupted parties do not
correspond to the values it had committed earlier through FCom-ZK, then the execution would
anyway have aborted, again by applying the security of FCom-ZK. Thus, the modification
introduced in hybrid Hyb1 introduces only statistical distance in the view generated by the
simulator, thus proving the lemma.

Hyb2: This hybrid is the same as Hyb1, except for the way public key and the secret-key
shares are computed. Before we proceed, recall that this is performed in the same way
as FKey-Dist in Hyb1. Now in the current hybrid, the public key and the secret-key
shares are computed as follows. Firstly, run (pk, sk) ← KeyGenFHE(1λ)4. Then sample
sk1, . . . , skn ← {0, 1}∗ of appropriate length. Then, the hybrid commits to these secret-
key shares, as in Hyb1, using Com to obtain c1, . . . , cn. The rest of the hybrid remains
the same as Hyb1.

Lemma 3. Hyb1 ≈s Hyb2.

4 Recall that KeyGenFHE(1λ) is part of the KeyGen∗(1λ) algorithm.

18

Proof. Recall that the adversary can corrupt at most n−1 parties. Hence, the values received
by an adversary from FKey-Dist in Hyb1 are:

(
(pk, c1, . . . , cn), {(ski, ri)}i∈C

)
. Firstly, we

observe that (pk, {(ski)}i∈C) as output by FKey-Dist are distributed identically to the output
of the following process: (pk, ·) ← KeyGenFHE(1λ) and ∀i ∈ C, ski ← {0, 1}∗ of appropriate
length. Furthermore, we recall that Com is a statistically hiding commitment. Thus, clearly,
the distribution of

(
(pk, c1, . . . , cn), {(ski, ri)}i∈C

)
as output by FKey-Dist is statistically close

to the joint distribution of these values as generated by Hyb2. Hence, the lemma.

Hyb3: This hybrid is the same as Hyb2, except that the simulator sets the rerandomizing
key R as an encryption of 0, instead of setting it as an encryption of 1.

Lemma 4. Hyb2 ≈c Hyb3.

Proof. Note that in an earlier hybrid, we have introduced the modification from crucially
using the fact that R is an encryption of 1 (to be able to cheat in rerandomizing of the final
ciphertext) to just running SEval for which the actual value of the plaintext in R will not
matter. Furthermore, we have also introduced the modification from obtaining the secret-key
shares by simply sampling them uniformly at random, a process that does need the secret
key. Thus, in the current hybrid Hyb3, the simulator does not make use of the secret key
anywhere in its execution. Thus, an algorithm that distinguishes hybrids Hyb2 and Hyb3 is
directly reducible to an adversary against threshold IND-CPA security of the FHE scheme.
Hence, the lemma.

Hyb4: This hybrid is the same as Hyb3, except that the simulator is given the actual inputs
of the honest parties and the simulator simply executes the protocol to compute the
messages that the honest parties are supposed to send to the adversary.

Lemma 5. Hyb3 ≡ Hyb4.

Proof. Observe that in both the hybrids Hyb3 and Hyb4, both the keys K̃ and R are encryp-
tions of 0. Hence, no matter what the input values of the parties are, the Loaded variables
all contain 0. Hence, the views generated by the simulator in these two hybrids are identical.

Hyb5: This hybrid is the same as Hyb4, except that the simulator now runs the algorithm
KeyGen instead of KeyGen∗. In particular, the key K̃, which is an encryption of 0, is
changed toK which is an encryption of 1. Furthermore, in computing the loaded variables
Xi in the Load stage, the simulator honestly follows the protocol; namely, for every
honest party Pi, it samples rxi ← Drand and computes Xi ← QEncpk,K(xi; rxi), where
xi is the input of Pi. Also, when an honest party Pi gets corrupted, unlike Hyb4 which
patched the state of Pi in the computation of Xi by running the algorithm Equivocate,
the simulator in this hybrid simply presents rstatei ← InvDrand(rxi) as the state of Pi.

Lemma 6. Hyb4 ≈c Hyb5.

19

Proof. The proof of this lemma immediately follows from Theorem 1 and more specifically,
the indistinguishability of equivocal keys and the indistinguishability of equivocation.

In particular:

– In hybrid Hyb4, Xi is computed as: Xi = QEncpk,K̃(0; r0
i) where K̃ = Encpk(0; rK̃) and

R = Encpk(1; rR). Then for patching the state of Pi for input xi, the simulator runs

the algorithm Equivocate((pk, K̃), (sk, rK̃), Xi, r
0, xi) to obtain rblindi and rstatei . Further-

more, in the output phase, while loading the random coins used to rerandomize the final
ciphertext, Yi is computed as Yi = QEncpk,K̃(0; r0

n+i). Then for patching the state of

Pi for yi, the simulator runs the algorithm Equivocate((pk, K̃), (sk, rK̃), Yi, r
0
n+i, yi) to

obtain rblindn+i and the corresponding rstaten+1 .

– On the other hand, in hybrid Hyb5, Xi is computed as: Xi = QEncpk,K(xi; rxi) where
rxi ← Drand. Furthermore, here, the simulator uses the key K where K = Encpk(1; rK),
rK ← D′rand obtained running the algorithm KeyGen. Also, Yi is computed as: Yi =
QEncpk,K(yi; ryi) where ryi ← Drand.

Now to show indistinguishability between the two hybrids, we can immediately use the proof
of Theorem 1 and the indistinguishability of Equivocation.

Next, to argue indistinguishability of K̃ and K, where the former is an encryption of 0 and
the latter is an encryption of 1 we again directly use Theorem 1 and the indistinguishability
of equivocal keys. In detail, we need to be able to obtain a reduction to threshold IND-CPA
security of the FHE scheme. Thus, we need to ensure that the reduction does not need the
secret key in simulating either of the hybrids Hyb4 and Hyb5. To see this, we recall the
aspects of Hyb4 due to which the secret key will not be needed by the reduction. Observe
that in the hybrid Hyb4, R is an encryption of 0. Thus, the randomizer, computed by the
parties by loading their shares of random coins using R as the base key, is an encryption of
0, just like in the protocol ΠAMPC. Furthermore, in both the hybrids Hyb4 and Hyb5, the
only way in which K is used is as a key for encryption. We also emphasize that the simulator
does not use the secret key for FHE anywhere in its execution. Hence, given an adversary
that distinguishes the hybrids Hyb4 and Hyb5 with some non-negligible property ε, we have
an adversary that breaks threshold IND-CPA security of the FHE scheme with probability
negligibly close to ε. Hence, the lemma.

Hyb6: This hybrid is the same as Hyb5, except that, in computing the shares of the secret key
at point (sk1), the simulator now switches back from using KeyGenFHE and uniformly
sampling the secret-key shares to using KeyGenFHE and additively secret-sharing the
secret key like in SAMPC.

Lemma 7. Hyb5 ≡ Hyb6.

Proof. This proof is similar to the proof of indistinguishability of the hybrids Hyb1 and
Hyb2 (Lemma 3), where the simulator switched the other way; i.e., from using KeyGenFHE

5

and additively secret-sharing the secret key to using KeyGenFHE and uniformly sampling the
secret-key shares. On the same lines as in Lemma 3, we have Lemma 7.

5 Recall that now KeyGenFHE(1λ) is part of the KeyGen(1λ) algorithm.

20

Hyb7: This hybrid is the same as Hyb6, except that, in decrypting the final rerandomized
ciphertext at point (sk2), the simulator at this hybrid switches back to decrypting as in
ΠDDec.

Lemma 8. Hyb6 ≡ Hyb7.

Proof. This proof is similar to the proof of indistinguishability of the hybrids Hyb0 and Hyb1

(Lemma 2), where the simulator switched the other way; i.e., from using ΠDDec to using
SEval. Namely, the property of simulatable evaluation ensures that the evaluation shares for
the honest parties generated using SEval are distributed statistically close to the evaluation
shares generated using ΠDDec, thus proving the lemma.

Observe that the view in the final hybrid Hyb7 is identical to the real-world view. Hence,
we have that Hyb7 ≡ REALFbroadcast,FCom-ZK

ΠAMPC,Z .
In summary, we have that,

IDEALFAMPC,SAMPC,Z ≈c REALFbroadcast,FCom-ZK
ΠAMPC,Z

8 Acknowledgements

The authors would like to thank Nico Döttling, Yuval Ishai and Chris Peikert for helpful dis-
cussions. Ivan Damg̊ard and Antigoni Polychriniadou acknowledge support from the Danish
National Research Foundation and The National Science Foundation of China (under the
grant 61361136003) for the Sino-Danish Center for the Theory of Interactive Computation
and from the Center for Research in Foundations of Electronic Markets (CFEM), supported
by the Danish Strategic Research Council.

References

1. Gilad Asharov, Abhishek Jain, Adriana López-Alt, Eran Tromer, Vinod Vaikuntanathan, and Daniel Wichs.
Multiparty computation with low communication, computation and interaction via threshold fhe. In EURO-
CRYPT, pages 483–501, 2012.

2. Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for non-cryptographic fault-
tolerant distributed computation (extended abstract). In STOC, pages 1–10, 1988.

3. Dan Boneh, Ran Canetti, Shai Halevi, and Jonathan Katz. Chosen-ciphertext security from identity-based
encryption. SIAM J. Comput., 36(5):1301–1328, 2007.

4. Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic encryption from (standard) lwe.
In FOCS, pages 97–106, 2011.

5. Zvika Brakerski and Vinod Vaikuntanathan. Fully homomorphic encryption from ring-lwe and security for
key dependent messages. In CRYPTO, pages 505–524, 2011.

6. Ran Canetti, Uriel Feige, Oded Goldreich, and Moni Naor. Adaptively secure multi-party computation. In
STOC, pages 639–648, 1996.

7. Ran Canetti and Marc Fischlin. Universally composable commitments. In Advances in Cryptology - CRYPTO
2001, 21st Annual International Cryptology Conference, Santa Barbara, California, USA, August 19-23, 2001,
Proceedings, pages 19–40, 2001.

8. Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Universally composable two-party and
multi-party secure computation. In Proceedings of the Thiry-fourth Annual ACM Symposium on Theory of
Computing, STOC ’02, pages 494–503, 2002.

21

9. Ivan Damg̊ard and Yuval Ishai. Constant-round multiparty computation using a black-box pseudorandom
generator. In CRYPTO, pages 378–394, 2005.

10. Ivan Damg̊ard and Yuval Ishai. Scalable secure multiparty computation. In CRYPTO, pages 501–520, 2006.
11. Ivan Damg̊ard, Yuval Ishai, Mikkel Krøigaard, Jesper Buus Nielsen, and Adam Smith. Scalable multiparty

computation with nearly optimal work and resilience. In CRYPTO, pages 241–261, 2008.
12. Ivan Damg̊ard and Jesper Buus Nielsen. Universally composable efficient multiparty computation from

threshold homomorphic encryption. In CRYPTO, pages 247–264, 2003.
13. Ivan Damg̊ard, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Multiparty computation from somewhat

homomorphic encryption. In CRYPTO, pages 643–662, 2012.
14. Danny Dolev, Cynthia Dwork, and Moni Naor. Non-malleable cryptography. In SIAM Journal on Computing,

pages 542–552, 2000.
15. Sanjam Garg and Amit Sahai. Adaptively secure multi-party computation with dishonest majority. In

CRYPTO, pages 105–123, 2012.
16. Craig Gentry. A fully homomorphic encryption scheme. PhD thesis, Stanford University, 2009.

crypto.stanford.edu/craig.
17. Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. Founding cryptography on oblivious transfer - efficiently.

In CRYPTO, pages 572–591, 2008.
18. Jonathan Katz, Aishwarya Thiruvengadam, and Hong-Sheng Zhou. Feasibility and infeasibility of adaptively

secure fully homomorphic encryption. In Public-Key Cryptography - PKC 2013 - 16th International Con-
ference on Practice and Theory in Public-Key Cryptography, Nara, Japan, February 26 - March 1, 2013.
Proceedings, pages 14–31, 2013.

19. Daniele Micciancio and Chris Peikert. Trapdoors for lattices: Simpler, tighter, faster, smaller. In Advances
in Cryptology - EUROCRYPT 2012 - 31st Annual International Conference on the Theory and Applications
of Cryptographic Techniques, Cambridge, UK, April 15-19, 2012. Proceedings, pages 700–718, 2012.

20. Adam O’Neill, Chris Peikert, and Brent Waters. Bi-deniable public-key encryption. In Advances in Cryptology
- CRYPTO 2011 - 31st Annual Cryptology Conference, Santa Barbara, CA, USA, August 14-18, 2011.
Proceedings, pages 525–542, 2011.

21. Chris Peikert. personal communication, September 2014.

A Universally Composable Security

The universally composable (UC) security framework was introduced by Canetti [Can01]. The
strength of this framework relies on the universally composable theorem, which states that if a
protocol is secure in the UC model, then this protocol will preserve the same security even if
composed with an arbitrary number of copies of itself or with other protocols. The UC framework
gives us also a way to design our protocols in a modular way: we can design sub-protocols for
simpler tasks and then combine them in more complex protocols, and still we can prove the
security of the sub-protocols independently. In order to develop interesting protocols in the UC
model we need some kind of setup assumptions, like a common reference string (CRS) available
to the parties, or a key registration authority, that checks that the parties know their secret
keys and the public keys are well-formed, or many other different assumptions.

Adversarial model. A static adversary A chooses the set of corrupted parties before the protocol
starts, as opposed to an adaptive adversary that can corrupt the players during the protocol.
We say that the adversary is passive or semi-honest if A follows the protocol but tries to extract
some information about the other parties’ inputs from his view of the protocol. We say that
the adversary is active or malicious if A is allowed to deviate arbitrarily from the protocol
specifications. We will say that a protocol is passive-secure if it is secure against a passive
adversary and active-secure (or malicious secure) if it is secure against an active adversary. In
the UC model the adversary, as well as all the other parties involved, are modeled as probabilistic
polynomial time (PPT) interactive Turing machine (ITM). In this paper we consider active-
security against an adaptive adversary.

22

The real world. We model a real world execution of a cryptographic protocol in the UC model
by defining a PPT ITM Z called the environment, that gives inputs and gets outputs from the
parties P1, . . . , Pn running the protocol. Moreover, Z communicates with A giving instructions
on how to attack the protocol. The parties and the adversary usually also have access to some
ideal functionality H.

The ideal world. We define also an ideal world, where the parties P1, . . . , Pn interact with an ideal
functionality F , that captures the properties we expect from our protocol. Here the parties get
their inputs from the environment Z and simply forward them to F , therefore they are usually
referred as the dummy parties. There is also an ideal adversary S, called the simulator, that
communicates with the environment Z and with the ideal functionality.

Indistinguishability. At the beginning of the protocol all parties, the environment and the ad-
versary are given a security parameter λ. The environment is also given an auxiliary input z. At
some point the environment stops and outputs a bit. We use REALHπ,A,Z(λ, r, z) to denote the

output of Z in the real world and IDEALHF ,S,Z(λ, r, z) in the ideal word where we take r to be uni-

formly random. This defines the Boolean distribution ensembles {REALHπ,A,Z(, λz)}λ∈N,z∈{0,1}∗
and {IDEALHF ,S,Z(λ, z)}λ∈N,z∈{0,1}∗

Definition 7. We say that π securely implements F in the H-hybrid model if ∀PPT A, ∃PPT S
such that REALHπ,A,Z and IDEALHF ,S,Z are computationally indistinguishable in λ.

B Concrete Instantiation of our Equivocal QFHE Scheme

In this section we describe the concrete QFHE scheme, which is based on the somewhat homo-
morphic encryption scheme of Brakerski and Vaikuntanathan (BV) [5]. The scheme is secure
under the polynomial LWE (PLWE) assumption, which is a simplified version of the Ring-LWE
assumption.

Definition 8 (PLWE Assumption). For all λ ∈ N, let F (X) = Fλ(X) ∈ Z[X] be a polynomial
of degree N = N(λ), let q = q(λ) ∈ Z be a prime integer, let R = Z[X]/〈F (X)〉 and Rq = R/qR,
and let χ denote a distribution over the ring R. The polynomial LWE assumption PLWEf,q,χ
states that for any l = poly(λ) it holds that

{(ai, ai · s+ ei)}i∈[l] ≈c {(ai, ui)}i∈[l]

where s is sampled from the distribution χ, and ai, ui are uniformly random in Rq. We
require computational indistinguishability to hold given only l samples, for some l = poly(λ).

Now we present the fully homomorphic encryption scheme QFHE and its threshold decryp-
tion procedure. Later we show that it indeed satisfies the properties listed in Definition 3. To
begin with, the scheme is associated with the following parameters:

– A cyclotomic polynomial F (X) := Φm(X) = XN + 1 of degree N := φ(m), where m = 2N
and where the dimension N is a power of 2 and lower bounded by some function of the
security parameter λ.

– The modulus q, which is a prime such that q ≡ (mod 2N). Together, N, q and F (X) define
rings R := Z[X]/〈F (X)〉 and Rq := R/qR = Zq[X]/〈F (X)〉. Addition in these rings is done
component-wise in their coefficients (thus, their additive group is isomorphic to ZN and ZNq ,
respectively). Multiplication is simply a polynomial multiplication modulo F (X) (and also
modulo q, in the case of the ring Rq). The two operations in R will be denoted by + and ·.

23

– The error parameter σ, which defines a discrete Gaussian error distribution χ = DZN ,σ
over the ring Rq = Zq[X]/〈F (X)〉 with standard deviation σ. We usually refer to DZN ,σ as
Drand(λ) used by the encryption algorithm to select the random coins needed during the
encryption.
The parameters λ, F, q and χ are public and we assume that given λ, there exist PPT
algorithms that output F and q, and sample from the error distribution χ.

– A prime p < q, for some integer p = p(λ) and rel. prime to q, which defines the message
space M of the scheme as Rp = Zp[X]/〈F (X)〉, i.e. the ring of integer polynomials modulo
F (X) and modulo p. Moreover, we encode messages from M to Rq. Namely, we encode our
messages as elements in Rq with coefficients modulo p. More specifically, to transform a
message m ∈ M into some x ∈ Rq, we assume that there is an injective encoding function
encode : M → Rq which takes elements in M to elements in a ring Rq which is equal ZN (as
a Z-module). We also assume a decoding function decode : Rq →M which takes an arbitrary
element in ZN and returns an element in M . We require that the following conditions hold:
1. ∀m ∈M : decode(encode(m)) = m.
2. ∀x ∈ Rq : decode(x) = decode(x mod p).
3. ∀m ∈M : ‖encode(m)‖∞ ≤ τ where τ = p/2.
4. ∀m1,m2 ∈ M : decode(encode(m1) + encode(m2)) = m1 + m2 and decode(encode(m1) ·

encode(m2)) = m1 ·m2.
– A number D > 0, which defines a bound on the maximum number of multiplications that

can be performed correctly using the scheme.

The above parameters depend on the security parameter λ in a way to guarantee correct-
ness and security. Our special FHE scheme consists of a tuple (KeyGenFHE,Enc,Eval,Dec) of
algorithms defined below, and parametrized by a security parameter λ.

KeyGenFHE(1λ): Sample ring elements a ← Rq and s, e ← Drand(λ), s, e are rounded such that
they can be seen as s, e ∈ Rq. Then compute b← ((a · s) + (p · e)). The public and private keys
are then set to be pk← (a, b) and sk← s where s = (1, s, s2, . . . , sD) ∈ RD+1

q .
Encpk(x; r):On input x = encode(m) where m ∈ M , and r ← Drand(λ), we proceed as follows:

The element r is parsed as (u, v, w) ∈ R3
q . Then it computes c0 ← (b · v) + (p · w) + x and

c1 ← (a · v) + (p ·u) and returns the ciphertext ct = (c0, c1) ∈ R2
q . The algorithm only generates

ciphertexts ct ∈ R2
q , but homomorphic operations might add more elements to the ciphertext.

Thus the most generic form of a decryptable ciphertext in our scheme is ct = (c0, . . . , cd) for
d ≤ D. 6 When applying this algorithm one would obtain x = encode(m). This is what we mean
when we write Encpk(m, r), where m ∈M .
Decsk(ct): Given a secret key sk = s and a ciphertext ct = (c0, . . . , cD) ∈ RD+1

q , the decryption

algorithm computes t̃ = 〈s, ct〉 =
∑D

i=0 cis
i mod q ∈ Rq. Then the decryptor simply reduces

t = t̃ mod p, which can then be decoded to m. Note that the condition for correct decryption
is that ‖t̃‖∞ is smaller than q/2.
Evalpk(ckt, ct, ct′): To compute an arbitrary function homomorphically, we construct an arith-

metic circuit ckt (made of addition and multiplication operations over Zt), and then use Add
and Multiply to iteratively evaluate ckt on encrypted inputs. To this end, we show how to
homomorphically add and multiply two elements in Zt.

– Addpk(ct, ct′):: Let ct = (c0, . . . , cδ) and ct′ = (c′0, . . . , c
′
γ) be the two ciphertexts (If γ 6= δ,

we pad the shorter ciphertext with zeroes). Then compute and output

ctAdd = (c0 + c′0, . . . , cmax(γ,δ) + c′max(γ,δ)) ∈ R
max(γ,δ)+1
q

6 Padding with zeros does not effect the ciphertext. More specifically, (c0, . . . , cd) ≡ (c0, . . . , cd, 0, . . . , 0).

24

– Multiplypk(ct, ct′):: Let ct = (c0, . . . , cδ) and ct′ = (c′0, . . . , c
′
γ) be the two ciphertexts. Here,

we do not pad either of the ciphertexts with zeroes. Let h be a symbolic variable and consider

the expression (
δ∑
i=1

cih
i) · (

γ∑
i=1

c′ih
i) over Rq. We can (symbolically, treating h as an unknown

variable) open the parentheses to compute ĉ0, . . . , ĉδ+γ such that (
δ∑
i=1

cih
i) · (

γ∑
i=1

c′ih
i) =

(
δ+γ∑
i=1

ĉih
i). Therefore, output ctMult = (ĉ0, . . . , ĉδ+γ).

In order to achieve full homomorphism one can use Gentry’s “bootstrapping” and “squash-
ing”. Another way, as an alternative to squashing, is the “re-linearization” technique. See [5, 4]
for more details.

Distributed Decryption: We now extend the scheme above to enable distributed decryption. The
functionality FKey-Dist generates a key pair and secret-shares the secret key among the players
using an additive secret-sharing scheme. Hence, each party Pi will receive a share ski = si,
chosen uniformly such that s = s1 + · · · + sn. More specifically, the decryption protocol is
described in Figure 7.

Protocol ΠDDec

The distributed decryption proceeds as follows:
Key Sharing:

The invocation of FKey-Dist results in every party Pi receiving
(
(pk, c1, . . . , cn), (ski, ri)

)
, where,

(sk1, . . . , skn) are shares of the secret key s corresponding to the public key pk = (a, b) and (c1, . . . , cn)
are commitments on the corresponding shares. In particular, ski = si, chosen uniformly such that
s = s1 + · · ·+ sn.

Evaluation Sharing:
1. Given the ciphertext ct = (c0, c1) ∈ R2

q , party P1 computes vi ← c0 − (si · c1) and each other party
Pi computes vi ← −(si · c1).

2. Compute evi ← vi + p · revi where revi ∈ Rq is a random element with ‖revi‖∞ ≤ Bdec.
3. Each party Pi broadcasts evi.
4. Pi sends (Prover, sid, Pi, Pj ,Reval, (ci, pk, ct, evi)) to FCom-ZK for the re-

lation Reval = {((ci, pk, ct, evi), (ski, ri, revi)) : ci = Com(ski; ri) ∧
(evi = vi + p · revi ∧ (vi = c0 − (si · c1), if i = 1 ∨ vi = −(si · c1), if i = 0))}.

Share Combining:
1. All players compute t′ ← ev1 + · · ·+ evn and obtain a message m′ ← decode(t′ mod p).

Fig. 7. The threshold decryption protocol.

Equivocal FHE: Given the above special FHE scheme, we can define our QFHE = (KeyGen,KeyGen∗,
QEnc,Eval,Dec,Equivocate) scheme where the algorithms (KeyGen,KeyGen∗,QEnc,Equivocate)
are as described in Figure 1. Note that indistinguishability of equivocation and indistinguisha-
bility of equivocal keys are shown in Theorem 1.

E-Hiding: We should point out that the scheme of [5] enjoys formula privacy. The idea is that
adding to a given ciphertext an encryption of zero with an error super-polynomially larger than
the error used in usual ciphertexts results in a ciphertext that still decrypts to the same result
but statistically hides which ciphertext was initially given. Such a property is typically used to
blind a ciphertext after a computation so that the final ciphertext only provides information
about the result of the computation and not about how this result is obtained. Hence, it is easy
to show that the E-Hiding property defined in Definition 3 can be argued as formula privacy
for the above scheme.

25

Next, the only thing we need to argue is privacy and correctness of the distributed decryp-
tion protocol. In particular, we need to guarantee correct and private distributed decryption
computing the bound Bdec as a function of all the other parameters. In order to make a choice
for Bdec one can follow the line of analysis in [13], however, in our case a simpler analysis can
be followed since we do not need the SIMD approach, used by [13], to handle many values in
parallel in a single ciphertext.

Invertible Sampling: It is known how to do invertible sampling for Gaussian distributions
suitable for our case using rejection sampling over the effective support of the distribution [20,
21].

Homomorphism over random coins. Next we prove the property of homomorphism over random
coins property defined in definition 4.

Lemma 9. (Homomorphism over random coins). ∀(x0, x1, x2) ∈ R3
q , ∀(r1, r2) ∈ D2

rand and

∀pk = (a, b)← KeyGenFHE(1λ) it holds that:(
x0 � Encpk(x1; r1)

)
� Encpk(x2; r2) = Encpk(x0 · x1 + x2;x0 · r1 + r2)

Proof. By definition Encpk(xi; ri) = (c0,i, c1,i) = (b · vi + p · wi + xi, a · vi + p · ui) for i = 0, 1
where ri is parsed as (ui, vi, wi) ∈ R3

q .

(
x0 � Encpk(x1; r1)

)
� Encpk(x2; r2)

= (x0 � (b · v1 + p · w1 + x1, a · v1 + p · u1)
)
� (b · v2 + p · w2 + x2, a · v2 + p · u2)

= (x0 · b · v1 + x0 · p · w1 + x0 · x1, x0 · a · v1 + x0 · p · u1) � (b · v2 + p · w2 + x2, a · v2 + p · u2)

=
(
b · (x0 · v1 + v2) + p · (x0 · w1 + w2) + x0 · x1 + x2, a · (x0 · v1 + v2) + p · (x0 · u1 + u2)

)
= Encpk(x0 · x1 + x2;x0 · r1 + r2).

C Security Proof of the UC Adaptive Commitments from LWE

Proposition 2. Assuming the hardness of LWE, Protocol ΠCom UC realizes FMCom in the
FCRS-hybrid model.

Proof. Let A be an active, adaptive adversary that interacts with parties running the protocol
ΠCom in the FCRS-hybrid model. We construct a simulator S (the ideal world adversary) with
access to the ideal functionality FMCom, which simulates a real execution of ΠCom with A such
that no environment Z can distinguish the ideal world experiment with S and FMCom from a
real execution of Π with A.

S interacts with the ideal functionality FMCom and with the environment Z. The ideal
adversary S starts by invoking a copy of A and running a simulated interaction of A with the
environment Z and the parties running the protocol. We refer to the interaction of S in the
ideal process as external interaction. The interaction of S with the simulated A is called internal
interaction. The committing party is denoted by Pi and the receiver party Pj . Moreover, let sid
be the session identifier and ssid the sub-session identifier.

Our simulator S proceeds as follows:

26

Simulating CRS: The common reference string is chosen by S in the following manner (recall
that S chooses the CRS for the simulated A as we are in the FCRS-hybrid model):

1. S runs the setup algorithm KeyGen∗(1λ) of the equivocal QFHE encryption scheme obtaining

a public key P̃K = (pk, K̃) and secret key S̃K = (sk, rK̃).
2. S runs the setup algorithm for the CCA2-secure encryption scheme ECCA, obtaining a public

key pkcca and a secret key skcca.

S sets the CRS to be (K̃, pk, pkcca) and locally stores (rK̃ , sk, skcca).

Simulating the communication with Z: Every input value that S receives from Z is written on
A’s input tape. Similarly, every output value written by A on its own output tape is directly
copied to the output tape of S.

Simulating Commit commands where the committer Pi is uncorrupted : The honest committer
Pi on input (Commit, sid, ssid, Pi, Pj , b) from the environment, writes this message on its out-
going tape for FMCom. Then S simulates Pi writing the Commit message of Protocol ΠCom on
its outgoing tape for Pj . In particular, S knowing S̃K computes z ← QEncpk,K̃(0) along with

two strings r0 and r1 (running the algorithm Equivocate) such that rb constitutes a decommit-
ment of z to b. Next, S computes C0 ← ENCCCA(Pi, Pj , sid, ssid, r0) using random coins s0, and
C1 ← ENCCCA(Pi, Pj , sid, ssid, r1) using random coins s1. Then, S stores (c, r0, s0, r1, s1) and
simulates Pi writing c = (sid, ssid, Pi, z, C0, C1) on its outgoing tape for Pj . When A delivers c
from Pi to Pj in the internal simulation, then S delivers the message from the ideal process Pi’s
outgoing tape to FMCom. Furthermore, S also delivers the (Reveal, sid, ssid, Pi, Pj , b) message
from FMCom to Pj . If A passively corrupts Pi, then S carries out the simulation as described
here. If A corrupts Pi before delivering c and then changes c before delivering it, then S proceeds
by following the instructions for a corrupted committer.

Simulating Reveal commands where the committer Pi is uncorrupted : The honest committer Pi
on input (Reveal, sid, ssid) from the environment, writes this message on its outgoing tape for
FMCom S then delivers this message to FMCom and gets the message (Reveal, sid, ssid, Pi, Pj , b)
from FMCom. Then S given the value b, generates a simulated decommitment message (sid, ssid,
rb, sb, b), where rb and sb are as generated above. S then internally simulates for A the event
where Pi writes this message on its outgoing tape for Pj . When A delivers this message from
Pi to Pj in the internal interaction, then S delivers the (Reveal, sid, ssid, Pi, Pj , b) message from
FMCom to Pj .

Simulating corruption of parties : When a command ’corrupt Pi’ is issued, S first corrupts Pi
and obtains the values of all its unopened commitments and prepares the internal state of Pi
to be consistent with these commitment values in the same way as shown above.

Simulating Commit commands where the committer Pi is corrupted : When a corrupted party
Pi sends a commitment message (sid, ssid, Pi, z, C0, C1) to an uncorrupted party Pj in the
simulated interaction, then S checks if the commitment with identifiers (sid, ssid) was sent
before. If this is the case then S ignores the message. Otherwise, S must extract the commitment
bit committed to by A. To this end, S decrypts C0 and C1 and acts as follows depending on
the decrypted values:

– If Cb for some b ∈ {0, 1} decrypts to (Pi, Pj , sid, ssid, r) such that r is the decommitment
information for z as a commitment to b, and C1−b does not decrypt to a deccomtiment of
1− b, then S stores the value b and sends (Commit, sid, ssid, Pi, Pj , b) to FMCom, and sends
FMCom’s Receipt message to Pj .

27

– If neither of C0 and C1 decrypt to (Pi, Pj , sid, ssid, r) such that r is the decommitment
information for z, then S does not store the value b since it will never be opened correctly,
sends (Commit, sid, ssid, Pi, Pj , 0) to FMCom and sends FMCom’s Receipt message to Pj .

– If C0 decrypts to (Pi, Pj , sid, ssid, r0) and C1 decrypts to (Pi, Pj , sid, ssid, r1), where r0 and
r1 are the decommitment information for z for the values 0 and 1, respectively and the
identifiers in the decryption information are the same then S outputs a special failure
symbol.

Simulating Reveal commands where the committer is corrupted : When a corrupted party
Pi sends a Reveal message (sid, ssid, r, s, b) to an uncorrupted party Pj in the simulated
interaction, then S checks if (sid, ssid, Pi, z, C0, C1) is stored and that r and s are the
decommitment information to b. If this is the case, then S sends (Reveal, sid, ssid, Pi, Pj)
to FMCom and the Reveal message from FMCom to Pj . Otherwise, S ignores the message.

Via a sequence of hybrids, we will prove that no environment can distinguish an interaction
of ΠCom with A from an interaction in the ideal world with FMCom and S(as defined above).
The sequence of hybrids follows the lines of [8] proof since in place of their trapdoor commit-
ment scheme we use our equivocal scheme ΠCom and we also send along with the commitment
ciphertexts C0 and C1 containing the decommitment information. For more details we refer the
reader to [8].

Hyb0: This hybrid is identical to the real world.
Hyb1: This hybrid is similar to the real world except that we consider partially fake commit-

ments. In particular, the secret key is not revealed upon corruption and in honest party com-
mitments, a commitment to b is generated as in the simulator by computing z ← QEncpk,K̃(0)
and strings r0 , r1 such that r0 and r1 are correct decommitments to 0 and 1, respectively.
Then, Cb is computed as an encryption to Cb ← ENCCCA(Pi, Pj , sid, ssid, rb). On the other
hand, C1−b is still chosen as a uniformly distributed string where this modification is not
revealed upon corruption.

Hyb2: This hybrid is similar to Hyb1 except that in commitments generated by honest parties,
the ciphertext C1−b equals C1−b ← ENCCCA(Pi, Pj , sid, ssid, r1−b) as generated by the sim-
ulator, rather than being chosen uniformly. So in this hybrid we consider completely fake
commitments

Hyb3: This hybrid is identical to the ideal world.

The indistinguishability between Hyb0 and Hyb1 follows immediately from the pseudoran-
domness/ CPA-security of the underlying commitment scheme.
The indistinguishability between Hyb1 and Hyb2 follows from the pseudorandomness of
encryptions under ECCA.
Next, the only difference between hybrids Hyb2 and Hyb3 is that in Hyb2 the checks causing
the simulator to output failure are not carried out. If the simulator never outputs failure
then the two hybrids are identical. However considering the failure, the proof is carried out
based on the CCA2 security of the ECCA and assuming that the simulator is given the true
values of the inputs for all honest parties.

28

Functionality FMCom

The functionality FMCom runs with parties P1, . . . , Pn and an adversary S. It proceeds as follows:
Commit Phase:

Upon receiving a message (Commit, sid, ssid, Pi, Pj , b) from Pi, where b ∈ {0, 1}, record the tuple
(ssid, Pi, Pj , b) and send the message (Receipt, sid, ssid, Pi, Pj) to Pj and S. Ignore any future com-
mit messages with the same ssid from Pi to Pj .

Prove Phase:
Upon receiving a message (Reveal, sid, ssid) from Pi: If a tuple (ssid, Pi, Pj , b) was previously recorded,
then send the message (Reveal, sid, ssid, Pi, Pj , b) to Pj and S. Otherwise, ignore.

Fig. 8. The ideal functionality FMCom.

29

