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Abstract. Adaptively secure Multi-Party Computation (MPC) is an essential and fundamental notion
in cryptography. In this work, we construct Universally Composable (UC) MPC protocols that are
adaptively secure against all-but-one corruptions based on LWE. Our protocols have a constant number
of rounds and communication complexity dependant only on the length of the inputs and outputs (it
is independent of the circuit size).
Such protocols were only known assuming an honest majority. Protocols in the dishonest majority
setting, such as the work of Ishai et al. (CRYPTO 2008), require communication complexity propor-
tional to the circuit size. In addition, constant-round adaptively secure protocols assuming dishonest
majority are known to be impossible in the stand-alone setting with black-box proofs of security in the
plain model. Here, we solve the problem in the UC setting using a set-up assumption which was shown
necessary in order to achieve dishonest majority.
The problem of constructing adaptively secure constant-round MPC protocols against arbitrary cor-
ruptions is considered a notorious hard problem. A recent line of works based on indistinguishability
obfuscation construct such protocols with near-optimal number of rounds against arbitrary corruptions.
However, based on standard assumptions, adaptively secure protocols secure against even just all-but-
one corruptions with near-optimal number of rounds are not known. However, in this work we provide
a three-round solution based only on LWE and NIZK secure against all-but-one corruptions.
In addition, Asharov et al. (EUROCRYPT 2012) and more recently Mukherjee and Wichs (ePrint
2015) presented constant-round protocols based on LWE which are secure only in the presence of static
adversaries. Assuming NIZK and LWE their static protocols run in two rounds where the latter one is
only based on a common random string. Assuming adaptively secure UC NIZK, proposed by Groth et
al. (ACM 2012), and LWE as mentioned above our adaptive protocols run in three rounds.
Our protocols are constructed based on a special type of cryptosystem we call equivocal FHE from
LWE. We also build adaptively secure UC commitments and UC zero-knowledge proofs (of knowledge)
from LWE. Moreover, in the decryption phase using an AMD code mechanism we avoid the use of ZK
and achieve communication complexity that does not scale with the decryption circuit.

1 Introduction

Secure multi-party computation is an extremely strong and important tool for making distributed computing
more secure. General solutions to the problem allows us to carry out any desired computation among a set
of players, without compromising, the privacy of their inputs or the correctness of the outputs. This should
even hold if some of the players have been corrupted by an adversary. An important issue in this connection
is how the adversary chooses which players to target. In the static model, the adversary must choose who
to corrupt before the protocol starts. A more general and also more realistic model is adaptive corruption
where the adversary may corrupt new players during the protocol.

Of course efficiency of the protocol is also important, and important measures in this respect are the
number of rounds we need to do, as well as the communication complexity (the total number of bits sent).
Obviously, achieving a constant number of rounds and small communication complexity, while still getting
the best possible security, is an important research goal.

Unconditionally secure protocols such as [BGW88] are typically adaptively secure. But these protocols
are not constant round, and it is a major open problem if it is even possible to have unconditional security
and constant number of rounds for secure computation of any function, see [DNP15] for a detailed discussion.



If we are willing to make computational assumptions, we can achieve constant round protocols, the
first example of this is Yao’s garbled circuits for two players, but on the other hand this does not give us
adaptive security. Another class of protocols based on Fully Homomorphic Encryption (FHE) also naturally
leads to constant round protocols, where we can tolerate that a majority of players are corrupted. Here we
also get low communication complexity, that depends only on the lenght of inputs and outputs. But again,
these protocols achieve only static security (see for instance [Gen09,AJLA+12,LTV12]). More recently, the
work of Mukherjee and Wichs [MW15] achieve a two-round static protocol assuming LWE and NIZK where
additionally the protocol only assumes a random reference string (as opposed to being sampled form a specific
distribution).

We can in fact get adaptive security in the computational setting, as shown in [CFGN96] by introducing
the notion of Non-Commiting Encryption (NCE). Moreover, in [DN03], adaptive security was obtained as
well, but much more efficiently using additively homomorphic encryption. However, neither [CFGN96] nor
[DN03] run in a constant number of rounds.

If we assume honest majority we can get both constant round and adaptive security but the commu-
nication complexity will be propositional to the size of the evaluated circuit. This was shown in several
papers [DI05,DI06,DIK+08,IPS08]. The idea here is to use an unconditionally secure protocol to compute,
for instance, a Yao garbled circuit, that is then used to compute the desired function in a constant number
of rounds. Since the computation leading to the Yao circuit is easy to parallelise, this can be constant round
as well and we inherit adaptive security from the unconditionally secure “preprocessing”. On the other hand,
as mentioned this requires communication that is proportional to the size of circuit to be securely evaluated.
One may apply the IPS compiler to one of these protocols to get a solution for dishonest majority. This
preserves the adaptive security and the constant number of rounds, but unfortunately also preserves the
dependence of the communication complexity on the circuit size. Therefore, the question becomes:

Is it possible to construct constant round MPC protocols secure against an adaptive adversary that
may corrupt all but one parties with communication complexity independent of the circuit size?

1.1 Contributions

We answer this in the affirmative. More specifically, we achieve an adaptive UC-secure protocol that tolerates
corruption of n−1 of the n players with UC secure composition with protocols secure against n−1 corruptions.
Our protocol requires a constant number of rounds and its communication complexity depends only on the
length of inputs and outputs (and the security parameter), and not on the size of the evaluated circuit and
the decryption circuit. The protocol is secure if the LWE problem is hard. Moreover, we do not consider the
weaker model of secure erasures.

Theorem 1 (informal). Assuming hardness of LWE, we show that arbitrary functions can be UC-securely
computed in the presence of adaptive, active corruption of all-but-one parties within a constant number of
rounds.

Assuming adaptively secure UC NIZK, proposed by Groth et al. [GOS12], and LWE our adaptive protocols
run in three rounds.

Theorem 2 (informal). Assuming hardness of LWE and the existence of adaptively secure UC NIZK, we
show that arbitrary functions can be UC-securely computed in the presence of adaptive, active corruption of
all-but-one parties in three rounds of broadcast.

In our construction we assume a broadcast channel where encryption is performed using what we call
Equivocal FHE, a notion weaker than non-commiting encryption, presented in Section 3 which can be of in-
dependent interest. For example, using our equivocal scheme we also build adaptively secure UC commitment
and UC zero-knowledge proofs (of knowledge) based on hardness of LWE (see Section 4).

Last but not least, in the standard ZK-based decryption used by approaches based on FHE, all the parties
need to append a ZK proof , to prove that they decrypted correctly, whose communication complexity grows
with the size of the decryption circuit. In this work using an AMD code mechanism [CDF+08] we avoid
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the use of ZK and achieve communication complexity that does not scale with the decryption circuit. In
particular, the total communication complexity of the decryption phase of our concrete protocol is O(n2λ)
where λ is the security parameter.

1.2 Technical Difficulties and New Ideas

To construct our adaptively secure protocol, we start from the well known blue-print for FHE-based MPC:
players encrypt their inputs under a common public key, evaluate the desired function locally and then jointly
decrypt the result. This is possible under an appropriate set-up assumption, which is always needed for UC
security and dishonest majority. Namely, we assume that a public key has been distributed, and players have
been given shares of the corresponding secret key.

This approach has been used before and usually leads to static security. One reason for this is that
encryptions are usually committing, so we are in trouble if the sender of a ciphertext is corrupted later. This
can be solved using a cryptosystem with equivocal properties and this would mean that the input and the
evaluation phase of the protocol can be simulated, even for adaptive corruptions. Players need, of course, to
prove that they know the inputs they contribute, but this can be done once we construct constant round
adaptively secure UC commitment and ZK proofs from LWE.

An important tool we would like to get in order to achieve constant-round adaptively secure MPC
protocols may be a Fully Homomorphic Encryption (FHE) scheme with equivocal properties.

Starting point – Fully Homomorphic NCE. It is tempting to consider a generic solution from FHE and
Non-Commiting Encryption (NCE). In particular, in such a hypothetical construction, the secret key would
be a secret key for an FHE scheme, the public key an FHE encryption of the NCE secret key and the NCE
public key. Encryption would be performed using the NCE, and homomorphic evaluation and decryption
would be performed as expected. However, there are fundamental caveats with this approach.

It does not seem to buy us any efficiency at all. In particular, NCE schemes are interactive, in that the
receiver must send fresh (public-)key material for each new message to be encrypted. There is even a result by
Nielsen saying that this is inherent for NCE [Nie02]. It will be hard for an interactive scheme to fit the above
suggestion. Indeed, the public key material would run out after encrypting some number of inputs. Therefore,
in generic NCE the public-key cannot be reused, and has to be updated for each new message. Moreover,
one may go around this issue by having an NCE public-key for each party where the FHE encryption in the
public key will include all the public keys. However, such a solution is highly inefficient since it is not the
number of parties that matter but the amount of data to be encrypted. The amount of public-key material
has to be proportional to size of the plaintext data. For instance, if only a constant number of parties had
input, but a lot of, we would have a significant problem.

Another suggestion is to always regenerate this setup afresh using a constant round adaptive protocol
prior to each new execution. This might work but unfortunately set-up data are considered reasonable if its
size does not depend on the function to be computed (otherwise we are in the preprocessing model which
is a completely different ball game). Hence, one would in fact always need this key regeneration step per
execution.

It turns out that the motivation of considering NCE in this context is very weak.

Our approach − Starting afresh. Towards minimising the above caveat we propose a scheme we call
Equivocal FHE. An equivocal FHE scheme is a fully homomorphic encryption scheme with additional prop-
erties. Most importantly, it is possible to generate “fake” public keys that look like normal keys but where
encryption leads to ciphertexts that contain no information on the plaintext. This is similar to the known
notion of meaningful/meaningless keys, but in addition we want that fake public keys come with a trapdoor
that allows to “explain” (equivocate) a ciphertext as an encryption of any desired plaintext. This is similar
to (but not the same as) what is required for NCE: for NCE one needs to equivocate a ciphertext even if
the decryption key is also given (say, by corrupting the receiver), here we only need to give the adversary
valid looking randomness for the encryption. In order to achieve such a cryptosystem the main properties we
require from an FHE scheme is formula privacy, invertible sampling and homomorphishm over the random-
ness. Given this, we managed to obtain the required equivocation directly with much less overhead compared
to a possible NCE solution.
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We give a concrete instantiation of equivocal FHE based on LWE, starting from the FHE scheme by
Brakerski et al. [BV11b].

Adaptive UC commitments and ZK from LWE. A second tool we need is constant-round UC-secure
commitments and zero-knowledge proofs. For the commitments we start from a basic construction appeared
in [CLOS02], which was originally based on claw-free trapdoor permutations (CFTP). We show that it can
be instantiated based on LWE (which is not known to imply CFTP). Zero-knowledge then follows quite
easily from known techniques.

Achieving a simulatable protocol. A harder problem is how to simulate the output phase in which
ciphertexts containing the outputs are decrypted. In the simulation we cannot expect that these ciphertexts
are correctly formed and hold the actual outputs, so the simulator needs to “cheat”. However, each player
holds a share of the secret key which we have to give to the adversary if he is corrupted. If this happens after
some executions of the decryption protocol, we (the simulator) may already be committed to this share. It
is therefore not clear how the simulator can achieve the desired decryption results by adjusting the shares
of the secret key. To get around this, we adapt an idea from Damg̊ard and Nielsen [DN03], who proposed
an adaptively secure protocol based on additively homomorphic threshold encryption but in the honest
majority scenario. The idea is to add a step to the protocol where each ciphertext is re-randomised just
before decryption. This gives the simulator a chance to cheat and turn the ciphertext into one that contains
the correct result, and one can therefore simulate the decryption without having to modify the shares of the
secret key. The re-randomisation from [DN03] only works for honest majority, we show a different method
that works for dishonest majority and augment our Equivocal FHE scheme with the ciphertext randomisation
property to achieve our goal.

General purpose Equivocal FHE. We mention for completeness that there is also a more generic ap-
proach which will give us adaptive security based only on our Equivocal FHE: namely, we follow the same
blueprint as before, with input, evaluation and output phases. However, we implement the verification of
ciphertexts in the input phase and the decryptions in the output phase using generic adaptively secure MPC
a la [CLOS02,IPS08]. This way, the communication and the number of rounds do not depend on the size of
circuit to be computed securely. However, it would not be genuinely constant round, and the communication
complexity would depend on the circuits computing the encryption and decryption functions of the under-
lying cryptosystem. Hence, unlike our protocol, any such solution would have communication complexity
proportional to the Boolean circuit complexity of the decryption function (which seems inherent since one
needs Yao garbling underneath). We measure the round and communication complexity of such a possible
solution based on the IPS compiler. The bottom line is that using IPS generically would yield a larger (con-
stant) number of rounds (20-30 rounds) and worse dependence on the security parameter. A concise estimate
can be found in Appendix D. Clearly the above estimate should be taken with large grains of salt. We have
tried to be optimistic on the part of IPS, to not give our concrete protocol an unfair advantage. Thus, actual
numbers could be larger. On the other hand, we propose a three-round solution.

AMD code solution to replace ZK. However, contrary to the above generic IPS solution, our approach
allows for significant optimization of the decryption as follows. Instead of using ZK proofs to prove that the
player’s evaluation shares to the decryption phase are correct, we change the evaluation phase of the protocol.
In particular, instead of having ciphertexts containing the desired output z, the evaluation phase computes
encryptions containing a codeword c = (z, α) in an algebraic manipulation detection code, where z is the
data and α is the key/randomness. In the decryption stage, players commit to their decryption shares (recall
that we have UC commitment available), and then all shares are opened. If decryption fails, or decoding the
codeword fails, we abort, else we output the decoded z. If z and α are thought of as elements in a (large) finite
field, then the codeword can just be (z, α, αz). According to our optimization, the communication complexity
of our protocol is not only independent of the the size of the evaluated circuit but also independent of the
circuit size of the decryption circuit.

Impossibility results? In the following we mention two impossibility results which apply to adaptively
secure MPC and mention why they do not apply in our setting.
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Motivated by ruling out one possible approach to achieving adaptive security, Katz et al. [KTZ13] showed
that FHE with security against adaptive corruption of the receiver is impossible. In our setting, we distribute
the private key of an FHE scheme among n parties; since we allow only n− 1 of the parties to be corrupted,
the impossibility result from [KTZ13] does not apply. Note that if an FHE scheme is to be of use in MPC, it
seems to be necessary that the players are able to decrypt, if not by themselves, then at least by collaborating.
But if corruption of all n players was allowed, the adversary would necessarily learn all secret keys, and then
the impossibility result from [KTZ13] would apply. This suggests that our result with n − 1 corruptions is
the best we can achieve based only on FHE.

We note that in [GS12], adaptive security in constant number of rounds in the plain model was obtained
using a non-blackbox proof in the stand-alone setting. Also a solution with a blackbox proof was shown to
be impossible, but this does not, of course, apply to our case, where we go for UC security, and therefore
require a set-up assumption.

Security against arbitrary corruptions: Round complexity of all known adaptively secure protocols
secure against n corruptions grows (see, e.g. [CLOS02], [KO04,GS12,DMRV13]) linearly in the depth of the
evaluated circuit. Recent independent works [GP15,CGP15,DKR15], have been shown that MPC protocols
with security against n corruptions in a constant number of rounds can be achieved using indistinguishability
obfuscation (IO) [GGH+13].

While the above results on constant round MPC using IO are exciting, the focus of this work is to avoid
indistinguishability obfuscation altogether and to achieve adaptive security against corruption of n − 1 of
the n players, (with communication complexity depended only on the length of inputs and outputs and not
on the size of the circuit to be computed securely), using simpler tools with simple standard assumptions
involving them. In particular, our construction only requires FHE based on the hardness of LWE and avoids
the use of IO which also incurs a cost in efficiency. Also as we have already mentioned, our result with n− 1
corruptions is the best we can achieve based only on FHE.

Roadmap. In section 3 we define our Equivocal fully homomorphic encryption scheme and its properties.
A concrete instantiation based on the scheme of [BV11b] is given in Appendix E. In Section 4 we give
our construction for UC commitments and ZKPoK. Next in Section 5, we proceed by presenting our MPC
protocol. The simulator and the security proof of our protocol can be found in Appendix C. In Section 6 we
show how AMD codes can be used in order to avoid the use of ZK.

2 Notation

Throughout the paper λ ∈ N will denote the security parameter. We use d ← D to denote the process
of sampling d from the distribution D or, if D is a set, a uniform choice from it. We say that a function
f : N→ R is negligible if ∀c ∃nc s.t. if n > nc then f(n) < n−c. We will use negl(·) to denote an unspecified
negligible function. We often use [n] to denote the set {1, ..., n}. We write � and � to denote operations
over encrypted data including multiplication of a ciphertext with a non encrypted string. If D1 and D2 are
two distributions, then we denote that they are statistically close by D1 ≈s D2; we denote that they are
computationally indistinguishable by D1 ≈c D2; and we denote that they are identical by D1 ≡ D2. For a
randomized algorithm A, we use a ← A(x; r) to denote running A on input x and uniformly random bits
r ∈ {0, 1}∗, producing output a.

Invertible Sampling [OPW11]: We recall the notion of invertible sampling, which is closely connected to
adaptive security in simulation models where erasures are not allowed. We say that an algorithm A with
input space X has invertible sampling if there exists a PPT inverting algorithm, denoted by InvA, such that
for all input x ∈ X, the outputs of the following two experiments are either computationally, or statistically
indistinguishable:

y ← A(x, r) y ← A(x, r)
r′ ← InvA(y, x)

Return (x, y, r) Return (x, y, r′)
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3 Equivocal Fully Homomorphic Encryption Scheme

We start by recalling the notions of (fully) homomorphic encryption. Next we define the new notion of Equiv-
ocal FHE and we specify the properties needed for such an instantiation. We give a concrete instantiation
of our Equicocal FHE scheme from the LWE assumption, based on Brakerski and Vaikutanathan [BV11b]
FHE scheme, described in Appendix E.

3.1 Homomorphic Encryption

A homomorphic encryption scheme HE = (KeyGen,Enc,Eval,Dec) is a quadruple of PPT algorithms. In this
work, the message space M of the encryption schemes will be some (modulo 2) ring, and the functions to be
evaluated will be represented as arithmetic circuits over this ring, composed of addition and multiplication
gates. The syntax of these algorithms is given as follows.

– K ey-Generation. The algorithm KeyGen, on input the security parameter 1λ, outputs (pk, sk)← KeyGen(1λ),
where pk is a public encryption key and sk is a secret decryption key.

– Encryption. The algorithm Enc, on input pk and a message m ∈M , outputs a ciphertext ct← Encpk(m).
– Decryption. The algorithm Dec on input sk and a ciphertext ct, outputs a message m̃← Decsk(ct).
– H omomorphic-Evaluation. The algorithm Eval, on input pk, an arithmetic circuit ckt, and a tuple of `

ciphertexts (ct1, . . . , ct`), outputs a ciphertext ct′ ← Evalpk
(
ckt(ct1, . . . , ct`)

)
.

We note that we can treat the evaluation key as a part of the public key. The security notion needed in
this work is security against chosen plaintext attacks (IND-CPA security), defined as follows.

Definition 1 (IND-CPA security). A scheme HE is IND-CPA secure if for any PPT adversary A it
holds that:

AdvCPAHE [λ] := |Pr[A(pk,Encpk(0)) = 1]− Pr[A(pk,Encpk(1)) = 1]| = negl(λ),

where, (pk, sk)← KeyGen(1λ).

3.2 Fully Homomorphic Encryption

A scheme HE is fully homomorphic if it is both compact and homomorphic with respect to a class of circuits.
More formally:

Definition 2 (Fully homomorphic encryption). A homomorphic encryption scheme FHE = (KeyGen,Enc,
Eval,Dec) is fully homomorphic if it satisfies the following properties:

1. Homomorphism: Let C = {Cλ}λ∈N be the set of all polynomial sized arithmetic circuits. (sk, pk) ←
KeyGen(1λ), ∀ckt ∈ Cλ, ∀(m1, . . . ,m`) ∈ M ` where ` = `(λ), ∀(ct1, . . . , ct`) where cti ← Encpk(mi), it
holds that:

Pr[Decsk(Evalpk(ckt, ct1, . . . , ct`)) 6= ckt(m1, . . . ,m`)] = negl(λ)

2. Compactness: There exists a polynomial µ = µ(λ) such that the output length of Eval is at most µ bits
long regardless of the input circuit ckt and the number of its inputs.

3.3 Equivocal Fully Homomorphic Encryption Scheme

Our Equivocal fully homomorphic encryption scheme consists of a tuple (KeyGen,KeyGen∗,QEnc,Rand,Eval,
Dec,Equiv) of algorithms where the syntax of the procedures (KeyGen,QEnc,Eval,Dec) is defined as in the
above FHE scheme. Our scheme is augmented with two algorithms (KeyGen∗,Equiv) used for equivocation.
Jumping ahead, in this paper we are interested in building adaptively secure n-party protocols generically
using an equivocal QFHE scheme and gain in terms of round and communication efficiency. Two extra
properties needed for the MPC purpose, are distributed decryption and ciphertext randomisation where the
latter one guarantees simulatable decryption 3. If the purpose of our Equivocal scheme is not MPC then
these properties are not required, see Section 4 for QFHE based UC commitment schemes. In the sequel, we
will use blue color to stress whether a part is relevant to the ciphertext randomisation property.

3 Ciphertext randomisation is needed in order to force the output in the simulation.

5



Definition 3 (Equivocal fully homomorphic encryption). An Equivocal fully homomorphic encryption
scheme QFHE = (KeyGen,KeyGen∗,QEnc,Rand,
Eval,Dec,Equiv) with message space M is made up of the following PPT algorithms:

– (KeyGen,QEnc,Eval,Dec) is an FHE scheme with the same syntax as in section 3.1.
– The Equivocal key generation algorithm KeyGen∗(1λ), outputs an equivocal public-key secret-key pair

(P̃K, S̃K).

– The Equivocation algorithm Equiv(P̃K, S̃K, ct, rct,m), given P̃K, S̃K, a plaintext m, a ciphertext ct and
random coins rct, outputs a value e in the randomness space.

– The Ciphertext Randomisation algorithm Rand(ct, ct′1, . . . , ct′n), given ciphertexts ct, ct′1, . . . , ct′n gener-
ated by the procedure QEnc outputs a ciphertext CT.
We require the following properties:

1. Indistinguishability of equivocal keys. We say that the scheme has indistinguishability of equivo-

cal keys if the distributions of PK and P̃K are computationally indistinguishable, where (PK, ·) ←
KeyGen(1λ) and (P̃K, ·)← KeyGen∗(1λ).

2. Indistinguishability of equivocation. Let Drand(1λ) denote the distribution of randomness used by

QEnc. Let O(P̃K,m) and O′(P̃K, S̃K,m) be the following oracles:

Let O(P̃K,m) : Let O′(P̃K, S̃K,m) :
rct ← Drand(1λ) rct ← Drand(1λ)
ct = QEnc

P̃K
, (m; rct) ct = QEnc

P̃K
(m̃; rct)

e = Equiv(P̃K, S̃K, ct, rct,m)

Output (P̃K, ct, rct) Output (P̃K, ct, e)

There exists m̃ ∈ M such that for any PPT adversary A with oracle access to O(P̃K, ·) and

O′(P̃K, S̃K, ·) the following holds.∣∣∣∣∣Pr

[
(P̃K, S̃K)← KeyGen∗(1λ)

1← AO(P̃K,·)

]
− Pr

[
(P̃K, S̃K)← KeyGen∗(1λ)

1← AO
′(P̃K,S̃K,·)

] ∣∣∣∣∣ ≤ negl(λ)

3. Ciphertext Randomisation. Let PK be the public key used in the procedure QEnc for generating ci-
phertexts ct, ct′1 . . . ct′n from the plaintexts m,m′1, . . . ,m

′
n ∈M , respectevely. If Pr[Decsk(ct) = m] =

1− negl(λ) and for all i ∈ [n], Pr[Decsk(ct′i) = m′i] = 1− negl(λ) then it holds that

Pr[Decsk(Rand(ct, ct′1 . . . ct′n)) = m] = 1− negl(λ).

On the other hand, let P̃K be the public key used in the procedure QEnc for generating ciphertexts
ct, ct′1 . . . ct′n, respectevely. If Pr[Decsk(ct) = m] = 1 − negl(λ) and for all i ∈ [n], Pr[Decsk(ct′i) =
m′i] = 1− negl(λ) then it holds that

Pr[Decsk(Rand(ct, ct′1 . . . ct′n)) = m′1 + . . .+m′n] = 1− negl(λ).

In the sequel for simplicity of exposition, we call the ciphertexts ct′1 . . . ct′n redundant in case they
are generated by QEncPK and non− redundant if they are generated by QEnc

P̃K
. Analogously, we call the

ciphetext ct non− redundant or redundant if it is generated by QEncPK or QEnc
P̃K

, respectively 4.
In order to construct our equivocal QFHE scheme we use the following special FHE scheme with some

additional properties.

Definition 4. [Special fully homomorphic encryption] We call a fully homomorphic encryption scheme
FHE = (KeyGen,Enc,Eval,Dec) a special FHE scheme, if it is IND-CPA secure and satisfies the follow-
ing properties: Let Drand(1λ) denote the distribution of randomness used by Enc.
4 By the ciphertext randomisation property, the reader can think of the redundant messages as encryptions of zeros.
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1. Additive homomorphism over random coins: ∀r1, r2 ∈ Supp(Drand(1λ)) and ∀m ∈ M , it holds that(
m� Encpk(0; r1)

)
� Encpk(0; r2) = Encpk(0;m · r1 + r2).

2. E-Hiding: There exists D′rand(1λ) such that ∀m ∈ M , if rblind ← Drand(1λ) and rK ← D′rand(1λ) then
the distribution of (rblind −m · rK) is statistically close to Drand(1λ). 5

3. Invertible Sampling: The distribution Drand(1λ), has invertible sampling via the algorithm InvDrand
.

Recall that we defined an invertible sampler of an algorithm A in Section 2 as an algorithm InvA that
takes as inputs the input x and output y with consistent random coins. In our case, x = 1λ and y is a
sample from the range of Drand. Next, in Figure 1, we show how to build an equivocal FHE scheme using
a special FHE scheme. The high level intuition is as follows. In order to achieve equivocality we modify
an FHE scheme satisfying the properties of Definition 4 as follows: The public key contains an encryption
of 1 and an encryption of 0. More specifically, PK = (pk,K = Encpk(1), R = Encpk(0)) where pk is the
public key of an FHE scheme. An encryption of a message m in the real world is computed using K as
(m�K � Encpk(0)) and encryption for re-randomisation is computed using R as (z�R � Encpk(0)) for a
random value z. In the simulation, the values encrypted in K and R are switched, in particular, K = Encpk(0)
and R = Encpk(1). Therefore, normal encryption leads to encryption of 0 with the guarantee of equivocation.
However, encryption for re-randomisation actually encrypts non-zero values i.e., z, in order to force the
output.

Theorem 3. Let FHE be a special fully homomorphic encryption scheme. Then QFHE = (KeyGen,KeyGen∗,
QEnc,Rand,Eval,Dec,Equiv) in Figure 1 is an equivocal QFHE scheme.

Proof. Indistinguishability of equivocal keys. Let (PK,SK) ← KeyGen(1λ) and (P̃K, S̃K) ← KeyGen∗(1λ),
then the indistinguishability of the two pairs of public keys follows from the IND-CPA security of the
FHE scheme.

Indistinguishability of equivocation. Without loss of generality, we will show that indistinguishability of
equivocation holds for m̃ = 0. Let A be an adversary that breaks indistinguishability of equivocation;
then we construct a PPT algorithm R such that RA breaks E-hiding. R simulates the oracle for every
query mi as follows. R invokesA and receives some message mi and forwards it to the E-hiding challenger.
Next it receives the challenge rcti and computes cti = QEnc

P̃K
(0,mi; rcti) and forwards (rcti , cti) to A

and outputs whatever A does. Now, if rcti ← Drand(1λ) then cti ← QEnc
P̃K

(0,mi; rcti), namely, the view
of A follows the distribution which corresponds to the left game in Definition 3 of indistinguishability of

equivocation. On the other hand, if rcti = (rblindi −mi·rK̃); then cti = (mi�K̃)�Encpk(0; rblindi −mi·rK̃) =
Encpk(0; rblindi ) = QEnc

P̃K
(0, 0; rblindi ) which implies that in this case the view of A follows the distribution

of the right game in Definition 3 of indistinguishability of equivocation. This means that the distinguishing
advantage of R is the same as that of A which leads to a contradiction.

Ciphertext Randomisation. The algorithm Rand adds the ciphertexts (ct, ct′1 . . . ct′n). If ct is a ciphertext
generated by QEncPK for b = 0 and (ct′1 . . . ct′n) are ciphertexts generated by QEncPK for b = 1 then

Pr[Decsk(Rand(ct, ct′1 . . . ct′n)) = m] = 1− negl(λ)

since it is easy to see that the ciphertexts (ct′1 . . . ct′n) contain encryptions of zeros due to the fact that
R = Encpk(0). An analogous argument holds for ct and ct′1 . . . ct′n generated by QEnc

P̃K
for b = 0 and

b = 1, respectively, since in this case the ciphertext ct contain an encryption of a zero (because in

this case K̃ = Encpk(0)) and ciphertexts (ct′1 . . . ct′n) contain encryptions of the corresponding m′i since

R̃ = Encpk(1).

ut
5 Intuitively, E-Hiding can be argued in the same way as formula privacy for some FHE schemes. This requires dwarf-
ing in the sense that rblind should be large enough to dwarf mrK where Drand(1λ) and D′rand(1λ) are Gaussian dis-
tributions. Hence, rK ← D′rand(1λ) and rblind ← Drand(1λ) such that the noise of Drand(1λ) is super-polynomially
larger than the noise of D′rand(1λ).
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QFHE

Let FHE = (KeyGenFHE,Enc,Eval,Dec) be a special fully homomorphic encryption scheme. QFHE =
(KeyGen,KeyGen∗,QEnc,Eval,Rand,Dec,Equiv) is defined as follows:

KeyGen(1λ):

1. (pk, sk)← KeyGenFHE(1λ).
2. K = Encpk(1; rK) where rK ← D′rand(1λ) and R = Encpk(0; rR) where rR ← D′rand(1λ)
3. Return as public key PK = (pk,K,R) and secret key SK = sk.a

KeyGen∗(1λ):

1. (pk, sk)← KeyGenFHE(1λ).

2. K̃ = Encpk(0; rK̃) where rK̃ ← D′rand(1λ) and R̃ = Encpk(1; rR̃) where rR̃ ← D′rand(1λ).

3. Return as public key P̃K = (pk, K̃, R̃) and secret key S̃K = (sk, rK̃ , rR̃).

QEncPK(b,m) :

1. Compute ctblind = Encpk(0; rblind) where rblind ← Drand(1λ).
2. If b 6∈ {0, 1} then output ⊥.
3. If b = 0 then output ct = (m�K) � ctblind otherwise

output ct = (m�R) � ctblind.

QEncP̃K(b, m̃) :

1. Compute c̃t
blind

= Encpk(0; r̃blind) where r̃blind ← Drand(1λ).
2. If b 6∈ {0, 1} then output ⊥.

3. If b = 0 then output c̃t = (m̃� K̃) � c̃t
blind

otherwise

output c̃t = (m̃� R̃) � c̃t
blind

.

Equiv(b, P̃K, S̃K, c̃t, r̃blind,m, m̃):

1. If b = 0 compute rblind := r̃blind + (m̃−m) · rK̃ otherwise

rblind := r̃blind + (m̃−m) · rR̃
2. Run rstate ← InvDrand(rblind) and output rstate.

Rand(ct, ct′1 . . . , ct′n) : Output CT = ct � ct′1 � . . .� ct′n.
Procedures (Eval,Dec) are as defined in normal FHE schemes.

a Note that procedure Dec, given sk, runs as in normal FHE schemes (see Section 3.1), so there is no need
to provide rK in SK. We also enhance the notation of QEnc to include a bit b which indicates whether the
encryption is performed using the key K or R, respectively. In addition, the plaintext m̃ is usually set to zero.

Fig. 1. Instantiation of a QFHE scheme

Distributed Decryption: As we mentioned above, we need distributed decryption to implement our MPC
protocol. To this end, we assume that the common public key pk has been set up where the secret key sk
has been secret-shared among the players in such a way that they can collaborate to decrypt. Notice that
some setup assumption is always required to show UC security in the dishonest majority setting. Roughly,
we assume that a functionality is available which generates a key pair and secret-shares the secret key among
the players using a secret-sharing scheme that is assumed to be given as part of the specification of the
cryptosystem. Since we allow corruption of all but one player, the maximal unqualified sets must be all sets
of n− 1 players. We point out that we could make a weaker set-up assumption, such as a common reference
string, and using a general UC secure multiparty computation protocol for the common reference string
model to implement the above functionality. While this may not be very efficient, one only needs to run this
protocol once in the life-time of the system. The properties needed for the distributed decryption and its
protocol are specified later.

4 UC Adaptive Commitments and ZKPoK from LWE

Commitment schemes that satisfy both equivocality and extractability form useful tools in achieving adap-
tive security. In this section, we show how using a QFHE scheme, one can build equivocal and extractable
commitments. Having realized a QFHE scheme based on the LWE assumption, we consequently get equivocal
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and extractable commitments assuming the hardness of LWE. Note that such commitments based on LWE
can be of independent interest. We remark that any encryption scheme that satisfies the properties specified
in Definition 4 would have sufficed for our purposes in this section – the multiplicative homomorphic property
of our QFHE scheme will not be of use here; however, since we are using our commitment scheme as a tool
in our adaptive MPC protocol based on LWE, we use the same QFHE scheme in our commitment scheme
too.

Since we are interested in UC security against adaptive adversaries, our commitment scheme is in the
CRS model. The scheme must satisfy the following two properties, polynomial equivocality and simulation
extractability. The former guarantees that the simulator S needs to be able to produce polynomially many
equivocal commitments using the same CRS. More specifically, S can open the equivocal commitments to
any value of its choice and give consistent randomness to adversary A. The latter property says that the
simulator S needs to be able to extract the contents of any valid commitment generated by adversary A,
even after A obtains polynomially many equivocal commitments generated by S. Note that there is only
an apparent conflict between equivocality and the binding property and between the extractability and the
hiding property, as the simulator is endowed with additional power (trapdoors) in comparison with the
parties in the real world execution. In the following we elaborate how our commitment scheme satisfies the
above properties.

Our construction. Equivocation in our scheme is achieved via QFHE. In particular, the commitment
algorithm is the algorithm QEnc, defined in Figure 1. In order to add extractability we must enhance our
scheme in such a way that we do not sacrifice equivocality. A failed attempt is to include a public key
for an encryption scheme secure against CCA2 attacks in the CRS. In this case, the committer will send
an encryption of the decommitment information along with the commitment itself. Then, as the simulator
has the associated decryption key, it can decrypt the decommitment information and hence extract the
committed value from any adversarially prepared commitment. However, notice that such an encryption is
binding even to the simulator, so equivocality cannot be achieved.

The solution to the problem is to send the commitment along with two pseudorandom ciphertexts. One
ciphertext is an encryption of the decommitment information and the other ciphertext is a uniformly random
string. In this way, the simulator can encrypt both decommitment values and later show that it only knows
the decryption to one and that the other was uniformly chosen.

For the security of our construction, the encryption scheme used to encrypt the decommitment infor-
mation has to be a CCA2-secure encryption scheme with the property that any produced ciphertext is
pseudorandom and has deterministic decryption. To this end, the CCA2 encryption scheme of Micciancio
and Peikert [MP12] based on LWE satisfies the above properties. They obtain their result via relatively
generic assumptions using either strongly unforgeable one-time signatures [DDN00], or a message authenti-
cation code and a weak form of commitment [BCHK07]. The first assumption does not yield pseudorandom
ciphertexts, thus another encryption producing pseudorandom ciphertexts on top of the scheme of [MP12]
could have been used, resulting in a double encryption scheme. However, it turns out that their construction
with the latter set of assumptions has pseudorandom ciphertexts.

The reader might have observed that this bears some resemblance with the trick used in the seminal work
of [CLOS02], referred to as CLOS hereafter, to achieve extractability. Their scheme is based on enhanced
trapdoor permutations, also needed in order to get double encryption CCA2 security. Moreover, in order
to build equivocal commitments they need an NP reduction to graph Hamiltonicity since the CRS of their
commitment scheme consists of a graph G sampled from a distribution such that it is computationally hard to
tell if G has a Hamiltonian cycle. Interestingly, the CLOS commitment scheme does not give an instantiation
based on LWE and to begin with, there are no known trapdoor permutations based on LWE. On the other
hand, assuming the hardness of LWE, we propose an extractable and equivocal commitment with no need
of an NP reduction, leading to a huge improvement in efficiency.

More formally, given a QFHE = (KeyGen,KeyGen∗,QEnc,Eval,Dec,Equiv)6 scheme, a CCA2-secure scheme
ECCA with encryption algorithm ENCCCA based on LWE [MP12], with the property that any ciphertext is
pseudorandom and has deterministic decryption, we construct the following equivocal and extractable UC

6 Algorithms QEnc′,Rand scheme are not needed for the constructtion of UC Commitments.
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bit-commitment scheme ΠCom. For simplicity of exposition, we will use ECCA in a black box manner. We note
that the scheme naturally extends to a setting where commitments are defined over strings instead of just
bits.

Common Reference String: The CRS consists of the public key (PK) of the QFHE scheme and the public
key for the encryption scheme ENCCCA.

Commit Phase:

1. On input (Commit, sid, ssid, Pi, Pj , b) where b ∈ {0, 1}, party Pi computes z = QEncPK(b; r) where
r ← Drand(1λ). Next, Pi computes Cb = ENCCCA(Pi, Pj , sid, ssid, r; s) using random coins s, and
sets C1−b to a random string of length |Cb|. Then, Pi records (sid, ssid, Pj , r, s, b), and sends c =
(sid, ssid, Pi, z, C0, C1) to Pj .

2. Pj receives and records c, and outputs (Receipt, sid, ssid, Pi, Pj). Pj ignores any later commit mes-
sages from Pi with the same (sid, ssid).

Reveal Phase:

1. On input (Reveal, sid, ssid), party Pi retrieves (sid, ssid, Pj , r, s, b) and sends (sid, ssid, r, s, b) to Pj .

2. Upon receiving (sid, ssid, r, s, b) from Pi, Pj checks that it has a tuple (sid, ssid, Pi, z, C0, C1). If
yes, then it checks that z = QEncPK(b; r) and that Cb = ENCCCA(Pi, Pj , sid, ssid, r; s). If both these
checks succeed, then Pj outputs (Reveal, sid, ssid, Pi, Pj , b). Otherwise, it ignores the message.

Proposition 1. Assuming hardness of LWE, Protocol ΠCom UC realizes FMCom in the FCRS-hybrid model.

The above commitment scheme UC realizes the multi-session ideal commitment functionality FMCom,
described in Figure 2 in Appendix F, which reuses the public string for multiple commitments. The proof
can be found in Appendix F. Next, we show how our UC commitment scheme serves towards the realization
of a commit-and-prove functionality FCom-ZK based on LWE.

4.1 Adaptive UC ZKPoK from LWE

Our UC commitment scheme serves towards the realization of a commit-and-prove functionality FCom-ZK

based on LWE. Such a functionality is generic and hence is quite useful – it allows a party to prove NP
statements relative to its commitment value in the setting where parties commit to their inputs but they
never decommit. The functionality FCom-ZK is presented in Figure 3 and is comprised of two phases. In the
first phase, a party commits to a specific value. In the second phase, this party proves NP statements in
zero-knowledge relative to the committed value. It allows the committer to commit to multiple secret values
wi, and then have the relation R depend on all these values in a single proof. In addition, the committer may
ask to prove multiple statements with respect to the same set of secret values. Hence, once a committer gives
a new (Commit, sid, w) command, FCom-ZK adds the current w to the already existing list w of committed
values. Then, on receiving a (Proof, sid,R, x) request, FCom-ZK evaluates R on x and the current list w.

Using the power of the UC commitment scheme we constructed in Section 4, we show how it can be used
to first construct UC Zero-Knowledge protocols from LWE. Canetti and Fischlin [CF01, Theorem 5], show
that in the FCom-hybrid model there exists a 3-round protocol that securely realizes FZK with respect to any
NP relation without any computational assumptions. Using the composition theorem and [CF01, Theorem
5], we can instantate FCom with the UC commitment protocol from LWE (see Section 4) in the CRS model
and realize FZK from LWE. Also, as it is noted by [CF01] we can replace FCom by the functionality FMCom.

We next obtain a protocol for UC realizing functionality FCom-ZK in the FZK-hybrid model, in the presence
of adaptive adversaries. In [CLOS02, Proposition 7.2], a protocol for UC realizing FCom-ZK in the FZK-hybrid
model, based on any one-way function is proposed. To guarantee security against adaptive adversaries, they
need equivocal and extractable commitments which they instantiate assuming the existence of enhanced
trapdoor permutations. Using [CLOS02, Proposition 7.2] we can get such an instantiation assuming the
hardness of LWE via our extractable and equivocal commitment scheme described above and instantiation
of the FZK functionality from LWE.
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Functionality FMCom

The functionality FMCom runs with parties P1, . . . , Pn and an adversary S. It proceeds as follows:
Commit Phase:

Upon receiving a message (Commit, sid, ssid, Pi, Pj , b) from Pi, where b ∈ {0, 1}, record the tuple
(ssid, Pi, Pj , b) and send the message (Receipt, sid, ssid, Pi, Pj) to Pj and S. Ignore any future commit
messages with the same ssid from Pi to Pj .

Prove Phase:
Upon receiving a message (Reveal, sid, ssid) from Pi: If a tuple (ssid, Pi, Pj , b) was previously recorded, then
send the message (Reveal, sid, ssid, Pi, Pj , b) to Pj and S. Otherwise, ignore.

Fig. 2. The ideal functionality FMCom.

Functionality FCom-ZK

The functionality FCom-ZK runs with parties P1, . . . , Pn and an adversary S. It proceeds as follows:
Commit Phase:

Upon receiving a message (Commit, sid, cid,P, w)a from Pi where P is a set of parties and w ∈ {0, 1}∗,
append the value w to the existing list w, record P, and send the message (Receipt, sid, cid, Pi,P) to the
parties in P and S. (Initially, the list w is empty. Also, if a commit message has already been received, then
check that the recorded set of parties is P. If it is a different set, then ignore this message.)

Prove Phase:
Upon receiving a message (Prover, sid,R, x) from Pi, where x ∈ {0, 1}poly(k), compute R(x,w) : If R(x,w) =
1, then send the message (Proof, sid,R, x) to the parties in P and S. Otherwise, ignore.

a Note that in the protocol we use one command for two cid’s. In particular we use cid1 to commit to the
encrypted value and cid2 to commit to the randomness used for the corresponding encryption

Fig. 3. Ideal functionality FCom-ZK.

5 Our Protocol

Since we established all the primitives needed we are ready to present our MPC protocol. Our protocol is
based on any equivocal QFHE scheme which comes together with a statistically secure distributed function
sharing scheme. In addition, the protocol assumes access to the FCom-ZK functionality which we build from any
equivocal QFHE, see Section 4. In Figure 4 we describe our protocol ΠMPC realizing the functionality FAMPC

in Figure 6, in the (Fbroadcast,FKey-Dist,FCom-ZK)-hybrid model. The functionality FKey-Dist is described in
Figure 5 and the functionality FCom-ZK is described in Figure 3.

During the Load phase, players encrypt their inputs xi under a common public key PK and give a ZKPoK.
In the evaluation phase, players evaluate the desired function locally and obtain the ciphertext enc(z). In
the output phase they jointly decrypt the result calling the decryption protocol ΠDDec together with the
ciphertext randomisation technique as is abstracted by the algorithm Rand of the QFHE, see Section 3. In
the protocol ΠDDec parties use ZK to prove that their evaluation shares are correct. However, as discussed
in the introduction we optimise the output phase avoiding the expensive use of ZK proofs to prove that
the player’s evaluation shares to the decryption protocol are correct, changing the evaluation phase of the
protocol and avoiding the ZK proofs. For details see Section 6.
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Protocol ΠMPC

Protocol ΠMPC uses an equivocal QFHE = (KeyGen,KeyGen∗,QEnc, Rand,Eval,Dec,Equiv) scheme and runs
in the (Fbroadcast

a,FKey-Dist,FCom-ZK)-hybrid model with parties (P1, . . . , Pn). It proceeds as follows:

Initialize:
On input (init, 1λ) from all parties, invoke the functionalities Fbroadcast, FKey-Dist and FCom-ZK. The invocation
of FKey-Dist results in every party Pi receiving

(
(PK, c1, . . . , cn), (ski, ri)

)
.

Load:
To encrypt its input xi, Pi does the following:
– Pi computes Xi = QEncPK(0, xi; rxi), where rxi ← Drand(1λ), and broadcasts Xi via Fbroadcast.
– For i 6= j, Pi sends (Commit, sid, cid1, cid2, Pi, Pj , xi, rxi) to FCom-ZK. At this point all other parties Pj

receive message (Receipt, sid, cid1, cid2, Pi, Pj) from FCom-ZK.
– For j 6= i, Pi sends (Prover, sid, (cid1, cid2),Req, Xi) to FCom-ZK for the relation

Req = {((PK, Xi), (xi, rxi)) : Xi = QEncPK(0, xi; rxi)}

whereupon Pj receives (Proof, sid, Pi,Req, (PK, Xi)).
– If all the proofs are accepted then the parties define enc(xi) = Xi, otherwise output ⊥.

Evaluation Phase:
Let ckt be the arithmetic circuit to be computed on inputs (x1, . . . , xn) by n parties. Every party executes
the deterministic algorithm Eval and obtains enc(z)← Evalpk(ckt, enc(x1), . . . , enc(xn)).

Output Phase:

– Pi generates yi ← Drand(1λ) and Loads it into variable enc(yi) via QEncPK for b = 0. Let cid1 and cid2
be the identifiers of the commitment phase of this Load.

– Pi computes ẽnc(yi) = QEncPK(1, yi; r̃yi), where r̃yi ← Drand(1λ), and broadcasts ẽnc(yi) via Fbroadcast.
Next, for j 6= i party Pi sends (Commit, sid, cid3, Pi, Pj , r̃yi) to FCom-ZK and

(Prover, sid, (cid1, cid3),Req, ẽnc(yi)) to FCom-ZK, where cid1 is the identifier of the commitment
phase of the Load of the above Step 1, where Pi commits to yi.

– Let J be the set of indices of Pj ’s having defined enc(yi) and ẽnc(yi). Then compute CT =

Rand(enc(z), {ẽnc(yi)}i∈J).
– Every party Pi runs ΠDDec

b with the rest of the parties to decrypt CT.

a Since we have (potential) dishonest majority, note that we cannot guarantee termination. For a concrete
implementation of the broadcast functionality we refer to [DPSZ12].

b The protocol ΠDDec is described in Subsetion 5.1 and Figure 7.

Fig. 4. ΠMPC Protocol.

Functionality FKey-Dist

The functionality FKey-Dist runs with parties P1, . . . , Pn and is parameterized by a statistically hiding com-
mitment scheme with commitment function Com. It proceeds as follows:

Generate:
On input (init, 1λ) from all honest parties, run KeyGen(1λ) of the QFHE scheme and obtain PK,SK and then
additively secret-share sk to obtain (sk1, . . . , skn).
1. For i = 1, . . . , n, commits to the share ski by computing ci = Com(ski; ri) where ri ← Drand(1λ).
2. In a round specified by the adversary, output

(
(PK, c1, . . . , cn), (ski, ri)

)
to Pi.

Incorrect inputs:
If in the first round an honest party inputs a non-trivial value and does not input init, abort. Moreover,
abort if an honest party inputs init twice or any other value than init.

Fig. 5. Ideal functionality FKey-Dist.
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Functionality FAMPC

The functionality FAMPC runs with parties P1, . . . , Pn and an adversary S and is parametrised by an arith-
metic circuit ckt. It proceeds as follows.

Initialize:
On input (init, 1λ) from all parties, the functionality generates a random FHE key (SK,PK). It outputs PK
to all parties.

Load Phase:
On input (Input, Pi, varid , x) from Pi and (Input, Pi, varid , ?) from all other parties, with varid a fresh identi-
fier, the functionality stores (varid , x) and outputs (cid, varid ,Defined) to all parties. If Pi is corrupted before
(cid, varid ,Defined) is output, and if the adversary outputs (cid, varid ,Fail), then output (cid, varid ,Fail)
to all parties.

Evaluation Phase:
On input (Evaluation, varid1, . . . , varidn, varidn+1) from all parties (if varid1, . . . , varidn are present
in memory and varidn+1 is not), the functionality retrieves (varid1, x1), . . . ,(varidn, xn) and stores
(varidn+1, ckt(x1, . . . , xn)).

Output Phase:
On input (Output, varidn+1) from all honest parties (if varidn+1 is present in memory), the functionality
retrieves (varidn+1, x) and outputs it to the environment. If the environment inputs OK then x is output
to all players. Otherwise ⊥ is output to all players.

Fig. 6. Ideal functionality for Arithmetic MPC.

5.1 Distributed Function Evaluation

In order to achieve distributed decryption, we assume, as a set up assumption, that a common public key
pk has been set up where the secret key sk has been secret-shared between n parties in such a way that
they can compute their corresponding decryption evaluation shares and then collaborate to decrypt while
the sk is kept secret. We also need to enforce honest computation of the evaluation shares of a ciphertext.
Commitments to the shares of the secret key are also made public, along with pk. Using these commitments,
when parties are distributedly decrypting a ciphertext, they can then prove (via FCom-ZK) that the evaluation
shares were computed honestly using the secret-key shares initially delegated to them.

To this end, the functionality FKey-Dist generates a key pair (pk, sk)7 and secret-shares the secret key
sk among the players using a secret-sharing scheme that is assumed to be given as part of the specification
of the cryptosystem. The validity of the evaluation shares is tested inside the protocol ΠDDec calling the
functionality FCom-ZK. In order to describe our protocol ΠDDec, we next define the following distributed
sharing scheme.

Definition 5. We call (ShareSK,ShareEval,Combine) a distributed function sharing scheme for an encryp-
tion scheme (KeyGenFHE,Enc,Dec), with construction threshold c and privacy threshold t, if for a triple
(ShareSK,
ShareEval,Combine) of PPT algorithms the following hold:

Key sharing: The algorithm ShareSK on input (pk, sk) ← KeyGenFHE(1λ) and a construction threshold c,
outputs a tuple (sk1, . . . , skn)← ShareSK(sk).

Evaluation sharing: The evaluation function ShareEval on input (pk, ski) and a ciphertext Encpk(z), out-
puts an evaluation share

evi = ShareEval(pk, ski,Encpk(z); revi)

for i ∈ [n] where revi ← Drand(1λ).
Share combining: The algorithm Combine on input correctly computed evaluation shares {evi}i∈[n] of the

same ciphertext Encpk(z), constructs the output Decsk(Encpk(z)) = Combine({evi}i∈[n]).

For our purposes, the construction threshold c = n and the corruption threshold t = n− 1. In Figure 7,
we describe our protocol ΠDDec, parameterized by (ShareSK,ShareEval,Combine).

7 In the description of our protocol we choose to explicitly refer to the keys (pk, sk) since it helps in the description
of the decryption protocol.
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Protocol ΠDDec

The protocol runs in the (Fbroadcast,FKey-Dist,FCom-ZK)-hybrid model with parties P1, . . . , Pn and it is
parametrized by (ShareEval,Combine), as defined in Definition 5. It proceeds as follows:

Key Sharing: On input (init, 1λ) from all parties, invoke the functionalities Fbroadcast,FKey-Dist and FCom-ZK.
The invocation of FKey-Dist results in every party Pi receiving

(
(PK, c1, . . . , cn), (ski, ri)

)
.

Evaluation Sharing:
1. For i 6= j, Pi samples revi ← Drand(1λ) and sends (Commit, sid, cid, Pi, Pj , revi) to FCom-ZK. At this

point all other parties Pj receive message (Receipt, sid, Pi, Pj) from FCom-ZK.
2. Party Pi, on input ciphertext CT, computes its evaluation share evi ← ShareEval(PK, ski,CT; revi) and

broadcasts evi via Fbroadcast.
3. For j 6= i, Pi sends (Prover, sid, Pi, Pj ,Reval, (ci,PK, enc(z), evi)) to FCom-ZK for the relation

Reval = {((ci,PK,CT, evi), (ski, ri, revi)) : ci = Com(ski; ri)∧

evi = ShareEval(PK, ski,CT; revi)}
where Com is the commitment scheme used in FKey-Dist.

4. For i 6= j, Pj sends the message (Proof, sid,Reval, (ci,PK,CT, evi)).
Share Combining: If any party Pi outputs reject for a proof given by any party Pj , then output Abort.

Otherwise, output Combine({evi}i∈[n]).

A concrete instantiation of the protocol ΠDDec based on LWE is given in Appendix E.

Fig. 7. Distributed decryption protocol.

Theorem 4. Let QFHE = (KeyGen,KeyGen∗,QEnc,Eval,Rand,Dec,Equiv) be an equivocal fully homomor-
phic encryption scheme; let it be associated with a distributed function sharing scheme (ShareSK,ShareEval,
Combine). Then the constant-round protocol ΠMPC UC-securely realises the ideal functionality FAMPC in
the (Fbroadcast,FKey-Dist,FCom-ZK)-hybrid model with computational security against any adaptive, active
adversary corrupting at most all-but-one parties.

For the proof of Theorem 4 see Appendix C. Replacing UC ZK with UC NIZK leads to a three-round
protocol.

High level idea of the security proof. Our simulator uses the properties of the QFHE scheme such as the
indistingusability of equivocation, according to Definition 3. Furthermore, as we discussed in Section 1, the
simulator will not be able to cheat in the distributed decryption protocol by decrypting a given ciphertext
to any desired value. The key setup for the decryption protocol fixes the shares of the private key even
in the simulation. Thus, a ciphertext can only be decrypted to the value it actually contains. Of course,
when decrypting the outputs, the correct results should be produced both in simulation and real life, and
so we have a problem since all ciphertexts in the simulation generated with respect to the honest parties
will contain encryptions of 0. For this issue we use the ciphertext randomisation property. Notice that the
ciphertext ct in the ciphertext randomization property as per Definition 3 corresponds to the real output

enc(z) of the protocol ΠMPC and the ciphertexts ct′1, . . . , ct′n correspond to the ciphertexts {ẽnc(yi)}i∈J . In

the real-world the ciphertexts {ẽnc(yi)}i∈J are redundant. On the other hand, in the ideal-world the final

ciphertext CT decrypts to a value contributed only by the ciphertexts {ẽnc(yi)}i∈J . In this case we will call

the ciphertexts {ẽnc(yi)}i∈J non− redundant. This implies that an honest execution of the Output stage is

not possible with the ciphertexts of {ẽnc(yi)}i∈J being non− redundant. Analogously, the ciphertext enc(z)
can be either redundant or non− redundant. In other words, it is pertinent that before we get to a hybrid

where the Output stage is performed honestly, we need a hybrid where {ẽnc(yi)}i∈J turn to redundant

ciphertexts. However, with both ciphertexts {ẽnc(yi)}i∈J and enc(z) redundant, we can not hope to get the

final output CT to decrypt to the actual output value. Thus, even before turning {ẽnc(yi)}i∈J to redundant

ciphertexts, we need a hybrid where we can cheat in the final decryption. That is, we first need to have a
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hybrid that, instead of running the distributed decryption protocol, runs what we abstract as the simulator
for the distributed decryption. Moreover, we also based on the semantic security of the FHE scheme in
interchangeably switching the keys K and R to encryptions of 0 and 1, respectively.

A full proof is given in the Appendix.

6 On the Communication Complexity of Distributed Decryption

Our protocol as described in Section 5 assumes that the QFHE scheme comes with a semi-honest secure
distributed decryption protocol: from the ciphertext and shares of the secret key players can compute de-
cryption shares which, if correct, allow the reconstruction of the plaintext. We then augment the distributed
decryption with ZK proofs so that players prove that their contributions to the decryption are correct. This
solution has communication complexity proportional to the circuit complexity of the decryption function.

However, our approach allows for a significant optimization of the decryption procedure compared to
generic solutions. More specifically, we tweak our protocol ΠMPC such that the communication complexity
of the decryption becomes independent of its circuit complexity.

To this end, we modify the evaluation phase of our protocol presented in Section 5. Note that our original
protocol allows us to securely compute any (randomized) function. In particular, any randomized function
allows the parties to encrypt randomized shares and then add up them together. Therefore, instead of
computing the original function, we compute a new function, which for each output z of the original function
also outputs α and w = αz where α is randomly chosen in some large field, and where the multiplication αz
also takes place in that field. Of course if we can compute this function securely then we can also compute
the original function securely. Observe that this new function comes along with an extra property which
allows to check if the output is correct or not based on whether w = αz.

In order to incorporate the above, the modification to the protocol is as follows. Instead of having a single
ciphertext enc(z) containing z, we will have two extra ciphertexts, namely enc(α) and enc(w). The ciphertext
enc(α) is computed as follows. Each party randomly selects a one-time ai and encrypts it according to the
Load phase of our protocol ΠMPC in Figure 5. Once each party has loaded and broadcasted enc(ai), each party
computes enc(α) = enc(a1)� . . .� enc(an) and enc(w) = enc(α)�enc(z). Thus, instead of calling the output
phase of our protocol only on input enc(z) we call it on three different ciphertexts enc(z), enc(α), enc(w).
This means that now the decryption protocol will generate three sets of evaluation shares.

The modification in the decryption protocol is as follows. Before we first broadcast the shares and then
we prove in ZK that they were correct. Instead, we are not going to broadcast all the evaluation shares
immediately due to the adversary who may see the contributions from the honest parties to α before his
broadcast enabling him to forge. We need to guarantee that the adversary cannot forge the output by making
sure that he should output his share before he sees α. In order to avoid the above complication, we first
commit to the evaluation shares and then we open them. In particular, all players compute their evaluation
shares for z, α and w and commit to them. If opening fails or if the decrypted values do not satisfy αz = w,
we abort. This solution avoids the use of ZK proofs yielding a solution which is independent of the circuit
complexity of the decryption.

Since there is an encryption of α available, the new aspect in the proof is to show that this does not help
the adversary to learn α unless he can break CPA security. We can argue this in the proof in Appendix C
where we turn the ciphertext enc(z) to redundant. Therefore, the same proof still applies but instead we
will have three redundant ciphetexts enc(αz), enc(α), enc(w). In this hybrid the outputs cannot be forged
since the ciphertext enc(α) is redundant and it does not contain information about α. Thus, an advesary
that he cannot forge he cannot distinguish in the real world and break CPA-security.
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A Universally Composable Security

The universally composable (UC) security framework was introduced by Canetti [Can01]. The strength of this
framework relies on the universally composable theorem, which states that if a protocol is secure in the UC
model, then this protocol will preserve the same security even if composed with an arbitrary number of copies
of itself or with other protocols. The UC framework gives us also a way to design our protocols in a modular
way: we can design sub-protocols for simpler tasks and then combine them in more complex protocols, and
still we can prove the security of the sub-protocols independently. In order to develop interesting protocols
in the UC model we need some kind of setup assumptions, like a common reference string (CRS) available
to the parties, or a key registration authority, that checks that the parties know their secret keys and the
public keys are well-formed, or many other different assumptions.

Adversarial model. A static adversary A chooses the set of corrupted parties before the protocol starts,
as opposed to an adaptive adversary that can corrupt the players during the protocol. We say that the
adversary is passive or semi-honest if A follows the protocol but tries to extract some information about the
other parties’ inputs from his view of the protocol. We say that the adversary is active or malicious if A is
allowed to deviate arbitrarily from the protocol specifications. We will say that a protocol is passive-secure
if it is secure against a passive adversary and active-secure (or malicious secure) if it is secure against an
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active adversary. In the UC model the adversary, as well as all the other parties involved, are modeled as
probabilistic polynomial time (PPT) interactive Turing machine (ITM). In this paper we consider active-
security against an adaptive adversary.

The real world. We model a real world execution of a cryptographic protocol in the UC model by defining a
PPT ITM Z called the environment, that gives inputs and gets outputs from the parties P1, . . . , Pn running
the protocol. Moreover, Z communicates with A giving instructions on how to attack the protocol. The
parties and the adversary usually also have access to some ideal functionality H.

The ideal world. We define also an ideal world, where the parties P1, . . . , Pn interact with an ideal function-
ality F , that captures the properties we expect from our protocol. Here the parties get their inputs from the
environment Z and simply forward them to F , therefore they are usually referred as the dummy parties.
There is also an ideal adversary S, called the simulator, that communicates with the environment Z and
with the ideal functionality.

Indistinguishability. At the beginning of the protocol all parties, the environment and the adversary are
given a security parameter λ. The environment is also given an auxiliary input z. At some point the environ-
ment stops and outputs a bit. We use REALHπ,A,Z(λ, r, z) to denote the output of Z in the real world and

IDEALHF,S,Z(λ, r, z) in the ideal word where we take r to be uniformly random. This defines the Boolean

distribution ensembles {REALHπ,A,Z(λ, z)}λ∈N,z∈{0,1}∗ and {IDEALHF,S,Z(λ, z)}λ∈N,z∈{0,1}∗

Definition 6. We say that π securely implements F in the H-hybrid model if ∀PPT A,∃PPT S such that
REALHπ,A,Z and IDEALHF,S,Z are computationally indistinguishable in λ.

B Security Definition of Distributed Function Evaluation

Definition 7. A sharing scheme (ShareSK,ShareEval,Combine) for an encryption scheme (KeyGenFHE,Enc,Dec)
is called a statistically secure distributed scheme for corruption threshold n−1 if there exist PPT algorithm,
SKeyDist,SEval such that the following hold:

Key distribution simulation: The algorithm SKeyDist on input (pk,C), where C ⊆ [n], outputs (pk, {ski}i∈C).
We require that ∀C with |C| ≤ n− 1, the following two experiments are statistically close.

(pk, ·)← KeyGenFHE(1λ) (pk, sk)← KeyGenFHE(1λ)
{ski}i∈C ← SKeyDist(pk,C) {ski}i∈[n] ← ShareSK(sk)
Return (pk, {ski}i∈C) Return (pk, {ski}i∈C)

Evaluation simulation: The algorithm SEval on input {pk, {ski}i∈C,CT,
z, {evi}i∈C), where C ⊆ [n], outputs {evi}i∈[n]\C. We require that ∀C with |C| ≤ n− 1, the following two
experiments are statistically close.

(pk, sk)← KeyGenFHE(1λ) (pk, sk)← KeyGenFHE(1λ)
{ski}i∈[n] ← ShareSK(sk) {ski}i∈[n] ← ShareSK(sk)
{evi}i∈[n] ← ShareEval(pk, ski,CT) {evi}i∈C,← ShareEval(pk, ski,CT)

{evi}i∈[n]\C ← SEval(pk, {ski}i∈C,CT, z, {evi}i∈C).
Return (pk, {ski}i∈C,CT, z, {evi}i∈[n]) Return (pk, {ski}i∈C,CT, z, {evi}i∈[n])

Remark 1. The existence of SKeyDist in essence says that the values seen by at most t (n−1 corrupted) parties
could have been generated from pk alone.

Remark 2. The existence of SEval in essence says that if one knows the values that n− 1 parties are entitled
to see, and if one knows z = Decsk(CT), then one can compute the evaluation shares of all parties. It is of
course trivial to compute evi ← ShareEval(pk, ski,CT) for the n− 1 values {ski}i∈C one knows; but what the
evaluation simulation property says is that evi ← ShareEval(pk, ski,CT) can be computed even for i 6∈ C,
provided, the plaintext z, the rest of the secret-key shares {ski}i∈C, and the rest of the decryption shares
{evi}i∈C are known.

18



C Proof of Security

Theorem 5. Let QFHE = (KeyGen,KeyGen∗,QEnc,Eval,Rand,Dec,Equiv) be an equivocal fully homomor-
phic encryption scheme; let it be associated with a distributed function sharing scheme (ShareSK,ShareEval,
Combine). Then the constant-round protocol ΠMPC UC-securely realises the ideal functionality FAMPC in
the (Fbroadcast,FKey-Dist,FCom-ZK)-hybrid model with computational security against any adaptive, active
adversary corrupting at most all-but-one parties.

Proof. We begin by giving a high-level intuition for the proof. As we shall see, the crucial aspects of our
protocol that we exploit in the proof are the properties listed in Definition 3.

The proof is carried out by a sequence of hybrids. We shall begin with a hybrid that is identical to
the ideal-world execution. Note that the main difference from the real-world execution is the ciphertext
randomisation. Naturally, when we start from one world, in order to move to the other, we would need to
employ the indistinguishability of equivocal keys property. Hence, the natural direction would be to eliminate
the steps which use the secret key and, roughly speaking, somehow simulate these steps without the secret key.
To this end, firstly, we rely on the simulatable evaluation property of the distributed function sharing scheme.
Here, the simulator first learns the evaluation shares that the corrupted parties might send by intercepting
the commit commands sent by the corrupted parties. Then, as a function of these evaluation shares and the
supposed output, the hybrid would compute the evaluation shares of honest parties. Observe that there is
a possibility that the corrupted parties may not send the evaluation shares consistent with the randomness
it would have sent earlier through FCom-ZK; however, in this case, by the security of FCom-ZK, the corrupted
party could not have given convincing proofs, leading to an abort. Thus, whenever conditioned on no abort,
with this modification of simulating the evaluation shares of honest parties, the deviation introduced in the
view of the adversary is computationally indistinguishable, by applying the simulatable evaluation property.
Next, we can also sample all the secret-key shares ski to be uniformly random. This introduces no deviation
in the view of the adversary for the following reason: the commitments made to the secret-key shares are
using a statistically hiding scheme; furthermore, no longer at any point in the execution we use the secret

key. With this, we can turn {ẽnc(yi)}i∈J to redundant ciphertexts. With this, we can switch to a hybrid
where we can start executing as prescribed by the protocol, except for simulating the evaluation shares. Next,
we move to a hybrid which is given the actual inputs of parties; therein, the hybrid would load the actual
inputs. Next, we may turn enc(z) to a non− redundant ciphertext and switch to loading the random coins
used to distributedly decrypt the ciphertext honestly. In this step, we need to deploy the indistinguishability
of equivocation and the indistinguishability of equivocal keys in various steps. Finally, we additively secret
share the secret key instead of choosing all shares at random and performing the distributed decryption as
prescribed by ΠDDec. We now proceed to provide a formal proof. We shall provide our proof at a low level
for clarity, while implementing certain generic algorithms such as ShareSK (with additive secret sharing of
the secret key).

Let A be an adaptive adversary who operates against the Protocol ΠMPC in the (Fbroadcast,FKey-Dist,
FCom-ZK)-hybrid model. Our objective is to construct an ideal-process adversary, called simulator, SAMPC

such that no environment Z can tell with non-negligible probability whether it is interacting with A and
parties running Protocol ΠMPC in the (Fbroadcast,
FKey-Dist,FCom-ZK)-hybrid model or with SAMPC in the ideal process for FAMPC. Generally, the challenging
aspect in constructing a simulator for an adaptive adversary is the following. Since A corrupts parties
adaptively as the protocol progresses, the simulator SAMPC must deal with instructions from A to corrupt
parties also as the simulation progresses. More specifically, to begin with, SAMPC must simulate to the
adversary the messages generated by honest parties, without knowing the inputs of the honest parties. Then,
if and when an honest party gets corrupted, the simulator learns the input (and possibly the output also) of
this party; then, it needs to be able to equivocate and generate the state of the corrupted party in a way that
is consistent with the revealed input/output and with the already simulated messages. Below, we construct
our simulator SAMPC.

At a high level, the simulator SAMPC will run a simulated copy of A and will use A in order to interact
with SAMPC and FAMPC. For this purpose, SAMPC will “simulate for A” an interaction with parties running

19



Protocol ΠMPC, where the interaction will match the inputs and outputs seen by Z in its interaction with
SAMPC in the ideal process for FAMPC.

More specifically, SAMPC behaves as follows. In the following we use ΠMPC as a shorthand of
ΠMPC

Fbroadcast,FKey-Dist,FCom-ZK .

Simulating the communication with Z: Every input value that SAMPC receives from Z is written on
A’s input tape (as if coming from A’s environment). Likewise, every output value written by A on its output
tape is copied onto SAMPC’s own output tape (to be read by SAMPC’s environment Z).

Simulated CRS: The common reference string is chosen by S in the following manner (recall that S
chooses the CRS for the simulated A as we are in the FKey-Dist-hybrid model):

– SAMPC simulates the Key-Generation phase of the QFHE scheme as follows. It samples (P̃K, S̃K) ←
KeyGen∗(1λ) where S̃K includes sk secret shared among the parties.

– SAMPC computes additive secret shares (sk1, . . . , skn) of sk. (sk1). For i = 1, . . . , n, compute ci =
Com(ski; ri).

– Moreover, SAMPC generates randomness (r0
1, . . . , r

0
2n) ← Drand(1λ) which may be used in the Load

commands for equivocation.

SAMPC sets the CRS equal to (P̃K) and locally stores (S̃K, {ski}i∈[n]).

Simulating actual protocol messages in ΠMPC: Note that there might be multiple sessions executing
concurrently. Let sid be the session identifier for one specific session. We will specify the simulation strategy
corresponding to this specific session. The simulator strategy for all other sessions will be the same. Let
P = {P1, . . . , Pn} be the set of parties participating in the execution of Π corresponding to the session
identified by the session identifier sid. Some of the parties may be corrupted. Also, recall that we are in the
setting of adaptive corruption so more parties could be corrupted as the protocol proceeds. At any point S
only generates messages on behalf of the honest parties.

Simulation of the Load stage: Note that we describe how to simulate the Load stage for the encryption
algorithm QEnc

P̃K
, since for all loads with the algorithm QEnc′

P̃K
, the simulator actually would be knowing

the values to load, and hence, loading in the latter case can be performed honestly as per the protocol.

Load stage messages SAMPC → A: In this stage the simulator SAMPC must generate messages on behalf of
the honest parties. Therefore, SAMPC for every honest party Pi proceeds as follows:

Xi: Computes Xi = QEncpk,K̃(0, 0; r0
i ) (where, r0

i was generated by SAMPC in the Initialize stage) and
broadcasts Xi.

Commitment phase in FCom-ZK: Recall that in the protocol, if Pi is honest then, for every j 6= i, it would send
(Commit, sid, cid1, cid2, Pi, Pj , xi, rxi

) to FCom-ZK upon which Pj receives (Receipt, sid, cid1, cid2, Pi, Pj);
SAMPC simulates this interaction simply by sending the latter Receipt message to Pj . Moreover, for

j 6= i, Pi sends (Prover, sid,Req, (P̃K, Xi)) to FCom-ZK for the relation Req = {((P̃K, Xi), (xi, rxi
)) : Xi =

QEnc
P̃K

(0, xi; rxi
)}.

Prove phase in FCom-ZK: SAMPC simulates this interaction by sending (Proof, sid, Pi,Req, (P̃K, Xi)) to Pj .

Load stage messages A → SAMPC: Also in the load stage the adversary A generates the messages on behalf
of corrupted parties. For each corrupted party Pi our simulator proceeds as follows: Let us consider the case
when Pi is corrupted before the honest parties output (cid,Xi,Defined). If some proof is not accepted, then
input (cid,Xi,Fail) to FAMPC. On the other hand, if the proofs are accepted, Pi must have sent to FCom-ZK

the messages (Commit, sid, cid1, cid2, Pi, Pj , xi, rxi
). SAMPC, which intercepts these messages, learns xi and

inputs (Input, Pi, Xi, xi) to FAMPC.

Simulating corruption of parties in Load stage: When A corrupts a real world party Pi, then SAMPC first
corrupts the corresponding ideal world party Pi and obtains its input xi. Next SAMPC prepares the internal
state on behalf of Pi such that it will be consistent with the message Xi that it had provided to A earlier. In
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particular, it needs to present to A the random coins rstatei ← InvDrand
(rblindi ) that it can claim as the ones

used in generating Xi and that is consistent with xi as plaintext, e.i. Xi = QEnc
P̃K

(0, xi; r
blind
i ). Specifically,

SAMPC proceed as follows:

Xi: SAMPC runs the algorithm Equiv(0, P̃K, S̃K, Xi, r
0, xi) where Xi = QEnc

P̃K
(0, 0; r0

i ) in order to obtain
randomness ei. Furthermore, if Pi is corrupted before Load begins, then SAMPC inputs (Input, Pi, Xi, 0)
to FAMPC on behalf of Pi and simulates the honest parties for this Load by following the protocol. If
any of the simulated honest parties outputs (cid,Xi,Defined), then the simulator must at the end of the
Load input (Change, x′i) to FAMPC to define Xi. The value of x′i is determined as follows: Since FAMPC

has output (cid,Xi,Defined), Pi must have input (Input, Pi, Xi, s). The interface SAMPC thus learns s
and sets x′i to be s.

Commitment phase in FCom-ZK: If Pi gets corrupted after SAMPC sends (Receipt, sid, cid1, cid2, Pi, Pj) to
Pj , then SAMPC learns xi, and sends xi to A. Moreover, SAMPC would run the algorithm Equiv to patch
rxi and send it to A. If Pi gets corrupted before SAMPC sends (Receipt, cid1,
cid2, Pi, Pj) to Pj , then A specifies x′i, and (sid, cid1, Pi, Pj , x

′
i) is recorded. Furthermore, A specifies r′xi

,

and (sid, cid1, cid2, Pi, Pj , x
′
i, r
′
xi

) is recorded. For j 6= i, Pi sends (Prover, sid,Req, (P̃K, Xi)) to FCom-ZK

for the relation Req = {((P̃K, Xi), (xi, rxi
)) : Xi = QEnc

P̃K
(0, xi; rxi

)}.
Prove phase in FCom-ZK: If Pi gets corrupted after SAMPC sends (Proof,

sid, Pi,Req, (P̃K, Xi)) to Pj , then SAMPC would learn xi and run the algorithm Equiv(P̃K, S̃K, Xi, r
0, xi)

to obtain ei. Here, it would send (xi, ei) to A.

Simulation of the Evaluation stage: Recall that the Evaluation stage does not require any interac-
tion among the parties. Let ckt be the arithmetic circuit to be computed on the n inputs of the parties.
On behalf of every honest party, the simulator SAMPC computes enc(z)← Evalpk(ckt, X1, . . . , Xn).

Simulation of the Output stage: In this stage the functionality FAMPC outputs (Output, z). Now,
in order for the simulator to be able to enforce the final output to be z, the simulator exploits the
rerandomization step. More specifically, the simulator will cheat in the randomization step in such a way
that the resultant ‘rerandomized’ ciphertext is an encryption of z. With this, the simulator can then
simulate the distributed decryption protocol by simply behaving honestly. In detail, SAMPC proceeds as
follows.

Output stage messages A → SAMPC: On behalf of every corrupted party Pi, the simulator sends
(Output, enc(z)) to FAMPC. Then, FAMPC returns (enc(z), z). SAMPC thus learns z.

Output stage messages SAMPC → A: SAMPC proceeds as follows.

1. For every honest party Pi, compute Yi = QEnc
P̃K

(0, 0; r0
n+i) (where, r0

n+i was generated in the
Initialize stage).
Simulating corruption of parties in this step: If Pi gets corrupted soon after, then SAMPC patches

Pi’s state to yi running the algorithm Equiv(P̃K, S̃K, Yi, r
0
n+i, yi). Also, from the Load performed by

every corrupted party Pj , learn yj as in the simulation of the Load stage.

2. Let Pk be an honest party. For every other honest party, assign yi ∈ M . Then for Pk, set y′k =

z −
∑
i∈[n]\{k} yi. Then, for every honest party Pi, proceed as per the protocol to load ẽnc(yi).

Simulating corruption of parties in this step: If any honest party gets corrupted, then the random
coins used for generating the encryption using key R are patched running the algorithm Equiv so
that the value encrypted is yi.

3. Now randomize the ciphertext enc(z) from the Evaluation stage as per the protocol. That is, com-

pute CT = Rand(enc(z), {ẽnc(yi)}i∈J) where enc(z) is the resultant encryption from the Evaluation
stage.

4. Run ΠDDec as in the protocol to decrypt CT. At a high level, note that as every party is required
to prove the correctness in computing the evaluation shares, then with high probability, all the
evaluation shares correspond to being computed using a set of valid shares of the secret key. This
ensures towards correctness of the value decrypted and output at the end.(sk2)
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This completes the description of our simulator. We shall now prove via a hybrid argument that the
environment’s view generated by the simulator is indistinguishable from its view in the real world. We
begin by giving a high-level intuition of the proof.
Let us begin with the ideal world and then via hybrids migrate to the real world. In other words, we will
modify the simulator hybrid-by-hybrid such that we finally reach a modified simulator that, on behalf
of the honest parties, just honestly runs the protocol. Before we embark on actual proof, we shall first
list the obstacles in this migration that shall guide us in designing the sequence of the hybrids. Notice
that the ciphertext ct in the ciphertext randomization property as per Definition 3 corresponds to the
real output enc(z) of the protocol ΠMPC and the ciphertexts ct′1, . . . , ct′n correspond to the ciphertexts

{ẽnc(yi)}i∈J . Moreover, by the ciphertext randomization property observe the fact that, in the real-world

the ciphertexts {ẽnc(yi)}i∈J generated by the algorithm QEncPK for b = 1 implicitly do not contribute
to the decryption of the final ciphertext CT (since it decrypts to the plaintext derived only by the
ciphertext ct generated by QEncPK ). In this case without loss of generality we will call the ciphertexts

{ẽnc(yi)}i∈J redundant. On the other hand, in the ideal-world the final ciphertext CT decrypts to a value

contributed only by the ciphertexts {ẽnc(yi)}i∈J . In this case we will call the ciphertexts {ẽnc(yi)}i∈J
non− redundant.
This implies that an honest execution of the Output stage is not possible with the ciphertexts of

{ẽnc(yi)}i∈J being non− redundant. Analogously, the ciphertext enc(z) can be either redundant or
non− redundant.
In other words, it is pertinent that before we get to a hybrid where the Output stage is performed

honestly, we need a hybrid where {ẽnc(yi)}i∈J turn to redundant ciphertexts. However, with both

ciphertexts {ẽnc(yi)}i∈J and enc(z) redundant, we can not hope to get the final output CTto decrypt

to the actual output value. Thus, even before turning {ẽnc(yi)}i∈J to redundant ciphertexts, we need a
hybrid where we can cheat in the final decryption. That is, we first need to have a hybrid that, instead of
running the distributed decryption protocol, runs what we abstract as the simulator for the distributed

decryption. Finally, in order to ensure indistinguishability between the hybrids where {ẽnc(yi)}i∈J are
redundant or not, we need a reduction to the IND-CPA security of the QFHE scheme. In light of this,

we also need to ensure that, by the time we reach the hybrid where {ẽnc(yi)}i∈J turns to redundant,
the modified simulator does not crucially use the secret key in any part of the execution. With this as
our guide, we have the following sequence of hybrids.

Hyb0: This hybrid is identical to the ideal-world.
Trivially,

Lemma 1. IDEALFbroadcast,FCom-ZK

FAMPC,SAMPC,Z ≡ Hyb0.

Hyb1: This hybrid is the same as Hyb0, except for the following modification in the way the hybrid
computes the evaluation shares for the final rerandomized ciphertext. Recall that in Hyb0, ΠDDec

was run. Now, we introduce certain changes in the steps of execution of ΠDDec. Recall that every
party Pi is first required to commit through FCom-ZK, the secret-key share ski and the commitment
information ri, where ci = Com(ski; ri). The hybrid first intercepts these commit messages from the
corrupted parties and learns ski, ri. If these values do not correspond to the actual values provided
to the corrupted party Pi during the onset of the execution, then, the hybrid aborts. Otherwise, it
proceeds as follows. Recall that every party Pi is also required to commit to revi through FCom-ZK. The
hybrid intercepts this commit command from every corrupted Pi and learns revi . Then it computes by
itself the evaluation share that would result by using ski and randomness revi on the final ciphertext.
Let these values be {evi}i∈C. Having also learnt the output z of the loaded inputs of all the parties,
the hybrid computes {evi}i∈[n]\C ← SEval(pk, {ski}i∈C,CT, z, {evi}i∈C), where, SEval simulates the
evaluation in the distributed decryption as per Definition 7 where an actual implementation of it can
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be derived since we are using additive secret sharing and the adversary can corrupt at most n − 1
parties. In the meanwhile, it simply simulates the commit messages it needs to send by sending to
the adversary, the corresponding Receipt messages. Then, {evi}i∈[n]\C is presented as the evaluation
shares of the honest parties.

Lemma 2. Hyb0 ≈s Hyb1.

Proof. Before we proceed, we shall analyze the potential abort by Hyb1 when it intercepts the commit
messages by a corrupted party Pi to ski, ri. Recall that if these values do not match the corresponding
values provided to Pi at the onset of the execution, then the hybrid aborts. We argue that even in Hyb1,
this would have resulted in a premature abort, since, applying the security of FCom-ZK, the corrupted
party Pi could not have provided a convincing proof as the statement would be invalid. Here, we note
that until this point in the course of execution, both the hybrids in question are identical. Next, note
that if the corrupted parties provide the evaluation shares computed indeed using the randomness revi
committed via FCom-ZK, then, we have the following by applying the property of SEval. The evaluation
shares of the honest parties computed using SEval, jointly with the evaluation shares of the corrupted
parties, are distributed statistically close to their values in Hyb0. On the other hand, that is if the
evaluation shares computed by the corrupted parties do not correspond to the values it had committed
earlier through FCom-ZK, then the execution would anyway have aborted, again by applying the security
of FCom-ZK. Thus, the modification introduced in hybrid Hyb1 introduces only statistical distance in the
view generated by the simulator, thus proving the lemma.

Hyb2: This hybrid is the same as Hyb1, except for the way public key and the secret-key shares are
computed. Before we proceed, recall that this is performed in the same way as FKey-Dist in Hyb1.
Now in the current hybrid, the public key and the secret-key shares are computed as follows. Firstly,
run (pk, sk)← KeyGenFHE(1λ). Then sample at random sk1, . . . , skn ← {0, 1}∗ of appropriate length.
Then, the hybrid commits to these secret-key shares, as in Hyb1, using Com to obtain c1, . . . , cn. The
rest of the hybrid remains the same as Hyb1.

Lemma 3. Hyb1 ≈s Hyb2.

Proof. Recall that the adversary can corrupt at most n−1 parties. Hence, the values received by an adver-
sary from FKey-Dist in Hyb1 are:

(
(pk, c1, . . . , cn), {(ski, ri)}i∈C

)
. Firstly, we observe that (pk, {(ski)}i∈C)

as output by FKey-Dist are distributed identically to the output of the following process: (pk, ·) ←
KeyGenFHE(1λ) and ∀i ∈ C, ski ← {0, 1}∗ of appropriate length. Furthermore, we recall that Com is
a statistically hiding commitment. Thus, clearly, the distribution of

(
(pk, c1, . . . , cn), {(ski, ri)}i∈C

)
as

output by FKey-Dist is statistically close to the joint distribution of these values as generated by Hyb2.
Hence, the lemma.

Hyb3: This hybrid is the same as Hyb2, except that the simulator turn the ciphertexts {ẽnc(yi)}i∈J to
redundant.

Lemma 4. Hyb2 ≈c Hyb3.
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Proof. Note that in an earlier hybrid, we have introduced the modification from crucially using the fact

that ciphertexts {ẽnc(yi)}i∈J are non− redundant (to be able to cheat in the rerandomization of the

final ciphertext) to just running SEval for which the actual value of the plaintexts in {ẽnc(yi)}i∈J will
not matter. Furthermore, we have also introduced the modification from obtaining the secret-key shares
by simply sampling them uniformly at random, a process that does need the secret key. Thus, in the
current hybrid Hyb3, the simulator does not make use of the secret key anywhere in its execution. Thus,
an algorithm that distinguishes hybrids Hyb2 and Hyb3 is directly reducible to an adversary against
threshold IND-CPA security of the QFHE scheme. Hence, the lemma.

Hyb4: This hybrid is the same as Hyb3, except that the simulator is given the actual inputs of the
honest parties and the simulator simply executes the protocol to compute the messages that the
honest parties are supposed to send to the adversary.

Lemma 5. Hyb3 ≡ Hyb4.

Proof. Observe that in both the hybrids Hyb3 and Hyb4, both the ciphertexts {ẽnc(yi)}i∈J and enc(z)
are redundant. Hence, no matter what the input values of the parties are, the Loaded variables all
contain 0. Hence, the views generated by the simulator in these two hybrids are identical.

Hyb5: This hybrid is the same as Hyb4, except that the simulator now runs the algorithm KeyGen
instead of KeyGen∗. In particular, the ciphertrxt enc(z) becomes non− redundant. Furthermore, in
computing the loaded variables Xi in the Load stage, the simulator honestly follows the protocol;
namely, for every honest party Pi, it samples rxi ← Drand(1λ) and computes Xi ← QEncPK(0, xi; rxi),
where xi is the input of Pi. Also, when an honest party Pi gets corrupted, unlike Hyb4 which patched
the state of Pi in the computation of Xi by running the algorithm Equiv, the simulator in this hybrid
simply presents rstatei ← InvDrand

(rxi
) as the state of Pi.

Lemma 6. Hyb4 ≈c Hyb5.

Proof. The proof of this lemma immediately follows from Theorem 3 and more specifically, from the
indistinguishability of equivocal keys and the indistinguishability of equivocation.
In particular:

– In hybrid Hyb4, Xi is computed as: Xi = QEnc
P̃K

(0, 0; r0
i ). Then for patching the state of Pi for

input xi, the simulator runs the algorithm Equiv(P̃K, S̃K, Xi, r
0, xi) to obtain ei. Furthermore, in

the output phase, while loading the random coins used to rerandomize the final ciphertext, Yi is
computed as Yi = QEnc

P̃K
(0, 0; r0

n+i). Then for patching the state of Pi for yi, the simulator runs the

algorithm Equiv(P̃K, S̃K), Yi, r
0
n+i, yi) to obtain en+1.

– On the other hand, in hybrid Hyb5, Xi is computed as: Xi = QEncPK(0, xi; rxi
) where rxi

←
Drand(1λ) and the ciphertext enc(z) is non− redundant. Also, Yi is computed as: Yi = QEncPK(0, yi; ryi)
where ryi ← Drand(1λ).

Now to show indistinguishability between the two hybrids, we can immediately use the proof of Theorem
3 and the indistinguishability of Equivocation.
Next, to argue indistinguishability between the non− redundant and redundant enc(z), we again directly
use Theorem 3 and the indistinguishability of equivocal keys. In detail, we need to be able to obtain a
reduction to threshold IND-CPA security of the QFHE scheme. Thus, we need to ensure that the reduction
does not need the secret key in simulating either of the hybrids Hyb4 and Hyb5. To see this, we recall
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the aspects of Hyb4 due to which the secret key will not be needed by the reduction. Observe that in the

hybrid Hyb4, ciphertexts {ẽnc(yi)}i∈J are redundant just like in the protocol ΠMPC. We also emphasize
that the simulator does not use the secret key for QFHE anywhere in its execution. Hence, given an
adversary that distinguishes the hybrids Hyb4 and Hyb5 with some non-negligible property ε, we have
an adversary that breaks threshold IND-CPA security of the QFHE scheme with probability negligibly
close to ε. Hence, the lemma.

Hyb6: This hybrid is the same as Hyb5, except that, in computing the shares of the secret key at point
(sk1), the simulator now switches back from using KeyGenFHE and uniformly sampling the secret-key
shares to using KeyGenFHE and additively secret-sharing the secret key like in SAMPC.

Lemma 7. Hyb5 ≡ Hyb6.

Proof. This proof is similar to the proof of indistinguishability of the hybrids Hyb1 and Hyb2 (Lemma 3),
where the simulator switched the other way; i.e., from using KeyGenFHE

8 and additively secret-sharing
the secret key to using KeyGenFHE and uniformly sampling the secret-key shares. On the same lines as
in Lemma 3, we have Lemma 7.

Hyb7: This hybrid is the same as Hyb6, except that, in decrypting the final rerandomized ciphertext at
point (sk2), the simulator at this hybrid switches back to decrypting as in ΠDDec.

Lemma 8. Hyb6 ≡ Hyb7.

Proof. This proof is similar to the proof of indistinguishability of the hybrids Hyb0 and Hyb1 (Lemma 2),
where the simulator switched the other way; i.e., from using ΠDDec to using SEval. Namely, the property of
simulatable evaluation ensures that the evaluation shares for the honest parties generated using SEval are
distributed statistically close to the evaluation shares generated using ΠDDec, thus proving the lemma.

Observe that the view in the final hybrid Hyb7 is identical to the real-world view. Hence, we have that

Hyb7 ≡ REALFbroadcast,FCom-ZK

ΠMPC,Z .
In summary, we have that,

IDEALFAMPC,SAMPC,Z ≈c REALFbroadcast,FCom-ZK

ΠMPC,Z

D Performance of General Solution based on IPS Compiler
Simulating corruption of parties in Load stage: The following should be taken with large grains of salt. We
have tried to be optimistic on the part of the IPS compiler, to not give our concrete protocol an unfair
advantage. Thus, actual numbers could be larger.

We estimate that using the best known outer and inner protocols in the IPS compiler, one invocation of
IPS would require 10− 15 rounds. For the generic suggestion one needs two invocations, one to generate key
material for NCE (see below) and one for decryption. On top of that one needs a few rounds for distributing
inputs and proving knowledge of them in ZK or NIZK. So we estimate at least 30 rounds for the complete
protocol.

The computation and communication overhead is even harder to estimate. We looked at communication
since that is a lower bound on computation and made a crude estimate that equates statistical and compu-
tational security parameters. To do the FHE decryption generically, one needs to write it as a binary circuit,

8 Recall that now KeyGenFHE(1λ) is part of the KeyGen(1λ) algorithm.
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say of size s and then use the IPS compiler. For n players and security parameter λ, we get communication
Ω(n4λ2s) where s depends on the FHE scheme but can be expected to be at least quadratic in λ. This is
based on a very optimistic assumption on what the outer protocol can do while also minimizing the number
of rounds. If this is not true, then such a protocol yields an Ω(n6λ3s) overhead.

In comparison the total communication of the decryption phase of our concrete protocol is O(n2λ). We
used the IPS paper and there are likely ways to optimize, but it does seem that the difference is very
significant nevertheless.

E Concrete Instantiation of our Equivocal QFHE Scheme

In this section we describe the concrete QFHE scheme, which is based on the somewhat homomorphic en-
cryption scheme of Brakerski and Vaikuntanathan (BV) [BV11b]. The scheme is secure under the polynomial
LWE (PLWE) assumption, which is a simplified version of the Ring-LWE assumption.

Definition 8 (PLWE Assumption). For all λ ∈ N, let F (X) = Fλ(X) ∈ Z[X] be a polynomial of degree
N = N(λ), let q = q(λ) ∈ Z be a prime integer, let R = Z[X]/〈F (X)〉 and Rq = R/qR, and let χ denote a
distribution over the ring R. The polynomial LWE assumption PLWEf,q,χ states that for any l = poly(λ) it
holds that

{(ai, ai · s+ ei)}i∈[l] ≈c {(ai, ui)}i∈[l]

where s is sampled from the distribution χ, and ai, ui are uniformly random in Rq. We require computa-
tional indistinguishability to hold given only l samples, for some l = poly(λ).

Now we present the fully homomorphic encryption scheme QFHE and its threshold decryption procedure.
Later we show that it indeed satisfies the properties listed in Definition 3. To begin with, the scheme is
associated with the following parameters:

– A cyclotomic polynomial F (X) := Φm(X) = XN + 1 of degree N := φ(m), where m = 2N and where
the dimension N is a power of 2 and lower bounded by some function of the security parameter λ.

– The modulus q, which is a prime such that q ≡ (mod 2N). Together, N, q and F (X) define rings
R := Z[X]/〈F (X)〉 and Rq := R/qR = Zq[X]/〈F (X)〉. Addition in these rings is done component-wise
in their coefficients (thus, their additive group is isomorphic to ZN and ZNq , respectively). Multiplication
is simply a polynomial multiplication modulo F (X) (and also modulo q, in the case of the ring Rq). The
two operations in R will be denoted by + and ·.

– The error parameter σ, which defines a discrete Gaussian error distribution χ = DZN ,σ over the ring
Rq = Zq[X]/〈F (X)〉 with standard deviation σ. We usually refer to DZN ,σ as Drand(λ) used by the
encryption algorithm to select the random coins needed during the encryption.
The parameters λ, F, q and χ are public and we assume that given λ, there exist PPT algorithms that
output F and q, and sample from the error distribution χ.

– A prime p < q, for some integer p = p(λ) and rel. prime to q, which defines the message space M of
the scheme as Rp = Zp[X]/〈F (X)〉, i.e. the ring of integer polynomials modulo F (X) and modulo p.
Moreover, we encode messages from M to Rq. Namely, we encode our messages as elements in Rq with
coefficients modulo p. More specifically, to transform a message m ∈ M into some x ∈ Rq, we assume
that there is an injective encoding function encode : M → Rq which takes elements in M to elements
in a ring Rq which is equal ZN (as a Z-module). We also assume a decoding function decode : Rq →M
which takes an arbitrary element in ZN and returns an element in M . We require that the following
conditions hold:
1. ∀m ∈M : decode(encode(m)) = m.
2. ∀x ∈ Rq : decode(x) = decode(x mod p).
3. ∀m ∈M : ‖encode(m)‖∞ ≤ τ where τ = p/2.
4. ∀m1,m2 ∈M : decode(encode(m1)+encode(m2)) = m1+m2 and decode(encode(m1)·encode(m2)) =
m1 ·m2.

– A number D > 0, which defines a bound on the maximum number of multiplications that can be
performed correctly using the scheme.
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The above parameters depend on the security parameter λ in a way to guarantee correctness and security.
Our special FHE scheme consists of a tuple (KeyGenFHE,Enc,Eval,Dec) of algorithms defined below, and
parametrized by a security parameter λ.

KeyGenFHE(1λ): Sample ring elements a ← Rq and s, e ← Drand(λ), s, e are rounded such that they can
be seen as s, e ∈ Rq. Then compute b ← ((a · s) + (p · e)). The public and private keys are then set to be
pk← (a, b) and sk← s where s = (1, s, s2, . . . , sD) ∈ RD+1

q .

Encpk(x; r):On input x = encode(m) where m ∈ M , and r ← Drand(λ), we proceed as follows: The element

r is parsed as (u, v, w) ∈ R3
q . Then it computes c0 ← (b · v) + (p · w) + x and c1 ← (a · v) + (p · u)

and returns the ciphertext ct = (c0, c1) ∈ R2
q . The algorithm only generates ciphertexts ct ∈ R2

q , but
homomorphic operations might add more elements to the ciphertext. Thus the most generic form of a
decryptable ciphertext in our scheme is ct = (c0, . . . , cd) for d ≤ D. 9 When applying this algorithm one
would obtain x = encode(m). This is what we mean when we write Encpk(m, r), where m ∈M .
Decsk(ct): Given a secret key sk = s and a ciphertext ct = (c0, . . . , cD) ∈ RD+1

q , the decryption algorithm

computes t̃ = 〈s, ct〉 =
∑D
i=0 cis

i mod q ∈ Rq. Then the decryptor simply reduces t = t̃ mod p, which can
then be decoded to m. Note that the condition for correct decryption is that ‖t̃‖∞ is smaller than q/2.

Evalpk(ckt, ct, ct′): To compute an arbitrary function homomorphically, we construct an arithmetic circuit

ckt (made of addition and multiplication operations over Zt), and then use Add and Multiply to iteratively
evaluate ckt on encrypted inputs. To this end, we show how to homomorphically add and multiply two
elements in Zt.

– Addpk(ct, ct′):: Let ct = (c0, . . . , cδ) and ct′ = (c′0, . . . , c
′
γ) be the two ciphertexts (If γ 6= δ, we pad the

shorter ciphertext with zeroes). Then compute and output

ctAdd = (c0 + c′0, . . . , cmax(γ,δ) + c′max(γ,δ)) ∈ R
max(γ,δ)+1
q

– Multiplypk(ct, ct′):: Let ct = (c0, . . . , cδ) and ct′ = (c′0, . . . , c
′
γ) be the two ciphertexts. Here, we do

not pad either of the ciphertexts with zeroes. Let h be a symbolic variable and consider the expres-

sion (
δ∑
i=1

cih
i) · (

γ∑
i=1

c′ih
i) over Rq. We can (symbolically, treating h as an unknown variable) open

the parentheses to compute ĉ0, . . . , ĉδ+γ such that (
δ∑
i=1

cih
i) · (

γ∑
i=1

c′ih
i) = (

δ+γ∑
i=1

ĉih
i). Therefore, output

ctMult = (ĉ0, . . . , ĉδ+γ).

In order to achieve full homomorphism one can use Gentry’s “bootstrapping” and “squashing” techniques.
Another way, as an alternative to squashing, is the “re-linearization” technique. See [BV11b,BV11a] for more
details.

Distributed Decryption: We now extend the scheme above to enable distributed decryption. The functionality
FKey-Dist generates a key pair and secret-shares the secret key among the players using an additive secret-
sharing scheme. Hence, each party Pi will receive a share ski = si, chosen uniformly such that s = s1+· · ·+sn.
More specifically, the decryption protocol is described in Figure 8.

9 Padding with zeros does not effect the ciphertext. More specifically, (c0, . . . , cd) ≡ (c0, . . . , cd, 0, . . . , 0).
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Protocol ΠDDec

The distributed decryption proceeds as follows:
Key Sharing:

The invocation of FKey-Dist results in every party Pi receiving
(
(pk, c1, . . . , cn), (ski, ri)

)
, where, (sk1, . . . , skn)

are shares of the secret key s corresponding to the public key pk = (a, b) and (c1, . . . , cn) are commitments
on the corresponding shares. In particular, ski = si, chosen uniformly such that s = s1 + · · ·+ sn.

Evaluation Sharing:
1. Given the ciphertext ct = (c0, c1) ∈ R2

q , party P1 computes vi ← c0 − (si · c1) and each other party Pi
computes vi ← −(si · c1).

2. Compute evi ← vi + p · revi where revi ∈ Rq is a random element with ‖revi‖∞ ≤ Bdec.
3. Each party Pi broadcasts evi.
4. Pi sends (Prover, sid, Pi, Pj ,Reval, (ci, pk, ct, evi)) to FCom-ZK for the re-

lation Reval = {((ci, pk, ct, evi), (ski, ri, revi)) : ci = Com(ski; ri) ∧
(evi = vi + p · revi ∧ (vi = c0 − (si · c1), if i = 1 ∨ vi = −(si · c1), if i = 0))}.

Share Combining:
1. All players compute t′ ← ev1 + · · ·+ evn and obtain a message m′ ← decode(t′ mod p).

Fig. 8. The threshold decryption protocol.

Equivocal FHE: Given the above special FHE scheme, we can define our QFHE = (KeyGen,KeyGen∗,QEnc,Eval,
Dec,Equiv) scheme where the algorithms (KeyGen,KeyGen∗,QEnc,Equiv) are as described in Figure 1. Note
that indistinguishability of equivocation and indistinguishability of equivocal keys are shown in Theorem 3.

E-Hiding: We should point out that the scheme of [BV11b] enjoys formula privacy. The idea is that adding
to a given ciphertext an encryption of zero with an error super-polynomially larger than the error used in
usual ciphertexts results in a ciphertext that still decrypts to the same result but statistically hides which
ciphertext was initially given. Such a property is typically used to blind a ciphertext after a computation so
that the final ciphertext only provides information about the result of the computation and not about how
this result is obtained. Hence, it is easy to show that the E-Hiding property defined in Definition 3 can be
argued as formula privacy for the above scheme.

Next, the only thing we need to argue is privacy and correctness of the distributed decryption protocol.
In particular, we need to guarantee correct and private distributed decryption computing the bound Bdec as
a function of all the other parameters. In order to make a choice for Bdec one can follow the line of analysis in
[DPSZ12], however, in our case a simpler analysis can be followed since we do not need the SIMD approach,
used by [DPSZ12], to handle many values in parallel in a single ciphertext.

Invertible Sampling: It is known how to do invertible sampling for Gaussian distributions suitable for our
case using rejection sampling over the effective support of the distribution [OPW11,Pei14].

Homomorphism over random coins. Next we prove the property of homomorphism over random coins prop-
erty defined in definition 4.

Lemma 9. (Homomorphism over random coins). ∀(x0, x1, x2) ∈ R3
q, ∀(r1, r2) ∈ D2

rand and ∀pk = (a, b) ←
KeyGenFHE(1λ) it holds that:(

x0 � Encpk(x1; r1)
)
� Encpk(x2; r2) = Encpk(x0 · x1 + x2;x0 · r1 + r2)

Proof. By definition Encpk(xi; ri) = (c0,i, c1,i) = (b · vi + p · wi + xi, a · vi + p · ui) for i = 0, 1 where ri is
parsed as (ui, vi, wi) ∈ R3

q .

(
x0 � Encpk(x1; r1)

)
� Encpk(x2; r2)

= (x0 � (b · v1 + p · w1 + x1, a · v1 + p · u1)
)
� (b · v2 + p · w2 + x2, a · v2 + p · u2)

= (x0 · b · v1 + x0 · p · w1 + x0 · x1, x0 · a · v1 + x0 · p · u1) � (b · v2 + p · w2 + x2, a · v2 + p · u2)

=
(
b · (x0 · v1 + v2) + p · (x0 · w1 + w2) + x0 · x1 + x2, a · (x0 · v1 + v2) + p · (x0 · u1 + u2)

)
= Encpk(x0 · x1 + x2;x0 · r1 + r2).
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F Security Proof of the UC Adaptive Commitments from LWE

Proposition 2. Assuming the hardness of LWE, Protocol ΠCom UC realizes FMCom in the FCRS-hybrid
model.

Proof. Let A be an active, adaptive adversary that interacts with parties running the protocol ΠCom in
the FCRS-hybrid model. We construct a simulator S (the ideal world adversary) with access to the ideal
functionality FMCom, which simulates a real execution of ΠCom with A such that no environment Z can
distinguish the ideal world experiment with S and FMCom from a real execution of ΠCom with A.

S interacts with the ideal functionality FMCom and with the environment Z. The ideal adversary S starts
by invoking a copy of A and running a simulated interaction of A with the environment Z and the parties
running the protocol. We refer to the interaction of S in the ideal process as external interaction. The
interaction of S with the simulated A is called internal interaction. The committing party is denoted by Pi
and the receiver party Pj . Moreover, let sid be the session identifier and ssid the sub-session identifier.

Our simulator S proceeds as follows:

Simulating CRS: The common reference string is chosen by S in the following manner (recall that S chooses
the CRS for the simulated A as we are in the FCRS-hybrid model):

1. S runs the setup algorithm KeyGen∗(1λ) of the equivocal QFHE encryption scheme obtaining a public

key P̃K and secret key S̃K.

2. S runs the setup algorithm for the CCA2-secure encryption scheme ECCA, obtaining a public key pkcca
and a secret key skcca.

S sets the CRS to be (P̃K, pkcca) and locally stores (S̃K, skcca).

Simulating the communication with Z: Every input value that S receives from Z is written on A’s input
tape. Similarly, every output value written by A on its own output tape is directly copied to the output tape
of S.

Simulating Commit commands where the committer Pi is uncorrupted : The honest committer Pi on input
(Commit, sid, ssid, Pi, Pj , b) from the environment, writes this message on its outgoing tape for FMCom. Then
S simulates Pi writing the Commit message of Protocol ΠCom on its outgoing tape for Pj . In particular, S
knowing S̃K computes z ← QEnc

P̃K
(0, 0) along with two strings r0 and r1 (running the algorithm Equiv) such

that rb constitutes a decommitment of z to b. Next, S computes C0 ← ENCCCA(Pi, Pj , sid, ssid, r0) using ran-
dom coins s0, and C1 ← ENCCCA(Pi, Pj , sid, ssid, r1) using random coins s1. Then, S stores (c, r0, s0, r1, s1)
and simulates Pi writing c = (sid, ssid, Pi, z, C0, C1) on its outgoing tape for Pj . When A delivers c from
Pi to Pj in the internal simulation, then S delivers the message from the ideal process Pi’s outgoing tape
to FMCom. Furthermore, S also delivers the (Reveal, sid, ssid, Pi, Pj , b) message from FMCom to Pj . If A
passively corrupts Pi, then S carries out the simulation as described here. If A corrupts Pi before delivering
c and then changes c before delivering it, then S proceeds by following the instructions for a corrupted
committer.

Simulating Reveal commands where the committer Pi is uncorrupted : The honest committer Pi on input
(Reveal, sid, ssid) from the environment, writes this message on its outgoing tape for FMCom S then delivers
this message to FMCom and gets the message (Reveal, sid, ssid, Pi, Pj , b) from FMCom. Then S given the value
b, generates a simulated decommitment message (sid, ssid, rb, sb, b), where rb and sb are as generated above.
S then internally simulates for A the event where Pi writes this message on its outgoing tape for Pj . When A
delivers this message from Pi to Pj in the internal interaction, then S delivers the (Reveal, sid, ssid, Pi, Pj , b)
message from FMCom to Pj .

Simulating corruption of parties : When a command ’corrupt Pi’ is issued, S first corrupts Pi and obtains
the values of all its unopened commitments and prepares the internal state of Pi to be consistent with these
commitment values in the same way as shown above.
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Simulating Commit commands where the committer Pi is corrupted : When a corrupted party Pi sends a
commitment message (sid, ssid, Pi, z,
C0, C1) to an uncorrupted party Pj in the simulated interaction, then S checks if the commitment with
identifiers (sid, ssid) was sent before. If this is the case then S ignores the message. Otherwise, S must
extract the commitment bit committed to by A. To this end, S decrypts C0 and C1 and acts as follows
depending on the decrypted values:

– If Cb for some b ∈ {0, 1} decrypts to (Pi, Pj , sid, ssid, r) such that r is the decommitment information
for z as a commitment to b, and C1−b does not decrypt to a decommitment of 1 − b, then S stores the
value b and sends (Commit, sid, ssid, Pi, Pj , b) to FMCom, and sends FMCom’s Receipt message to Pj .

– If neither of C0 and C1 decrypt to (Pi, Pj , sid, ssid, r) such that r is the decommitment information for z,
then S does not store the value b since it will never be opened correctly, sends (Commit, sid, ssid, Pi, Pj , 0)
to FMCom and sends FMCom’s Receipt message to Pj .

– If C0 decrypts to (Pi, Pj , sid, ssid, r0) and C1 decrypts to (Pi, Pj , sid, ssid, r1), where r0 and r1 are the
decommitment information for z for the values 0 and 1, respectively and the identifiers in the decryption
information are the same then S outputs a special failure symbol.

Simulating Reveal commands where the committer is corrupted : When a corrupted party Pi sends a
Reveal message (sid, ssid, r, s, b) to an uncorrupted party Pj in the simulated interaction, then S checks
if (sid, ssid, Pi, z, C0, C1) is stored and that r and s are the decommitment information to b. If this is
the case, then S sends (Reveal, sid, ssid, Pi, Pj) to FMCom and the Reveal message from FMCom to Pj .
Otherwise, S ignores the message.

Via a sequence of hybrids, we will prove that no environment can distinguish an interaction of ΠCom

with A from an interaction in the ideal world with FMCom and S(as defined above). The sequence of hybrids
follows the lines of the [CLOS02] proof since in place of their trapdoor commitment scheme we use our
equivocal scheme ΠCom and we also send along with the commitment ciphertexts C0 and C1 containing the
decommitment information. For more details we refer the reader to [CLOS02].

Hyb0: This hybrid is identical to the real world.
Hyb1: This hybrid is similar to the real world except that we consider partially fake commitments. In par-

ticular, the secret key is not revealed upon corruption and in honest party commitments, a commitment
to b is generated as in the simulation by computing z ← QEnc

P̃K
(0, 0) and strings r0 , r1 such that r0

and r1 are correct decommitments to 0 and 1, respectively. Then, Cb is computed as an encryption to
Cb ← ENCCCA(Pi, Pj , sid, ssid, rb). On the other hand, C1−b is still chosen as a uniformly distributed
string where this modification is not revealed upon corruption.

Hyb2: This hybrid is similar to Hyb1 except that in commitments generated by honest parties, the ciphertext
C1−b equals C1−b ← ENCCCA(Pi, Pj , sid, ssid, r1−b) as generated by the simulator, rather than being
chosen uniformly. So in this hybrid we consider completely fake commitments

Hyb3: This hybrid is identical to the ideal world.

The indistinguishability between Hyb0 and Hyb1 follows immediately from the pseudorandomness/ CPA-
security of the underlying commitment scheme.
The indistinguishability between Hyb1 and Hyb2 follows from the pseudorandomness of encryptions
under ECCA.
Next, the only difference between hybrids Hyb2 and Hyb3 is that in Hyb2 the checks causing the simulator
to output failure are not carried out. If the simulator never outputs failure then the two hybrids are
identical. However considering the failure, the proof is carried out based on the CCA2 security of the
ECCA and assuming that the simulator is given the true values of the inputs for all honest parties.
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