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Abstract. In this work, we first formalize the notion of dynamic group signatures with distributed traceability,
where the capability to trace signatures is distributed among nmanagers without requiring any interaction. This
ensures that only the participation of all tracing managers permits tracing a signature, which reduces the trust
placed in a single tracing manager. The threshold variant follows easily from our definitions and constructions.
Our model offers strong security requirements. Our second contribution is a generic construction for the notion
which has a concurrent join protocol, meets strong security requirements, and offers efficient traceability, i.e.
without requiring tracing managers to produce expensive zero-knowledge proofs for tracing correctness. To
dispense with the expensive zero-knowledge proofs required in the tracing, we deploy a distributed tag-based
encryption with public verifiability. Finally, we provide some concrete instantiations, which, to the best of our
knowledge, are the first efficient provably secure realizations in the standard model simultaneously offering
all the aforementioned properties. To realize our constructions efficiently, we construct an efficient distributed
(and threshold) tag-based encryption scheme that works in the efficient Type-III asymmetric bilinear groups.
Our distributed tag-based encryption scheme yields short ciphertexts (only 1280 bits at 128-bit security), and is
secure under an existing variant of the standard decisional linear assumption. Our tag-based encryption scheme
is of independent interest and is useful for many applications beyond the scope of this paper. As a special case
of our distributed tag-based encryption scheme, we get an efficient tag-based encryption scheme in Type-III
asymmetric bilinear groups that is secure in the standard model.
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1 Introduction

Group signatures, introduced by Chaum and van Heyst [25], are a fundamental cryptographic primitive
allowing a member of a group (administered by a designated manager) to anonymously sign messages
on behalf of the group. In the case of a dispute, a designated tracing manager can revoke anonymity by
revealing the signer. The downside of granting a single entity the capability to trace signatures is the
high trust placed in such an entity. As a result, anonymity in group signatures relying on a single tracing
authority only holds if the tracing authority is fully honest. More precisely, a misbehaving tracing au-
thority could abuse the power granted to it and open signatures need not be opened. Therefore, reducing
the trust placed in the tracing manager by distributing the tracing capability among different parties is
desirable. While some of the existing schemes can be translated into the distributed traceability setting
by utilizing standard secret-sharing techniques, e.g. [10, 50], unfortunately, most of those secure in the
strong Bellare et al. model [13], would become impractical due to the expensive zero-knowledge proofs
required in the tracing.
Related Work. After their introduction, a long line of research on group signatures has emerged. Bellare,
Micciancio and Warinschi [11] formalized the security definitions for group signatures supporting static
groups. In such a notion, the group population is fixed at the setup phase. Moreover, the group manager
(which also provides the traceability feature) needs to be fully trusted. Later, Bellare, Shi and Zhang
[13] provided formal security definitions for the more practical dynamic case where members can enroll
at any time. Also, [13] separated the tracing role from the group management.

Besides correctness, the model of [13] defines three other requirements: anonymity, traceability and
non-frameability. Informally, anonymity requires that signatures do not reveal the identity of the signer;
traceability requires that the tracing manager is always able to identify the signer and prove such a
claim; non-frameability ensures that even if the group and tracing managers collude with the rest of the



group, they cannot frame an honest member. More recently, Sakai et al. [49] strengthened the security
definitions of group signatures by adding the opening soundness requirement. The stronger variant of
opening soundness ensures that even if all entities are corrupt, it is infeasible to produce a signature that
traces to two different members.

Constructions of group signatures in the random oracle model [12] include [24, 23, 8, 18, 22, 21, 46,
29, 41, 26, 15]. Constructions not relying on random oracles include [7, 35, 19, 36, 20, 5, 43, 44]. Other
measures in which the above mentioned constructions differ are: the security they offer, the size of the
signatures they yield and the round complexity of the join protocol. For instance, some constructions,
e.g. [18–20, 5], only offer a weaker variant of the anonymity requirement (i.e. CPA-Anonymity [18])
where the adversary is not granted access to a tracing oracle. On the other hand, other constructions, e.g.
[36, 26], offer full anonymity where in the game the adversary is allowed to ask for any signature except
the challenge signature to be traced.

Different approaches have been proposed to minimize the trust placed in the tracing manager. Sakai
et al. [48] recently proposed the notion of group signatures with message-dependent opening. In such
a notion, an admitter specifies what messages signatures upon which can be traced. This prevents the
tracing manager from opening signatures on messages not admitted by the admitter. In [38], the authors
informally highlighted how to extend their linkable group signature scheme (secure in the random oracle
model) to provide distributed traceability. In [30], the authors presented a scheme where the roles of the
managers can be distributed. Their scheme is only non-frameable against honest tracing managers, and
requires both random oracles and the generic group model.

Benjumea et al. [14] introduced the notion of fair traceable multi-group signatures which combines
the features of group signatures and traceable signatures [40] and in which traceability requires the co-
operation of a judge with designated parties known as fairness authorities. The authors also provided a
construction of their primitive in the random oracle model.

Zheng et al. [51] extended Manulis’s notion of democratic group signatures [45] to add threshold
traceability where group members must collude to trace signatures. Democratic group signatures differ
from group signatures in many aspects. In the former, the roles of the group and tracing managers
are eliminated and the group is managed by the members themselves. In addition, signatures are only
anonymous to non-members.
Our Contribution. We offer the following contributions:

1. A formal security model for group signatures with distributed traceability without requiring any
interaction. Only the participation of all n tracing managers makes it possible to trace a signature.
The more general k out of n threshold case follows easily from our definitions. Our model offers
strong security including the notion of tracing soundness [49].

2. A generic framework for constructing group signatures with efficient (i.e. without requiring expen-
sive zero-knowledge proofs in the tracing) distributed traceability that supports dynamic groups with
a concurrent join protocol and which is provably secure w.r.t. our strong security model.

3. Instantiations of the generic framework in the standard model. To the best of our knowledge, they
are the first provably secure realizations not relying on idealized assumptions offering all the afore-
mentioned properties.

4. An efficient distributed/threshold selective-tag weakly IND-CCA tag-based encryption scheme that
is based on an existing variant of the standard decisional linear assumption. Our scheme is non-
interactive (i.e. requires no interaction between the decryption servers) and is robust, i.e. the validity
of the decryption shares as well as the ciphertext is publicly verifiable. The scheme works in the
efficient Type-III bilinear groups setting and yields short ciphertexts which are much shorther than
those of the original Kiltz’s tag-based encryption scheme [42] and its threshold variant of [6]. By
combining our scheme with a strongly unforgeable one-time signature scheme as per the transforma-
tion in [42], we obtain an efficient fully secure IND-CCA distributed/threshold encryption scheme,
which is useful for many applications beyond the scope of this paper.
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Paper Organization. In Section 2, we give some preliminary definitions. We present our model for
group signatures with distributed traceability in Section 3. We present the building blocks we use in
Section 4. In Section 5, we present our generic construction and provide a proof of its security. In
Section 6, we present instantiations in the standard model.
Notation. A function ν(.) : N → R+ is negligible in c if for every polynomial p(.) and all sufficiently
large values of c, it holds that ν(c) < 1

p(c) . Given a probability distribution Y , we denote by x ← Y
the operation of selecting an element according to Y . If M is a probabilistic machine, we denote by
M(x1, . . . , xn) the output distribution ofM on inputs (x1, . . . , xn). By [n] we denote the set {1, . . . , n}.
By PPT we mean running in probabilistic polynomial time in the relevant security parameter.

2 Preliminaries

In this section we provide some preliminary definitions.
Bilinear Groups. A bilinear group is a tuple P := (G, G̃,T, p,G, G̃, e) where G, G̃ and T are groups of
a prime order p, andG and G̃ generate G and G̃, respectively. The function e is a non-degenerate bilinear
map e : G × G̃ −→ T. We use multiplicative notation for all the groups. We let G× := G \ {1G} and
G̃× := G̃ \ {1G̃}. In this paper, we focus on the efficient Type-III setting [32], where G 6= G̃ and there
is no isomorphism between the groups in either direction. We assume there is an algorithm BGrpSetup
taking as input a security parameter λ and outputting a description of bilinear groups.
Complexity Assumptions. We use the following existing assumptions:

Symmetric External Decisional Diffie-Hellman (SXDH). The Decisional Diffie-Hellman (DDH) assump-
tion holds in both groups G and G̃.

Decisional Linear in G (DLING) Assumption [33, 1]. GivenP and a tuple (Gh, Gv, Gu, Grh, Gsv, Gut) ∈
G6 for unknown h, r, s, t, u, v ∈ Zp, it is hard to determine whether or not t = r + s.

External Decisional Linear in G (XDLING) Assumption [1] 1. Given P and a tuple (Gh, Gv, Gu, Grh,
Gsv, Gut, G̃h, G̃v, G̃u, G̃rh, G̃sv) ∈ G6×G̃5 for unknown h, r, s, t, u, v ∈ Zp, it is hard to determine
whether or not t = r + s.

q-Strong Diffie-Hellman (q-SDH) Assumption in G [17]. Given the tuple (G,Gx, . . . , Gx
q
) ∈ Gq+1 for

x← Zp, it is hard to output a pair (c,G
1
x+c ) ∈ Zp ×G for an arbitrary c ∈ Zp\{−x}.

q-AGHO [3]. Given a random tuple (G, G̃, W̃ , X̃, Ỹ ) ∈ G × G̃4, and q uniformly random tuples
(Ai, Bi, Ri, D̃i) ∈ G3 × G̃, each satisfying:

e(Ai, D̃i) = e(G, G̃)

e(G, X̃) = e(Ai, W̃ )e(Bi, G̃)e(Ri, Ỹ ),

it is hard to output a new tuple (A∗, B∗, R∗, D̃∗) satisfying the above equations.

Group Signatures. Here we briefly review the model of Bellare et al. [13] for dynamic group signatures
with a single tracing authority. A dynamic group signature scheme consists of the following algorithms:

• GKg(1λ) outputs a group public key gpk, a group manager’s secret key msk and a tracing key tsk.
• UKg(1λ) outputs a secret/public key pair (usk[uid],upk[uid]) for user uid.
• 〈Join(gpk, uid,usk[uid]), Issue(msk, uid,upk[uid])〉 is an interactive protocol between a user uid

and the group manager GM via which the user joins the group. If successful, the final state of the
Issue algorithm is stored in the registration table at index uid (i.e. reg[uid]), whereas that of the Join
algorithm is stored in gsk[uid] and is used as the user’s group signing key.

• Sign(gpk,gsk[uid],m) outputs a group signature Σ on the message m by member uid.

1 XDLING̃ can be defined analogously by giving G̃ut ∈ G̃ instead of Gut ∈ G.
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• Verify(gpk,m,Σ) verifies whether or not Σ is a valid group signature on m outputting a bit.
• Trace(gpk, tsk,m,Σ, reg) is the tracing algorithm in which the tracing manager uses its tracing key

tsk to identify the group member uid who produced the signature Σ plus a proof πTrace for such a
claim.

• TraceVerify(gpk, uid, πTrace,upk[uid],m,Σ) verifies the tracing proof πTrace outputting a bit ac-
cordingly.

Besides correctness, the security requirements defined by [13] are:

• Anonymity: A group signature does not reveal the identity of the member who produced it even when
the keys of the group manager and all group members are all revealed. This requirement relies on
the tracing manager being fully honest.

• Non-Frameability: Even if the group and tracing managers collude with the rest of the group, they
cannot frame an honest group member.

• Traceability: Even if the tracing manager and all group members are corrupt, they cannot produce a
signature that does not trace to a member of the group.

3 Syntax and Security of Dynamic Group Signatures with Distributed Traceability

The parties involved in a Dynamic Group Signature with Distributed Traceability (DGSDT ) are: a
group manager GM who authorizes who can join the group; κ tracing managers TM1, . . . ,TMκ which
only the participation of all of which makes it possible to identify who produced a signature; a set of
users who can join group at any time by contacting the group manager. A DGSDT scheme consists of
the following polynomial-time algorithms:

• GKg(1λ, κ) is run by a trusted third party. On input a security parameter λ and the number of tracing
managers κ, it outputs a group public key gpk, a group manager’s secret key msk and secret tracing
keys {tski}κi=1.

• UKg(1λ) outputs a secret/public key pair (usk[uid],upk[uid]) for user uid. We assume that the pub-
lic key table upk is publicly available (possibly via some PKI) so that anyone can obtain authentic
copies of the public keys.

• 〈Join(gpk, uid,usk[uid]), Issue(msk, uid,upk[uid])〉 is an interactive protocol between a user uid
and the group manager GM. Upon successful completion, uid becomes a member of the group. The
final state of the Issue algorithm is stored in the registration table at index uid (i.e. reg[uid]), whereas
that of the Join algorithm is stored in gsk[uid]. We assume that the communication in this interactive
protocol takes place over a secure (i.e. private and authentic) channel. The protocol is initiated by a
call to Join.

• Sign(gpk,gsk[uid],m) on input the group public key gpk, a user’s group signing key gsk[uid] and
a message m, outputs a group signature Σ on m by the group member uid.

• Verify(gpk,m,Σ) is a deterministic algorithm which checks whether or not Σ is a valid group
signature on m outputting a bit.

• TraceShare(gpk, tski,m,Σ) on input the group public key gpk, a tracing key tski belonging to
tracing manager TMi, a message m and a signature Σ, it outputs (ν, πTrace) where ν is the tracing
share of TMi of Σ and πTrace is a proof for the correctness of the tracing share. If TMi is unable to
compute her share, she outputs (⊥,⊥). If the validity of the shares are publicly verifiable, we just
omit πTrace.

• ShareVerify(gpk, tid, ν, πTrace,m,Σ) verifies whether the share ν is a valid tracing share of Σ by
tracing manager TMtid outputting a bit accordingly.

• TraceCombine(gpk, {(ν, πTrace)i}κi=1,m,Σ, reg) on input the group public key gpk, κ tracing shares
and their proofs, a message m, a signature Σ, and the users’ registeration table, it outputs an identity
uid > 0 of the user who produced Σ plus a proof θTrace attesting to this claim. If the algorithm is
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unable to trace the signature to a user, it returns (0, θTrace). This algorithm does not require any secret
information and hence could be run by any party.

• TraceVerify(gpk, uid, θTrace,upk[uid],m,Σ) on input the group public key gpk, a user identity uid,
a tracing proof θTrace, the user’s public key upk[uid], a message m, and a signature Σ, outputs 1 if
θTrace is a valid proof that uid has produced Σ or 0 otherwise.

3.1 Security of Dynamic Group Signatures with Distributed Traceability

Our model extends Bellare’s et al. model [13] to provide distributed traceability and additionally cap-
tures tracing soundness as recently defined by [49] in the context of group signatures with a single trac-
ing manager, which is vital for many applications as we explain later. Moreover, our non-frameability
definition is slightly stronger than that of [13].

The security requirements of a dynamic group signature with distributed traceability are: correctness,
anonymity, non-frameability, traceability and tracing soundness. To define those requirements, we use
a set of games in which the adversary has access to a set of oracles. The following global lists are
maintained: HUL is a list of honest users; CUL is a list of corrupt users whose personal secret keys have
been chosen by the adversary; BUL is a list of bad users whose personal and group signing keys have
been revealed to the adversary; SL is a list of signatures obtained from the Sign oracle; CL is a list of
challenge signatures obtained from the challenge oracle.

The details of the following oracles are given in Fig. 1.

AddU(uid) adds an honest user uid to the group.
CrptU(uid, pk) adds a new corrupt user whose public key upk[uid] is chosen by the adversary. This is

called in preparation for calling the SndM oracle.
SndM(uid,Min) used to engage in the Join-Issue protocol with the honest, Issue-executing group man-

ager.
SndU(uid,Min) used to engage in the Join-Issue protocol with an honest, Join-executing user uid on

behalf of the corrupt group manager.
RReg(uid) returns the registration information reg[uid] of user uid.
WReg(uid, val) modifies the entry reg[uid] by setting reg[uid] := val.
RevealU(uid) returns the personal secret key usk[uid] and the group signing key gsk[uid] of group

member uid.
Sign(uid,m) returns a signature on the message m by the group member uid.
CHb(uid0, uid1,m) is a left-right oracle for defining anonymity. The adversary sends a couple of identi-

ties (uid0, uid1) and a message m and receives a group signature by member uidb for b← {0, 1}.
TraceShare(tid,m,Σ) returns the tracing share of signature Σ of tracing manager TMtid.
Trace(m,Σ) returns the identity of the signer of the signature Σ, i.e. first obtains the different tracing

shares and then combines them.

The following security requirements are defined by the games in Fig. 2.
Correctness. This guarantees that: signatures produced by honest users are accepted by the Verify al-
gorithm, the tracing shares are accepted by the ShareVerify algorithm, and the final tracing outcome of
TraceCombine is accepted by the TraceVerify algorithm and points out to the user who produced the
signature.

Formally, a DGSDT scheme is correct if for all λ, κ ∈ N, the advantage AdvCorr
DGSDT ,A,κ(λ) :=

Pr[ExpCorr
DGSDT ,A,κ(λ) = 1] is negligible for all PPT adversaries A.

(Full) Anonymity. This requires that signatures do not reveal the identity of the group member who
produced them. In the game, the adversary can corrupt any user and fully corrupt the group manager. It
can also learn the secret tracing keys of up to κ−1 tracing managers of its choice. The only restriction is
that the adversary is not allowed to query the TraceShare and Trace oracles on the challenge signature.
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AddU(uid)
? If uid ∈ HUL ∪ CUL ∪ BUL Then Return ⊥.
? (usk[uid],upk[uid])← UKg(1λ).
? HUL := HUL ∪ {uid}, certuid :=⊥, decuid

Issue := cont.
? stuid

Join := (gpk, uid,usk[uid]).
? stuid

Issue := (msk, uid,upk[uid]).
? (stuid

Join,MIssue, decuid
Join)← Join(stuid

Join,⊥).
? While (decuid

Issue = cont and decuid
Join = cont) Do

◦ (stuid
Issue,MJoin, decuid

Issue)← Issue(stuid
Issue,MIssue).

◦ (stuid
Join,MIssue, decuid

Join)← Join(stuid
Join,MJoin).

? If decuid
Issue = accept Then reg[uid] := stuid

Issue.
? If decuid

Join = accept Then gsk[uid] := stuid
Join.

? Return upk[uid].
SndU(uid,Min)
? If uid ∈ CUL ∪ BUL Then Return ⊥.
? If uid /∈ HUL Then
◦ HUL := HUL ∪ {uid}.
◦ (usk[uid],upk[uid])← UKg(1λ).
◦ gsk[uid] :=⊥, Min :=⊥.

? If decuid
Join 6= cont Then Return ⊥.

? If stuid
Join is undefined

◦ stuid
Join := (gpk, uid,usk[uid]).

? (stuid
Join,Mout, decuid

Join)← Join(stuid
Join,Min)

? If decuid
Join = accept Then gsk[uid] := stuid

Join.
? Return (Mout, decuid

Join).
Trace(m,Σ)
? Return (⊥,⊥) if Verify(gpk,m,Σ) = 0 or (m,Σ) ∈ CL.
? For tid = 1 To κ Do
◦ (ν, πTrace)tid ← TraceShare(gpk, tsktid,m,Σ).

? Return TraceCombine(gpk, {(ν, πTrace)i}κi=1,m,Σ, reg).
TraceShare(tid,m,Σ)
? Return (⊥,⊥) if Verify(gpk,m,Σ) = 0 or (m,Σ) ∈ CL.
? Return TraceShare(gpk, tsktid,m,Σ).

RevealU(uid)
? Return ⊥ if uid /∈ HUL \ (CUL ∪ BUL).
? BUL := BUL ∪ {uid}.
? Return (usk[uid],gsk[uid]).
CrptU(uid, pk)
? Return ⊥ if uid ∈ HUL ∪ CUL.
? CUL := CUL ∪ {uid}.
? upk[uid] := pk, decuid

Issue := cont.
? stuid

Issue := (msk, uid,upk[uid]).
? Return accept.
RReg(uid)
? Return reg[uid].
WReg(uid, val)
? reg[uid] := val.
SndM(uid,Min)
? Return ⊥ if uid 6∈ CUL ∪ BUL.
? Return ⊥ if decuid

Issue 6= cont.
? If stuid

Issue is undefined
◦ stuid

Issue := (msk, uid,upk[uid]).
? (stuid

Issue,Mout, decuid
Issue)← Issue(stuid

Issue,Min).
? If decuid

Issue = accept Then reg[uid] := stuid
Issue.

? Return (Mout, decuid
Issue).

Sign(uid,m)
? Return ⊥ if uid /∈ HUL or gsk[uid] =⊥.
? Σ ← Sign(gpk,gsk[uid],m).
? SL := SL ∪ {(uid,m,Σ)}.
? Return Σ.
CHb(uid0, uid1,m)
? Return ⊥ if uid0 /∈ HUL or uid1 /∈ HUL.
? Return ⊥ if ∃b ∈ {0, 1} s.t. gsk[uidb] =⊥.
? Σ ← Sign(gpk,gsk[uidb],m).
? CL := CL ∪ {(m,Σ)}.
? Return Σ.

Fig. 1. Details of the oracles used in the security games

Since the adversary can learn the personal secret and group signing keys of any user, including the
challenge users, our definition captures full key exposure attacks. Also, since the adversary can corrupt
up to κ− 1 tracing managers, it can obtain up to κ− 1 tracing shares of the challenge signature.

In the game, the adversary chooses a message and two group members and gets a signature by either
member and wins if it correctly guesses the member. WLOG we allow the adversary a single call to
the challenge oracle. A hybrid argument (similar to that used in [13]) can be used to prove that this is
sufficient.

Formally, aDGSDT scheme is (fully) anonymous if for all λ, κ ∈ N, the advantage AdvAnon
DGSDT ,A,κ(λ)

is negligible for all PPT adversaries A, where

AdvAnon
DGSDT ,A,κ(λ) :=

∣∣Pr[ExpAnon-0
DGSDT ,A,κ(λ) = 1]− Pr[ExpAnon-1

DGSDT ,A,κ(λ) = 1]
∣∣ .

Non-Frameability. This ensures that even if the rest of the group as well as the group and all tracing
managers are fully corrupt, they cannot produce a signature that traces to an honest group member who
did not produce such a signature. Our definition is stronger than that used in other group signature
models, e.g. [13], in the sense that the adversary in our game wins even if it produces a new signature
on a message that was queried to the signing oracle, i.e. analogous to strong unforgeability in traditional
signatures. The definition can in a straightforward manner be adapted to the weaker variant by requiring
that the adversary’s signature is on a new message that the framed user did not sign.
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Experiment: ExpCorr
DGSDT ,A,κ(λ)

• (gpk,msk, {tski}κi=1)← GKg(1λ, κ); HUL := ∅.
• (uid,m)← A(gpk : AddU(·),RReg(·)).
• If uid /∈ HUL or gsk[uid] =⊥ Then Return 0.
• Σ ← Sign(gpk,gsk[uid],m).
• If Verify(gpk,m,Σ) = 0 Then Return 1.
• For tid = 1 To κ Do
◦ (ν, πTrace)tid ← TraceShare(gpk, tsktid,m,Σ).
◦ If νtid =⊥ or πTracetid =⊥ Then Return 1.
◦ If ShareVerify(gpk, tid, νtid, πTracetid ,m,Σ) = 0 Then Return 1.

• (uid∗, θTrace)← TraceCombine(gpk, {(ν, πTrace)tid}κtid=1,m,Σ, reg).
• If uid 6= uid∗ Then Return 1.
• If TraceVerify(gpk, uid, θTrace,upk[uid],m,Σ) 6= 1 Then Return 1 Else Return 0.

Experiment: ExpAnon-b
DGSDT ,A,κ(λ)

• (stinit,BTL ⊂ [κ])← Ainit(λ, κ).
• (gpk,msk, {tski}κi=1)← GKg(1λ, κ).
• HUL,CUL,BUL, SL,CL := ∅.
• b∗ ← Aguess

`
stinit, gpk,msk, {tski}i∈BTL : AddU(·),CrptU(·, ·), SndU(·, ·),WReg(·, ·, ),RevealU(·),

TraceShare(·, ·, ·),Trace(·, ·),CHb(·, ·, ·)
´
.

• Return b∗.

Experiment: ExpNon-Frame
DGSDT ,A,κ(λ)

• (gpk,msk, {tski}κi=1)← GKg(1λ, κ).
• HUL,CUL,BUL, SL := ∅.
• (m∗, Σ∗, uid∗, θ∗Trace)← A

`
gpk,msk, {tski}κi=1 : CrptU(·, ·), SndU(·, ·),WReg(·, ·),RevealU(·),

Sign(·, ·)
´
.

• If Verify(gpk,m∗, Σ∗) = 0 Then Return 0.
• If TraceVerify(gpk, uid∗, θ∗Trace,upk[uid∗],m∗, Σ∗) 6= 1 Then Return 0.
• If uid∗ /∈ HUL \ BUL or (uid∗,m∗, Σ∗) ∈ SL Then Return 0 Else Return 1.

Experiment: ExpTrace
DGSDT ,A,κ(λ)

• (gpk,msk, {tski}κi=1)← GKg(1λ, κ).
• HUL,CUL,BUL, SL := ∅.
• (m∗, Σ∗)← A

`
gpk, {tski}κi=1 : AddU(·),CrptU(·, ·), SndM(·, ·),RevealU(·),Sign(·, ·),RReg(·)

´
.

• If Verify(gpk,m∗, Σ∗) = 0 Then Return 0.
• For tid = 1 To κ Do
◦ (ν, πTrace)tid ← TraceShare(gpk, tsktid,m

∗, Σ∗).
◦ If νtid =⊥ or πTracetid =⊥ Then Return 1.
◦ If ShareVerify(gpk, tid, νtid, πTracetid ,m

∗, Σ∗) = 0 Then Return 1.
• (uid∗, θ∗Trace)← TraceCombine(gpk, {(ν, πTrace)i}κi=1,m

∗, Σ∗, reg).
• If uid∗ = 0 or TraceVerify(gpk, uid∗, θ∗Trace,upk[uid∗],m∗, Σ∗) = 0 Then Return 1 Else Return 0.

Experiment: ExpTrace-Sound
DGSDT ,A,κ(λ)

• (gpk,msk, {tski}κi=1)← GKg(1λ, κ).
• HUL,CUL,BUL, SL := ∅.
• (m∗, Σ∗, uid∗1, θ

∗
Trace1 , uid∗2, θ

∗
Trace2)← A

`
gpk,msk, {tski}κi=1 : CrptU(·, ·),WReg(·, ·)

´
.

• If Verify(gpk,m∗, Σ∗) = 0 or uid∗1 = uid∗2 or uid∗1 =⊥ or uid∗2 =⊥ Then Return 0.
• If ∃i ∈ {1, 2} s.t. TraceVerify(gpk, uid∗i , θ

∗
Tracei

,upk[uid∗i ],m
∗, Σ∗) = 0 Then Return 0 Else Return 1.

Fig. 2. Security games for dynamic group signatures with distributed traceability

Formally, aDGSDT scheme is non-frameable if for all λ, κ ∈ N, the advantage AdvNon-Frame
DGSDT ,A,κ(λ) :=

Pr[ExpNon-Frame
DGSDT ,A,κ(λ) = 1] is negligible for all PPT adversaries A.

Traceability. This ensures that the adversary cannot produce a signature that cannot be traced to a
member in the group. In the game, the adversary can corrupt any user and learn the tracing keys of all
tracing managers. The only restriction is that the adversary is not given the group manager’s secret key
as this would allow it to create dummy users which are thus untraceable.

Formally, a DGSDT scheme is traceable if for all λ, κ ∈ N, the advantage AdvTrace
DGSDT ,A,κ(λ) :=

Pr[ExpTrace
DGSDT ,A,κ(λ) = 1] is negligible for all PPT adversaries A.
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Tracing Soundness. Tracing soundness, as recently defined by [49] in the context of group signatures
with a single tracing manager, requires that even if the group and all tracing managers as well as all
members of the group collude, they cannot produce a valid signature that traces to two different mem-
bers. As shown (in the single tracing authority setting) in [49], such a property is important for many
applications. For example, applications where signers might get rewarded or where abusers might be
prosecuted. In such applications, it is important that signatures can only trace to one user. Refer to [49]
for more details.

Formally, a DGSDT scheme has tracing soundness if for all λ, κ ∈ N, AdvTrace-Sound
DGSDT ,A,κ(λ) :=

Pr[ExpTrace-Sound
DGSDT ,A,κ(λ) = 1] is negligible for all PPT adversaries A.

4 Building Blocks

In this section we present the building blocks that we use in our constructions.

4.1 Distributed Tag-Based Encryption with Public Verification

A Distributed Tag-Based Encryption scheme DTBE is a special case of threshold tag-based encryption
[6] where n out of n decryption servers must compute their decryption shares honestly for the decryp-
tion to succeed. Public verification requires that checking the well-formedness of the ciphertext only
require public information. We say the scheme is non-interactive if decrypting a ciphertext requires no
interaction among the decryption servers. Also, the scheme is robust if invalid decryption shares can be
identified by the combiner.

Formally, a DTBE scheme for a message space MDT BE and a tag space TDT BE is a tuple of
polynomial-time algorithms (Setup,Enc, IsValid, ShareDec,ShareVerify,Combine),where Setup(1λ, n)
outputs a public key pk and vectors svk = (svk1, . . . , svkn) and sk = (sk1, . . . , skn) of verifica-
tion/secret keys for the decryption servers; Enc(pk, t,m) outputs a ciphertext Cdtbe on the message m
under the tag t; IsValid(pk, t, Cdtbe) outputs 1 if the ciphertext is valid under the tag t w.r.t. the pubic
key pk or 0 otherwise; ShareDec(pk, ski, t, Cdtbe) takes as input the public key pk, the i-th server secret
key ski, a tag t, and the ciphertext Cdtbe, and outputs the i-th server decryption share νi of Cdtbe or the
reject symbol ⊥; ShareVerify(pk, svki, t, Cdtbe, νi) takes as input the public key pk, the i-th server veri-
fication key svki, a tag t, the ciphertext Cdtbe, and the i-th server decryption share νi and outputs 1 if the
decryption share νi is valid or 0 otherwise. Combine(pk, {svki}ni=1, {νi}ni=1, Cdtbe, t) outputs either the
message m or the reject symbol ⊥.

We say the scheme is correct if for every message m ∈ MDT BE , every tag t ∈ TDT BE and every
(pk, {svk}ni=1, {sk}ni=1) output by Setup, if Cdtbe ← Enc(pk, t,m) then we have that:

1. ∀i ∈ [n], if νi ← ShareDec(pk, ski, t, Cdtbe) then ShareVerify(pk, svki, t, Cdtbe, νi) = 1.
2. m← Combine(pk, {svki}ni=1, {νi}ni=1, Cdtbe, t).

Besides correctness, we require two security properties: Selective-Tag weak Indistinguishability
against Adaptive Chosen Ciphertext Attacks (ST-wIND-CCA) [42] and Decryption Consistency (DEC-
CON). Informally, the former requires that an adversary who gets a decryption oracle for any ciphertext
under a tag different from the target tag (which is chosen beforehand), cannot distinguish which chal-
lenge message was encrypted. The latter requires that an adversary cannot output two different sets of
decryption shares of a ciphertext which open differently. The formal definitions of those can be found in
Appendix A.
Our Distributed Tag-Based Encryption Scheme. We provide in Fig. 3 a new efficient construction
of a distributed tag-based encryption schme with public verification that works in the efficient Type-III
bilinear group setting. Our scheme which is secure in the standard model under a variant of the DLIN
assumption, namely, the XDLING assumption is based on Kiltz’s tag-based encryption scheme [42] and
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DT BE .Setup(1λ, n).
◦ P ← BGrpSetup(1λ).
◦ h,w, z, {ui}ni=1, {vi}

n
i=1 ← Zp.

u :=
Pn
i=1 ui, v :=

Pn
i=1 vi, (H, H̃) := (Gh, G̃h),

(U, Ũ) := (Hu, H̃u), (V, Ṽ ) := (U
1
v , Ũ

1
v ),

(W, W̃ ) := (Hw, H̃w), (Z, Z̃) := (V z , Ṽ z).
◦ ski := (ui, vi), svki := (Ũi := H̃ui , Ṽi := Ṽ vi).
◦ pk := (P, H, H̃, U, Ũ , V, Ṽ ,W, W̃ , Z, Z̃).
DT BE .Enc(pk, t,M)
◦ r1, r2 ← Zp; C1 := Hr1 , C2 := V r2 ,
C3 := MUr1+r2 , C4 := (U tW )r1 , C5 := (U tZ)r2 .

◦ Cdtbe :=
“
C1, C2, C3, C4, C5

”
.

DT BE .Combine(pk, {svki}ni=1, {νi}
n
i=1, Cdtbe, t)

◦ If DT BE .IsValid(pk, t, Cdtbe) = 0 Then Return ⊥.
◦ Parse Cdtbe as (C1, C2, C3, C4, C5) .
◦ Parse νi as (Ci,1, Ci,2) and svki as (Ũi, Ṽi).
◦ Return ⊥ if ∃i s.t. DT BE .ShareVerify(pk, svki, t, Cdtbe, νi) = 0.
◦ Return M := C3Qn

i=1 Ci,1Ci,2
.

DT BE .ShareDec(pk, ski, t, Cdtbe)
◦ Return ⊥ if DT BE .IsValid(pk, t, Cdtbe) = 0.
◦ Parse Cdtbe as (Ci)

5
i=1 and ski as (ui, vi).

◦ Return νi := (Ci,1 := Cui
1 , Ci,2 := Cvi

2 ).
DT BE .ShareVerify(pk, svki, t, Cdtbe, νi)

◦ Parse svki as (Ũi, Ṽi) and νi as (Ci,1, Ci,2).
◦ Parse Cdtbe as (C1, C2, C3, C4, C5).
◦ Return 0 If DT BE .IsValid(pk, t, Cdtbe) = 0.
◦ If e(Ci,1, H̃) 6= e(C1, Ũi) Or

e(Ci,2, Ṽ ) 6= e(C2, Ṽi) Then Return 0.
◦ Else Return 1.
DT BE .IsValid(pk, t, Ctbe)
◦ Parse Cdtbe as (C1, C2, C3, C4, C5).
◦ If e(C1, Ũ

tW̃ ) 6= e(C4, H̃) Or
e(C2, Ũ

tZ̃) 6= e(C5, Ṽ ) Then Return 0.
◦ Else Return 1.

Fig. 3. Our distributed tag-based encryption scheme

its Type-I threshold variant in [6]. Our scheme is efficient and yields ciphertexts of size G5. Note that
in Type-III bilinear groups, elements of G are much smaller than their Type-I counterparts, especially
now that small-characteristic symmetric bilinear groups are rendered insecure [9, 34]. To give a sense of
comparison, we outline that at 128-bit security, the size of elements of G is 256 bits whereas that of their
large-characteristic symmetric groups counterparts is 1536 bits. Therefore, our construction yields much
shorter ciphertexts than the variants of Kiltz’s scheme in symmetric bilinear groups. Our scheme is of
independent interest and has other applications beyond the scope of this paper. For instance, combining
it with a strongly unforgeable one-time signature scheme (e.g. the full Boneh-Boyen scheme) as per
the transformation in [42], we get an efficient distributed (or threshold) IND-CCA secure encryption
scheme [27, 28] in Type-III groups which is secure in the standard model under the XDLING and q-
SDH assumptions. In addition, when n = 1, we obtain a tag-based encryption scheme in the efficient
Type-III setting with 29% shorter ciphertexts than the Type-III variant of Kiltz’s scheme in [39] (which
yields ciphertexts of size G3 × G̃2). Unlike the scheme in [39], which only works for a polynomial (in
the security parameter) message space, our scheme has no restriction on the message space.

For simplicity we consider the n-out-of-n case. However, our scheme can, in a straightforward man-
ner, be adapted to the k-out-of-n case by deploying any k-out-of-n secret sharing scheme to compute
the servers’ secret keys.

We prove the following Theorem in Appendix B

Theorem 1. The construction in Fig. 3 is a secure distributed tag-based encryption scheme if the
XDLING assumption holds.

4.2 Digital Signatures

A digital signature for a message spaceMDS is a tuple of polynomial-time algorithmsDS := (KeyGen,
Sign,Verify) where KeyGen outputs a pair of secret/public keys (sk, pk); Sign(sk,m) outputs a signature
σ on the message m; Verify(pk,m, σ) outputs 1 if σ is a valid signature on m.

Besides correctness, we require existential unforgeability under adaptive chosen-message attack
which demands that all PPT adversaries getting the public key and access to a sign oracle, have a negli-
gible advantage in outputting a valid signature on a message that was not queried to the sign oracle. A
weaker variant of existential unforgeability (i.e. existential unforgeability under a weak chosen-message
attack) requires that the adversary sends all its queries before seeing the public key.
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DS.KeyGen(P)
◦ Choose x, y ← Zp and set (X,Y ) := (Gx, Gy).
◦ Return sk := (x, y) and pk := (X,Y ).
DS.Sign(sk,m)
◦ Choose r ← Zp s.t. x+ ry +m 6= 0,

return σ̃ := G̃
1

x+ry+m .
DS.Verify(pk,m, σ)

◦ Return 1 iff e(XY rGm, σ̃) = e(G, G̃)
or 0 otherwise.

DS.KeyGen(P)
◦ Choose x← Zp and set X := Gx.
◦ Return sk := x and pk := X.
DS.Sign(sk,m)

◦ If x+m 6= 0, return σ̃ := G̃
1

x+m .
DS.Verify(pk,m, σ)

◦ Return 1 iff e(XGm, σ̃) = e(G, G̃)
or 0 otherwise.

Fig. 4. The Full Boneh-Boyen (Left) and the Weak Boneh-Boyen (Right) signatures

SPDSS.Setup(1λ)

◦ P ← BGrpSetup(1λ).
◦ F ← G. Return param := (P, F ).
SPDSS.KeyGen(param)

◦ Choose x← Zp and set X̃ := G̃x.
◦ Set sk := x and pk := X̃. Return (sk, pk).
SPDSS.Sign(sk,M)

◦ r ← Zp, Ω̃1 := G̃r , Ω2 := M
x
r F

1
r ,

Ω3 := Ω
x
r
2 G

1
r , the token is Ω4 := G

1
r .

◦ Return σ :=
“
Ω̃1, Ω2, Ω3

”
.

SPDSS.Randomize(M,σ,Ω4)

◦ r′ ← Zp, Ω̃′1 := Ω
1
r′
1 , Ω′2 := Ωr

′

2 ,
Ω′3 := Ωr

′2

3 Ω
r′(1−r′)
4 .

SPDSS.Verify(pk,M, σ)

◦ Return 1 if e(Ω2, Ω̃1) = e(M, X̃)e(F, G̃)

and e(Ω3, Ω̃1) = e(Ω2, X̃)e(G, G̃).

SPDSS.Setup(1λ)

◦ P ← BGrpSetup(1λ).
◦ Return param := P .
SPDSS.KeyGen(param)

◦ w, x, y1, y2 ← Zp, W̃ := G̃w, X̃ := G̃x,
Ỹ1 := G̃y1 , Ỹ2 := G̃y2 .

◦ sk := (w, x, y1, y2), pk := (W̃ , X̃, Ỹ1, Ỹ2).
◦ Return

`
sk, pk

´
.

SPDSS.Sign(sk,M)

◦ Ω1 ← G, a← Zp, Ω2 := Ga, Ω̃3 := G̃
1
a ,

Ω4 := Gx−awΩ−y11 M−y2 .
◦ Return σ :=

“
Ω1, Ω2, Ω̃3, Ω4

”
.

SPDSS.Verify(pk,M, σ)

◦ Return 1 if e(Ω2, Ω̃3) = e(G, G̃) and
e(G, X̃) = e(Ω2, W̃ )e(Ω4, G̃)e(Ω1, Ỹ1)e(M, Ỹ2).

Fig. 5. The structure-preserving signature of [4] (Left) and that of [3] (Right)

In this paper, we use two digital signatures by Boneh and Boyen [17] which we refer to as the Full
Boneh-Boyen signature (Fig. 4 (Left)) and the Weak Boneh-Boyen signature (Fig. 4 (Right)), respec-
tively. Both schemes are secure under the q-SDH assumption. The weaker scheme is secure under a
weak chosen-message attack.

Structure-Preserving Signatures. Structure-preserving signatures [2] are signature schemes where the
message, the public key and the signature are all group elements, and signatures are verified by evaluat-
ing pairing product equations.

In this paper, we use two structure-preserving signatures from the literature. The first scheme is by
Abe et al. [4] which offers controlled re-randomizability where a signature can only be re-randomized if
the user has a special randomization token. The scheme in the asymmetric setting is illustrated in Fig. 5
(Left). The unforgeability of the scheme relies on an interactive assumption. Refer to [4] for details. The
second scheme we use is that of Abe et al. [3]. The scheme in the asymmetric setting is given in Fig. 5
(Right). The strong unforgeability of the scheme relies on the non-interactive q-AGHO assumption.

4.3 Strongly Unforgeable One-Time Signatures

A one-time signature scheme is a signature scheme that is unforgeable against an adversary who is only
allowed a single signing query. Strong Unforgeability requires that the adversary cannot even forge a
new signature on a message that she queried the sign oracle on. In this paper, we will instantiate the
one-time signature using the Full Boneh-Boyen signature scheme from Fig. 4.
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• Pairing Product Equation (PPE):
nQ
i=1

e(Ai, Ỹi)
mQ
i=1

e(Xi, B̃i)
mQ
i=1

nQ
j=1

e(Xi, Ỹj)
ki,j = tT ·

• Multi-Scalar Multiplication Equation (MSME) in G:
n′Q
i=1

A
yi

i

mQ
i=1

Xi
bi

mQ
i=1

n′Q
j=1

Xi
ki,jyj = T ·

• Multi-Scalar Multiplication Equation (MSME) in G̃:
m′Q
i=1

B̃
xi

i

nQ
i=1

Ỹi
ai

m′Q
i=1

nQ
j=1

Ỹi
ki,jxj

= T̃ ·

• Quadratic Equation (QE) in Zp:
n′P
i=1

aiyi +
m′P
i=1

xibi +
m′P
i=1

n′P
j=1

xiyj = t·

Fig. 6. Types of equations one can use Groth-Sahai proofs for

4.4 Non-Interactive Zero-Knowledge Proofs

Let R be an efficiently computable relation. For pairs (x,w) ∈ R, we call x the statement and w the
witness. We define the language L as all the statements x in R. A Non-Interactive Zero-Knowledge
(NIZK) proof system [16] for R is defined by a tuple of algorithms NIZK := (Setup,Prove,Verify,
Extract, SimSetup,SimProve).

Setup(1λ) outputs a common reference string crs and an extraction key xk which allows for witness
extraction. Prove(crs, x, w) outputs a proof π that (x,w) ∈ R. Verify(crs, x, π) outputs 1 if the proof is
valid, or 0 otherwise. Extract(crs, xk, x, π) outputs a witness. SimSetup(1λ) outputs a simulated refer-
ence string crsSim and a trapdoor key tr that allows for proof simulation. SimProve(crsSim, tr, x) outputs
a simulated proof πSim without a witness.

We require: completeness, soundness and zero-knowledge. Completeness requires that honestly gen-
erated proofs are accepted; Soundness requires that it is infeasible (but for a small probability) to produce
a valid proof for a false statement; Zero-knowledge requires that a proof reveals no information about
the witness used. For formal definitions refer to [16].

GROTH-SAHAI PROOFS. Groth-Sahai (GS) proofs [37] are efficient non-interactive proofs in the Com-
mon Reference String (CRS) model. The language for the system has the form

L := {statement | ∃witness : Ei(statement,witness)ni=1 hold },

where Ei(statement, ·) is one of the types of equation summarized in Fig. 6, where X1, . . . , Xm ∈
G, Ỹ1, . . . , Ỹn ∈ G̃, x1, . . . , xm′ , y1, . . . , yn′ ∈ Zp are secret variables (hence underlined), whereas
Ai, T ∈ G, B̃i, T̃ ∈ G̃, ai, bi, ki,j , t ∈ Zp, tT ∈ GT are public constants.

The proof system has perfect completeness, (perfect) soundness, composable witness-indistinguishabil-
ity/zero-knowledge. We use the SXDH-based instantiation of the proofs. Refer to [37] for details.

5 Our Generic Construction

In this section, we present our generic construction for dynamic group signatures with distributed trace-
ability.

Overview of the construction. The idea behind our generic construction has some in common with
Groth’s scheme [36] in that we combine a standard NIZK proof system with a weakly secure tag-based
encryption scheme and a strong one-time signature scheme to eliminate the need for the more expen-
sive simulation-sound NIZK systems [47] and IND-CCA public-key encryption schemes which were
required by the construction of Bellare et al. [13]. However, unlike [36], our framework provides dis-
tributed traceability, has a concurrent join protocol and achieves tracing soundness.

Our generic construction requires three digital signatures DS1, DS2 andWDS where the first two
have to be unforgeable against a standard adaptive chosen-message attack, whereas it suffices for the
third scheme to be unforgeable against a weak chosen-message attack. We also require a strongly
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Join(gpk, uid,usk[uid]) Issue(msk, uid,upk[uid])

(pkuid, skuid)←WDS.KeyGen(1λ)
siguid ← DS2.Sign(usk[uid], pkuid) siguid, pkuid−−−−−−−→

Abort if DS2.Verify(upk[uid], pkuid, siguid) = 0
certuid←−−−−

certuid ← DS1.Sign(msk, pkuid)

Abort if DS1.Verify(pkGM, pkuid, certuid) = 0
gsk[uid] := (skuid, pkuid, certuid) reg[uid] := (pkuid, siguid)

Fig. 7. The Join/Issue protocol for our construction

unforgeable one-time signature scheme OT S that is secure against an adaptive chosen-message at-
tack. Additionally, we require a NIZK proof of knowledge system NIZK and a ST-wIND-CCA dis-
tributed tag-based encryption scheme DT BE . In order to have efficient tracing, we ask that DT BE is
non-interactive and robust. As was noted by [31], such a propety simplifies tracing even in traditional
group signatures with a single tracing manager. Finally, we require a collision-resistant hash function
H : {0, 1}∗ → TDT BE . For simplicity and WLOG we assume that TDT BE = MWDS . Otherwise, one
could use a second hash function. Note that one can use the same signature scheme for both DS1 and
DS2 but using different key pairs.

The GKg algorithm runs NIZK.Setup to generate a common reference string crs for NIZK.
It also runs DT BE .Setup to generate (pkDT BE , {svki}κi=1, {ski}κi=1), and DS1.KeyGen to generate
(pkGM, skGM). The group public key is gpk := (1λ, crs, pkGM, pkDT BE , {svki}κi=1,H). The group man-
agers’ secret key is msk := skGM, whereas the tracing key of tracing manager TMi is tski := ski.

A new user creates her personal key pair by runningDS2.KeyGen to generate (upk[uid],usk[uid]).
When the user wishes to join the group, she generates a key pair (pkuid, skuid) for the signature scheme
WDS and then signs pkuid using DS2 and her personal secret key usk[uid] to obtain a signature siguid.
We use siguid as a proof when proving that the user has produced a group signature.

To join the group, the user sends pkuid and siguid to the group manager. If siguid is valid, the group
manager issues a membership certificate certuid (which is a DS1 signature on pkuid that verifies w.r.t.
pkGM).

To sign a message m, the member chooses a fresh key pair (otsvk, otssk) for the one-time signature
OT S and encrypts her public key pkuid withDT BE usingH(otsvk) as tag (and possibly some random-
ness τ ) to obtain a ciphertext Cdtbe. She then signs H(otsvk) using the digital signature schemeWDS
and her secret key skuid to obtain a signature σ. She then usesNIZK to produce a proof π proving that:
she did the encryption correctly, she has a signature σ onH(otsvk) that verifies w.r.t. her public key pkuid

and she has a certificate certuid on pkuid from the group manager. Finally, she signs (m,Cdtbe, otsvk, π)
using the one-time signature OT S to obtain σots. The group signature is Σ := (σots, π, Cdtbe, otsvk).
To verify the signature, one verifies the proof π and the one-time signature σots, and ensures that the
ciphertext Cdtbe is well-formed.

We remark here if DS1 and/or WDS schemes are re-randomizable, one can reveal the signature
components which are independent of their respective messages after re-randomization. This simplifies
the proof π and subsequently improves the efficiency. The revealed parts of those signatures can then be
included as the part of the message to be signed byOT S to ensure that one achieves the stronger notion
of non-frameability.

To trace a signature, the decryption shares νi of the ciphertext Cdtbe are obtained from the respective
tracing managers and then combined together in order to recover the plaintext pkuid. Then one just
needs to search in the registration table reg to see if any entry reg[j].pk matches pkuid. If this is the
case, (j, ({ν}κi=1, pkuid, reg[j].sig)) is returned. Otherwise, (0, ({ν}κi=1, pkuid,⊥)) is returned. Note that
combining the different tracing shares does not require the knowledge of any secret key and hence this
could be performed by any party. To verify the correctness of the tracing, one just needs to ensure that
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GKg(1λ, κ)

◦ (pkGM, skGM)← DS1.KeyGen(1λ); (pkDT BE , {svki}κi=1, {ski}
κ
i=1)← DT BE .Setup(1λ, κ).

◦ (crs, xk)← NIZK.Setup(1λ); Choose a collision-resistant hash function H : {0, 1}∗ → TDT BE .
◦ Let tski := ski, gpk := (1λ, crs, pkGM, pkDT BE , {svki}κi=1,H) and msk := skGM.
◦ Return (gpk, {tski}κi=1,msk).

UKg(1λ)

◦ (upk[i],usk[i])← DS2.KeyGen(1λ). Return (upk[i],usk[i]).
Sign(gpk,gsk[uid],m)

◦ (otsvk, otssk)← OT S.KeyGen(1λ); Cdtbe ← DT BE .Enc(pkDT BE ,H(otsvk), pkuid; τ).
◦ σ ←WDS.Sign(skuid,H(otsvk)).
◦ π ← NIZK.Prove(crs, {pkuid, τ, σ, certuid} : (Cdtbe,H(otsvk), pkGM, pkDT BE ) ∈ L).
◦ σots ← OT S.Sign(otssk, (m,Cdtbe, otsvk, π)).
◦ Return Σ := (σots, π, Cdtbe, otsvk).
Verify(gpk,m,Σ)

◦ Parse Σ as (σots, π, Cdtbe, otsvk) and gpk as (1λ, crs, pkGM, pkDT BE , {svki}κi=1,H).
◦ Return 1 if all the following verify; otherwise, return 0:
? OT S.Verify(otsvk, (m,Cdtbe, otsvk, π), σots) = 1 ∧ NIZK.Verify(crs, π) = 1.
? DT BE .IsValid(pkDT BE ,H(otsvk), Cdtbe) = 1.

TraceShare(gpk, tski,m,Σ)

◦ Parse Σ as (σots, π, Cdtbe, otsvk) and gpk as (1λ, crs, pkGM, pkDT BE , {svki}κi=1,H).
◦ Return ⊥ if Verify(gpk,m,Σ) = 0 Else Return DT BE .ShareDec(pkDT BE , tski,H(otsvk), Cdtbe).
ShareVerify(gpk, tid, ν,m,Σ)

◦ Parse Σ as (σots, π, Cdtbe, otsvk) and gpk as (1λ, crs, pkGM, pkDT BE , {svki}κi=1,H).
◦ Return DT BE .ShareVerify(pkDT BE , svktid,H(otsvk), Cdtbe, ν).
TraceCombine(gpk, {νi}κi=1,m,Σ, reg)

◦ Parse Σ as (σots, π, Cdtbe, otsvk) and gpk as (1λ, crs, pkGM, pkDT BE , {svki}κi=1,H).
◦ Return (0, ({ν}κi=1,⊥,⊥)) if for any i ∈ [κ] DT BE .ShareVerify(pkDT BE , svki,H(otsvk), Cdtbe, νi) = 0.
◦ pkuid ← DT BE .Combine(pkDT BE , {svki}κi=1, {νi}

κ
i=1, Cdtbe,H(otsvk)).

◦ Return (0, ({ν}κi=1,⊥,⊥)) if pkuid =⊥.
◦ If ∃j s.t. reg[j].pk = pkuid Then Return (j, ({ν}κi=1, pkuid, reg[j].sig)).
◦ Return (0, ({ν}κi=1, pkuid,⊥)).
TraceVerify(gpk, uid, θTrace,upk[uid],m,Σ)
◦ Parse θTrace as ({ν}κi=1, pkuid, siguid) and Σ as (σots, π, Cdtbe, otsvk).
◦ Parse gpk as (1λ, crs, pkGM, pkDT BE , {svki}κi=1,H).
◦ pk′uid ← DT BE .Combine(pkDT BE , {svki}κi=1, {νi}

κ
i=1, Cdtbe,H(otsvk)).

◦ If uid = 0 Then Return (pk′uid =⊥ ∨ Verify(gpk,m,Σ) = 0).
◦ If pk′uid 6= pkuid Then Return 0 Else Return DS2.Verify(upk[uid], pkuid, siguid).

Fig. 8. Our generic construction

all decryption shares verify correctly and in the case that j > 0, one needs to verify that the signature
sig verifies w.r.t. upk[j].

The construction is detailed in Fig. 8, whereas the Join/Issue protocol is given in Fig. 7. The language
associated with the NIZK proof is as follows, where for clarity we underline the elements of the witness:

L :
{(

(Cdtbe,H(otsvk), pkGM, pkDT BE), (pkuid, τ, σ, certuid)
)

:

DS1.Verify(pkGM, pkuid, certuid) = 1 ∧ WDS.Verify(pkuid,H(otsvk), σ) = 1

∧ DT BE .Enc(pkDT BE ,H(otsvk), pkuid; τ) = Cdtbe

}
·

Theorem 2. The construction in Fig. 7 and Fig. 8 is a secure dynamic group signature with distributed
traceability providing that the building blocks are secure w.r.t. their security requirements.

The full proof of this Theorem can be found in Appendix D.
Next, we present two example instantiations of the generic construction in the standard model.
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6 Instantiations in the Standard Model

Here we provide two example instantiations of the generic framework in the standard model.

6.1 Instantiation I

Here we instantiate the signature schemes DS1 and DS2 using the recent structure-preserving signature
scheme by Abe et al. [4] (shown in Fig. 5 (Left)), and instantiateWDS andOT S with the weak and full
Boneh-Boyen signature schemes, respectively. We also instantiate NIZK using the Groth-Sahai proof
system. For the distributed tag-based encryption scheme, we use our new scheme from Fig 3. The size
of the signature of this instantiation is G24× G̃21×Z5

p. The details are in Appendix C. The proof for the
following Theorem follows from that of Theorem 2.

Theorem 3. Instantiation I is secure if the Abe et al. signature scheme [4] is unforgeable and the SXDH,
XDLING and q-SDH assumptions hold.

6.2 Instantiation II

To eliminate the need for interactive intractability assumptions, we instead use the strongly unforgeable
signature scheme by Abe et al. [3] (Fig. 5 (Right)) to instantiate DS1 and DS2 signature schemes. The
rest of the tools remain the same as in Instantiation I. The size of the group signature of this instantiation
is G28 × G̃24 × Z3

p. The details are in Appendix C. The proof for the following Theorem follows from
that of Theorem 2.

Theorem 4. Instantiation II is secure if the SXDH, q-AGHO, XDLING and q-SDH assumptions hold.

6.3 Efficiency Comparison

Since there are no existing constructions which simultaneously offer all the properties as our construc-
tions, we compare the size of the signature of our instantiations with that of Groth’s scheme [35] for the
single tracing manager setting which is considered the-state-of-the-art. Groth’s scheme yields signatures
of size G46×Zp in symmetric groups. Besides the extra distributed traceability feature, our instantiations
involve fewer rounds in the join protocol than [35] and, in addition, satisfy tracing soundness.

Acknowledgments. The author was supported by ERC Advanced Grant ERC-2010-AdG-267188-CRIPTO
and EPSRC via grant EP/H043454/1.
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A Security of Distributed Tag-Based Encryption

Here we define the security requirements of a distributed tag-based encryption.

• Selective-Tag Indistinguishability against Adaptive Chosen Ciphertext Attacks (ST-IND-CCA): This
requires that for all λ, n ∈ N, for all polynomial-time adversaries A the advantage

AdvST-IND-CCA
DT BE,A,n (λ) :=

∣∣Pr[ExpST-IND-CCA-1
DT BE,A,n (λ) = 1]− Pr[ExpST-IND-CCA-0

DT BE,A,n (λ) = 1]
∣∣

is negligible in λ, where the game is shown in Fig. 9. In the game, ShareDect
∗

returns⊥ if queried on
(t∗, C∗dtbe). A weaker variant of the ST-IND-CCA definition, which we use here, is called Selective-
Tag weak Indistinguishability against Adaptive Chosen Ciphertext Attacks (ST-wIND-CCA) [6],
which is analogous to that defined by Kiltz [42] for traditional tag-based encryption, is when in
the above game ShareDect

∗
rejects any query on (t∗, ·). Note that by eliminating the requirement

that the adversary outputs the target tag beforehand, one obtains stronger variants of the above two
notions.

• Decryption Consistency (DEC-CON): This requirement is similar to that defined in [31] for tra-
ditional public key encryption and is stronger than the selective-tag variant defined in [6]. This
requires that for all λ, n ∈ N, for all PPT adversaries A, the advantage AdvDEC-CON

DT BE,A,n(λ) :=
Pr[ExpDEC-CON

DT BE,A,n(λ) = 1] is negligible in λ, where the game is defined in Fig. 10.

Experiment: ExpST-IND-CCA-b
DT BE,A,n (λ):

• (S ⊂ [n], t∗, stinit)← Ainit

“
1λ, n

”
, where |S| ≤ n− 1.

• (pk, {svki}ni=1, {ski}
n
i=1)← Setup(1λ, n).

• (m0,m1, stfind)← Afind

“
stinit, pk, {svki}ni=1, {ski}i∈S : ShareDect

∗
(pk, ski, ·, ·)

”
, where |m0| = |m1|.

• C∗dtbe ← Enc(pk, t∗,mb).
• b∗ ← Aguess

“
stfind, C

∗
dtbe : ShareDect

∗
(pk, ski, ·, ·)

”
.

• Return b∗.

Fig. 9. The ST-IND-CCA security game for distributed tag-based encryption
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Experiment: ExpDEC-CON
DT BE,A,n(λ):

• (pk, {svki}ni=1, {ski}
n
i=1)← Setup(1λ, n).

• (t, Cdtbe, {νi}ni=1, {ν
′
i}
n
i=1)← A (pk, {svki}ni=1, {ski}

n
i=1).

• If IsValid(pk, t, Cdtbe) = 0 Then Return 0.
• If ∃i ∈ [n] s.t. ShareVerify(pk, svki, t, Cdtbe, νi) = 0 or ShareVerify(pk, svki, t, Cdtbe, ν

′
i) = 0 Then Return 0.

• If Combine(pk, {svki}ni=1, {νi}
n
i=1, Cdtbe, t) 6= Combine(pk, {svki}ni=1, {ν

′
i}
n
i=1, Cdtbe, t) Then Return 1.

• Return 0.

Fig. 10. The decryption consistency game for distributed tag-based encryption

B Proof of Theorem 1

Proof. Lemma 1. The construction is selective-tag weakly indistinguishable against adaptive chosen
ciphertext attacks.

Proof. We show if there exists an adversary A winning the ST-wIND-CCA game, we can construct an
adversary B that breaks the XDLING assumption such that

AdvST-wIND-CCA
DT BE,A,n (λ) ≤ AdvXDLING

B (λ)

Adversary B gets P and the tuple (H,U, V,Hr, V s, U t, H̃, Ũ , Ṽ , H̃r, Ṽ s) ∈ G6×G̃5 from its game
and its aim is to decide whether or not t = r+s. It startsA to get the set S and the target tag t∗. Adversary
B then selects an index j from the set [n] \ S. For all servers i ∈ [n] \ {j}, B chooses αi, βi ← Zp that
will be used as the secret key for server i. The corresponding server verification key is computed as
(Ũi, Ṽi) := (H̃αi , Ṽ βi). For the remaining server j, B computes its verification key as (Ũj , Ṽj) :=
( ŨQn

i=1,i 6=j Ũi
, ŨQn

i=1,i 6=j Ṽi
). It also chooses d1, d2 ∈ Zp and computes (W, W̃ ) :=

(
U−t

∗
Hd1 , Ũ−t

∗
H̃d1

)
,

(Z, Z̃) :=
(
U−t

∗
V d2 , Ũ−t

∗
Ṽ d2

)
. It then sets pk := (P, H, H̃, U, Ũ , V, Ṽ ,W, W̃ , Z, Z̃) and sends pk,

{svk}ni=1 and {ski}i∈S to A.
When answering ShareDect

∗
queries by server i 6= j on any tag t 6= t∗, B first checks that the

ciphertext is valid and if so, it returns (Ci,1 := Cαi1 , Ci,2 := Cβi2 ). For the j-th server, after verifying

that the ciphertext is valid, it returns
(
Cj,1 := (C4C

−d1
1 )

1
t−t∗Qn

i=1,i 6=j C
αi
1

, Cj,2 := (C5C
−d2
2 )

1
t−t∗Qn

i=1,i 6=j C
βi
2

)
. This is a valid

decryption share satisfying e(Cj,1, H̃) = e(C1, Ũj) and e(Cj,2, Ṽ ) = e(C2, Ṽj).
In the challenge phase, B receives two messages M0 and M1. It randomly chooses b ← {0, 1} and

responds with a challenge ciphertext (C1, C2, C3, C4, C5) := (Hr, V s, Hrd1 , V sd2 ,MbU
t). Note this is

a valid ciphertext satisfying e(C1, Ũ
tW̃ ) = e(C4, H̃) and e(C2, Ũ

tZ̃) = e(C5, Ṽ ).
Any further decryption queries made byA are answered by B as above. Eventually, whenA outputs

its guess b∗, B outputs b∗.

Lemma 2. The construction satisfies decryption consistency.

Proof. Suppose that an adversary A outputs two valid sets {(Ci,1, Ci,2)}ni=1 and {(C ′i,1, C ′i,2)}ni=1 of
decryption shares of a ciphertext Cdtbe. For it to win, both sets must contain valid shares, i.e. all 2n
shares must be accepted by the ShareVerify algorithm. Thus, we must have e(Ci,1, H̃) = e(C1, Ũi) and
e(Ci,2, Ṽ ) = e(C2, Ṽi) for i = 1, . . . , n. This means we must have

∏n
i=1Ci,1 = Cu1 and

∏n
i=1Ci,2 =

Cv2 . Similarly, we must have e(C ′i,1, H̃) = e(C1, Ũi) and e(C ′i,2, Ṽ ) = e(C2, Ṽi) for i = 1, . . . , n. This
means that we must have

∏n
i=1C

′
i,1 = Cu1 and

∏n
i=1C

′
i,2 = Cv2 . Thus, we must have Ci,1 = C ′i,1 and

Ci,2 = C ′i,2 for i = 1, . . . , n which contradicts the winning condition. This concludes the proof.
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C Instantiations Details

C.1 Instantiation I

Here we have certuid = (Ω̃1, Ω2, Ω3) ∈ G̃ × G2 and the user has the re-randomization token Ω4 ∈ G,
Cdtbe = (C1, C2, C3, C4, C5) ∈ G5, pkGM = X̃ , pkuid ∈ G, and pkDT BE = (P, H, H̃, U, Ũ , V, Ṽ ,W,
W̃ , Z, Z̃).

• To prove DS1.Verify(pkGM, pkuid, certuid) = 1, the user re-randomizes certuid using the token Ω4

to obtain a new membership certificate cert′uid = (Ω̃′1, Ω
′
2, Ω

′
3) and then proves the following linear

equations

e(Ω′2, Ω̃
′
1) = e(pkuid, X̃)e(F , G̃) e(Ω′3, Ω̃

′
1) = e(Ω′2, X̃)e(G, G̃) G−G = 0 F − F = 0

• To proveWDS.Verify(pkuid,H(otsvk), σ̃) = 1 where pkuid ∈ G, σ̃ ∈ G̃. The signer proves

e(pkuid, σ̃)e(GH(otsvk), σ̃)e(G, G̃) = 1

• To prove that DT BE .Enc(pkDT BE ,H(otsvk), pkuid; (r1, r2)) = Cdtbe, the signer proves C1, C2 and
C3 were computed correctly and the rest can be verified by checking that e(C4, H̃) = e(C1, Ũ

H(otsvk)W̃ )
and e(C5, Ṽ ) = e(C2, Ũ

H(otsvk)Z̃). Thus, this requires proving

C1 = Hr1 C2 = V r2 C3 = pkuidU
r1U r2

Note that all the proven equations are simulatable and hence the corresponding proofs are zero-
knowledge. The total size of the signature is G24 + G̃21 + Z5

p .

C.2 Instantiation II

The only difference from Instantiation I is the manner in which certuid is verified. We have pkuid ∈ G,
certuid = (Ω1, Ω2, Ω̃3, Ω4) and pkGM = (W̃ , X̃, Ỹ1, Ỹ2).

To prove DS1.Verify(pkGM, pkuid, certuid) = 1, the user proves the following equations

e(Ω2, Ω̃3) = e(G, G̃) e(G, X̃) = e(Ω2, W̃ )e(Ω4, G̃)e(Ω1, Ỹ1)e(pkuid, Ỹ2) G−G = 0

The rest of the proofs are the same as in Instantiation I. Again, all the proven equations are simulatable
and hence the corresponding proofs are zero-knowledge. The size of the signature is G28 × G̃24 × Z3

p.

D Proof of Theorem 2

Proof. Correctness of the construction follows from that of the underlying building blocks.

Lemma 3. IfNIZK is zero-knowledge, the tag-based encryption schemeDT BE is selective-tag weakly
IND-CCA secure, the one-time signature OT S is strongly existentially unforgeable, and the hash func-
tion H is collision-resistant then the construction satisfies strong full anonymity against full-key expo-
sure.

Proof. We show that if there exists an adversary B which breaks the anonymity of the construction,
we can build adversaries A1 against the collision-resistance of the hash function H, A2 against the
strong unforgeability of the one-time signatureOT S,A3 against the NIZK property of the proof system
NIZK, andA4 against the selective-tag weakly IND-CCA security of the tag-based encryption scheme
DT BE .
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The collision-resistance ofH ensures thatB has a negligible probability in finding otsvk′ s.t.H(otsvk′)
collides with the tag H(otsvk∗) we use for the challenge signature. If this is not the case, we can use B
to build an adversary A1 that breaks the collision-resistance ofH.

The strong existential unforgeability of OT S ensures that B has a negligible probability in forging
a one-time signature under otsvk∗ we use in the challenge signature. If this is not the case, we can build
an adversary A2 that wins the strong unforgeability game of OT S .

We start NIZK in the simulation setting which means that the proof π is now zero-knowledge and
hence does not reveal any information about the witness.

We now proceed to show how to use B to build an adversary A4 against the selective-tag weakly
IND-CCA security of DT BE . Adversary A4 starts B to get the list BTL of the tracing managers it
would like to corrupt. Adversary A4 runs the GKg algorithm where it starts by randomly choosing a
key pair (otsvk∗, otssk∗) for OT S that it will use in answering B’s challenge signature. This needed to
be chosen beforehand because the tag-based encryption scheme is only selective-tag secure. A4 sends
(H(otsvk∗),BTL) to its own game and gets back pkDT BE , {svki}i∈[κ] and {ski}i∈BTL. In its game, A4

has access to a share decryption oracle ShareDecH(otsvk∗) which it can query on any ciphertext under any
tag different from the target tagH(otsvk∗). A4 now chooses a simulated string crs for NIZK and runs
the rest of the setup normally. It sends gpk := (1λ, crs, pkGM, pkDT BE , {svki}κi=1,H), msk := skGM and
{ski}i∈BTL to B.

All B’s queries are answered normally as in Fig. 1 except the following oracles.

• CHb: To answer the challenge query CHb(uid0, uid1,m), A4 sends (pkuid0
, pkuid1

) as its challenge
in its ST-wIND-CCA game and gets a ciphertext under the tag H(otsvk∗) of either the plaintext
pkuid0

or pkuid1
which it needs to distinguish. A4 then constructs the rest of the challenge signature

by simulating the proof π and signing the whole thing with otssk∗ to obtain σots.
• TraceShare: A4 just uses its ShareDecH(otsvk∗) oracle to get the decryption share of Cdtbe contained

within the signature. Note that since we have chosen otsvk∗ uniformly at random and since we
already eliminated any case where any signature sent to TraceShare uses the same tag as that we
used in the challenge signature, such a query will be accepted by A4’s ShareDecH(otsvk∗) oracle
because the tag is different from the target tag used in the challenge signature.

• Trace: To answer this, A4 just uses its ShareDecH(otsvk∗) oracle to get all the decryption shares
{νi}κi=1 of Cdtbe contained within the signature.

Finally, when B outputs its guess, A4’s output is that of B

Lemma 4. The construction is non-frameable if NIZK is sound, the hash function H is collision-
resistant, and the digital signaturesDS2 andWDS as well as the one-time signatureOT S are existen-
tially unforgeable.

Proof. We show that if there exists an adversary B that wins the non-frameability game then we can
build adversaries A1 against the unforgeability of signature scheme DS2, adversary A2 against the
unforgeability of the weak digital signature WDS, adversary A3 against the strong unforgeability of
the one-time signature scheme OT S, A4 against the collision-resistance of the hash functionH and A5

against the soundness of NIZK respectively, such that

AdvNon-Frame
DGSDT ,B,κ(λ) ≤γ(λ) ·

(
AdvUnfor

DS2,A1
(λ) + AdvUnfor

WDS,A2
(λ)
)

+ δ(λ) · AdvUnfor
OT S,A3

(λ)

+ AdvColl
H,A4

(λ) + AdvSound
NIZK,A5

(λ),

where γ(λ) and δ(λ) are polynomials in λ representing an upper bound on the number of honest users
and signing queries, respectively, B is allowed to make in the game.

We start by instantiating the proof system NIZK in the soundness setting and hence the adversary
cannot frame users by faking proofs for a false statement. Also, we have by the collision-resistance of
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the hash function H that B has a negligible probability in finding two different one-time signature keys
otsvk 6= otsvk′ s.t.H(otsvk) = H(otsvk′). If this is not the case, we can use B to build an adversaryA4

that breaks the collision-resistance ofH. Thus, from now on we assume that there are no hash collisions.

• AdversayA1: AdversaryA1 gets the signature scheme’s verification key pk∗ from its game and has
access to a Sign oracle. Adversary A1 starts by running (crs, xk) ← NIZK.Setup(1λ), (pkDT BE ,
{svki}κi=1, {ski}κi=1) ← T PKE .Setup(1λ, κ) and (pkGM, skGM) ← DS1.KeyGen(1λ). It then for-
wards gpk := (1λ, crs, pkGM, pkDT BE , {svki}κi=1,H), msk := skGM and {tski}κi=1 := {ski}κi=1 to
B.
Adversary A1 randomly chooses i ← {1, . . . , γ(λ)} and guesses that B will attempt to frame user
i. Thus, we have a probability 1/γ(λ) of guessing the correct user.
All B’s queries are answered normally as in Fig. 1 except the following oracles.
◦ SndU: For all honest users other than user i, A1 chooses both the personal public/secret key

pair (upk[uid],usk[uid]) and the signing public/secret key pair (pkuid, skuid) of the users itself.
However, for user i, A1 sets upk[i] = pk∗ (i.e. the verification key it got from its DS2 unforge-
ability game and hence it does not know the corresponding secret key usk[i]) and chooses the
signing public/secret key pair (pki, ski) for the user. To obtain the corresponding signature sig
on pki, it queries its signing oracle.
If in the game B asks for a RevealU query on user i, A1 aborts.

Eventually, when B outputs its forgery, A1 aborts if the framed user is different from i. Otherwise,
A1 returns pk∗uid and sig∗uid as its forgery in its game.
By the existential unforgeability of DS2, this only happens with a negligible probability.

• Adversary A2: Similarly to A1, A2 randomly chooses i ← {1, . . . , γ(λ)} and guesses that B will
attempt to frame user i. Thus, we have a probability of 1/γ(λ) of guessing the correct user. Let
ζ(λ) be an upper bound on the number of signing queries by user i B is allowed to make. A2

randomly choose ζ(λ) key pairs {(otsvkj , otsskj)}ζ(λ)
j=1 for the one-time signature OT S . It then

forwards {H(otsvkj)}ζ(λ)
j=1 to its game to get the verification key pk∗ and signatures {σj}ζ(λ)

j=1 on

{H(otsvkj)}ζ(λ)
j=1 .

A2 startsB with input gpk := (1λ, crs, pkGM, pkDT BE , {svki}κi=1,H), msk := skGM and {tski}κi=1 :=
{ski}κi=1. All B’s queries are answered normally as in Fig. 1 except the following oracles.
◦ SndU: For all honest users other than user i, A2 chooses both the personal key pair (upk[uid],

usk[uid]) and the signing public/secret key pair (pkuid, skuid) of the user by itself. For user i,
A2 chooses the personal public/secret key pair (upk[i],usk[i]) and sets the user’s public key
pki = pk∗ (i.e. the verification key it got from itsWDS unforgeability game) and hence it does
not know the corresponding secret key ski. Also, A2 uses usk[i] to generate sig.
If in the game B issues a RevealU query on user i, A2 aborts.
Note that all ζ(λ) signing queries on behalf of user i can be answered by A2 bu using the
signatures it received from its own signing oracle.

Eventually, when B outputs its forgery, A2 aborts if the framed user is different from user i. Other-
wise, A2 uses NIZK’s extraction key xk to extract the signature σ∗ on H(otsvk∗) that it did not
query its signing oracle on from the proof π∗ and returns (σ∗,H(otsvk∗)) as its forgery in its own
game.
By the existential unforgeability against weak chosen-message attack of WDS , this only happens
with a negligible probability.

• AdversaryA3: AdversaryA3 gets the one-time scheme’s verification key otsvk∗ from its game and
has access to a one-time Sign oracle that it can query on a message of its choice.
A3 runs (crs, xk) ← NIZK.Setup(1λ), (pkDT BE , {svki}κi=1, {ski}κi=1) ← T PKE .Setup(1λ, κ)
and (pkGM, skGM)← DS1.KeyGen(1λ). It then forwards gpk := (1λ, crs, pkGM, pkDT BE , {svki}κi=1,
H), msk := skGM and {tski}κi=1 := {ski}κi=1 to B.
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Adversary A3 randomly chooses j ← {1, . . . , δ(λ)} and guesses that B’s forgery will involve forg-
ing a one-time signature that verifies under otsvk∗ used in answering the j-th signing query.
All B’s queries are answered normally as in Fig. 1 except the following oracles.
◦ Sign: When asked for the i-th Sign query (uid,m), if j 6= i, A3 chooses a fresh key pair

(otsvk, otssk) for the one-time signature scheme and answers the query by itself. If j = i,
A3 encrypts pkuid using H(otsvk∗) as a tag to obtain Cdtbe and generates the proof π. It then
forwards (m,π,Cdtbe, otsvk∗) as the message to its one-time signing oracle to get a one-time
signature σots. A3 then sends the signature Σ := (σots, π, Cdtbe, otsvk∗) to B.

Eventually, when B outputs its forgery, A2 aborts if the B’s forgery did not involve forging a one-
time signature that verifies w.r.t otsvk∗ it got from its game. The probability that B forges a one-time
signature that verifies w.r.t the same otsvk∗ is 1

δ(λ) .
By the strong existential unforgeability of the one-time signature OT S, this only happens with a
negligible probability.

This concludes the proof.

Lemma 5. The construction is traceable if the NIZK proof system is sound, and the digital signature
scheme DS1 is existentially unforgeable.

Proof. We show that if there exists an adversary B that wins the traceability game then we can build ad-
versariesA1 against the unforgeability of signature schemeDS1 and adversaryA2 against the soundness
of NIZK, respectively, such that

AdvTrace
DGSDT ,B,κ(λ) ≤AdvUnfor

DS1,A1
(λ) + AdvSound

NIZK,A2
(λ)·

We start by instantiating the proof system NIZK in the soundness setting and hence the adversary
cannot break traceability by faking proofs for a false statement.

• Adversay A1: Adversary A1 gets the signature scheme’s verification key pk∗ from its game and
has access to a Sign oracle that it can query on messages its choice. Adversary A1 starts by run-
ning (crs, xk) ← NIZK.Setup(1λ), (pkDT BE , {svki}κi=1, {ski}κi=1) ← T PKE .Setup(1λ, κ) and
setting pkGM := pk∗ and hence it does not know the corresponding secret key skGM. A1 forwards
gpk := (1λ, crs, pkGM, pkDT BE , {svki}κi=1,H) and {tski}κi=1 := {ski}κi=1 to B.
All B’s queries are answered normally as in Fig. 1 except the following oracles.
◦ SndM and AddU: Since A1 does not know the group manager’s secret key skGM, in order to

generate the membership certificate certuid, A1 forwards pkuid to its sign oracle and sends back
the signature certuid to B as the membership certificate.

Eventually, when B outputs its forgery, A1 uses NIZK’s extraction key xk to extract pk∗uid and
cert∗uid and returns (pk∗uid, cert

∗
uid) as its forgery in its game. By the existential unforgeability of

DS1, this only happens with a negligible probability.

This concludes the proof.

Lemma 6. The construction satisfies tracing soundness if the DT BE scheme satisfies decryption con-
sistency.

Proof. We show that if there exists an adversary B that wins the tracing soundness game then we can
build an adversary A that breaks the decryption consistency requirement of the distributed tag-based
encryption scheme DT BE such that

AdvTrace-Sound
DGSDT ,B,κ(λ) ≤ AdvDEC-CON

DT BE,A,κ(λ)·
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Adversary A gets (pkDT BE , {svki}κi=1, {ski}κi=1) from its game and runs the rest of the GKg algorithm
normally. A forwards gpk := (1λ, crs, pkGM, pkDT BE , {svki}κi=1,H), msk := skGM and {tski}κi=1 :=
{ski}κi=1 to B. All B’s queries are answered normally as in Fig. 1. Eventually, when B halts, A returns
{ν1,i}κi=1 and {ν2,i}κi=1 which are contained within θ∗Trace1 and θ∗Trace2 , respectively.

By the decryption consistency property of the distributed tag-based encryption scheme DT BE , this
only happens with a negligible probability.

This concludes the proof.
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