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Abstract. Leakage-resilient cryptography aims to extend the rigorous
guarantees achieved through the provable security paradigm to physical
implementations. The constructions and mechanisms designed on basis
of this new approach inevitably suffer from an Achilles heel: a bounded
leakage assumption is needed. Currently, a huge gap exists between the
theory of such designs and their implementation to confirm the leakage
resilience in practice. The present work tries to narrow this gap for the
leakage-resilient bilinear ElGamal key encapsulation mechanism (BEG-
KEM) proposed by Kiltz and Pietrzak in 2010. Our first contribution is
a variant of the bounded-leakage and the only-computation-leaks model
that is closer to practice. We weaken the restriction on the image size
of the leakage functions in these models and only insist that the inputs
to the leakage functions have sufficient min-entropy left, in spite of the
leakage, with no limitation on the quantity of this leakage. We provide
a novel security reduction for BEG-KEM in this relaxed leakage model
using the generic bilinear group axiom. Secondly, we show that a naive
implementation of the exponentiation in BEG-KEM makes it impossible
to meet the leakage bound. Instead of trying to find an exponentiation
algorithm that meets the leakage axiom (which is a non-trivial problem
in practice), we propose an advanced scheme, BEG-KEM+, that avoids
exponentiation by a secret value, but rather uses an encoding into the
base group due to Fouque and Tibouchi. Thirdly, we present a software
implementation of BEG-KEM+ based on the Miracl library and provide
detailed experimental results. We also assess its (theoretical) resistance
against power analysis attacks from a practical perspective, taking into
account the state-of-the-art in side-channel cryptanalysis.

Keywords: Secure implementation, side-channel cryptanalysis, leakage-
resilient cryptography, security proof, public-key encryption, pairings

1 Introduction

How to secure cryptographic algorithms embedded in devices that can eventu-
ally “fall in the hands” of an adversary? Answering this question is probably
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the holy grail in cryptography nowadays. Two paths are taken to explore the
possible solutions, a destructive one and a constructive one. In the first path, we
find the rich contributions of the practice and theory of side-channel attacks. In
the second path, we find the no less precious body of countermeasures against
the attacks unveiled in the first path. Lately, a novel approach called leakage-
resilient cryptography is being studied, which aims at extending the guarantees
delivered by the provable security paradigm to the physical world. Despite the
clever discoveries and constructions provided by this new approach, it persis-
tently presents an Achilles heel: a bounded leakage assumption is needed. En-
suring this is unfortunately a challenging endeavor on its own and, admittedly,
the leakage-resilient cryptography body of work has not significantly helped to
argue why this could be a reasonable assumption.

In this work, we consider the only computation leaks information (OCL)
leakage model by Micali and Reyzin [23]. In this model only actual computations
are supposed to leak sensitive information. This captures the usual situation in
side-channel attacks, where leakage data only depends on the current state of
the target device and some independent randomness [33]. The internal data of
the device is divided into two parts, an active and a passive part, the active
part being the input data used in the current computation. Therefore, at a
given time frame, only the active data is leaking. The main non-invasive attacks
against embedded devices, like the attacks based on power consumption [21],
electromagnetic radiations [15] or running-time [20] measurements, belong to
this category.

It is currently agreed upon that, not only the OCL model, but also the
bounded retrieval/memory leakage models [2, 3] or the auxiliary input model
[9], rely on a strange combination of both strong and weak assumptions. On
the one side, the information leakage is supposed to be bounded in a somewhat
artificial manner; on the other side, the leakage considered is overly general,
for instance it might come from any polynomial time function. However, these
assumptions are actually far from the reality that practitioners experience in
their daily work in a side-channel analysis lab.

Several contemporary works [33, 28, 5] have put forward ways to redefine the
above models and bring them closer to practice, for symmetric cryptography
primitives. This comes at the cost of algorithmic-level specialization, providing
models that are indeed more realistic, but which apply to a more restrained class
of primitives (i.e. pseudorandom generators, block ciphers).

We aim at contributing to the challenge of bringing leakage-resilient cryp-
tography closer to the practice. In this work, we do so by analyzing, modify-
ing, implementing and evaluating a previous leakage-resilient key encapsulation
mechanism proposed by Kiltz and Pietrzak [18]. This is one of the very few
schemes admitting continual leakage (maybe the only one?) that one could dare
to implement in an embedded processor, for instance in a smartphone. It is a
pairing-based stateful variant of the ElGamal encryption scheme (called BEG-
KEM), where the secret key is an element of the pairing base group (essentially
a point in the group of points of an elliptic curve). The secret key is divided into
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two shares, which are re-shared at each new decryption call by using multiplica-
tive blinding. To decrypt, one takes the first half of the secret key, refreshes it,
and uses it as the input to a pairing calculation. In the second step, the second
half of the secret key is updated with the blinding used for refreshing; it is then
used as the input to a new pairing calculation; and finally the two pairing val-
ues are multiplied to obtain a decapsulated symmetric key (for the details see
Section 2).

The result proven in [18], which holds under a variant of the generic group
model tailored to pairing groups uses a bounded leakage assumption. Roughly
speaking, it is required that the data leaked against side-channel attacks that
satisfy the OCL axiom, shall be significantly smaller than κ for a single mea-
surement, where κ is the security parameter (e.g. κ = 128). These leakages are
modeled as an oracle that answers values f(·) for adaptively chosen arbitrary
(but efficiently computable) functions f on input the secret data being used in
the calculation. This kind of requirement, that may look reasonable for a theo-
retician used to study cryptographic primitives in the so-called black-box model
might seem completely unrealistic to the practitioner. An an example, let us
recall the figure gathered in [33], where it is pointed out that the leaking of a
block cipher recently reported in [25], consisted of 200000 traces leading to more
than 1.5 Gigabits of data storage.

We start our investigation by proposing and testing a relaxation on the re-
quirement of ‘bounded leakage size’ in the OCL model. We weaken the restriction
on the image size of the leakage functions in these models to asking that the ran-
dom variables used to refresh the secret key shall have enough min-entropy left
given the leakage, with no limitation on the ‘size’ of this leakage. This is an
altogether more reasonable leakage bound assumption, which could eventually
be met by clever implementations (in fact we provide an implementation candi-
date). We give a new security reduction using the generic bilinear group axiom
for BEG-KEM in this relaxed leakage model, which turns out to be tighter than
the original reduction in [18] in the OCL model.

Secondly, we observe that the blinding mechanism originally proposed is sus-
ceptible to invalidate the leakage bound assumption. This is because to perform
blinding, one computes an exponentiation Gri for a random integer ri, which if
implemented in a naive way, can almost completely leak ri, even with a simple
power analysis attack (i.e. with a single power trace), as we discuss in Section 4.
The authors in [18] did not discuss how exponentiation shall be implemented to
meet the leakage bound, nor we can currently find a exponentiation algorithm
with these guarantees. Thus, their positive result risks to be void.

This is why we propose an advanced BEG-KEM+, where we avoid blinding
by an exponentiation Gri for a random integer ri. Our modification is based on
the observation that knowledge of the exponent ri is not needed to perform a
successful decryption, but it suffices to build a random element in a suitable pair-
ing base group. We propose instead to use a random encoding into asymmetric
pairing groups by Fouque and Tibouchi [11]. It turns out that this encoding pro-
duces a random element in the base group, and can naturally be implemented in
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such a way that the leakage expected against a single measurement is arguably
minimal (see Section 4).

Fourthly, we stress that the idea of leakage-resilient cryptography—like any
other theoretical concept —can only be brought into practice by actual imple-
mentation. For this reason, we implemented BEG-KEM+ in ANSI C on an ARM
based microcontroller. BEG-KEM+ is, to our knowledge, the first implementa-
tion and evaluation of a public-key scheme from the leakage-resilient literature.

2 Stateful Bilinear ElGamal KEM

In this section we present the stateful bilinear ElGamal Key Encapsulation Mech-
anism (BEG-KEM) from [18]. First, we recall the basics of the notion of min-
entropy. Then we introduce the concept of stateful KEM and security under
non-adaptive chosen-ciphertext attacks in the presence of continual min-entropy
leakage (CCmLA1). We note again that the class of leakage functions allowed in
our model (based on lowering min-entropy) is broader than the bounded length
model (CCLA1) used in [18]1.

Min-Entropy

Let X be a finite random variable with probability distribution Pr. The min-

entropy ofX, denoted H∞(X), is defined as H∞(X) := − log2

(
max
x

Pr[X = x]
)

. Min-entropy is a standard measure of the worst-case predictability of a random
variable. Let Z be a random variable. The average conditional min-entropy of

X given Z, denoted H̃∞(X |Z), is defined as H̃∞(X |Z) := − log2

(
E

z←Z

[
max
x

Pr[X = x |Z = z]
])
. Average conditional min-entropy is a measure of the worst-

case predictability of a random variable given a correlated random variable.

Lemma 1. [[10]] Let f : X → {0, 1}λ′
be a function on X. Then H̃∞(X | f(X))

≥ H∞(X)− λ′.

The following result is a variant of the Schwartz-Zippel Lemma [29, 38, 13].

Lemma 2. [Schwartz-Zippel; min-entropy version] Let F ∈ Zq[X1, . . . ,Xn] be a
non-zero polynomial of (total) degree at most d. Let Pi (i = 1, . . . , n) be proba-
bility distributions on Zq such that H∞(Pi) ≥ log q − λ′, where 0 ≤ λ′ ≤ log q.

If xi
Pi← Zq (i = 1, . . . , n) are independent, then Pr[F(x1, . . . , xn) = 0] ≤ 2λ

′ d

q
.

Corollary 1. If λ′ < log q−ω (log log q) in Lemma 2, then Pr[F(x1, . . . , xn) = 0]
is negligible (in log q).

1 We point out the authors of [18] mention that their results also carry over to a relaxed
leakage model, close in spirit to ours. However this model is not fully detailed, and
additionally no justification of this fact is given in [18] nor in [19].
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Stateful Key Encapsulation Mechanism

Formally, a split-state key encapsulation mechanism KEM = (KG,Enc,Dec1,
Dec2) consists of four polynomial-time algorithms. Let κ denote the security
parameter and λ denote the leakage parameter. The key generation procedure
KG (κ, λ) takes as input κ and λ, and outputs the public key pk, a pair of initial
(stateful) secret states (σ0, σ

′
0), and the public parameters PP. The encapsulation

procedure Enc (pk) takes as input pk, and outputs a secret symmetric key K and
the corresponding ciphertext C. The stateful decapsulation procedure takes C
as an input and outputs K ∈ K. This procedure is split into two consecutive
steps Dec1 and Dec2, where each step accesses distinct parts of the two secret
states. The procedures Dec1 and Dec2 may also update the secret key using
locally generated fresh randomness:

(σi, wi)
ri← Dec1(σi−1, C) ; (σ′i,K)

r′i← Dec2(σ′i−1, wi).

The scheme KEM is required to satisfy the following correctness property:

Pr
[
Dec2

(
Dec1 (Enc (pk) , σi−1) \σi, σ′i−1

)
= K :(

pk,
(
σi−1, σ

′
i−1
) )
← (KG,Dec1,Dec2) , K ← Enc (pk)

]
= 1.

The security of the scheme KEM is defined by the following game:

KEM-CCmLA1KEM(A, κ, λ) KEM-Leak-Oracle OCCmLA1(C, fi, hi)
(pk, (σ0, σ

′
0))← KG (κ, λ)

i := 1, w ← AOCCmLA1(·) (pk) (σi, wi)
ri← Dec1(σi−1, C)

b
$← {0, 1} (σ′i,K)

r′i← Dec2(σ′i−1, wi)
(C,K0)← Enc (pk) Λi := fi(σi−1, ri)

K1
$← K Λ′i := hi(σ

′
i−1, r

′
i, wi)

b′ ← A (w,CKb) i := i+ 1
Return (K,Λi, Λ

′
i)

In the above experiment, fi(σi−1, ri) and hi(σ
′
i−1, r

′
i, wi) are (efficiently com-

putable) leakage functions that the adversary can choose adaptively between
the rounds. The functions fi(·) and hi(·) are such that the min-entropy of the
individual inputs of the leakage functions is decreased by at most λ bits, given the
corresponding leakages. More precisely, the requirement on the leakage functions
is that

H̃∞ (t | fi(σi−1, ri)) ≥ H∞ (t)− λ ∀t ∈ σi−1 ∪ ri,

and

H̃∞
(
t | hi(σ′i−1, r′i, wi)

)
≥ H∞ (t)− λ ∀t ∈ σ′i−1 ∪ r′i ∪ wi.

Essentially, the above equations restrict the class of allowed leakage functions
to those that do not decrease the min-entropy of each atomic parameter of the
secret state by more than λ bits. For instance, if wi = {wi,1, wi,2}, then we
require that individually wi,1 and wi,2 have their min-entropy reduced by at
most λ bits given the leakages.



6 D. Galindo et al.

Definition 1. [CCmLA1 security for KEM] A key encapsulation mechanism
KEM is secure under non-adaptive chosen-ciphertext attacks in the presence
of continual split-state leakage (CCmLA1), with min-entropy leakage bound λ,
if Pr [b′ = b] is at most negligibly greater than 1

2 in the Experiment KEM-
CCmLA1KEM(A, κ, λ) for any efficient adversary A.

Note that if in the above definition we would force the leakage functions to
have output length of at most λ bits, then we would obtain the CCLA1 security
for KEM as defined in [18]. From Lemma 1, we have that the conditional min-
entropy of a random variable, given the leakage output of at most λ bits, cannot
decrease by more than λ bits. Hence if a KEM is CCLA1 secure, then it is also
CCmLA1 secure.

Bilinear Groups

Let BGen′(κ, λ) be a probabilistic bilinear group generator that outputs (G,GT , q,
e′, g) such that:

1. G = 〈g〉 and GT are (multiplicatively written) cyclic groups of prime order
q with binary operations · and ?, respectively. The size of q is κ bits.

2. e′ : G×G→ GT is a map that is:

(a) bilinear: ∀u, v ∈ G and ∀a, b ∈ Z, e′(ua, vb) = e′(u, v)ab.

(b) non-degenerate: e′(g, g) 6= 1.

Such a group G is said to be a bilinear group if the above properties hold and
the group operations in G and GT , and the map e′ are efficiently computable.
The group G is called as base group and GT as target group.

2.1 Bilinear ElGamal KEM

The scheme BEG=
(
KGBEG, EncBEG, Dec1BEG, Dec2BEG

)
is as follows:

1. KGBEG(κ): Compute PP = (G,GT , e′, q, g) ← BGen′(κ, λ) and randomly

choose x, t0
$← Fq. Set X = gx, σ0 = gt0 , σ′0 = gx−t0 , and XT = e′ (g, g)

x
.

Return (pk, sk0), where

(a) the public key is pk = (PP, XT ).

(b) the secret state is sk0 = (σ0, σ
′
0) ∈ G×G.

2. EncBEG(pk): Choose a random r
$← Fq. Compute the ciphertext C = gr, and

the derived key K = Xr
T . Return (C,K).

3. Dec1BEG(σi−1, C): Choose a random ti
$← Fq, set σi = σi−1 · gti , Yi =

e′ (σi, C). Return (ti, Yi).

4. Dec2BEG(σ′i−1, (ti, Yi) , C): Set σ′i = σ′i−1 ·g−ti , and Y ′i = e′ (σ′i, C). Compute
the derived key K = Yi · Y ′i ∈ GT . Return K.
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The correctness of the scheme follows from the fact that σi · σ′i = X ∀i ≥ 0 and
using the bilinearity of e′ ().

In [18], the above scheme is shown to be secure in the generic bilinear group
model [32, 8] under (non-adaptive) chosen-ciphertext attacks in the presence of
continual bounded-size leakage (in short, CCLA1 security). The basic motiva-
tion for splitting the decapsulation step into two parts comes from the “only
computation leaks information” axiom [23], which states that any leakage of
information occurs only from the data that is being currently accessed by the
computation.

Theorem 1. [18, Theorem 1] The scheme BEG (also called BEG-KEM) is CC-
LA1 secure in the generic bilinear group model. The advantage of an s-query
adversary who gets at most λ bits of leakage per each invocation of Dec1BEG or

Dec2BEG is at most s3

q 22λ+1.

2.2 A CCmLA1 Security Reduction in the Generic Bilinear Group
Model

We show that BEG-KEM is also leakage-resilient in the min-entropy leakage
model introduced above, where leakage functions are not necessarily size-bounded.
The only restriction is that the inputs to the leakage functions shall have enough
min-entropy left, as a function of a leakage parameter λ, given the corresponding
outputs. Interestingly, by using a different proof technique than [19], we obtain
a tighter bound on the adversarial CCLmA1 advantage than the bound claimed
in [18] for the adversarial CCLA1 advantage, w.r.t. the number of oracle queries
s. In other words, with respect to the previous work, we provide here a new secu-
rity reduction under a more realistic leakage model, and surprisingly we achieve
better tightness.

Theorem 2. The scheme BEG-KEM is CCmLA1 secure in the GBG model.
The advantage of an s-query adversary with min-entropy leakage bound λ is(

9s2+3s
q

)
22λ.

At a high level, the proof of this theorem proceeds in two steps as in [13,
12]. First we show in Theorem 3 (contained in Appendix A) that the scheme
is secure if there is no leakage, i.e., CCA1 security. Note that the adversary is
transparent to the internal details of secret state updates. Then, we complete
the proof of CCmLA1 security by analyzing the effect of leakage on the CCA1
security.

The main idea to prove the CCA1 security is that the adversary will not be
able to compute the derived symmetric key K0 even after seeing the challenge
ciphertext. To show this we just need to prove that K0 cannot be written as
a “linear combination” of the elements of GT that it has got as input or can
compute itself using the pairing oracle along with the input elements of G.
Hence in the GBG model it will not be able to distinguish the actual derived
key or a randomly chosen key in GT . The challenger simulates the security game
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G to the adversary in the naive way. Also, the challenger simulates the generic
bilinear group oracles in the usual way by maintaining lists of pairs of encodings
and polynomials that represent the relation amongst group elements.

We then argue that that the proof for the non-leakage setting (i.e. proof
of Theorem 3) and that for the leakage setting would be the same conditioned
on the fact that the adversary is unable to derive useful relation amongst the
elements it has seen or guessed, and that it will not be able to compute and
hence leak the full secret key X through the leakage functions, if λ is sufficiently
small. Finally, we show that the probability of this event is increased by a factor
of at most 22λ compared to the non-leakage setting. For the formal proof see
Appendix A.

3 BEG-KEM+ : A Leakage-Resilient KEM Closer to
Practice

Our choice of BEG-KEM for this investigation is entirely motivated by the fact
that a similar leakage-resilience result as that proven in [18] cannot be expected
for a pairing-less group, as shown in [14]. This motivates using pairing groups
to implement ElGamal.

On the other hand, while Theorem ensures a protection against side-channel
attacks that combine traces of different computations (e.g. differential power
analysis attacks), we still need protection against single trace attacks, i.e. Simple
Power Analysis (SPA). The use of pairing groups can help on this respect, as
pointed out by Scott in [30]:

”[...] it is of interest to consider the resistance of pairing-based protocols
to so-called SPA attacks [...] one might with reasonable confidence expect
that the power consumption profile of (and execution time for) such
protocols will be constant and independent of any secret values.”

We continue by proposing a tweak to BEG-KEM with the aim to make the
most, from a minimizing leakage perspective, out of our choice of using pairing
groups to realize leakage-resilient public key cryptographic primitives.

3.1 An Advanced BEG-KEM+ More Resistant to Side-Channel
Attacks

Let us first make the observation that Dec1∗BEG is picking a random point in
the pairing based group G by computing an exponentiation gr for a random r.
As is well-known, a näıve implementation of exponentiation can leak the entire
exponent r, which would, of course, invalidate the required bound of maximum
leakage in our new (as well as in the old) model. This leads us to the question
whether it is possible, given the large body of side-channel resistant exponenti-
ation techniques, to find an algorithm that would likely meet the leakage bound
for single measurements. In other words, we have to answer the question of
whether the exponentiation can be made resistant against SPA attacks.
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Exponentiation in a multiplicative group (or scalar multiplication in an ellip-
tic curve group) of large order involves hundreds or even thousands of low-level
arithmetic operations such as modular multiplication. Unfortunately, all these
low-level operations are (either directly or indirectly) controlled by the secret
exponent, which means that each of them can potentially leak sensitive infor-
mation (see e.g. [36, 35, 34] for further details). Consequently, we need both an
SPA-resistant exponentiation algorithm and an SPA-resistant implementation
of the underlying multiple-precision operations. The latter is difficult to achieve
in software due to side-channel leakage induced by certain micro-architectural
features such as the early-termination mechanism of integer multipliers in ARM
processors [16]. For example, it was shown in [16] that highly regular exponen-
tiation (resp. scalar multiplication) techniques, which are (in theory) perfectly
SPA-resistant, succumb to an SPA attack when exploiting the early-termination
mechanism. Therefore, we avoid exponentiation with a secret exponent in our
modified scheme2.

A careful analysis of BEG-KEM reveals that Dec1∗BEG only needs to sample
uniformly at random an element u of G, and that knowledge of logg u is not nec-
essary. For this reason, we decided to build a random u in the pairing base group
by using a so-called encoding to the base group [31, 17, 11]. Roughly speaking, an
encoding is a deterministic function mapping an arbitrary string to a point in an
elliptic curve. Recently, Fouque and Tibouchi [11] proposed a modification of the
Shallue and van de Woestijne encoding into arbitrary elliptic curves [31], that
maps arbitrary strings to Barreto-Naehrig asymmetric pairing groups [4]. Let
f : F∗p → E(Fp) be the Fouque-Tibouchi encoding. Then, (t1, t2) 7→ u = u1 ·E u2
builds a point u ∈ E(Fp) distributed uniformly at random if t1, t2

$← F∗p, where
·E is the addition operation in E(Fp). Additionally, [11] points out that f can be
naturally implemented so that its computation is completely independent of the
inputs, which clearly helps us towards meeting our desired min-entropy leakage
bound.

BEG-KEM+

Let ABGen be an asymmetric bilinear group generator that outputs (G1,G2,GT ,
e, q, g1, g2) with |G1| = |G2| = |GT | = q, where q is a prime, κ be the security
parameter, and λ be the leakage parameter. We will again use the multiplicative
notation for group operations in G1, G2, and GT . Let e : G1 × G2 → GT be
a type 3 pairing map, i.e., e is a non-degenerate bilinear map with no known
efficiently computable isomorphism ψ : G2 → G1. These groups are instantiated
using the BN curves, denoted E(Fp), of the form y2 = x3 + b, where b ∈ Fp [4].

2 As mentioned previously, the secret exponent controls a large number of multiple-
precision arithmetic operations, which execute an even larger number of mul instruc-
tions. Each of these mul instructions can potentially trigger the early-termination
mechanism and, hence, leak information about the secret exponent. In our modified
scheme, the secret value is only used as input of a multiple-precision operation and
does not control any other operations.
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Algorithm 1. Shallue-van de Woestijne encoding to BN curves y2 = x3 + b [11]

Input: A random number t ∈ F?
p.

Output: Point P ∈ E(Fp)
1: w ←

√
−3 · t/(1 + b+ t2)

2: x1 ← (−1 +
√
−3)/2− tw

3: x2 ← −1− x1
4: x3 ← 1 + 1/w2

5: r1, r2, r3
$← F?

p

6: α← χq(r21 · (x31 + b))
7: β ← χq(r22 · (x32 + b))
8: i← [(α− 1) · β mod 3] + 1
9: return P [xi, χq(r23 · t) ·

√
(x3i + b)]

Also, let G1 and G2 be generators of G1 and G2, respectively, and f : F∗p → G1

be the Fouque-Tibouchi encoding of the elements of G1.
The advanced BEG− KEM+ =

(
KG+

BEG, Enc+BEG, Dec1+BEG, Dec2+BEG
)

is de-
fined as follows:

1. KG+
BEG(κ): Compute PP = (G1,G2,GT , e, q,G1, G2) ← ABGen(κ) and ran-

domly choose x, t0
$← Fq. Set X = Gx1 , σ0 = Gt01 , σ′0 = G

(x−t0)
1 , and

XT = e (G1, G2)
x
. Return (pk, sk0), where

(a) the public key is pk = (PP, XT ).
(b) the secret state is sk0 = (σ0, σ

′
0).

2. Enc+BEG(pk): Choose a random r
$← Fp. Compute the ciphertext C = Gr2,

and the derived key K = Xr
T . Return (C,K).

3. Dec1+BEG(σi−1, C): Choose random ti, zi
$← F∗p, set ui = f (ti) · f (zi), and

compute σi = σi−1 · ui, Yi = e (σi, C). Return (ui, Yi).
4. Dec2+BEG(σ′i−1, (ui, Yi) , C): Set σ′i = σ′i−1 · (ui)−1, and Y ′i = e (σ′i, C). Com-

pute the derived key K = Yi · Y ′i ∈ GT . Return K.

Algorithm 1 describes the constant-time hashing function to BN curves from
[11]. As described in the original paper, implementing this algorithm against
timing and Simple Power Analysis (SPA) attacks is not difficult to be achieved.
In step 6 and 7, instead of computing the values χq(x

3
1 + b) and χq(x

3
2 + b) in

a straightforward way, which can leak secret data, the authors suggested to use
blinding. Namely, in order to get α and β, we actually evaluate χq(r

2
1 · (x31 + b))

and χq(r
2
2 ·(x32+b)), where r1 and r2 are random field elements generated in Step

5. On the other hand, in order to prevent the leakage while computing the index
i, they employ a specific algebraic function φ(α, β) = [(α − 1) · β mod 3] + 1,
which runs in constant time.

4 Secure Implementation and Performance Analysis

In this section, we first describe a software implementation of BEG-KEM+
(along with the instantiation of the underlying pairing groups) and present the
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execution times we measured on an ARM Cortex M-3 processor. The second part
of this section is devoted to a “practical” security evaluation of BEG-KEM+ by
analyzing potential sources of information leakage in the underlying arithmetic
operations that could be exploited to mount a side-channel attack.

4.1 Implementation Details and Performance Analysis

We implemented both BEG-KEM and BEG-KEM+ in Magma and ANSI C,
whereby the former implementation served as a reference for the latter. The C
implementation is based on the MIRACL library to ensure an efficient execution
of the pairing evaluation and all other arithmetic operations in the diverse groups
and fields. We instantiated both BEG-KEM and our improved scheme using the
Ate pairing over a 254-bit Barreto-Naehrig (BN) curve. More specifically, our
implementations adopts the curve BN254 from [27], which provides a security
level roughly comparable to that of 128-bit AES. BN curves are defined by a
Weierstrass equation of the form y2 = x3+b over a prime field Fq, whereby q can
be written as polynomial p(u) = 36u4 +36u3 +24u2 +6u+1 for some parameter
u [4]. In our case, u = −(262 + 255 + 1) = −0x4080000000000001 and, hence, q
has a length of 254 bits. The curve BN254 is given by the equation y2 = x3 + 2
(i.e. b = 2) and has prime order with embedding degree k = 12.

The execution times for various arithmetic operations in the different fields
and groups are summarized in Table 1, whereby all timings are specified in mil-
lions of clock cycles. Our prototype platform for performance evaluation is an
Arduino Due microcontroller board equipped with an ARM Cortex-M3 CPU.
Even though the three groups G1, G2, and GT have the same order, the un-
derlying multiple-precision arithmetic operations are performed with operands
of different size. G1 and G2 are elliptic curve groups over Fq and Fq2 , the ele-
ments of which have, in our case, a bitlength of 254 and 508 bits, respectively.
The group GT is a subgroup of the multiplicative group of the extension field
Fq12 , i.e. the modular multiplications for exponentiation in GT are carried out
on 3048-bit operands.

Table 1. Running times for field expo-
nentiation, square root, inversion, group
exponentiation and pairing operations (in
106 clock cycles)

Operation Running time

Square root Fq 0.7

Inversion Fq 0.087

Encoding to G2 3.7

Exponentiation G1 4.5

Exponentiation G2 10.0

Exponentiation GT 27.1

Pairing 65.0

Table 2. Comparison of running times
for key generation, encapsulation and de-
capsulation for BEG-KEM and BEG-
KEM+ (in 106 clock cycles)

Operation BEG-KEM BEG-KEM+

KeyGen 108 108

Encryption 34 34

Decryption 131 140
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The execution times for key generation, encapsulation as well as decapsu-
lation for both BEG-KEM and BEG-KEM+ are given in Table 2. Our results
show that an encapsulation can be carried out in 34 million clock cycles, while
the decapsulation takes about 140 million cycles. We observe that our modified
decapsulation algorithm is roughly 6% slower than the original one.

4.2 Side-Channel Resistance from a Practical Point of View

One of the fundamental principles of leakage-resilient cryptography is to use a
critical secret only once (or a few times), which ensures that an attacker is not
able to retrieve the secret key if the per-invocation leakage is in some way “lim-
ited” or “bounded.” In every invocation of the scheme or function, the secret is
either “refreshed” or a completely new secret is generated randomly. The origi-
nal BEG-KEM scheme from [18], and also our variant BEG-KEM+, follow this
principle. As a consequence, all forms of side-channel attack that require several
executions of a cryptographic function with one and the same secret key, e.g.
Differential Power Analysis (DPA), are obviously not applicable to BEG-KEM+
(and in fact the latter is guaranteed by Theorem 2). However, attacks that aim
to recover the secret key from information leaked from a single invocation of a
cryptographic function (i.e. Simple Power Analysis (SPA) attacks) may succeed
under certain conditions. The group exponentiation computed in the BEG-KEM
scheme to derive a random group element σ0 = gt0 serves as a good example.
If this exponentiation is implemented in completely straightforward way (e.g.
using the square-and-multiply method) an attacker can obtain t0 if he is able
to distinguish group squarings from group products in the power consumption
profile. Such SPA attacks on unprotected or insufficiently protected ECC imple-
mentations are fairly easy and have been reported extensively in the literature,
see e.g. [6, Chapter IV] and the references therein. Therefore, we advocated to
replace the afore-mentioned group exponentiation by a deterministic encoding
into an elliptic curve group [11].

SPA Resistance of Pairing Evaluation. Section 3.1 quotes a statement of
Scott [30, Section 3.1] saying that one can expect the power consumption profile
of a pairing-based protocol to be independent of any secret values. An intuitive
explanation why pairings are fairly “robust” against SPA leakage is also given
in [30]: the target of the attack is a secret point, which is generally much harder
to reveal than e.g. a secret scalar or a secret exponent. As mentioned before,
our implementation uses the Ate pairing instantiated on a BN curve over a
254-bit prime field Fp. Consequently, the secret is the x and y coordinate of an
elliptic curve point, which are in our case simply elements of Fp. The only way in
which an attacker can hope to gain information about x and y is by inspecting
the power consumption and execution time of the Fp-arithmetic operations (e.g.
addition, multiplication) performed on them. However, the operand-related SPA
leakage from field-arithmetic operations is generally very small. To explain this
in detail, let us use the addition in Fp as example, which is nothing else than
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a modular addition r = a + b mod p. We assume that a is a secret value and
that b is known to the attacker. A modular addition consists of an ordinary
addition s = a + b, followed by a subtraction if the sum s is equal to or bigger
than p. Conventional wisdom from the side-channel community says that such
a conditional subtraction causes differences in the power consumption profile
(and also execution time), which is observable by an attacker. However, the
information content is very small; in fact, when the subtraction is executed the
attacker just knows that a+ b ≥ p, i.e. he has learned that a ≥ p− b.

The situation is similar for multiplication in Fp, which is nothing else than
a modular multiplication r = a · b mod p. Again, we assume that a is the se-
cret value and that b is known to the attacker. A modular multiplication in-
volves a conventional multiplication t = a · b, followed by a modular reduction
r = t mod p, which is in pairing-based cryptography typically implemented using
Montgomery’s algorithm [24]. Both the multiplication and Montgomery reduc-
tion are highly regular (i.e. do not have to execute any conditional statements),
except for the so-called “final subtraction.” Montgomery’s reduction technique
does not directly compute t mod p but produces the following output

x =
(
t+ (t · p′ mod 2n) · p

)
/2n (1)

where p′ = −p−1 mod 2n and n is the bitlength of p. Note that x may be not fully
reduced, which means a final subtraction of p is necessary to get the least non-
negative residue as result. An attacker able to observe whether or not this final
subtraction is executed learns only whether x ≥ p or not, which does not reveal
much information about a. The same also holds for subtraction and squaring
in Fp. However, a noteworthy exception is the inversion operation, which we
will further discuss below. In summary, a straightforward implementation of the
arithmetic operations (bar inversion) in Fp leaks only very little information
about the operands, which confirms that pairing evaluation is, in general, not
susceptible to SPA attacks. To our knowledge, the recent literature contains only
two papers in which SPA attacks on pairings are discussed [26, 37], but both of
them are only relevant for pairings over binary fields where the multiplication is
implemented in a highly irregular way. The attack from [35] is only applicable
to scalar multiplication with a secret scalar, but not to pairings with a secret
point.

SPA Resistance of Encoding Function. The encoding function shown in
Algorithm 1 consists of a number of basic arithmetic operations (e.g. addition,
multiplication) in the field Fp. Furthermore, two inversions are executed, one in
step 1 and the other in step 4. The straightforward approach to invert an ele-
ment of a finite field is the Extended Euclidean Algorithm (EEA). Conventional
wisdom from the side-channel community says that the EEA is a highly irregular
algorithm, executing many conditional operations, which is likely to leak SPA-
relevant information about the operand to be inverted. In order to prevent an
SPA attack on the inversion operation, we apply a simple multiplicative mask-
ing. That is, instead of inverting a field element v directly, we first multiply it
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by a random number r, which yields the product t = v · r. Then, we invert this
product using the EEA to obtain 1/t = 1/(v ·r), which we finally multiply again
by r to get 1/v as result.

The function χ in step 6 and 7 of Algorithm 1 is essentially an evaluation
of the Legendre Symbol, which, in turn, consists of an exponentiation using a
constant public exponent (i.e. (p+1)/4). The input to the χ function is “blinded”
by the random value r21 and r22, which means the underlying exponentiation can
not leak any SPA-relevant information. As mentioned in Section 3.1, a constant-
time algebraic function is adopted for the calculation of the index i in step 8,
which also cannot leak.

5 Conclusion

In this paper we aimed to bring the concept of leakage-resilient cryptography
closer to practice. Most of the leakage-resilient public key cryptography schemes
proposed until now are too inefficient for real-world applications. Even though
they provide provable security against a large class of side-channel attacks, they
do so under certain leakage models and leakage bound requirements that are
far from what we can ensure in practice. On the other hand, the side-channel
countermeasures are often ad-hoc and do not provide enough security guarantees.
We addressed this problem by bringing best practices from both worlds together.
First, we argued that a naive implementation of the pairing group exponenti-
ation in the leakage-resilient ElGamal key encapsulation mechanism proposed
by Kiltz and Pietrzak makes it impossible to reach the required leakage bound.
To overcome this problem, we have made two additional contributions. On the
one hand, we have proposed a relaxed leakage model, that we call min-entropy
leakage, that lifts the restriction on the image size of leakage functions, and pro-
poses instead to require that the inputs to the leakage functions have sufficient
min-entropy left, in spite of the leakage. On the other hand, we adopted a dif-
ferent mechanism for finding a random point in an elliptic curve group, namely
the encoding of Fouque and Tibouchi. We assessed the security of our imple-
mentation from both a theoretical and a practical perspective and argued that
it is indeed secure in both worlds. BEG-KEM+ is, to our knowledge, the first
leakage-resilient public-key scheme that has been successfully implemented and
evaluated on an embedded 32-bit processor.
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A Proof of Theorem 2.

First we briefly recollect the notion of generic bilinear groups. We use the nota-
tion used in [18, 13] Then we present a formal proof of Theorem 2. Our proof is
based on the techniques from [13, 12].
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Generic Bilinear Group Model

The generic bilinear group (GBG) model [8] is an extension of the generic group
model [32]. The encodings of the elements of G and GT are given by random
bijective maps ξ : Zq → Ξ and ξT : Zq → ΞT , respectively, where Ξ and ΞT
are sets of bit-strings. The group operations in G and GT , and evaluation of the
bilinear map e are performed by three public oracles O, OT and Oe, respectively,
defined as follows. For all a, b ∈ Zq

– O(ξ(a), ξ(b)) := ξ(a+ bmod q)

– OT (ξT (a), ξT (b)) := ξT (a+ bmod q)

– Oe(ξ(a), ξ(b)) := ξT (abmod q)

We assume that the (fixed) generator g of G satisfies g = ξ(1), and also the
(fixed) generator gT of GT satisfies gT = e(g, g) = ξT (1). The encoding of g is
provided to all users of the group oracles. The users can thus efficiently sample
random elements in both G and GT .

We further assume that Ξ ∩ΞT = φ, |Ξ| = |ΞT | = q, and that the elements
of Ξ and ΞT are efficiently recognizable. For instance, the encodings in Ξ can
comprise of the binary representation of the set {0, 1, . . . , q − 1}, where every
string begins with ‘0’ and all are of uniform length. The encodings in ΞT are
similarly defined but instead begin with ‘1’. Since the encodings are efficiently
recognizable, the queries to a group oracle with an invalid encoding can be
detected and an error can be raised. For simplicity, we assume that the users’
queries to the oracles are all valid.

A.1 The Proof of Theorem 2

The proof of this theorem proceeds in two steps as in [13, 12]. First we show in
Theorem 3 that the scheme is secure if there is no leakage, i.e., CCA1 security.
Note that the adversary is transparent to the internal details of secret state
updates. Then, in Section A.2, we complete the proof of CCmLA1 security by
analyzing the effect of leakage on the CCA1 security.

Non-Leakage Setting: CCA1 Security

Theorem 3. The scheme BEG is CCA1 secure in the generic bilinear group
model, i.e., it is secure against non-adaptive chosen-ciphertext attacks if there
is no leakage of the secret states. The advantage of an s-query adversary is at

most 1
2 + 9s2

q .

Proof. Let A be an s-query adversary that can break the CCA1 security of BEG.
Hence A can make totally at most s group oracle, pairing oracle and decryption
oracle queries. Let sO denote the total number of calls to the oracles O, OT and
Oe, and sD denote the number of calls to the decryption oracle OCCA1. Thus
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sO + sD ≤ s. Let PrCCA1
A,BEG denote the success probability of the adversary A in

making a correct guess of b′ in the security game. We show that

PrCCA1
A,BEG ≤

1

2
+

9s2

q
.

for any s-query adversary A in the GBG model.
The main idea is to show that A will not be able to compute the derived

symmetric key K0 even after seeing the challenge ciphertext C∗. To show this we
just need to prove that K0 cannot be written as a “linear combination” of the
elements of GT that it has got as input or can compute itself using the pairing
oracle Oe along with the input elements of G. Hence in the GBG model it will
not be able to distinguish the actual derived key or a randomly chosen key in
GT . The challenger C simulates the security game G to A in the naive way. Also,
C simulates the generic bilinear group oracles in the usual way by maintaining
lists of pairs of encodings and polynomials that represent the relation amongst
group elements.

We now formally describe the game G. The description of the group oracles
is typical for proofs in the generic group model (see [32, 22, 7, 13]).

Description of Game G: Let X, R,{Ui : i ≥ 1} and {Vi : i ≥ 1} be
indeterminates. Intuitively, these (or other) polynomials represent the relation
amongst the group elements that are output by a group oracle, or guessed by A.
The indeterminate X corresponds to the quantity x (discrete logarithm of the
secret key), and R corresponds to the challenge ciphertext. Since A can query
the group oracles with representations (from Ξ and ΞT ) not previously obtained
from the group oracles, in order to accommodate this case, we introduce the
indeterminates Ui, Vi. The Ui correspond to the guessed elements of G, whereas
Vi correspond to the guessed elements of GT . We denote the lists {Ui : i ≥ 1}
and {Vi : i ≥ 1} by {U} and {V}, respectively.
C maintains two lists of pairs

L = {(F1,i , ξ1,i) : 1 ≤ i ≤ τ1}, (2)

LT = {(FT,i , ξT,i) : 1 ≤ i ≤ τT }. (3)

The entries F1,i ∈ Zq[X,R, {U}], FT,i ∈ Zq[X,R, {U}, {V}] are multivariate poly-
nomials over Zq, whereas ξ1,i, and ξT,i are bit-strings in the encoding sets Ξ (of
G) and ΞT (of GT ), respectively. The polynomials in lists L and LT correspond
to (more precisely, a superset of the) elements of G and GT , respectively, that A
will ever be able to compute or guess. The values τ1 and τT denote the respec-
tive list counters. In order to simplify the description, we view Zq[X,R, {U}] as
a subring of Zq[X,R, {U}, {V}].

Initially, τ1 = 1, τT = 1, L = { (1, ξ1,1) }, and LT = { (X, ξT,1) }. The bit-
strings ξ1,1, ξT,1 are set to random distinct strings from Ξ and ΞT , respectively.
We assume that there is some ordering among the strings in the sets Ξ and ΞT
(say, lexicographic ordering), so that given a string ξ1,i or ξT,i, it is possible to
efficiently determine its index in the lists, if it exists. The initial state of the lists
L and LT correspond to the generator of G and the public key, respectively. The
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game begins by C providing A with the string ξ1,1 from L, and the string ξT,1
from LT .

Group Operation of G: The calls made by A to the group oracle O are
modeled as follows. For group operations in G, A provides C with two operands
(bit-strings) ξ1,i, ξ1,j (1 ≤ i, j ≤ τ1) in L and also specifies whether to multiply or
divide them. C answers the query by first incrementing the counter τ1 := τ1 + 1,
and computes the polynomial F1,τ1 := F1,i±F1,j . If F1,τ1 = F1,k for some k < τ1,
then C sets ξ1,τ1 := ξ1,k. Otherwise, ξ1,τ1 is set to a random string distinct from
those already present in L. The pair (F1,τ1 , ξ1,τ1) is appended to L and C provides
A with ξ1,τ1 . Note that the (total) degree of the polynomials F1,i in L is at most
one.

If A queries O with an encoding ξ not previously output by the oracle, then
A increments the counter τ1 := τ1 + 1, sets ξ1,τ1 := ξ, and sets F1,τ1 := Uτ1 .
The pair (F1,τ1 , ξ1,τ1) is appended to L. This step is carried out for each guessed
operand.

Group Operation of GT : The group oracle OT is modeled similar to O,
instead appropriately updating the counter τT , and appending the list LT with
the output (FT,τT , ξT,τT ). C provides A with ξT,τT . For guessed operands in GT ,
a new variable VτT is introduced instead.

Pairing Operation: For a pairing operation, A queries C with two operands
ξ1,i, ξ1,j (1 ≤ i, j ≤ τ1) in L. C first increments τT := τT + 1, and then computes
the polynomial FT,τT := F1,i · F1,j . Again, if FT,τT = FT,k for some k < τT , then
C sets ξT,τT := ξT,k. Otherwise, ξT,τT is set to a random string distinct from
those already present in LT . The pair (FT,τT , ξT,τT ) is appended to LT , and C
provides A with ξT,τT . Note that the degree of the polynomials FT,i in LT is at
most two.

Decryption: C answers decryption queries by A in the normal way by calling
the pairing oracle Oe, correspondingly updating the list LT , and by providing
A the corresponding encoding in ΞT .

Challenge: C chooses a random bit b
$← {0, 1}. C adds the the polynomial R

and gives A the corresponding random distinct encoding in Ξ. If b = 0, C adds
the polynomial XR to LT , else it adds a new polynomial VτT (after incrementing
τT ) to LT . A is also given the corresponding encoding in ΞT .

End of Game G: When A terminates it outputs a guess b′ of b. Next, C
chooses random values x, r, {u}, {v}, {r} ← Zq for the indeterminates X, R,
{U}, {V}, respectively. Then it evaluates the polynomials in lists L and LT .

Note that the adversary A will not be able to compute the polynomial XR
from polynomials in L and LT if XR was not given to it in the challenge step.
A is said to have won the game G if:

1. F1,i(x, r, {u}) = F1,j(x, r, {u}) in Zq, for some two polynomials F1,i 6= F1,j

in L.
2. FT,i(x, r, {u}, {v}) = FT,j(x, r, {u}, {v}) in Zq, for some two polynomials
FT,i 6= FT,j in LT .

3. b′ = b.



20 D. Galindo et al.

This completes the description of the game G and simulator C.
Let Collision denote either of the events 1 and 2 above, i.e. a collision occur-

ring in lists L and/or LT . Denote the event 3 above by Success.
Analysis of PrCCA1

A,BEG : The success probability PrCCA1
A,BEG of A in the actual

CCA1 game satisfies

PrCCA1
A,BEG ≤ Pr [Success |Collision] + Pr [Collision]. (4)

This is because the event Collision ensures that A will get to see only distinct
group elements in the actual interaction. In other words, A is unable to cause
collisions among group elements. As long as the event Collision does not occur,
then the view of A is identical in the game G and the actual interaction. Hence if
A is unable to provoke collisions, then adaptive strategies are no more powerful
than non-adaptive ones (see [22, Lemma 2 on pp. 12], also [32]). This observation
allows us to choose group elements and their representations independently of
the strategy of A.
First we bound Pr [Collision]. The τ1 polynomials F1,i in L have degree at most
one. Note that F1,i 6= F1,j ⇔ F1,i−F1,j 6= 0 as polynomials. From Lemma 2 (with
λ′ = 0), the probability that two distinct polynomials in L evaluate to the same
value for randomly and independently chosen values for the indeterminates is at
most 1

q . Summing up over at most
(
τ1
2

)
distinct pairs (i, j), the probability that

the condition 1 above holds is at most
(
τ1
2

)
· 1q . Similarly, the probability that the

condition 2 above holds is at most
(
τT
2

)
· 2q . Since A makes at most sO < s group

oracle queries and that in each query A can guess at most two new elements,
it is easy to see that lists L and LT together have at most 3(sO + sD) ≤ 3s
elements. Hence we obtain

Pr [Collision] ≤
(
τ1
2

)
· 1

q
+

(
τT
2

)
· 2

q
≤ 1

q
(τ1 + τT )2 ≤ 9s2

q
. (5)

Next, to bound Pr [Success |Collision], we note that the adversary A will not
be able to compute the polynomials XR or R from polynomials in L and LT if
XR or R was not given to it in the challenge step. Hence the event of no collision
ensures that A will not be able to compute the representation of the element
corresponding to XR or R. Hence Pr [Success |Collision] = 1

2 . Therefore, from (5)
and (4), we get

PrCCA1
A,BEG ≤

1

2
+

9s2

q
. (6)

Hence if s = poly(log q), then PrCCA1
A,BEG is negligible. This completes the proof of

Theorem 3. ut

A.2 Leakage Setting: Completing Proof of Theorem 2.

Let us first briefly sketch the main ideas of the proof. Working on the lines of (4),
the advantage of A is bounded by its success probabilities conditioned on the
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event whether or not a collision has occurred in the lists consisting of elements
of G and GT . It is important to note that the proof for the non-leakage setting
(i.e. proof of Theorem 3) and the leakage setting would be the same conditioned
on the fact that a collision has not occurred, and that the leakage functions
will not be able to compute the “polynomial X” corresponding to the secret key
nor guess the correct representations of the group elements for which it only
partially obtains information through the leakage functions. The reason is that
in the event of no collision, the adversary gets to see only distinct group elements
and hence it will not have enough information on the relation amongst the group
elements it can compute. The fact that the leakage functions cannot compute
the full secret key shows that the adversary will never be able to continually
leak the whole of the secret key. Hence leakage on the secret state will not be
useful in this case. Hence the success probability of A is the same in the event
of no collision (that includes the event of guessing the representations of group
elements using partial information about them).

However the probability that a collision occurs in the leakage setting is in-
creased by a factor of at most 22λ. This is because when A has access to leakage
output f i(σi−1, ti) and hi(σ

′
i−1, (ti, Yi)) during ith decryption query, then in ad-

versary’s view the parameters ti (i ≥ 1) are no longer uniformly distributed
even though they are still independent. Hence A can now cause collisions among
polynomials (in Conditions 1-2 on page 19) with increased probability. Since
ti appears in both f i() and hi(), its (average conditional) min-entropy will be
reduced by at most 2λ bits.

The only useful information that the leakage functions can provide to A is
about the secret key X. This is because the values ti are independent of the
derived shared secret key. However A can use the leakages of ti to eventually
leak X. If A is able to compute X, then it can trivially compute the symmetric
key corresponding to the challenge ciphertext. The event of no collision, and the
fact that X is not a “linear combination” of the inputs to the leakage functions,
guarantees thatA is unable to compute X. Note that because the representations
of group elements in the GBG model are randomized, the probability of guessing
the complete representations of each of σi−1, σ′i−1 and Yi, given the leakages, is
increased by a factor of at most 22λ.

Proof. Let A be an s-query adversary that can break the security of the scheme
BEG. Hence A can make totally at most s group oracle and pairing oracle queries
(sO) and decryption oracle queries (sD). In the count of s, even group oracle
queries by leakage functions f i, hi (i ≥ 1) specified by A are also included. Let
the adversary A play the game G′ described below. This game is an extension
of game G described in the proof of Theorem 3. To avoid repetition, we only
describe here the extensions that are not part of game G. Let {T} denote the list
of indeterminates {Ti : 1 ≤ i ≤ sD} that correspond to the values ti in BEG.

Game G′: For each leakage function f i(σi−1, ti) and hi(σ
′
i−1, (ti, Yi)), A main-

tains a pair of lists
(
Lfi , LfiT

)
and

(
Lhi , LhiT

)
, respectively. These lists con-

tain polynomial and bit-string pairs. The polynomials in Lfi and Lhi belong to



22 D. Galindo et al.

Zq[X,R, {U}, {T}], and the corresponding bit-strings are from the encoding set Ξ

of group G. The polynomials in LfiT and LhiT are in the ring Zq[X,R, {U}, {V}, {T}],
and the corresponding bit-strings are from the encoding set ΞT of group GT .
Intuitively, the polynomials in lists Lfi and Lhi correspond to the elements of
group G that can be computed by fi and hi, respectively, whereas the lists LfiT
and LhiT correspond to the elements of GT .

Every polynomial in Lfi is of the form c1,iTi + c2,i
i−1∑
j=0

Tj + c3,iDi, where

c1,i, c2,i, c3,i ∈ Zq are chosen by A and Di ∈ Zq[X,R, {U}] is in L (cf. (2)). Every
polynomial in Lhi is of the form

d1,iTi + d2,i

X−
i−1∑
j=0

Tj

+ d4,iWi, (7)

where d1,i, d2,i, d3,i, d4,i ∈ Zq are also chosen by A and Wi ∈ Zq[X,R, {U}] is in
the list L. Note that the polynomials in lists Lfi and Lhi are of degree at most
one, and that they do not contain the monomial X. The polynomials in lists LfiT
and LhiT are of degree at most two.

The game G′ proceeds exactly as game G except that A can also obtain
leakage through functions f i and hi in the ith decryption query. The leakages
on the representations of the group elements are simulated in the naive way,
whereas for the leakages on ti, a temporary random value is chosen for each ti
and the leakage on this value is given to the adversary. When A terminates it
outputs a guess b′ of b. Let us denote by Success∗ the event of successful guess
of the bit b by A. Let Collision∗ denote the event of a collision occurring in lists
L, LT , Lfi , Lhi , LfiT , LhiT (1 ≤ i ≤ sD) and also the event of successful guessing
of the partially leaked representations. The polynomials are now evaluated with
values chosen from independent distributions with min-entropy log q − 2λ, not
necessarily from an uniform distribution. The exact distribution depends on the
leakage functions chosen by A. Since we are only interested to upper bound
the collision probability, we can safely assume that the simulator chooses the
right distribution. Note that even in the leakage setting, adaptive strategies
are no more powerful than non-adaptive ones, as observed in [1, pp. 691]. This
completes the description of the game G′.

Let PrCCmLA1
A,BEG denote the probability of the event Success∗. On the lines of

(4), we can write

PrCCmLA1
A,BEG ≤ Pr [Success∗ |Collision∗] + Pr [Collision∗]. (8)

As mentioned before, conditioned on the event Collision∗, the view of the adver-
sary A will be same in both the games G′ and G. This is because in both the
cases A will get to see only distinct group elements. Also, we are conditioning on
the event that A will not be able to guess the correct representations of any of
the at most 2λs group elements it obtains through the leakage functions. Hence,
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on the lines of (6), we have

Pr [Success∗ |Collision∗] =
1

2
. (9)

Lemma 3. Pr [Collision∗] ≤
(

9s2+2λs
q

)
22λ.

Proof. To compute the required probability, the polynomials in lists L, LT , Lfi ,
Lhi , LfiT , LhiT (1 ≤ i ≤ sD) are evaluated by choosing values from Zq according to
(independent) distributions with min-entropy at least log q−2λ. This is because
A can obtain at most 2λ bits of leakage about ti (i = 1, . . . , sD). According to
Lemma 1, the values ti have min-entropy at least log q − 2λ in the view of A.
The total length of all the lists is at most 3(τ1 + τT ) ≤ 3s) (c.f. 3). Working
exactly on the lines of (5), and using Lemma 2 (with λ′ = 2λ), we obtain

this probability as 9s2

q 22λ. The probability of the event that A will guess the
complete representations of any of the at most 3s group elements, for which
it can possibly obtain partial information on their representations through the

leakage functions, is at most 3s·22λ
q . Hence Pr [Collision∗] ≤

(
9s2+3s

q

)
22λ. ut

From (8), (9) and Lemma 3, we have PrCCmLA1
A,BEG ≤ 1

2 +
(

9s2+3s
q

)
22λ. This com-

pletes the proof of Theorem 2. ut


