
True Random Number Generators Secure in a
Changing Environment: Improved Security

Bounds

Maciej Skorski?

maciej.skorski@gmail.com

Cryptology and Data Security Group, University of Warsaw

Abstract. Barak, Shaltiel Tromer showed how to construct a True Ran-
dom Number Generator (TRNG) which is secure against an adversary
who has some limited control over the environment.
In this paper we improve the security analysis of this TRNG. Essen-
tially, we significantly reduce the entropy loss and running time needed
to obtain a required level of security and robustness.
Our approach is based on replacing the combination of union bounds
and tail inequalities for `-wise independent random variables in the orig-
inal proof, by a more refined of the deviation of the probability that a
randomly chosen item is hashed into a particular location.

1 Introduction

1.1 Random number generators

Random number generators are used for various purposes, such as simulating,
modeling, cryptography and gambling. Below we briefly discuss possible ap-
proaches and issues in generating random numbers.

True Random Number Generators. The term “True Random Number Gen-
erator” (TRNG) refers to a hardware device that generates random numbers
based on some physical phenomena (radiation, jitter, ring oscillators, thermal
noise etc.). As an example of such an implementation one can mention the Hot-
Bits project [Wal11], which is based on timing the decay of Caesuim-137. Such
implementations are typically very reliable and hard to tamper. Sometimes as a
TRNG one considers also a software application which generates random num-
bers based on unpredictable human behavior, like mouse movement or typing
keyboard keys. Even if they are not completely unpredictable (because knowing
an operator’s habits helps in predicting the output) the generated results are
typically of high quality and have found real-world cryptographic applications
(e.g. PGP). True Random Number Generators do not have internal states (hence
are not predictable from the sampling history) and produces a high quality out-
put. However, they are usually slow and not easy to implement (for instance,

? This work was partly supported by the WELCOME/2010-4/2 grant founded within
the framework of the EU Innovative Economy Operational Programme.

2

because of the need of a dedicated hardware).

Pseudo-random Number Generators. On the other side we have pseudo-
random number generators (PRNG’s), algorithms that use mathematical formu-
las to produce a randomly looking output. They depend on internal states and
for this reason needs to be externally “seeded”. They are fast and relatively easy
to implement. However, seeding them properly is of critical importance. A lot
of PRGNs from standard software use predictable seeds. For example, recall the
discovered vulnerability in a version of Netscape browser [GW96].

Classical TRNG Design. Typically the process of building a TRNG consists
of the following stages

(a) Setting an entropy source (physical or non-physical)
(b) Post-processing part
(c) Quality evaluation

The entropy source does not necessarily provide samples of excellent quality
and therefore step (b) is needed. Its purpose is to eliminate bias or dependen-
cies. Posprocessing procedure could be very simple as the famous von Nuemann
corrector or very complicated. Finally, the whole implementation should be sub-
jected to common statistical tests, for example [Mar96,BRS+10].

1.2 TRNGs in environments under (partial) adversarial control

Imagine a setting where an attacker has some partial control over the environ-
ment where the sampling device operates. For instance he could influence voltage
or temperature. The goal is to build a TRNG which is robust in such a setting.

Resilient Extractors. Slightly simplifying the problem, we can focus on the
postprocessing algorithm, that is on how to extract random bits from randomness
within a source. Suppose that we have a source that produces samples distributed
according to X, where X is unpredictable in the sense that it has high entropy.
This assumption is the most general way of capturing “randomness” because we
cannot assume that our source, which might be a very complicated physical pro-
cesses, has any specific nice properties. One can extract almost uniform bits from
high entropy source by the use of so called “randomness extractors”. However,
no deterministic procedure can extract one bit which is close to uniform from
every high-entropy source [SV86]. The general purpose randomness extractors,
which are guaranteed to work with every source having enough entropy, require
additional truly random bits (called the seed) as a “catalyst” [NZ96]. While this
concept is generally extremely useful, the direct application of a seeded extractor
to an entropy source does not provide a way to build a good TRNG:

(a) In real applications, generating even small number of truly random bits can
be extremely hard.

(b) In some designs there might be correlations between the source and the
seed. For instance, when the seed is stored in a TRNG which uses a source
of randomness within the computer (like timing events).

3

(c) If we want a TRNG with some kind of resilience, we should ensure it also
for the procedure generating seed.

One can overcome this problem by designing a deterministic extractor which
works for a restricted class of sources. Some constructions for specific cases are
known; see for instance [KZ03,GR05] and recall the most famous example - von
Neumann sources. However they are not applicable in our case.

Resilient extractors via fixing seeds. Barak, Shaltiel and Tromer [BST03]
came up with the very simple but surprisingly useful idea of fixing a seed. Let
us discuss it briefly. Suppose for a moment that we have only one source X of
entropy k and an arbitrary seeded extractor , that from any X having k-bits of
min-entropy extracts m close-to-uniform bits using a random seed. This means
that the output is close to uniform in average over all possible seeds. Hence
running the extractor with a fixed seed, for most of the seeds, yields an output
which is still close to uniform (by the Markov Inequality). Now let us make a re-
alistic assumption that the source X depends on some finite number of boolean1

environmental variables (corresponding to changes in the voltage, temperature,
radiation etc) and suppose that

(a) the adversary controls t of the environmental variables
(b) in every of 2t possible configurations of the “compromised” states, entropy

in the source is big enough (i.e. at least k)

Provided that t is small, by the union bound we conclude that fixing the seed,
for most of the seeds, we still obtain a good extractor in every state. Below we
summarize this discussion more quantitatively:

Proposition 1 (Resilient extractor from any extractor). Let {Xe}e∈{0,1}t
be a collection of n-bit random variables and let Ext : {0, 1}n×S → {0, 1}m be a
function such that for every e the distribution of ExtS(Xe, S), where S if chosen
randomly from S, is ε-close to uniform. Then for all but a 2−u fraction of s ∈ S
the distribution Ext(Xe, s) is 2u+tε-close to uniform for every e ∈ {0, 1}t.

Even the best extractors need in worst case at least k = m + 2 log(1/ε) −O(1)
bits of entropy on their input in order to extract m bits which are ε-close to
uniform [RTS00]. The optimal rate, with k = m+ 2 log(1/ε)− 2, is achieved for
example by 2-universal hashing (the Leftover Hash Lemma).

Resilient TRNG from the resilient Extractor. The assumption that
our extractor works only for small (of size 2t) family of distributions in the con-
text of a TRNG is not restrictive. Indeed, imagine a manufacturer who has a de-
vice producing samples of a distribution X. The seed s is chosen once and for all
and every single TRNG box is built by composing a copy of the sampling device
with the extractor seeded by the same s. Once s is chosen, could be even made
public. The confidence level δ ensures that with high probability we can find
a good s. After choosing s, the manufacturer tests the implementation against

1 Without losing generality, since we can describe more “granulated” properties using
more than one boolean variable

4

randomness test like NIST [BRS+10] and DIEHARD [Mar96]. For more details, we
refer the reader to [BST03]. The above discussion can be summarized by the
following result

Theorem 1 (Simple resilient TRNG, informal). There exists an efficient
seeded extractor Ext such that for every source X which in every of 2t states of
the environment has the min-entropy at least

k > m+ 2 log(1/ε) + 2 log(1/δ) + 2t− 2, (1)

for all but at most a δ fraction of the seed s it holds that Ext(X, s) is ε-close to
the uniform m-bit string in every state of the environment.

Note that the entropy loss L = k−m must be substantially bigger than 2 log(1/ε)
if we want non-trivial values of δ and t. Than additional entropy loss is a price
we pay for resilience of the extractor.

The resilient TRNG of Barak Shaltiel and Tromer Barak et al. showed
and implemented a construction of a TRNG which is secure against any adver-
sary who controls t environmental variables. In their proof `-wise independent
hash families are used as extractors. Roughly speaking, the assumption on `-
wise independence allows estimating higher moments of the statistical distance
between output of hashing and the uniform distribution. This way we get sig-
nificant improvements over the Markov Inequality used in Theorem 1.

Theorem 2 ([BST03] Resilient TRNG from any `-universal hash fam-
ily, informal). Let H be an `-wise independent family of hash functions from n
to m bits. Suppose that an n-bit source X in every of 2t states of the environment
has the min-entropy at least

k >
`+ 2

`
·m+ 2 log(1/ε) +

2 log(1/δ)

`
+

2t

`
+ log `− 2 +

4

`
. (2)

Then for all but δ fraction of h ∈ H it holds that h(X) is ε-close to the uniform
m-bit string in every state of the environment. For ` = 2 we have the better
bound k > m+ 2 log(1/ε) + 2 log(1/δ) + 2t− 2.

We remark that the constant −2 in Theorem 2 is slightly better than what is
stated in [BST03]. This is because the authors used a slightly weaker statement
of the Leftover Hash Lemma.

Optimizing the parameters. The construction of Barak et al. depends on
several parameters and gives a lot of freedom to optimize the design for a par-
ticular real-world application. For instance, minimizing the entropy loss (i.e.
minimizing k) is of the crucial importance when the source produces entropy
slowly or expensively (for instance when one uses patterns typing by a user, like
mouse clicking, as the source). In such a case, one may prefer the (slightly more
complicated) implementation with universal families of a higher degree. In the
other hand, when the sampling procedure is more efficient (like thermal noise)
one can afford entropy losses and prefer faster running time of the extractor, a

5

higher confidence level for the choice of the seed or to increase the number of
the environmental variables under adversarial control.

Advantages and disadvantages. The big advantage of Theorem 2 over triv-
ial Theorem 1 is that one can increase t proportionally to the degree ` of hashing
family, which is actually a bit surprising. The main disadvantage is the entropy
loss L = k−m needs to be bigger than 2m

` which is Ω(m) for small `. Theoreti-
cally, one can reduce this with ` big enough, however this could be inconvenient
because of the following two reasons: (a) the running time increases by a fac-
tor poly(`) and (b) the description of an `-wise independent hashing family on
{0, 1}n takes `n bits hence there could be a problem with sampling a good func-
tion h (note that n could be even much bigger than k, which is the case of low
entropy rate).

1.3 Our results and techniques

Summary of our contribution. We reduce the entropy loss in Theorem 2
by 2m/` for any `, saving linear amount of entropy. This matches the RT-bound
and hence is tight. Our approach is based on the more refined analysis of the
concentration properties of universal hashing.

Hashing into a given slot - bounds on the deviation. Applying estimates
for `-wise independent random variables [BR94] we prove the following formula

Lemma 1. Let ` > be an even integer, H be an `-universal family of hash
functions from n to m bits and k−m� 2 log `. Then for any X of min-entropy
at least k we have

E
h←H

|Pr (h(X) = y)− Pr(Um = y)|` . C` ·
(
2−k−m`

)`/2
(3)

where C` = 2
√
π` · e1/6` ·

(
5
2e

)`/2
.

The left-hand side of Equation (3) gives the deviation of the probability (over the
choice of the hash functions) of hashing a random variable X into a particular
slot from its expectation (equal to 2−m by the universal property). Studying
such deviations is a natural idea, used essentially in [BSW03].

Remark 1 (Sharp bounds on the deviation). One can get symptomatically sharp
bounds in Equation (3) with more effort, by expanding the bracket and compute
the `-th moment precisely. The improvement is by a factor of c` and leads to
further non-trivial improvements of the results of Barak et al. We find this gain
too small and do not optimize the bounds in Equation (3).

Improved bounds on the fraction of good seeds in hashing. We prove
the following inequality

Proposition 2. Let X be an n-bit random variable and H be an arbitrary family
of functions from n bits to m bits. Let ` > 2 be an even integer and ε > 0. Then

Pr
h←H

[SD(h(X);Um) > ε] 6
Ey←Um

Eh←H (Pr[h(X) = y]− Pr[Um = y])
`

2−m`(2ε)`
. (4)

6

This estimate allows us to bound the fraction of the seeds (i.e. hash functions)
for which the statistical distance is small, in terms of the deviation of the hash-
ing probability. This bound offers a significant improvement over an alternative
approach which bounds the deviation |Pr[h(X) = y] − Pr[Um = y]| for every y
separately and after that uses the union bound to upper-bound the sum (this
is essentially the strategy of Barak et al.). Intuitively, the gain could be even
of a factor 2m which should save a linear (in m) amount of entropy. Indeed,
unlike Theorem 2 we are able to get meaningful security even for k < m(1+2/`)
(assuming small t and `).

Improved efficiency and security of the construction of Barak et
al. Using the tools discussed above, we prove the following result

Theorem 3 (A resilient TRNG from any `-universal hash family, in-
formal). Let H be an `-universal family of hash functions from n to m bits,
where ` is an even integer. Suppose that a source X which in every of 2t states
of the environment has the min-entropy at least

k > m+ 2 log(1/ε) +
2 log(1/δ)

`
+

2t

`
+ log `− 2. (5)

Then for all but at most a δ fraction of h ∈ H it holds that h(X) is ε-close to
the uniform m-bit string in every state of the environment.

The theorem is valid under the assumption k−m� log ` which we omitted as it
is satisfied for interesting values of parameters. Our improvements over [BSW03]
can be summarized as follows:

(i) For ` = 2 (the simplest extractor) we save log(1/δ) + t bits of entropy.
Alternatively, the probability of choosing a bad hash functions in the pre-
processing phase gets squared and the number of the states under adver-
sarial control can be doubled. Entropy savings is important for expensive
or slow sources. Higher confidence level for the choice of the seed is impor-
tant if we want to subject the implementation to the statistical tests, like
DIEHARD [Mar96]. Finally, the more variables under adversarial control the
more robust the PRNG is.

(ii) For ` > 2 (but not too big), in comparison to Theorem 2, we save the linear
amount of entropy, precisely 2m

` . The case ` > 2 is preferable for slow or
expensive entropy sources or when the priority is the high robustness (i.e.
big number of states).

(iii) Even for `� 2 our result is still much better in some settings. For example,
for ε = 2−

10
√
m (reasonable subexponential security) and ` ≈ log(1/ε) the

entropy loss L = k −m becomes close to L ≈ 2 log(ε) whereas Theorem 2
gives L ≈ 2 log(ε) + 2m0.9. In general, the entropy amount 2m/` we save
can be used to increase the number of the adversary’s degrees of freedom
by m, which is quite a lot.

Remark 2. Even reducing the entropy loss by only constant number of bits gives
non-trivial results! This is because decreasing the minimal k by d is equivalent
to increasing t by d`/2 (keeping ε, δ unchanged). In particular, optimizing the
bound in Theorem 3 would slightly improve our results (see Remark 1).

7

2 Preliminaries

Statistical distance. For any two random variables X,Y taking values in
the same space we define the statistical distance of X and Y to be ∆(X;Y) =∑

x |Pr[X = x] − Pr[Y = x]|. When ∆(X;Y) 6 ε we say that X and Y are
ε-close.

Entropy notions. The min-entropy of a random variable X is defined to be
H(X) = log(1/maxx Pr[X = x]).

independent hash functions. A family H from n to m bits is called `-wise
independent if and only if for every different n-bit strings x1, x2, . . . , x` and
h chosen at random from H the random variables h(x1), h(x2), . . . , h(x`) are
independent and uniform.

2.1 Security definitions

Changing environment - security game. We consider the following ideal
setting[BST03]

(i) An adversary chooses 2t distributions X1, . . . , X2t over {0, 1}n, such that
H∞(X) > k for all i = 1, . . . , 2t.

(ii) A public parameter h is chosen at random and independently of the choices
of Xi

(iii) The adversary receives h, and selects i ∈ {1, . . . , 2t}
(iv) The user computes Ext(X), where X is sampled from Xi.

Note that in the game defining the security of an extractor, the adversary chooses
the distribution and the user chooses (independently) a seed. Here the adversary
is in some sense “semi-adaptive”, because he can choose an arbitrary distribution
but from the class of distributions he had committed to before he saw a seed. Of
course, the adversary cannot be made fully-adaptive in the sense that he chooses
a distribution without any restriction after seeing the seed. Thus, this definition
seems to be a reasonable compromise.

Resilient extractor. We define resilient extractor exactly as in [BST03] ex-
cept that we state the confidence level δ explicitly.

Definition 1 (Resilient extractor [BST03]). Given n, k,m, ε, δ and t an
extractor E is t-resilient with the confidence level δ if, in the above setting, with
probability 1− δ over the choice of the public parameter s the statistical distance
between Ext(X, s) and Um is at most ε. For shortness, we also call it (k, ε, t, δ)-
resilient extractor.

This together with the entropy source yields a construction of a TRNG which
is robust against some adversarial influences. One possible concern here is how
to ensure that the entropy amount, under possible influences, is still sufficient?
This is a serious problem but must be solved independently on the designing an
extractor, because if the adversary had a way to significantly decrease entropy

8

amount then no scheme would be secure anymore, regardless of what an extrac-
tion function is applied. We note that, as mentioned in [BST03], the security
definition might be even too strong for real world applications. For example,
the assumption that the adversary is computationally unlimited and that all
distributions Xi could be completely independent2. For long data streams, the
extractor can be applied sequentially to consecutive blocks, provided that each
block has enough entropy conditioned on all previous blocks.

3 Improved analysis for pairwise independent hashing

Motivating discussion. Let H be a family of 2-universal hash functions from
n to m bits and let X be a distribution over {0, 1}n of min-entropy at least k.
We will show that if L = k −m is big enough, then the distribution H(X), H,
where H is a random member of H, is ε-close to Um, H. This result is known as
the Leftover Hash Lemma:

Theorem 4. For H, H and X as above we have SD((H(X), H); (Um, H)) 6√
2m−k.

Note that L = k − m needs to be roughly 2 log(1/ε) if we want to guarantee
that the statistical distance at most ε. We will refer to L as the entropy loss,
because it equals the difference between the amount of entropy we invest and
the length of the extracted output. By the Markov Inequality we trivially obtain
the following corollary (see also [Gol08], the remark after Theorem D.5)

Corollary 1. For all but most a δ fraction of the functions h ∈ H it holds that
SD(h(X);Um) 6

√
2m−k/δ.

This corollary states that for a fixed source X, a fixed hash function yields a
good extractor for all but a small fraction of hash functions. In particular we
obtain the existence of an resilient extractor with parameters as in Theorem 1.

Improved analysis by the second moment technique. In Lemma 2 below
we will prove a much better result than Corollary 1. We will apply the Markov
Inequality for the second moment. Essentially, we bound the deviation of the
probability of hashing X into particular value from its expectation which is 2−m

(from the universal property).

Lemma 2. Let H be a 2-universal family of hahs functions from n to m bits and
let X be a distribution of min-entropy at least k. Then for all but an δ fraction
of h ∈ H we have SD(h(X);Um) <

√
2m−k/δ.

As an easy corollary we obtain the following theorem, which is much better than
Theorem 2

Theorem 5 (A resilient TRNG from 2-universal family). Let H be a 2-
universal family of hahs functions from n to m bits and let δ, ε be parameters.

2 They should be related being a perturbed version of the same distribution.

9

Then for all but a δ fraction of h ∈ H, the function h is a (k, ε, t, δ)-resilient
extractor where

k > m+ 2 log(1/ε) + log(1/δ) + t (6)

Proof. The proof will follow from the following claims:

Claim 1. For every X we have

Pr
h←H

[SD(h(X);Um) > ε] 6
Ey←Um

Eh←H (Pr[h(X) = y]− Pr[Um = y])
2

2−2mε2
(7)

Claim 2. The expression

E
h←H

(Pr[h(X) = y]− Pr[Um = y])
2

over the distributions X of min-entropy at least k is maximized for a flat X, i.e.
X uniform over a set of size 2k.

Claim 3. For every X uniform over a set of size 2k we have

E
h←H

(Pr[h(X) = y]− Pr[Um = y])
2 ≈ 2−m−k. (8)

Now we give the proofs.

Proof (Proof of Claim 1). By the definition of the statistical distance and the
Markov Inequality we obtain

Pr
h←H

[SD(h(X);Um) > ε] = Pr
h←H

[
E

y←Um

|Pr[h(X) = y]− Pr[Um = y]| > 2−mε

]
6

Eh←H (Ey←Um
|Pr[h(X) = y]− Pr[Um = y]|)2

2−2mε2
(9)

The inequality between the first and the second moment (which follows imme-
diately from the Jensen Inequality) yields(

E
y←Um

|Pr[h(X) = y]− Pr[Um = y]|
)2

6 E
y←Um

(Pr[h(X) = y]− Pr[Um = y])
2
.

(10)

Combining Equation (11) and Equation (10) and changing the order of the
expectations we obtain

Pr
h←H

[SD(h(X);Um) > ε] 6
Eh←HEy←Um (Pr[h(X) = y]− Pr[Um = y])

2

2−2mε2

6
Ey←Um

Eh←H (Pr[h(X) = y]− Pr[Um = y])
2

2−2mε2
(11)

which finishes the proof. ut

10

Proof (Proof of Claim 2). This fact easily follows from the extreme point tech-
nique. It is known that every distribution of min-entropy k is a convex combina-
tion of flat distributions of min-entropy k. Our expression is a convex function
of the distribution X. Hence, the maximum is on a flat distribution. ut

Proof (Proof of Claim 3). By expanding the square we get

E
h←H

(Pr[h(X) = y]− Pr[Um = y])
2

= E
h←H

Pr[h(X) = y]2

− 2 · 2−m E
h←H

Pr[h(X) = y] + 2−2m

(12)

Let X ′ be an independent copy of X. By the universality of H, we can compute
the first term as follows

E
h←H

Pr[h(X) = y]2 = E
h←H

Pr[h(X) = h(X ′) = y]

= E
h←H

Pr[h(X) = h(X ′) = y|X 6= X ′] Pr[X 6= X ′]

+ E
h←H

Pr[h(X) = h(X ′) = y|X = X ′] Pr[X = X ′]

= 2−2m Pr[X 6= X ′] + 2−m Pr[X = X ′]

≈ 2−2m + 2−m−k (13)

where the last approximation follows from Pr[X = X ′] = 2−k � 1. By the
universality we also have

E
h←H

Pr[h(X) = y] = 2−m. (14)

The claim follows by plugging Equation (13) and Equation (14) into Equa-
tion (12). ut

The proof is finished. ut

4 Improved analysis for `-wise independent hashing

It is easy to see that Proposition 2 and Lemma 1, together with the observation
that the right hand side Proposition 2 among all X of min-entropy is maximized
for flat X (which follows by convexity, see Claim 2), imply the following

Theorem 6 (An resilient from `-universal hashing). Let H be an `-universal
family of hash functions from n to m bits and let ε, δ be parameters. Then for all
but a δ fraction of h ∈ H the function h is a (k, ε, t, δ)-resilient extractor where

k > m+ 2 log(1/ε) +
2 log(1/δ)

`
+

2t

`
+ log `− 2 (15)

The proofs of Proposition 2 and Lemma 1 are discussed in the next two subsec-
tions. For consistency with some standard notations we denote ` = p.

11

4.1 Bounds on the fraction of good seeds.

We give the proof of Proposition 2

Proof (Proof of Proposition 2). Let δ(y, h) = Pr[h(X) = y]− Pr[Um = y]. Note
that we have SD(h(X);Um) = 1

2 · 2
m Ey←Um |δ(y, h)|. By the Markov Inequality

we obtain

Pr
h←H

[SD(h(X);Um) > ε] = Pr
h←H

[
E

y←Um

|δ(y, h)| > 2 · 2−mε
]

6
Eh←H (Ey←Um |δ(y, h)|)`

2−mp(2ε)`
. (16)

Since for every h we have (Ey←Um
|δ(y, h)|)` 6 Ey←Um

|δ(y, h)|` by the Jensen
Inequality, the last equation implies

Pr
h←H

[SD(h(X);Um) > ε] 6
Eh←H (Ey←Um

|δ(y, h)|p)

2−m`(2ε)`
. (17)

The result follows by exchanging the order of the expectations. ut

4.2 Lp-distance between the output of hashing and the uniform
distribution

Proof (Proof of Lemma 1). We can assume that X is flat. We will use the well-
known estimate on `-wise independent random variables.

Lemma 3 (`-wise independence moment estimate [BR94]). Let ` > 4 be
an even integer. Let Z1, . . . , Zt be `-wise independent random variables taking
values in [0, 1]. Let Z = Z1 + . . .+ Zn, µ = EZ. Then we have

E |Z − µ|` 6 C` ·
(
`µ+ `2

)`/2
(18)

where C` = 2
√
π` · e1/6` · (5/2e)`/2 6 8.

We will apply Lemma 3 to the random variables Zx = 1{h(x)=y} where x ∈
supp(X) and y is fixed. Let δ(x, y) = PrX [h(X) = y]− Pr[Um = y]. We obtain

E
h←H

|δ(x, y)|` = 2−k` ·E

∣∣∣∣∣∣
∑

x∈supp(X)

Zx −EZ

∣∣∣∣∣∣
`

6 2−k` · C` ·
(
` · 2k−m + `2

)`/2
= 2−k` · C` ·

(
2k−m`

)`/2 · (1 + 2m−k`
)`/2

6 C` · e2
m−k`2/2 ·

(
2−k−m`

)`/2
and the result follows. ut

12

5 Conclusion

We improved the security analysis of the TRNG of Barak et al. by carefully
studying the deviation of the probability of hashing into a given location. The
loss in the entropy amount seems to be optimal. An interesting problem for the
future work is to propose different models for controlling the environment.

References

BR94. M. Bellare and J. Rompel, Randomness-efficient oblivious sampling, Pro-
ceedings of the 35th Annual Symposium on Foundations of Computer Sci-
ence (Washington, DC, USA), SFCS ’94, IEEE Computer Society, 1994,
pp. 276–287.

BRS+10. Lawrence E. Bassham, III, Andrew L. Rukhin, Juan Soto, James R. Nech-
vatal, Miles E. Smid, Elaine B. Barker, Stefan D. Leigh, Mark Levenson,
Mark Vangel, David L. Banks, Nathanael Alan Heckert, James F. Dray,
and San Vo, Sp 800-22 rev. 1a. a statistical test suite for random and pseu-
dorandom number generators for cryptographic applications, Tech. report,
Gaithersburg, MD, United States, 2010.

BST03. Boaz Barak, Ronen Shaltiel, and Eran Tromer, True random number gen-
erators secure in a changing environment, In Workshop on Cryptographic
Hardware and Embedded Systems (CHES, Springer-Verlag, 2003, pp. 166–
180.

BSW03. Boaz Barak, Ronen Shaltiel, and Avi Wigderson, Computational analogues
of entropy., RANDOM-APPROX, Lecture Notes in Computer Science, vol.
2764, Springer, 2003, pp. 200–215.

Gol08. Oded Goldreich, Computational complexity: A conceptual perspective, 1 ed.,
Cambridge University Press, New York, NY, USA, 2008.

GR05. Ariel Gabizon and Ran Raz, Deterministic extractors for affine sources over
large fields, Proceedings of the 46th Annual IEEE Symposium on Founda-
tions of Computer Science (Washington, DC, USA), FOCS ’05, IEEE Com-
puter Society, 2005, pp. 407–418.

GW96. Ian Goldberg and David Wagner, Randomness and the netscape browser,
1996.

KZ03. Jesse Kamp and David Zuckerman, Deterministic extractors for bit-fixing
sources and exposure-resilient cryptography, Proceedings of the 44th Annual
IEEE Symposium on Foundations of Computer Science (Washington, DC,
USA), FOCS ’03, IEEE Computer Society, 2003, pp. 92–.

Mar96. George Marsaglia, DIEHARD: A battery of tests of randomness, Technical
report ??, Florida State University, Tallahassee, FL, USA, 1996.

NZ96. Noam Nisan and David Zuckerman, Randomness is linear in space, J. Com-
put. Syst. Sci. 52 (1996), no. 1, 43–52.

RTS00. Jaikumar Radhakrishnan and Amnon Ta-Shma, Bounds for dispersers,
extractors, and depth-two superconcentrators, SIAM JOURNAL ON DIS-
CRETE MATHEMATICS 13 (2000), 2000.

SV86. Miklos Santha and Umesh V. Vazirani, Generating quasi-random sequences
from semi-random sources, Journal of Computer and System Sciences 33
(1986), no. 1, 75 – 87.

Wal11. John Walker, Hotbits: Genuine random numbers, generated by radioactive
decay, January 2011.

	True Random Number Generators Secure in a Changing Environment: Improved Security Bounds

