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Abstract
Homomorphic encryption (HE) systems enable compu-
tations on encrypted data, without decrypting and with-
out knowledge of the secret key. In this work, we de-
scribe an optimized RLWE-based implementation of a
variant of the HE system recently proposed by Gen-
try, Sahai and Waters [21] (henceforth called GSW). Al-
though this system was widely believed to be less effi-
cient than its contemporaries, we demonstrate quite the
opposite behavior for a large class of applications.

We first highlight and carefully exploit the algebraic
features of the system to achieve significant speedup over
the state-of-the-art HE implementation, namely the IBM
homomorphic encryption library (HElib) [23]. We intro-
duce several optimizations on top of our HE implemen-
tation, and use the resulting scheme to construct a homo-
morphic Bayesian spam filter, secure multiple keyword
search, and a homomorphic evaluator for binary decision
trees.

Our results show a factor of 10× improvement in
performance (under the same security settings and plat-
forms) compared to HElib for these applications. Our
system is built to be easily portable to GPUs (unlike HE-
lib) which results in an additional speedup of up to a fac-
tor of 10× to offer an overall speedup of 100×.

Keywords— Homomorphic Encryption, FHE, Ring
LWE, Bayesian Filter, Secure Search, Decision Trees,
GPU.

1 Introduction

A fully homomorphic encryption scheme (FHE) is
an encryption scheme that allows evaluation of ar-
bitrary functions on encrypted data. Starting with
Gentry’s mathematical breakthrough constructing the
first plausible FHE scheme [18, 19], we have seen
rapid development in the theory and implementation of
homomorphic encryption (HE) schemes. HE schemes

can now be based on a variety of cryptographic assump-
tions – approximate greatest common divisors [13, 15],
learning with errors (LWE) [7, 8, 10, 21], and Ring-LWE
(RLWE) [9, 20, 28].

We demonstrate that new HE techniques can be
used to speed up data-classifier class of applications.
In particular, we show that a careful consideration
of the mathematics underlying the recently proposed
GSW scheme and Brakerski and Vaikuntanathan [10]
(henceforth called BV), together with the features of the
specific applications and computing platforms results in
significant speedups.

Our starting point is a RLWE variant of the framework
of GSW and BV. The main feature of this scheme is that
the error in these ciphertexts grow with homomorphic
operations, but they grow much slower than in previous
schemes. In particular, when doing a large number of
homomorphic multiplications, the error grows linearly
(as opposed to quasi-polynomially, as in previous
schemes, e.g. HElib) in the number of multiplications.
This enables us to choose smaller parameters than the
other HE schemes for the same security level, and
therefore, better overall efficiency.

The next key observation is that when multiplying a
sequence of numbers using the scheme, if the final result
happens to be a zero, then the error level plummets close
to zero. Of course, because of the security of the scheme,
there is no way for the homomorphic evaluator to tell if
and when this happens, but if such an event is guaranteed
to happen often during homomorphic evaluation, we are
guaranteed to have small error growth. As an illustrative
example, consider evaluating an expression of the form

F(x1, . . . ,xv) = ∑
(y1,...,yv)∈S

(
v

∏
i=1

(xi⊕ yi)

)
(1)
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where x1, . . . ,xv are v-tuples of input encrypted bits,
y1, . . . ,yv are v-tuples of bits in some set S, operation
(xi⊕ yi) represents binary XNOR between bits xi and yi.
Since the form of the expression guarantees us that
exactly one of the terms may survive (F = 1 when
x1, . . . ,xv ∈ S, otherwise F = 0), the homomorphic
evaluator is guaranteed to have a small total error growth
(even though the evaluator does not know precisely
which term will survive). It can be noticed that (1) is
identical to the server’s computation in a PIR scheme.
Indeed, the same format appears in several applications,
including the ones we discuss in Section 4.

In this work we introduce some algorithmic opti-
mizations to the work in [10, 21] as will be discussed
in Sections 3.1 and 3.1.1 to reduce computational
complexity. We next introduce the notion of decrypting
a flag submerged in noise described in Section 4.1 which
can be used to argue that decryption error in fact gives
us a meaningful bit of information! This is unlike all
other lattice-based HE schemes that we are aware of
where one gives up hope the moment the error exceeds
a certain threshold. We also design circuits for spam
filtering and secure search applications that reuse certain
computations and reduce the number of multiplications,
and thus reduce the overall running time, by a factor of
at least two. Finally, we carefully exploit the parallelism
in the encryption system by implementing it on a GPU
platform. In addition, our data-classifier design is
completely scalable and its running time can be reduced
proportional to the number of GPU cores utilized.

Our GPU implementation of the HE scheme scores
a ciphertext (Ctxt) multiplication run time of 0.037
seconds, and the CPU implementation requires 0.372
seconds (See Table 2 for the design environment). Our
CPU implementation scores a speedup of 10× over IBM
HElib [23]. Our GPU implementation gives us a further
10× speedup, and overall a factor of 100× speedup
over HElib (Since HElib is built on the thread-unsafe
NTL library, we were not able to natively port it to
the GPU setting). Also for the same security level, our
ciphertext size is smaller than HElib by a factor of 1.5×.
Our improvement is realized through a reduction in
parameters for the same security level and homomorphic
capacity, stemming from our observations about noise
growth. This ultimately leads to faster implementation
and smaller ciphertext sizes.

We build on top of this to construct an encrypted data
classifier that can tag different e-mails with different
priorities depending on the encrypted data inside them.
Our data-classifier takes the idea of Private Information
Retrieval (henceforth named PIR) one step forward,

and homomorphically computes on the encrypted data
retrieved by the PIR to obtain useful pieces of informa-
tion. We also build a secure multiple keyword search
engine that can search for encrypted keywords inside
encrypted files. The performance of the data-classifier
as well as the secure search engine depends on the size
of the database/file and can be as low as a few seconds.
Finally we build a binary decision tree using our HE
scheme. The example decision tree described took
0.296 seconds. We present additional details about these
results in Section 5.

The rest of the paper is organized as follows. Section 2
presents related work. In Section 3 we introduce the im-
proved encryption scheme. The encrypted data-classifier
design, secure multiple keyword search engine and en-
crypted binary decision trees are introduced in Section 4.
Performance results are introduced in Section 5. Finally
we conclude in Section 6.

2 Related Work

Previous constructions of RLWE-based FHE schemes
include [7, 8, 20]. One of the drawbacks of these
schemes is the need to maintain a so-called “modulus
chain” which increases the size of the prime number and
consequently increases the ring dimension for the same
security level. They also need to perform expensive
modulus and key switching operations.

Based on [7], Halevi and Shoup designed a homo-
morphic encryption library [20, 23], but due to the need
of some additional large data structures and functions,
the performance of their library was diminished. A
performance comparison between our library and the
IBM library is presented in Section 5. In [28] they imple-
mented a variant of the RLWE FHE scheme. Our results
also show considerable speedups over their implemen-
tation. Another homomoprhic library was developed
by Rohloff, Cousins, and Peikert [14]. In their paper
they implement primary building blocks in hardware to
accelerate their system. There are no results available
yet publicly to compare our library with theirs. Other
implementation attempts were made but they were either
incomplete implementations of HE scheme capable
only on performing one multiplication operation [35], or
based on other cryptographic assumptions [11,29,33,34].

Applications analyzed in this paper were primarily in-
spired from [28, 31]. We extended their ideas and de-
veloped full algorithms. The work on CryptDB [30]
used a combination of very simple HE schemes to im-
plement a subset of encrypted SQL queries, and the work
on “ML Confidential” [22] implemented simple classifi-
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cation tasks on encrypted data. Searching an encrypted
database was previeously addressed by [3, 5, 6, 12]. One
drawback in [3, 5] was the need for a special key to aid
the server in performing the search request. They achieve
a weaker security notion, namely one where partial in-
formation about the data access pattern is leaked. In
particular, in the work of [6], the same server requests
would generate the same tags. For a simple and gen-
eral overview of homomorphic encryption concepts the
reader is encouraged to read [1, 4, 24].

3 The Encryption System

Notation For an odd prime number q we identify the
ring Z/qZ (or Zq) with the interval (−q/2,q/2)∩Z. The
notation [x]q denotes reducing x modulo q. Our imple-
mentation uses polynomial rings defined by the cyclo-
tomic polynomials R = Z[X ]/Φm(X), where Φm(X) =
xn + 1 is the irreducible mth cyclotomic polynomial, in
which n is a power of 2 and m = 2n. We let Rq = R/qR.
Any type of multiplication including matrix and polyno-
mial multiplication is denoted by the multiplication op-
erator ’·’. Rounding up is denoted by dae. Matrices of
rings are defined as AM×N , where Ai j ∈ Rq and M,N are
the matrix dimensions. Row vectors are represented as
[a b], where a and b are the vector elements. Column
vectors on the other hand are represented as [a ; b].

Ring Learning With Errors The ring learning with
errors problem (RLWE) was introduced in [26]. It is
the mapping of the LWE problem from the vectors over
Zq to polynomial rings over Rq. The RLWE problem is
to distinguish between the following two distributions.
The first distribution is to draw (a,b) uniformly from
R2

q. The second is to first draw t uniformly from Rq.
Then sample (a,b) as follows. Draw a uniformly from
Rq, sample e from a discrete Gaussian error distribution
e← DRq,σ , and set b = a · t + e.

3.1 The Encryption Scheme

The parameters of the system are n, the degree of the
number field; q, the modulus; σk and σc, the standard
deviation of the discrete Gaussian error distribution
in the keyspace and ciphertext space respectively;
`

∆
= dlogqe − 1; and N = 2` that governs the number

of ring elements in a ciphertext. The setting of these
parameters depends on the security level λ (say, λ = 80
or 128 bits) as well as the complexity of functions we
expect to evaluate on ciphertexts.

Let the bit decompose function BD(d) trans-
form the polynomial d to the `-dimensional vector
[d(0), . . . ,d(`− 1)], which are the bitwise decomposi-
tion of d. That is, d(0), . . . ,d(`−1) are polynomials with
0-1 coefficients such that d = ∑

`−1
τ=0 d(τ) · 2τ , which rep-

resents the bit decompose inverse function BDI(d). Note
that AN×N = BD(BN×2), inversely BN×2 =BDI(AN×N),
and that BD(BN×2) · BDI(AN×N) = AN×N · BN×2.

We introduced some algorithmic optimizations to the
encryption system in [10,21] in order to reduce computa-
tional complexity and to speedup our operations, as will
be detailed below. Our encryption system works as fol-
lows.

• Keygen(1λ ): Choose polynomial t ← DRq,σk . The
secret key sk = s2×1 ← [1;−t] ∈ R2

q. Uniformly
sample a← Rq, e← DRq,σk , set b = a · t + e, The
public key pk = A1×2 = [b a]. Note that

A1×2 · s2×1 = b−a · t = e (2)

(as opposed to sk = v = PO2(s) in [10, 21],
where power of two PO2(x) is defined as
[x, 2x, · · · , 2`−1x]. We have a smaller secret key by
a factor of ` times)
• Enc(pk,µ): The message space of our encryp-

tion scheme is Rq. Sample a uniform vector
rN×1 ∈ {0,1}, EN×2←DRN×2

q ,σc
, encrypt the plain

text polynomial µ ∈ Rq by calculating

CN×2 = µ ·BDI(IN×N)+ rN×1 ·A1×2 +EN×2 (3)

(as opposed to CN×N in [10, 21], we have a smaller
ciphertext by a factor of ` times)
• Dec(sk,C): Given the ciphertext C, the plaintext

µ ∈ Rq is restored by multiplying C by the secret-
key s as follows :

CN×2 · s2×1 = (µ ·BDI(IN×N)

+(rN×1 ·A1×2 +EN×2)) · s2×1

= µ ·BDI(IN×N) · s2×1

+ rN×1 · A1×2 · s2×1 +EN×2 · s2×1

= µ ·BDI(IN×N) · s2×1

+ rN×1 · e+EN×2 · s2×1

= µ ·BDI(IN×N) · s2×1 + error
(4)

(as opposed to Dec(sk,C) =CN×N ·vN×1 in [10,21],
we have fewer operations in Dec by a factor of `
times)

Observe that the first ` coefficients in the first term of
the last equation in (4) are in the form µ,2µ, · · · ,2`−1µ .

3



This means that the element at location i ∈ [0, `− 1] is
in the form µ · 2i + error. That is, the most significant
bit of each entry carries a single bit from the number µ

assuming that error < q/2 and there is no wrap-around
mod q as was described in [21].

3.1.1 Homomorphic Operations

Homomorphic operations are described next.

• ADD(C,D): To add two ciphertexts CN×2 and
DN×2 ∈ RN×2

q encrypting µ1 and µ2 respectively,
simply output CN×2+DN×2, which is an entry-wise
addition.

• MULT(C,D): To multiply two ciphertexts CN×2
and DN×2 ∈ RN×2

q , output BD(CN×2) ·DN×2.

(as opposed to MULT(C,D) = FLATTEN(CN×N ·
DN×N) in [10, 21], where FLATTEN(A) is defined
as BD(BDI(A)). We have fewer operations in
MULT by a factor of at least ` times)

Correctness of homomorphic addition is immediate,
however it is not that obvious for the homomorphic mul-
tiplication. It is clear that the multiplication algorithm
is asymmetric in the input ciphertexts C and D. That
is, we treat the components of D as a whole, whereas
the components of C are broken up into their “bit-wise
decompositions”. This is a “feature” that is inherited
from the work of BV [10]. It is shown below that this
multiplication method is not only correct, it also gives a
slow noise-growth rate.

The correctness of the multiplication operation can
be noticed from the decryption operation. Matrix
dimensions are removed for clarity.

BD(C) ·D · s = BD(C) · (µ2 ·BDI(I)+ r2 ·A+E2) · s
= BD(C) · (µ2 ·BDI(I) · s+ r2 · e+E2 · s)
= µ2 ·C · s+BD(C) · (r2 · e+E2 · s)
= µ2 · (µ1 ·BDI(I) · s+ r1 · e+E1 · s)
+BD(C) · (r2 · e+E2 · s)

= µ2 ·µ1 ·BDI(I) · s+µ2 · (r1 · e+E1 · s)
+BD(C) · (r2 · e+E2 · s)

= µ2 ·µ1 ·BDI(I) · s+µ2 · error1

+BD(C) · error2

= µ2 ·µ1 ·BDI(I) · s+ error
(5)

which is the encryption of µ = µ2 ·µ1.

Function 1: Multiply ”v” Ciphertexts Function
Input: ”v” Ctxts C1,C2, · · · ,Cv
Output: Caccum

The multiplication result of ”v” input Ctxts.

Caccum =C1
For i from 2 to v {

Caccum =Caccum×Ci
}
Return Caccum

Noise Analysis Correct decryption depends crucially
on the ciphertext noise being bounded. Thus, it is crucial
to understand how homomorphic operations increase
ciphertext noise. Let C be a fresh ciphertext. We make
the following observations, following [10].

Homomorphic addition of v ciphertexts increases the
noise by a factor of v in the worst case. In practice,
since the coefficients of the error polynomials follow a
Gaussian distribution, the factor is closer to O(

√
v).

Homomorphic multiplication is significantly more in-
teresting. Multiplication of two ciphertexts C = Enc(µ1)
and D = Enc(µ2) with error magnitudes B1 and B2 re-
spectively, increases the error to O(B1 · ‖µ2‖1 + B2 ·
n logq) in the worst case, and O(B1 · ‖µ2‖1 + B2 ·√

n logq) in practice. Here, ‖µ‖1 denotes the `1 norm of
the message polynomial µ . The key fact to note here is
that the error dependence on the two ciphertexts is asym-
metric.

Better Error in Homomorphic Multiplication To
multiply v ciphertexts it is crucial to pay attention to
the order of multiplication. In the applications, µ will
typically be 0 or 1, meaning that the growth is simply
additive with respect to B1. Thus, the best way to
multiply v ciphertexts with (the same) error level B is
through an accumulator-like algorithm as in Function 1,
rather than using a binary tree of multiplications (which
grows the error at superpolynomial rates). The resulting
error growth is O(B · vn logq) in the worst case, and
O(B ·

√
vn logq) in practice.

For example consider (1), the noise grows to O(B ·
vn log q · |S|) in the worst case, or O(B ·

√
vn log q|S|)

in the typical case. This is in contrast to O(B ·√
(n logq)logv|S|) when using the Brakerski-Gentry-

Vaikuntanathan [7] encryption scheme, implemented in
IBM HElib. Indeed, such expressions are far from atyp-
ical – they occur quite naturally in evaluating decision
trees and PIR-like functions as will be discussed in Sec-
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tion 4.

Zero Plaintext, Zero Error Yet another source of
improvement is evident when we inspect the error term
B1 · ‖µ2‖1 +B2 · n logq. When we multiply using an
accumulator as in Function 1, B2 represents the smaller
error in the fresh ciphertexts Ci, and B1 represents the
larger error in the accumulated ciphertext Caccum. We
see that if Ci encrypts µ2 = 0, then the larger error term
B1 vanishes in the error expression!

This phenomenon manifests itself in evaluating the ex-
pression in (1) as well. When evaluating each of the
products in (1), the error grows proportional not to v,
the total number of multiplications, but rather with k, the
longest continuous chain of 1’s starting from the end.
This is because the last time a zero is encountered in
the multiplication chain, the error vanishes, by the ob-
servation above. Assuming that S is a “typical set”, the
expected length of a continuous chain of trailing 1’s is
∑

v
i=1 i ·2−i < 2. In other words, the multiplicative factor

of v vanishes from the error expression as well, and we
get error growth close to O(B ·

√
n logq|S|). This is the

same effect as if one were merely adding |S| ciphertexts.

How to Set Parameters Let f be the function that we
are evaluating, for example the expression in (1). Let
error f (B,n,q) denote how much the error grows when
evaluating a function f on ciphertexts in Rq with an ini-
tial error of magnitude B. For correct decryption, we
need

error f (B,n,q)< q/2 (6)

Since errors grow slower in our scheme, q can be set to
be correspondingly smaller. Following the analysis of
Lindner and Peikert [25], for a security level of λ bits,
we need

n > logq(λ +110)/7.2 (7)

Since our logq is smaller, we can set our n to be smaller,
for the same security level λ . In turn, since we now have
a smaller n, our new error f (B,n,q) is smaller, leading to
an even smaller q, and so on. In other words, we are in a
virtuous cycle of shrinking parameters. The optimal pa-
rameters are obtained by solving both the above inequal-
ities together. Table 1 summarizes our final parameter
selection.

4 Candidate Applications

4.1 Homomorphic Spam Filter
We implement a homomorphic version of Bayesian
spam filters [32]. The main idea behind a Bayesian
classifier is that words have certain probabilities of

Table 1: Parameter Selection and Keys/Ctxt Sizes.
”units” here refers to the size of the operand used to store
each element, which is equal to ` bits.

Parameter RLWE (This work)
λ 80
n 1024
` 31
N 2 · `= 62

σk,σc 10
SK size (units) 2×n = 2,048
PK size (units) 2×n = 2,048
Ctxt size (units) N×2×n = 126,976

occurrence in authentic emails (sometimes called ham
emails) and in spam emails. Since the filter doesn’t
know these probabilities in advance, email training sets
are used to estimate these probabilities. The training
phase is assumed to take place on unencrypted training
sets, and results in a database of words together with
probabilities associated to each word arising in spam
e-mails. Once this database is created, the word proba-
bilities are used to classify new emails.

Let pw denote the probability that a word w occurs
in spam e-mails. Given an e-mail with key words
(w1, . . . ,wK), there are many techniques to combine the
probabilities of each word to compute a final estimate
of whether the e-mail should be classified as spam. The
simplest perhaps is to use Bayes rule. This results in the
following expression for p, the probability that the e-mail
will be classified as spam.

p =
pw1 pw2 · · · pwK

pw1 pw2 · · · pwK +(1− pw1)(1− pw2) · · ·(1− pwK )
(8)

At a high level, the email server will receive encrypted
words wi, and map them, homomorphically, into the
numbers pw. Once we obtain these numbers pw, we
wish to compute the expression above to obtain p.

The first downside of the equation above, when it
comes to homomorphic computations, is that integer di-
visions are extremely expensive to carry out using cur-
rent homomorphic encryption schemes. In order to over-
come this, we make a number of reformulations of the
equation above, as follows.

η
∆
= log(1− p)− log p=

K

∑
i=1

(log(1− pwi)− log pwi) (9)
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and we will let

ηwi
∆
= log(1− pwi)− log pwi (10)

In other words, the email training phase will store the
numbers ηw for each word w in the dictionary (rather
than the numbers pw). The numbers ηw are represented
as binary fixed-point numbers, whose bits are encoded
into the coefficients of polynomial πw. For example,
ηw = 101b is represented as the polynomial πw = x0+x2.
The addition of two binary polynomials will not generate
a carry between adjacent polynomial elements, rather
polynomial elements will grow individually and will
be appropriately reconstructed after decryption (e.g.
101b + 111b = 212, which will be constructed back
after decryption to 1100b). The encrypted spam filter
computation will take as input an encrypted word w,
map it first into an encrypted ηw as will be described in
Function 5, and then simply perform a homomorphic
addition of the ηw to get an encrypted η . This is then
sent back to the client who decrypts, recovers η using
her secret key, and computes p = 1/(2η +1) in the clear.

The only remaining question is how to map encrypted
words w into encrypted ηw. When input e-mails and
words are not encrypted, matching a certain word is
an easy task. Each email word can be searched across
the database. If the word is found, the corresponding
number ηw is fetched. On the other hand, when input
emails are encrypted, matching words become much
harder. This “lookup problem” is the same as the prob-
lem of private information retrieval (PIR) [16, 36]. Our
data-classifier takes the idea of PIR one step forward,
it homomorphically computes on the encrypted data
retrieved by the PIR to obtain useful pieces of informa-
tion. Other PIR constructions [2, 8, 16, 17, 27, 36] cannot
implement data-classifiers the way we do because they
either: (a) cannot compute with the PIR responses, or,
(b) their plaintext field is only mod 2 (or modulo a small
prime, for efficiency purposes) and thus they cannot do
integer addition as required by (9). Our HE on the other
hand has the advantage of being able to use the full
modulo-q domain for plaintext additions. As should be
clear from the description above, spam filtering is just
an example of a class of “lookup-and-compute” type of
applications for which we can use our HE scheme.

Function 2 shows how to encrypt individual words in
a given list (email). Function 3 shows how we match an
input encrypted word versus another unencrypted word
from the database. The matching function in Function 3
can be used to construct our encrypted-email spam-filter
by simply multiplying the database word probabilities
by the ”match” output as in Function 5. Only the words
that find a match in the database will contribute towards

Function 2: Word List Encryption
Input: Set of words in a list (email)
Output: Encrypted words using HE

For each word in the list {
a = Hash( word ).
For each bit i in a {

Ci = Encrypt( ai ).
Store Ci to the output list.
}
}

Function 3: Word Matching WordMatch

Input1: Encrypted bits of Word1 (Ci)
Input2: Plaintext Word2
Output: Binary bit ”match” = 1 if words match, 0
otherwise

match = 1
a = Hash( Word2 ).
For each bit i in a {

If ( ai = 1 )
Bi =Ci

Else
Bi = 1−Ci

match = match×Bi
}
Return match

Function 4: Enc. Word Matching EncWordMatch

Input1: Encrypted bits of Word1 (Ci)
Input2: Encrypted bits of Word2 (Di)
Output: Binary bit ”match” = 1 if words match, 0
otherwise

match = 1
For each bit i {

Bi =Ci⊕Di
match = match×Bi

}
Return match

the final probability. It is also possible to keep the
database encrypted to protect it from outside attackers.
To do this, the matching function should be replaced by
EncWordMatch presented in Function 4 which performs
bit matching for two encrypted inputs, but at an extra
cost of two extra Ctxt multiplications to implement the
XNOR operation.
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Function 5: Homomorphic Email Spam Filter
Input1: Encrypted Email
Input2: Spam Database (DB)
Output: Email Spam/Ham Probability

prob = 0
For each encrypted word ”i” in the email {

For each word ” j” in the database {
match = WordMatch(EmailWordi , DBWord j)
prob += match×WordProbability j

}
}
Return prob

In order to increase the performance and efficiency of
the spam filter, several optimizations are introduced:

Optimization 1: By storing probability numbers in a
single polynomial entry (ex. η = 5,π = 5x0), the other
polynomial entries will be unused. This will also lead to
the rapid growth of the final result. We decided to store a
probability number as binary bits in adjacent polynomial
entries (e.g. η = 5 = 101b,π = x0 + x2). By doing so,
we will benefit from the unused slots and also when the
adjacent slots are added without a carry propagate, val-
ues in individual slots will grow much slower than before
(grows logarithmically). By having individual polyno-
mial slot values grow logarithmically, we will also have
a logarithmic growth in the Ctxt noise as was discussed
in Section 3.1.1.

Optimization 2: The matching Function 3 was stated
naively for simplicity. This is done by matching bits one-
by-one to get the matching flag. Another more clever
way to do the same task is to notice that since database
words are in the clear, we can rearrange database entries
in ascending order. By doing so, we can infer consec-
utive matching bits in adjacent plaintext entries in the
database to skip redundant computations. As a simple
example, assume the following two 4-bit database en-
tries: 1001 and 1011, both those entries share the left-
most two bits ”10”. Instead of doing 6 multiplication
operations to match an input encrypted word with those
two entries as in Function 3, we can store partial match-
ing results of the left-most two bits ”10” and reduce these
multiplication operations to 4 operations. Experimen-
tal results for a database of size 105 and hash numbers
of size 32-bits show that the number of multiplications
needed for matching one word across the entire database
decrease from 32 · 105 to 16 · 105 which is a factor of 2
reduction in the number of multiplications.

Function 6: Secure Multiple Keyword Search In En-
crypted Files

Input1: Set of encrypted keywords
Input2: Encrypted file
Output: Keywords Found ”Result = 1”, otherwise ”0”

result = 1
For each encrypted keyword ”i” {

For each encrypted word ” j” in the file {
match = EncWordMatch(FileWord j,Keywordi)
result += match

}
}
Return result

Optimization 3: The interesting property of zero
plaintext zero error, described in Section 3.1.1, can be
used for applications where we can correctly decrypt a
binary flag even when it is totally submerged in noise!
For example, if the application in hand needs many mul-
tiplication operations to be done to match one entry as
in (1), this may lead to the rapid growth of the noise in
the Ctxt to the limit that it may not be decrypted cor-
rectly. On the other hand, as discussed in Section 3.1.1,
in the case of non-matching items, the result will have
much less noise. This means that when the resulting flag
is ”0”, it will most probably be decrypted correctly (oth-
erwise, if we get an error in decryption, this most proba-
bly means that the resulting flag was a ”1”).

4.2 Secure Multiple Keyword Search

Another interesting problem is the problem of search-
ing for a set of input encrypted keywords in encrypted
files [31]. Consider an application at an airport where
an agent can encrypt passenger names and search for
them in an encrypted watchlist present in the cloud. This
would be crucial to preserve the security of the watch-
list without compromising the privacy of the passengers.
Another useful security application would be in moni-
toring encrypted emails for keywords without compro-
mising the privacy of users. This problem is somewhat
parallel to the problem of the data classifier discussed
in Section 4.1. The only difference is that Function 5
will be replaced by Function 6 which will compute the
number of matched keywords in a given file. The com-
putational complexity of this search problem can be de-
creased if the input keywords are not encrypted (plaintext
keywords). In this case, EncWordMatch can be replaced
by WordMatch defined in Function 3, which is computa-
tionally less expensive.

7



a1

a2 a3

L5L4L1 a4

L2 L3

0 1

0 0

0

1

1

1

Fig. 1: Binary Decision Tree with nodes ai and leafs Li.

4.3 Binary Decision Trees

Binary decision trees are classifiers consisting of interior
nodes and leaf nodes. Interior nodes are decision nodes
which decide which direction the tree should follow.
Leaf nodes are the final tree decision. Binary decision
trees are considered as a simplified version of the spam
filter described previously, which is considered as a
complete decision tree. Fig. 1 shows an example of a
binary decision tree with 4 nodes and 5 leafs.

The decision tree in Fig. 1 can be expressed as poly-
nomial equation as in (11). Such a polynomial equation
can be efficiently implemented using our HE scheme.

T (a1,a2,a3,a4) = a1(a3 ·L5 +(1−a3) ·L4)
+(1−a1)(a2(a4 ·L3 +(1−a4) ·L2)

+(1−a2) ·L1)

(11)

5 Performance Results

Design Environment A summary of the specifications
of the system used to implement our work for the purpose
of benchmarking is found in Table 2.

5.1 Ctxt Multiplication

Ctxt multiplication is considered the main bottleneck for
most of the homomorphic applications. Thus, we next
report the performance of the Ctxt multiplication opera-
tion on different platforms.

Table 2: Design Environment.

Item Specification
CPU Intel Core-i7 4770K
# of CPU Cores 4
# of Threads 8
CPU Frequency 3.5 GHz
Cache Size 8 MB
System Memory 8 GB DDR3
Operating System Windows 8.1 Ultimate

64-bits
Programming IDE Visual Studio 2012

Ultimate edition
GPU NVIDIA GeForce GTX750

Ti
Maxwell Version GM107
# of CUDA Cores 640
GPU Core Frequency 1020 MHz
GPU Memory 2 GB
GPU L2 Cache 2 MB

Performance using CPU The performance of the Ctxt
multiplication in our library compared to the IBM HElib
library across different circuit depths, when running on a
single CPU core, is shown in Fig. 2. Our library scores
speedups up to 10× across all circuit depths.

Performance using GPU To explore parallelization
in our work, we partitioned the polynomial operations
across GPU cores. The downside of the IBM HElib is
that it is not parallelizable. The performance of the Ctxt
multiplication in the GPU implementation of our library
compared to the IBM HElib library running on a CPU,
across different circuit depth, is shown in Fig. 3. Again,
our library scores speedups up to 100× across all circuit
depths.

Table 3 summarizes the performance results of the
complete homomorphic operations for our library com-
pared to the [23, 28] at a circuit depth equal 10. It can
be seen from this table that we have a 9.5× speedup for
the multiplication operation of our CPU implementation
compared to IBM HElib library. By additionally ex-
ploring the parallelizable properties that our HE library
has, we get another 10× speedup by distributing the HE
computations on the GPU cores. This resulted in an
overall ≈ 100× speedup for the multiplication operation
compared to IBM HElib library and a 3412× compared
to [28]. The comparison between the Ctxt size of this
work and the Ctxt in the IBM library is shown in Table 4.
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Table 3: Performance comparison between our work and IBM HElib. Running time is in seconds.

Our Work IBM GPU Speedup Work in [28] GPU Speedup
CPU GPU HElib over IBM HElib over [28]

Startup 0.27 0.27 85.3 316× 5 18.5×
Encrypt 0.383 0.043 0.59 13.7× 4.8 111.6×
Decrypt 0.3 0.043 0.39 9× 2.27 52.8×
Add 0.006 0.001 0.002 2× 0.013 13×
Multiply 0.372 0.037 3.6 97.3× 126.25 3412×
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Fig. 2: Ctxt multiplication time of our work compared
to the IBM HElib when running on a single CPU core
across different circuit depths. The running time is plot-
ted on log scale.

Table 4: Ctxt Size Comparison.

This Work IBM HElib
SecurityLevel(λ ) 80 80

Depth(L) 10 10
Width (bits) log(q1) = 31 301

Poly. Degree [25] n > log(q)(λ +110)/7.2
n n1 = 1024 n2 = 13981

Ctxt size (bits) 4 ·n1 · log2(q1)
= 3,936,256

2 ·n2 · log(q2)
= 6,021,120

5.2 Secure Multiple Keyword Search Per-
formance

The performance of the secure and plaintext search en-
gines, described in Section 4.2, compared to IBM HElib
versus different file sizes is shown in Fig. 4. We observe
a 25× speedup for the secure keyword search on a GPU
compared to IBM HElib (and 100× speedup for circuit
depth ≥ 5 as indicated in Fig. 3). It is worth mentioning
that our implementation is totally scalable and paralleliz-
able. Increasing the number of GPUs inside the server
by a factor G, will automatically scale down the running
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Fig. 3: Ctxt multiplication time of the GPU implemen-
tation of our work compared to the IBM HElib running
on a single CPU core across different circuit depths. The
running time is plotted on log scale.

1

10

100

1000

10000

100000

30 40 50 60 70 80 90 100 110 120 130 140

Se
ar

ch
 t

im
e 

(i
n

 L
o

g[
se

co
n

d
s]

)

File Size (in words)

Plaintext Keyword Search (GPU) Secure Keyword Search (GPU)

Plaintext Keyword Search (HElib) Secure Keyword Search (HElib)

25× 25×

Fig. 4: Secure and plaintext search running time ver-
sus different file sizes compared to IBM HElib (Plain-
text search means plaintext keyword search in encrypted
files).

time of the our search engine by the same ratio.

5.3 Binary Decision Tree Performance

The performance of the decision tree depends on the tree
structure and the number of nodes and leafs, which will
affect our parameter selection and Ctxt operation running
times. The decision tree running time depends mainly on
the number of multiplications needed. For example, the
polynomial equation (11) that describes the tree in Sec-
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tion 4.3 has 8 multiplication operations, each multipli-
cation operation takes 0.037 seconds, which results in a
total running time of 0.296 seconds.

6 Conclusion

We described, optimized, and implemented an RLWE-
based variant of the HE scheme of [10, 21] which
achieves much slower growth of noise, and thus much
better parameters than previous HE schemes. We imple-
ment three representative applications, namely encrypted
spam filters, secure multiple keyword search, and en-
crypted binary decision trees, using this HE scheme.
Compared to the IBM HElib library, our GPU implemen-
tation scores a speedup of 100× in Ctxt multiplication,
which represents the bottleneck for most HE schemes.
Our secure search engine application runs in a few sec-
onds on small to moderate file sizes, and our decision tree
computations run in under a second for moderate size de-
cision trees.
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