
IEEE TRANS. ON COMPUTERS, IN REVIEW, REVISED JUNE 23, 2015. 1

SHIELD: Scalable Homomorphic
Implementation of Encrypted Data-Classifiers

Alhassan Khedr, Member, IEEE, Glenn Gulak, Senior Member, IEEE, and Vinod Vaikuntanathan

Abstract—Homomorphic encryption (HE) systems enable computations on encrypted data, without decrypting and without knowledge
of the secret key. In this work, we describe an optimized Ring Learning With Errors (RLWE) based implementation of a variant of the
HE system recently proposed by Gentry, Sahai and Waters (GSW). Although this system was widely believed to be less efficient than
its contemporaries, we demonstrate quite the opposite behavior for a large class of applications.
We first highlight and carefully exploit the algebraic features of the system to achieve significant speedup over the state-of-the-art HE
implementation, namely the IBM homomorphic encryption library (HElib). We introduce several optimizations on top of our HE
implementation, and use the resulting scheme to construct a homomorphic Bayesian spam filter, secure multiple keyword search, and
a homomorphic evaluator for binary decision trees.
Our results show a factor of 10× improvement in performance (under the same security settings and CPU platforms) compared to IBM
HElib for these applications. Our system is built to be easily portable to GPUs (unlike IBM HElib) which results in an additional speedup
of up to a factor of 103.5× to offer an overall speedup of 1035×.

Index Terms—Homomorphic Encryption, FHE, Ring LWE, Bayesian Filter, Secure Search, Decision Trees, Implementation, GPU.

F

1 INTRODUCTION

A fully homomorphic encryption scheme (FHE) is an
encryption scheme that allows evaluation of arbitrary

functions on encrypted data. Starting with Gentry’s
mathematical breakthrough constructing the first plausible
FHE scheme [22], [23], we have seen rapid development in
the theory and implementation of homomorphic encryption
(HE) schemes. HE schemes can now be based on a variety of
cryptographic assumptions – approximate greatest common
divisors [16], [18], learning with errors (LWE) [9], [10], [12],
[25], and Ring-LWE (RLWE) [11], [24], [32].

Due to the growing use of cloud computing, privacy
concerns have begun to escalate. Secure data classifiers
constructed from FHE schemes can present a very useful
tool to provide an answer for these concerns. It is important
that these secure data classifiers protect the privacy of the
input data and also the classifier model itself.

Consider the secure email spam filter as a representative
example for data-classifier class of applications. In the
training phase, the spam filter creates its model from
plaintext emails. In the testing phase however, the secure
email spam filter is required to classify the input encrypted
email as a spam or not without any knowledge about
the actual contents of the email. The same concept can be
applied to the secure search application, which is basically

• Alhassan Khedr is with the Department of Electrical and Computer
Engineering, University of Toronto, Toronto, ON, Canada.
E-mail: alhassan@ece.utoronto.ca

• Glenn Gulak is with the Department of Electrical and Computer Engi-
neering, University of Toronto, Toronto, ON, Canada.
E-mail: gulak@ece.utoronto.ca

• Vinod Vaikuntanathan is with the Department of Computer Science and
Artificial Intelligence Laboratory, MIT, Cambridge, MA, USA.
E-mail: vinodv@mit.edu

a variant of the spam filter. In the secure search problem, it
is also required to search for multiple encrypted keywords
inside files and return the number of matching keywords
without the knowledge of the file contents.

The main contribution of this paper is the construction
of a secure email spam filter and a secure multi-keyword
search. We have also prototyped a secure binary decision
trees as a proof of concept and compare our work to
other similar implementations [8]. Detailed algorithms
for building those applications, using the GSW HE
scheme, are presented in this work along with their GPU
performance results. Our data-classifier takes the idea
of Private Information Retrieval (PIR) one step forward,
and homomorphically computes on the encrypted data
retrieved by the PIR to obtain useful pieces of information.
We show that a careful consideration of the mathematics
underlying the recently proposed GSW scheme and
Brakerski and Vaikuntanathan (BV) scheme [12], together
with the features of the specific applications, results in
significant speedups. The performance of the data-classifier
as well as the secure search engine depends on the size of
the database/file and can be as low as a few seconds with
present off-the-shelf technology.

The applications presented in this paper take advan-
tage of the observation about a key feature in the GSW
encryption scheme, namely, when multiplying a sequence
of encrypted numbers using the GSW scheme, if the final
result happens to be a zero, then the error level is reduced
to the error level of a fresh cyphertext. Of course, because
of the security of the scheme, there is no way for the
homomorphic evaluator to tell if and when this happens,
but if such an event is guaranteed to happen often during
homomorphic evaluation, we are guaranteed to have small

IEEE TRANS. ON COMPUTERS, IN REVIEW, REVISED JUNE 23, 2015. 2

error growth. As an illustrative example of this feature,
consider evaluating an expression of the form

F (x1, . . . , xv) =
∑

(y1,...,yv)∈S

(
v∏
i=1

(xi ⊕ yi)
)

(1)

where x1, . . . , xv are v-tuples of input encrypted bits,
y1, . . . , yv are v-tuples of bits in some set S, operation
(xi ⊕ yi) represents binary XNOR between bits xi and yi.
Since the form of the expression in (1) guarantees us
that exactly one of the terms may survive (F = 1 when
x1, . . . , xv ∈ S, otherwise F = 0), the homomorphic
evaluator is guaranteed to have a small total error growth
(even though the evaluator does not know precisely which
term will survive). It can be noticed that (1) is identical to
the server’s computation in a PIR scheme. Indeed, the same
format appears in several applications, including the ones
we discuss in Section 5.

In this work, algorithmic optimizations were also
introduced to the work in [12], [25] to reduce their
computational complexity as will be discussed in
Sections 3.1 and 3.1.1. We also introduce the notion of
decrypting a flag submerged in noise described in Section 5.1
which can be used to argue that a decryption error in fact
gives us a meaningful bit of information! This is unlike all
other lattice-based HE schemes that we are aware of where
one gives up hope the moment the error exceeds a certain
threshold.

Implementation Results: We carefully exploit the
parallelism in the encryption system by implementing it
on a GPU platform. The number theoretic transform (NTT)
engine was carefully designed to address the limitations
present in current GPUs. Our GPU implementation of the
HE scheme scores a ciphertext (Ctxt) multiplication run
time of 3.477 milliseconds with a 1035× speedup over IBM
HElib for circuits depth more than 5 and 80-bit security.
Also for the same security level, our ciphertext size is
smaller than HElib by a factor of 1.5×. Our improvement
is realized through a reduction in parameters for the same
security level and homomorphic capacity, stemming from
our observations about noise growth. This ultimately leads
to faster implementation and smaller ciphertext sizes. Our
data-classifiers are completely scalable and their running
time can be reduced proportional to the number of GPU
cores utilized.

The rest of the paper is organized as follows. Sec-
tion 2 presents related work. In Section 3 we introduce
the improved encryption scheme. Next in Section 4, the
NTT architecture and Solinas primes used in our system
are introduced. The encrypted data-classifier design, secure
multiple keyword search engine and encrypted binary de-
cision trees are introduced in Section 5. Performance results
are introduced in Section 6. Finally we conclude in Section 7.

2 RELATED WORK

Previous constructions of RLWE-based FHE schemes
include [9], [10], [24]. One of the drawbacks of these

schemes is the need to maintain a so-called “modulus
chain” which increases the size of the prime number
and consequently increases the ring dimension for the
same security level. They also need to perform expensive
modulus and key switching operations. Bootstrapping
was introduced to the GSW scheme in [3], [20], with the
bootstrapping in [20] completing in under a second.

Based on [9], Halevi and Shoup designed a
homomorphic encryption library “IBM HElib” [24], [27],
but due to the need of some additional large data structures
and functions, the performance of their library has large
execution time. A performance comparison between our
library and the IBM HElib library is presented in Section 6.
In [32] they implemented a variant of the RLWE FHE
scheme. Our results also show considerable speedups over
their implementation. Another homomorphic library was
developed by Rohloff, Cousins, and Peikert [17]. In their
paper they implement primary building blocks in hardware
to accelerate their system. There are no performance results
available yet publicly to compare our library with theirs.
In [41] significant speedups were gained from the use of
GPU computing, but their implementation suffered from
having very large memory requirements, which eventually
becomes the bottleneck of their implementation. Other
implementation attempts were made but they were either
incomplete implementations of an HE scheme capable only
of performing one multiplication operation [43], or based
on other cryptographic assumptions [13], [34], [40].

Applications analyzed in this paper were primarily in-
spired from [32], [36]. We extend their ideas and devel-
oped full algorithms. The work on CryptDB [35] used a
combination of very simple HE schemes to implement a
subset of encrypted SQL queries, and the work on “ML
Confidential” [26] implemented simple classification tasks
on encrypted data. Secure computations on binary decision
trees were introduced in [8], yet they have long execution
time due to the use of the IBM HElib library. Searching
an encrypted database was previeously addressed by [4],
[6], [7], [14]. One drawback in [4], [6] was the need for
a special key to aid the server in performing the search
request. They achieve a weaker security notion, namely one
where partial information about the data access pattern is
leaked. In particular, in the work of [7], the same server
requests would generate the same tags. For a simple and
general overview of homomorphic encryption concepts the
reader is encouraged to read [1], [5], [28].

3 THE ENCRYPTION SYSTEM

Notation: For an odd prime number q we identify the ring
Z/qZ (or Zq) with the interval (−q/2, q/2)∩Z. The notation
[x]q denotes reducing x modulo q. Our implementation uses
polynomial rings defined by the cyclotomic polynomials
R = Z[X]/Φm(X), where Φm(X) = xn+1 is the irreducible
mth cyclotomic polynomial, in which n is a power of 2 and
m = 2n. We let Rq = R/qR. Any type of multiplication
including matrix and polynomial multiplication is denoted
by the multiplication operator ’·’. Rounding up to the
nearest integer is denoted by dae. Matrices of rings are

IEEE TRANS. ON COMPUTERS, IN REVIEW, REVISED JUNE 23, 2015. 3

defined as AM×N , where Aij ∈ Rq and M,N are the matrix
dimensions. IN×N represents the identity matrix of rings.
Row vectors are represented as [a b], where a and b are
the vector elements. Column vectors on the other hand are
represented as [a ; b].

Ring Learning With Errors: The ring learning with errors
problem (RLWE) was introduced in [30]. It is the mapping
of the LWE problem from the vectors over Zq to polynomial
rings over Rq . The RLWE problem is to distinguish between
the following two distributions. The first distribution is to
draw (a, b) uniformly from R2

q . The second is to first draw
t uniformly from Rq . Then sample (a, b) as follows. Draw a
uniformly from Rq , sample e from a discrete Gaussian error
distribution e← DRq,σ , and set b = a · t+ e.

3.1 The Encryption Scheme

The parameters of the system are n, the degree of the
number field; q, the modulus; σk and σc, the standard
deviation of the discrete Gaussian error distribution in the
keyspace and ciphertext space, respectively; ` ∆

= dlog qe;
and N = 2` that governs the number of ring elements
in a ciphertext. The setting of these parameters depends
on the security level λ (e.g., λ = 80 or 128 bits) as well
as the complexity of functions we expect to evaluate on
ciphertexts.

Bit Decompose Function “BD()”: The bit decompose
function BD(integer) takes an `-bit input integer, then
outputs a row vector with size ` containing the bit
decomposition of this integer. Similarly, BD(polynomial)
takes an input polynomial of size n, where each
coefficient is an `-bit integer, then outputs an `-sized
row vector of polynomials (each of size n) containing
the bit decomposition of each coefficient of the input
polynomial, yielding a matrix of size l × n. Finally,
BD(Matrix of polynomials) takes an input matrix of
polynomials of size x× y (each polynomial is of size n with
integer coefficients), then outputs a matrix of polynomials
expanded by a factor ` in the column dimension, yielding
a matrix of size x × y`, where each consecutive ` elements
along the row contain the bit representation of each
coefficient of each of the input polynomials. For example,
the bit decompose of the input polynomial matrix Bx×y×n
is BD(Bx×y×n) = βx×y`×n. The reader should note that
despite the fact that the polynomial coefficients of matrix
βx×y`×n are single bit values, the storage requirement of
matrix β in CPU or GPU memory is not equal to x× y`× n
bits. This is due to the fact that the smallest addressable
unit of memory is a byte (i.e., Byte Addressable). Hence,
β requires x × y` × n bytes of storage. This results in the
further observation that the storage requirement of βx×y`×n
is 8× the storage requirement of Bx×y×n.

Bit Decompose Inverse Function “BDI()”: As the name
reveals, the BDI() function is the inverse of BD(). The
BDI() function groups consecutive ` coefficients along a
row (the coefficients don’t need to be binary), and outputs
the integer corresponding to those ` bits. Mathematically,
the BDI() function can be defined as multiplying the

expanded matrix of polynomials βx×y` from the right by
the matrix αy`×y defined in (2) (polynomial dimension n
will be omitted from this point forward for clarity). Hence
Bx×y = BDI(βx×y`) = βx×y` · αy`×y .

αy`×y =



1 0 0 · · · 0
2 0 0 · · · 0
...

...
...

. . .
...

2` 0 0 · · · 0
0 1 0 · · · 0
0 2 0 · · · 0
...

...
...

. . .
...

0 2` 0 · · · 0
0 0 1 · · · 0
...

...
...

...
...

0 0 0 · · · 1
0 0 0 · · · 2
...

...
...

. . .
...

0 0 0 · · · 2`



(2)

In this work, we introduced some algorithmic optimiza-
tions to the encryption system in [12], [25] in order to reduce
computational complexity and to speedup our operations,
as will be detailed below. Our encryption system works as
follows.

• Keygen(1λ): Choose polynomial t ← DRq,σk
. The

secret key sk = s2×1 ← [1;−t] ∈ R2
q . Uniformly

sample a ← Rq , e ← DRq,σk
, set b = a · t + e, The

public key pk = A1×2 = [b a]. Note that

A1×2 · s2×1 = b− a · t = e (3)

where “·” is the inner product over the ring Rq .
• Enc(pk, µ): The message space of our encryption

scheme is Rq . rN×1 is a matrix that consists of N
polynomials with random coefficients in the range
{0, 1}, EN×2 ← DRN×2

q ,σc
, encrypt the plain text

polynomial µ ∈ Rq by calculating

CN×2 = µ · BDI(IN×N) + rN×1 ·A1×2 +EN×2 (4)

(as opposed to CN×N in [12], [25], we have a smaller
ciphertext by a factor of 8× as discussed previously
in the BD() definition.)

• Dec(sk, C): Given the ciphertext C , the plaintext
µ ∈ Rq is restored by multiplying C by the secret-
key s as follows :

CN×2 · s2×1 = (µ · BDI(IN×N)

+ rN×1 ·A1×2 + EN×2) · s2×1

= µ · BDI(IN×N) · s2×1

+ rN×1 · A1×2 · s2×1 + EN×2 · s2×1

= µ · BDI(IN×N) · s2×1

+ rN×1 · e+ EN×2 · s2×1

= µ · BDI(IN×N) · s2×1 + error
(5)

IEEE TRANS. ON COMPUTERS, IN REVIEW, REVISED JUNE 23, 2015. 4

(as opposed to Dec(sk, C) = CN×N · vN×1 in [12],
[25], we have fewer operations in Dec by a factor of
` times)

Observe that the first ` coefficients in the first term of the
last equation in (5) are in the form µ, 2µ, · · · , 2`−1µ. This
means that the element at location i ∈ [0, ` − 1] is in the
form µ · 2i + error. That is, the most significant bit of each
entry carries a single bit from the number µ assuming that
error < q/2 and there is no wrap-around mod q as was
described in [25].

3.1.1 Homomorphic Operations

For input ciphertexts CN×2 and DN×2 ∈ RN×2
q encrypt-

ing µ1 and µ2 respectively, homomorphic operations are
defined as follows.

• ADD(C,D): To add the two ciphertexts CN×2 and
DN×2, simply output CN×2 + DN×2, which is an
entry-wise addition.

• MULT(C,D): To multiply the two ciphertexts CN×2

and DN×2, output BD(CN×2) ·DN×2.

(as opposed to MULT(C,D) = FLATTEN(CN×N ·
DN×N) in [12], [25], where FLATTEN(A) is defined
as BD(BDI(A)). We have fewer operations in MULT
by a factor of at least ` times)

Correctness of homomorphic addition is immediate,
however it is not that obvious for the homomorphic
multiplication. It is clear that the multiplication algorithm
is asymmetric in the input ciphertexts C and D. That
is, we treat the components of D as a whole, whereas
the components of C are broken up into their “bit-wise
decompositions”. This is a “feature” that is inherited
from the work of BV [12]. It is shown below that this
multiplication method is correct and gives a slow noise-
growth rate.

The correctness of the multiplication operation can
be noticed from the decryption operation in (6). Matrix
dimensions are removed for clarity.

BD(C) ·D · s = BD(C) · (µ2 · BDI(I) + r2 ·A+ E2) · s
= BD(C) · (µ2 · BDI(I) · s+ r2 · e+ E2 · s)
= µ2 · C · s+ BD(C) · (r2 · e+ E2 · s)
= µ2 · (µ1 · BDI(I) · s+ r1 · e+ E1 · s)

+ BD(C) · (r2 · e+ E2 · s)
= µ2 · µ1 · BDI(I) · s+ µ2 · (r1 · e+ E1 · s)

+ BD(C) · (r2 · e+ E2 · s)
= µ2 · µ1 · BDI(I) · s+ µ2 · error1

+ BD(C) · error2

= µ2 · µ1 · BDI(I) · s+ error
(6)

It can be noticed from the last line in (6) that
it is the encryption of µ = µ2 · µ1. Note that
BD(CN×2) · BDI(IN×N) = IN×N · CN×2 = C .

Function 1: Multiply ”v” Ciphertexts Function
Input: ”v”, Ctxts: C1, C2, · · · , Cv
Output: Caccum

The multiplication result of ”v” input Ctxts.

Caccum = C1

For i from 2 to v {
Caccum = Caccum × Ci

}
Return Caccum

Noise Analysis: Correct decryption depends crucially on
the ciphertext noise being bounded. Thus, it is important
to understand how homomorphic operations increase ci-
phertext noise. Let C be a fresh ciphertext. We make the
following observations, after [12].

• Homomorphic addition of v ciphertexts increases the
noise by a factor of v in the worst case. In practice,
since the coefficients of the error polynomials follow
a Gaussian distribution, the factor is closer to O(

√
v).

• Homomorphic multiplication is significantly more
interesting. Multiplication of two ciphertexts
C = Enc(µ1) and D = Enc(µ2) with error
magnitudes B1 and B2, respectively, increases
the error to O(B1 · ‖µ2‖1 + B2 · n log q) in the
worst case, and O(B1 · ‖µ2‖1 + B2 ·

√
n log q) in

practice. Here, ‖µ‖1 denotes the `1 norm of the
message polynomial µ. The key fact to note here is that
the error dependence on the two ciphertexts is asymmetric.

Better Error in Homomorphic Multiplication: To multiply
v ciphertexts it is crucial to pay attention to the order of
multiplication. In the applications presented in this work,
input µ will typically be 0 or 1, meaning that the growth
is simply additive with respect to B1. Thus, the best way
to multiply v ciphertexts with (the same) error level B is
through an accumulator-like algorithm as in Function 1,
rather than using a binary tree of multiplications (which
grows the error at superpolynomial rates). The resulting
error growth is O(B · vn log q) in the worst case, and
O(B ·

√
vn log q) in practice.

For example consider (1), the noise grows
to O(B · vn log q · |S|) in the worst case, or
O(B ·

√
vn log q|S|) in the typical case. This is in contrast to

O(B ·
√

(n log q)log v|S|) when using the Brakerski-Gentry-
Vaikuntanathan [9] encryption scheme, implemented in
IBM HElib. Indeed, such expressions, as in (1), are far from
atypical – they occur quite naturally in evaluating decision
trees and PIR-like functions as will be discussed in Section 5.

Zero Plaintext, Zero Error: Yet another source of im-
provement is evident when we inspect the error term
B1 · ‖µ2‖1 + B2 · n log q. When we multiply using an
accumulator as in Function 1, B2 represents the smaller
error in the fresh ciphertextsCi, andB1 represents the larger
error in the accumulated ciphertext Caccum. We see that if
Ci encrypts µ2 = 0, then the larger error term B1 vanishes
in the error expression!

IEEE TRANS. ON COMPUTERS, IN REVIEW, REVISED JUNE 23, 2015. 5

Table 1
Parameter Selection and Keys/Ctxt Sizes.

Parameter RLWE (This work)
λ 80
n 1024
` 31
N 2 · ` = 62

σk, σc 10
SK size 2× n× ` = 7.936 KBytes
PK size 2× n× ` = 7.936 KBytes

Ctxt size N × 2× n× ` = 492.032 KBytes

This phenomenon manifests itself in evaluating the
expression in (1) as well. When evaluating each of the
products in (1), the error grows proportional not to v,
the total number of multiplications, but rather with k,
the longest continuous chain of 1’s starting from the
end. This is because the last time a zero is encountered
in the multiplication chain, the error vanishes, by the
observation above. Assuming that S is a “typical set”, the
expected length of a continuous chain of trailing 1’s is∑v
i=1 i · 2−i < 2. In other words, the multiplicative factor

of v vanishes from the error expression as well, and we get
error growth close to O(B ·

√
n log q|S|). This is the same

effect as if one were merely adding |S| ciphertexts.

How to Set Parameters: Let f be the function that we
are evaluating, for example the expression in (1). Let
errorf (B,n, q) denote how much the error grows when
evaluating a function f on ciphertexts in Rq with an initial
error of magnitude B. For correct decryption, we need

errorf (B,n, q) < q/2 (7)

Since errors grow slower in our scheme, q can be set to
be correspondingly smaller for the same security level.
Following the analysis of Lindner and Peikert [29], for a
security level of λ bits, we need

n > log(q/σ)(λ+ 110)/7.2 (8)

Since our log q is smaller, we can set our n to be smaller,
for the same security level λ. In turn, since we now have
a smaller n, our new errorf (B,n, q) is smaller, leading to
an even smaller q, and so on. The optimal parameters are
obtained by solving both the above inequalities together.
Table 1 summarizes our final parameter selection.

4 POLYNOMIAL MULTIPLICATION

4.1 Number Theoretic Transform
The Number Theoretic Transform (NTT), analogous to
the well known FFT, is used to speedup the polynomial
convolution operation to O(nlog(n)) for the finite field
modular polynomial multiplications as was described in
Schonhage-Strassen multiplication algorithm [38]. Our
target hardware platform is a GPU, however, random
memory access on GPUs may hurt the performance.
Having this in mind, the NTT engine was carefully chosen
to exploit serial memory accesses. In [33], several designs for
FFT engines were introduced, one of which was explicitly
designed for sequential data accesses and storage, which

x[0]

x[1]

x[2]

x[3]

x[4]

x[5]

x[6]

x[7]

X[0]

X[4]

X[2]

X[6]

X[1]

X[5]

X[3]

X[7]

W0

W4

W0

W12

W1

W5

W3

W15

W2

W6

W6

W18

W3

W7

W9

W21

W0

W8

W0

W8

W4

W12

W4

W12

W0

W8

W0

W8

W0

W8

W0

W8

Fig. 1. Forward 8-point NTT engine optimized for sequential data ac-
cesses and storage.

is more suited for a GPU global memory architecture. This
design was also attractive due to its hardware regularity,
which is also better suited for the GPU kernels.

To convert the polynomial to its NTT representation we
evaluate the polynomial at the roots of unity of Φm. The
roots of unity of Φm(X) = xn + 1 are in the form of odd
powers of ζ (i.e. roots=ζ2k+1 for 0 ≤ k < n), where ζ is
the nth root of unity. For ζ to be a valid nth root of unity,
it must satisfy both these conditions: a) ζ2n = 1 mod q and
b) ζi 6= 1 mod q for i < 2n. The equation for the N-point
forward NTT transform is

X(k) =
N−1∑
n=0

x(n)Wn(2k+1) , 0 ≤ k < N (9)

where W = ζ . W is also called the twiddle factor. The
analysis made in [33] was followed to port the NTT
equation to the same n · log(n) FFT architecture.

The final NTT architecture for an 8-point NTT is shown
in Fig. 1. This architecture has the same structure for each
level and supports sequential memory accesses, which is
well suited for our GPU implementation. The twiddle fac-
tors of the modified NTT engine in Fig. 1 are re-formatted
to reduce the number of modulus operations needed. The
N-point inverse NTT equation is shown in (10). The final
inverse NTT engine can be seen if Fig. 1 is viewed from the
right side.

x(n) =
1

N

N−1∑
k=0

X(K)W
−n(2k+1)
N , 0 ≤ n < N (10)

4.2 Solinas Prime Numbers
Finite field NTT is performed modulo a specific modulus
q as was described in Section 4.1. Modulus reduction is
simply a division operation but with the downside that it is
an expensive operation in hardware. Alternatively, modulus
reduction can be done through successive addition and
subtraction operations modulo the same prime q. Solinas
primes are special prime numbers introduced in [39] which
support high efficiency modulo reduction. We chose one of
the Solinas primes q = 0 × 7FFE001 to fit our FHE prime

IEEE TRANS. ON COMPUTERS, IN REVIEW, REVISED JUNE 23, 2015. 6

number bit width ` = 31 bits. For example, if an input
number a is in the form of

a = a1 · 2` + a0 (11)

the modulus operation modulo q = 0 × 7FFE001 will
simply be

a mod q = a0 − a1 + (a1 << 17) (12)

where “<<” is a shift left operation.

5 CANDIDATE APPLICATIONS

5.1 Homomorphic Spam Filter
We implement a homomorphic version of Bayesian spam
filters [37]. The main idea behind a Bayesian classifier
is that words have certain probabilities of occurrence in
authentic emails (sometimes called ham emails) and in spam
emails. Since the filter doesn’t know these probabilities
in advance, email training sets are used to estimate these
probabilities. The training phase is assumed to take place
on unencrypted training sets, and results in a database of
words together with probabilities associated to each word
arising in spam e-mails. Once this database is created, the
word probabilities are used to classify new emails.

Let pw denote the probability that a word w oc-
curs in spam e-mails. Given an e-mail with key words
(w1, . . . , wK), there are many techniques to combine the
probabilities of each word to compute a final estimate of
whether the e-mail should be classified as spam [42]. The
simplest perhaps is to use Bayes rule. This results in the
following expression for p, the probability that the e-mail
will be classified as spam.

p =
pw1pw2 · · · pwK

pw1pw2 · · · pwK
+ (1− pw1)(1− pw2) · · · (1− pwK

)
(13)

At a high level, the email server will receive encrypted
words wi, and map them, homomorphically, into the
numbers pw. Once we obtain these numbers pw, we wish to
compute the expression in (13) to obtain p.

The first downside of (13), when it comes to homomor-
phic computations, is that integer divisions are extremely
expensive to carry out using current homomorphic encryp-
tion schemes. In order to overcome this, we make a number
of reformulations of the equation above, as follows.

η
∆
= log(1− p)− log p =

K∑
i=1

(log(1− pwi
)− log pwi

) (14)

and we will let

ηwi

∆
= log(1− pwi

)− log pwi
(15)

In other words, the email training phase will store the
numbers ηw for each word w in the dictionary (rather than
the numbers pw). The numbers ηw are represented as binary
fixed-point numbers, whose bits are encoded into the
coefficients of polynomial πw. For example, ηw = 101b is
represented as the polynomial πw = x0 + x2. The addition
of two binary polynomials will not generate a carry

between adjacent polynomial elements, rather polynomial
elements will grow individually and will be appropriately
reconstructed after decryption (e.g. 101b + 111b = 212,
which will be constructed back after decryption to 1100b).
The encrypted spam filter computation will take as input
an encrypted word w, map it first into an encrypted ηw as
will be described in Function 5, and then simply perform
a homomorphic addition of the ηw to get an encrypted η.
This is then sent back to the client who decrypts, recovers
η using her secret key, and computes p = 1/(2η + 1) in the
clear.

The only remaining question is how to map encrypted
words w into encrypted ηw. When input e-mails and words
are not encrypted, matching a certain word is an easy task.
Each email word can be searched across the database. If the
word is found, the corresponding number ηw is fetched. On
the other hand, when input emails are encrypted, matching
words become much harder. This “lookup problem” is
the same as the problem of private information retrieval
(PIR) [19], [44]. Our data-classifier takes the idea of PIR
one step forward, it homomorphically computes on the
encrypted data retrieved by the PIR to obtain useful pieces
of information. Other PIR constructions [2], [10], [19], [21],
[31], [44] cannot implement data-classifiers the way we
do because they either: (a) cannot compute with the PIR
responses, or, (b) their plaintext field is only mod 2 (or
modulo a small prime, for efficiency purposes) and thus
they cannot do integer addition as required by (14). Our
HE on the other hand has the advantage of being able to
use the full modulo-q domain for plaintext additions. As
should be clear from the description above, spam filtering
is just an example of a class of “lookup-and-compute” type
of applications for which we can use our HE scheme.

Function 2 shows how to encrypt individual words in
a given list (email). Function 3 shows how we match an
input encrypted word versus another unencrypted word
from the database. The matching function in Function 3
can be used to construct our encrypted-email spam-filter
by simply multiplying the database word probabilities by
the ”match” output as in Function 5. Only the words that
find a match in the database will contribute towards the
final probability. It is also possible to keep the database
encrypted to protect it from outside attackers. To do this, the
matching function should be replaced by EncWordMatch
presented in Function 4, which performs bit matching for
two encrypted inputs, but at an extra cost of two extra Ctxt
multiplications to implement the XNOR operation.

In order to increase the performance and efficiency of
the spam filter, several optimizations are introduced:

Optimization 1: By storing probability numbers in a
single polynomial entry (ex. η = 5, π = 5x0), the other
polynomial entries will be unused. This will also lead to
the rapid growth of the final result. We decided to store a
probability number as binary bits in adjacent polynomial
entries (e.g. η = 5 = 101b, π = x0 + x2). By doing so,
we will benefit from the unused slots and also when the
adjacent slots are added without a carry propagate, values

IEEE TRANS. ON COMPUTERS, IN REVIEW, REVISED JUNE 23, 2015. 7

Function 2: Word List Encryption
Input: Set of words in a list (email)
Output: Encrypted words using HE

For each word in the list {
a = Hash(word).
For each bit i in a {
Ci = Encrypt(ai).
Store Ci to the output list.
}
}

Function 3: Word Matching WordMatch

Input1: Encrypted bits of Word1 (Ci)
Input2: Plaintext Word2

Output: Encrypted binary bit ”match” = 1 if words
match, 0 otherwise

match = 1
a = Hash(Word2).
For each bit i in a {

If (ai = 1)
Bi = Ci

Else
Bi = 1− Ci

match = match×Bi
}
Return match

Function 4: Enc. Word Matching EncWordMatch

Input1: Encrypted bits of Word1 (Ci)
Input2: Encrypted bits of Word2 (Di)
Output: Encrypted binary bit ”match” = 1 if words
match, 0 otherwise

match = 1
For each bit i {
Bi = Ci ⊕Di

match = match×Bi
}
Return match

Function 5: Homomorphic Email Spam Filter
Input1: Encrypted email
Input2: Spam database (DB)
Output: Encrypted email spam/ham probability

prob = 0
For each encrypted word ”i” in the email {

For each word ”j” in the database {
match = WordMatch(EmailWordi , DBWordj)
prob + = match×WordProbabilityj

}
}
Return prob

in individual slots will grow much slower than before
(grows logarithmically). By having individual polynomial
slot values grow logarithmically, we will also have a
logarithmic growth in the Ctxt noise as was discussed in
Section 3.1.1.

Optimization 2: The matching Function 3 was stated
naively for simplicity. This is done by matching bits
one-by-one to get the matching flag. Another more clever
way to do the same task when database words are not
encrypted, we can rearrange database entries in ascending
order. By doing so, we can infer consecutive matching
bits in adjacent plaintext entries in the database to skip
redundant computations. As a simple example, assume
the following two 4-bit database entries: 1001 and 1011,
both those entries share the left-most two bits ”10”. Instead
of doing 6 multiplication operations to match an input
encrypted word with those two entries as in Function 3,
we can store partial matching results of the left-most two
bits ”10” and reduce these multiplication operations to 4
operations. Experimental results for a database of size 105

and hash numbers of size 32-bits show that the number of
multiplications needed for matching one word across the
entire database decrease from 32 · 105 to 16 · 105 which is a
factor of 2 reduction in the number of multiplications.

Optimization 3: The interesting property of zero plaintext,
zero error, described in Section 3.1.1, can be used for appli-
cations where we can correctly decrypt a binary flag even
when it is totally submerged in noise! For example, if the
application in hand needs many multiplication operations
to be done to match one entry as in (1), this may lead to
the rapid growth of the noise in the Ctxt to the limit that
it may not be decrypted correctly. On the other hand, as
discussed in Section 3.1.1, in the case of non-matching items,
the result will have much less noise. This means that when
the resulting flag is ”0”, it will most probably be decrypted
correctly. Otherwise, if we get an error in decryption, this
most probably means that the resulting flag was a ”1”.

5.2 Secure Multiple Keyword Search
Another interesting problem is the problem of searching for
a set of input encrypted keywords in encrypted files [36].
Consider an application at an airport where an agent can
encrypt passenger names and search for them in an en-
crypted watchlist present in the cloud. This would be crucial
to preserve the security of the watchlist without compromis-
ing the privacy of the passengers. Another useful security
application would be in monitoring encrypted emails for
keywords without compromising the privacy of users. This
problem is somewhat parallel to the problem of the data
classifier discussed in Section 5.1. The only difference is
that Function 5 will be replaced by Function 6 which will
compute the number of matched keywords in a given file.
The computational complexity of this search problem can be
decreased if the input keywords are not encrypted (plaintext
keywords) but still the files being searched are still en-
crypted (henceforth referred to as Partially Secure Keyword
Search). In this case, EncWordMatch can be replaced by
WordMatch defined in Function 3, which is computationally
less expensive.

IEEE TRANS. ON COMPUTERS, IN REVIEW, REVISED JUNE 23, 2015. 8

Function 6: Secure Multiple Keyword Search In En-
crypted Files

Input1: Set of encrypted keywords
Input2: Encrypted file
Output: Keywords Found ”Result = 1”, otherwise ”0”

result = 1
For each encrypted keyword ”i” {

For each encrypted word ”j” in the file {
match = EncWordMatch(FileWordj ,Keywordi)
result + = match

}
}
Return result

a1

a2 a3

L5L4L1 a4

L2 L3

0 1

0 0

0

1

1

1

Fig. 2. Binary Decision Tree with nodes ai and leafs Li.

5.3 Binary Decision Trees
Binary decision trees are classifiers consisting of interior
nodes and leaf nodes. Interior nodes are decision nodes
which decide which direction the tree should follow. Leaf
nodes are the final tree decision. Binary decision trees
are considered as a simplified version of the spam filter
described previously, which is considered as a complete
decision tree. Fig. 2 shows an example of a binary decision
tree with 4 nodes and 5 leafs.

The decision tree in Fig. 2 can be expressed as polyno-
mial equation as in (16). Such a polynomial equation can be
efficiently implemented using our HE scheme.

T (a1, a2, a3, a4) = a1(a3 · L5 + (1− a3) · L4)

+ (1− a1)(a2(a4 · L3 + (1− a4) · L2)

+ (1− a2) · L1)
(16)

5.4 Security against attacks
Our homomorphic encryption scheme and algorithms, and
indeed all known FHE schemes, are proven secure in the
IND-CPA sense (i.e., under a chosen plaintext attack). This

Table 2
Design Environment.

Item Specification
CPU Intel Core-i7 5930K
of CPU Cores 4
of Threads 8
CPU Frequency 3.5 GHz
Cache Size 15 MB
System Memory 32 GB DDR4
Operating System Windows 8.1 Ultimate

64-bits
Programming IDE Visual Studio 2012

Ultimate edition
GPU NVIDIA GeForce GTX980
Maxwell Version GM204
of CUDA Cores 2048
GPU Core Frequency 1126 MHz
GPU Memory 4 GB
GPU L2 Cache 2 MB

is the standard notion of security for FHE schemes as in [10],
[22], [23]. The algorithms in Section 5 are secure against
external attackers. They are also secure against an honest but
curious server that wants to learn the underlying encrypted
data without trying to actively change it. It is trivial that any
homomorphic encryption scheme can be broken by CCA2
(i.e., if the adversary can make decryption queries after the
challenge). It can also be broken by CCA1 attacks [15] (i.e., if
the adversary can make decryption queries, but only before
the challenge). The correctness of any FHE algorithm relies
on the honesty of the server that it will execute the exact
algorithm.

6 PERFORMANCE RESULTS

Design Environment: A summary of the specifications of
the system used to implement our work for the purpose of
benchmarking is found in Table 2.

Test Environment: Visual studio instrumentation profiling
and CUDA NSIGHT performance analyzer were used in
measuring the performance of our code. Performance results
presented in this section were measured using two experi-
ments

• Ctxt Multiplication time vs. Circuit Depth: The circuit
depth d of a circuit is the number of multiplication
levels needed to implement a certain function. For
example, multiplying 32 numbers requires a circuit
depth d = 5. To test the running time of Ctxt
multiplication, correctness must be tested as well. To
test the running time of the executable with specific
parameters for circuit level d, 2d Ctxts are indepen-
dently created each encrypting a ”1” polynomial. All
2d Ctxts are multiplied into one accumulator which is
then decrypted and the resulting plain text is checked
for correctness. The running time is averaged over
100 iterations. If the parameters chosen for a given
implementation were not sufficient to maintain its
correctness, then we increase these parameters and
repeat the tests until correct results are acquired.

IEEE TRANS. ON COMPUTERS, IN REVIEW, REVISED JUNE 23, 2015. 9

0.001

0.01

0.1

1

10

1 2 3 4 5 6 7 8 9 10Ct
xt
 M

ul
tip

lic
at
io
n
Ti
m
e
(S
ec
on

ds
)

Circuit Depth

IBM HElib (CPU) This Work (CPU) This Work (GPU)

Fig. 3. Ctxt multiplication time of our work when a) running on a single
CPU core b) running on a GPU, compared to the IBM HElib when
running on a single CPU core across different circuit depths. The running
time is plotted on a log scale.

• Algorithm Implementation: The running time of our
algorithms are tested by averaging 10 full iterations
of each algorithm using the appropriate parameters.

6.1 Ctxt Multiplication
Ctxt multiplication is considered the main bottleneck
for most of the homomorphic applications. Thus, we
next report the performance of the Ctxt multiplication
operation on different platforms (CPU and GPU). To exploit
the parallelism in our work, the GPU implementation
partitioned the polynomial operations across GPU
cores. The downside of the IBM HElib is that it is not
parallelizable.

The performance of the Ctxt multiplication in our
library a) running on a single CPU core and b) running on
a GPU, compared to the IBM HElib library running on a
single CPU core, across different circuit depths, is shown
in Fig. 3. It can be noticed from Fig. 3 that our CPU and
GPU implementations for our library scores speedups up
to 10× and 1035× respectively, compared to IBM HElib,
across circuit depths larger than 5. Note also that there is
a jump in the running time of the IBM library between
circuit depth 4 and 5; this is due to a large increase in the
polynomial degree used in the IBM HElib to maintain the
same security level and correctness of the scheme. This is an
implementation dependent choice by the HElib developers
in the selection of parameters in the IBM HElib library.

Table 3 summarizes the performance results of the
complete homomorphic operations for our library
compared to [27], [32] at a circuit depth equal 10. It
can be seen from this table that we have a 10× speedup for
the multiplication operation of our CPU implementation
compared to the IBM HElib library. By additionally
exploring the parallelizable properties that our HE library
has, we get another 103.5× speedup by distributing the HE
computations on the GPU cores. This resulted in an overall
1035× speedup for the multiplication operations compared
to the IBM HElib library and a 36310× compared to [32].
The comparison between the Ctxt size of this work and
the Ctxt in the IBM HElib library is shown in Table 4. It
can be noticed from Table 4 that the Ctxt size in the IBM
HElib is about 1.5× larger than the Ctxt size in this work.

Table 4
Ctxt Size Comparison.

This Work IBM HElib
SecurityLevel(λ) 80 80

Depth(L) 10 10
Modulus Width (bits) log(q1) = 31 log(q2) = 301

Poly. Degree [29] n > log(q)(λ+ 110)/7.2
n n1 = 1024 n2 = 13981

Ctxt size (bits) 4 · n1 · log2(q1)
≈ 3.9 Million

2 · n2 · log(q2)
≈ 6 Million

0.1

1

10

100

1000

10000

30 40 50 60 70 80 90 100 110 120 130 140

Se
ar
ch
 ti
m
e
(s
ec
on

ds
)

File Size (in words)

Partially Secure Keyword Search (GPU) Fully Secure Keyword Search (GPU)
Partially Secure Keyword Search (HElib) Fully Secure Keyword Search (HElib)

300×
300×

Fig. 4. Fully Secure and Partially Secure keyword search running time,
for single keyword, versus different file sizes compared to IBM HElib
(Fully Secure search means both the input keywords and the files being
searched are encrypted, whereas Partially Secure search means input
keywords are in plaintext but the files being searched are still encrypted).

This is due to the fact that in the IBM HElib, the need for a
chain of moduli required for the noise management leads
to a modulus width approximately 10× larger. Since the
polynomial degree is directly related to the modulus width
by equation (8), this resulted in another 10× growth in the
polynomial degree in the IBM HElib. This increase in the
modulus size and the polynomial degree resulted in a Ctxt
in the IBM HElib 1.5× larger than this work despite the
log(q) difference present in the equation of the Ctxt size in
Table 4.

6.2 Secure Multiple Keyword Search Performance
The performance of the Fully Secure and Partially Secure
keyword search engines, described in Section 5.2, compared
to IBM HElib versus different file sizes is shown in Fig. 4.
We observe a 300× speedup for the Fully Secure keyword
search on a GPU compared to IBM HElib (and 1035×
speedup for circuit depth ≥ 5 as indicated in Fig. 3).
It is worth mentioning that our implementation is totally
scalable and parallelizable. Increasing the number of GPUs
inside the server by a factor G, will automatically scale
down the running time of the our search engine by the same
ratio.

6.3 Secure Binary Decision Tree Performance
The performance of the decision tree depends on the tree
structure and the number of nodes and leafs, which will
affect our parameter selection and Ctxt operation running
times. The decision tree running time depends mainly on the
number of multiplications needed. For example, the polyno-
mial equation in (16) that describes the tree in Section 5.3 has

IEEE TRANS. ON COMPUTERS, IN REVIEW, REVISED JUNE 23, 2015. 10

Table 3
Performance comparison between this work and the IBM HElib. Running time is in seconds.

This Work IBM GPU Speedup Work in [32] GPU Speedup
CPU GPU HElib over IBM HElib over [32]

Startup 0.27 0.27 85.3 316× 5 18.5×
Encrypt 0.383 0.023 0.59 25.6× 4.8 208.7×
Decrypt 0.3 0.005 0.39 78× 2.27 454×
Add 0.006 200×10−6 0.002 10× 0.013 65×
Multiply 0.372 3.477×10−3 3.6 1035× 126.25 36310×

8 multiplication operations, each multiplication operation
takes 3.477 milliseconds, which results in a total running
time of 27 milliseconds compared to multiple seconds in
[8].

7 CONCLUSION

We described, optimized, and implemented an RLWE-based
variant of the HE scheme of [12], [25] which achieves much
slower growth of noise, and thus much better parameters
than previous HE schemes for the same security level.
We implement three representative applications, namely
encrypted spam filters, secure multiple keyword search, and
secure binary decision trees, using this HE scheme. Com-
pared to the IBM HElib library, our GPU implementation
scores a speedup of 1035× in Ctxt multiplication, which
represents the bottleneck for most HE schemes. Our secure
search engine application runs in a few seconds on small to
moderate file sizes, and our decision tree computations run
in a milliseconds for moderate size decision trees.

ACKNOWLEDGMENTS

The authers would like to thank Tancrède Lepoint, Peter
Scholl, and Nigel Smart for pointing out a typo in our paper.
We would like also to thank NSERC for financial support.

REFERENCES

[1] AGUILAR-MELCHOR, C., FAU, S., FONTAINE, C., GOGNIAT, G.,
AND SIRDEY, R. Recent Advances in Homomorphic Encryption:
A Possible Future for Signal Processing in the Encrypted Domain.
vol. 30. 2013, pp. 108–117.

[2] AGUILAR-MELCHOR, C., AND GABORITE, P. A Lattice-Based
Computationally-Efficient Private Information Retrieval Protocol.
In WEWoRC 2007 (2007), pp. 1–13.

[3] ALPERIN-SHERIFF, J., AND PEIKERT, C. Faster Bootstrapping with
Polynomial Error. In Advances in Cryptology – CRYPTO 2014,
J. Garay and R. Gennaro, Eds., vol. 8616 of Lecture Notes in
Computer Science. Springer Berlin Heidelberg, 2014, pp. 297–314.

[4] BAEK, J., SAFAVI-NAINI, R., AND SUSILO, W. Public Key En-
cryption with Keyword Search Revisited. In Computational Sci-
ence and Its Applications – ICCSA 2008, O. Gervasi, B. Murgante,
A. Laganà, D. Taniar, Y. Mun, and M. Gavrilova, Eds., vol. 5072 of
Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2008,
pp. 1249–1259.

[5] BENALOH, J., AND VAIKUNTANATHAN, V. Homomorphic En-
cryption: What, How, and Why . people.csail.mit.edu/vinodv/
Homomorphic-TECHFEST-Final.ppsx.

[6] BONEH, D., CRESCENZO, G. D., OSTROVSKY, R., AND PERSIANO,
G. Public Key Encryption with Keyword Search. pp. 506–522.

[7] BONEH, D., GENTRY, C., HALEVI, S., WANG, F., AND WU, D. Pri-
vate Database Queries Using Somewhat Homomorphic Encryp-
tion. In Applied Cryptography and Network Security, M. Jacobson,
M. Locasto, P. Mohassel, and R. Safavi-Naini, Eds., vol. 7954 of
Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2013,
pp. 102–118.

[8] BOST, R., POPA, R. A., TU, S., AND GOLDWASSER, S. Machine
Learning Classification over Encrypted Data. Cryptology ePrint
Archive, Report 2014/331, 2014. http://eprint.iacr.org/.

[9] BRAKERSKI, Z., GENTRY, C., AND VAIKUNTANATHAN, V. (Lev-
eled) Fully Homomorphic Encryption Without Bootstrapping. In
Proceedings of the 3rd Innovations in Theoretical Computer Science
Conference (New York, NY, USA, 2012), ITCS ’12, pp. 309–325.

[10] BRAKERSKI, Z., AND VAIKUNTANATHAN, V. Efficient Fully Ho-
momorphic Encryption from (Standard) LWE. In Foundations of
Computer Science (FOCS), 2011 IEEE 52nd Annual Symposium on
(2011), pp. 97–106.

[11] BRAKERSKI, Z., AND VAIKUNTANATHAN, V. Fully Homomorphic
Encryption from Ring-LWE and Security for Key Dependent Mes-
sages. In Advances in Cryptology – CRYPTO 2011, P. Rogaway,
Ed., vol. 6841 of Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2011, pp. 505–524.

[12] BRAKERSKI, Z., AND VAIKUNTANATHAN, V. Lattice-based FHE
As Secure As PKE. In Proceedings of the 5th Conference on Innovations
in Theoretical Computer Science (New York, NY, USA, 2014), ITCS
’14, pp. 1–12.

[13] BRENNER, M., PERL, H., AND SMITH, M. Scarab library , 2011.
hcrypt.com/scarab-library/.

[14] CASH, D., JARECKI, S., JUTLA, C., KRAWCZYK, H., ROŞU, M.-
C., AND STEINER, M. Highly-Scalable Searchable Symmetric
Encryption with Support for Boolean Queries. In Advances in
Cryptology – CRYPTO 2013, R. Canetti and J. Garay, Eds., vol. 8042
of Lecture Notes in Computer Science. Springer Berlin Heidelberg,
2013, pp. 353–373.

[15] CHENAL, M., AND TANG, Q. On Key Recovery Attacks against
Existing Somewhat Homomorphic Encryption Schemes. In The
third International Conference on Cryptology and Information Security
in Latin America, Latincrypt 2014 (2014), pp. 1–28.

[16] CORON, J.-S., MANDAL, A., NACCACHE, D., AND TIBOUCHI, M.
Fully Homomorphic Encryption over the Integers with Shorter
Public Keys. In Advances in Cryptology – CRYPTO 2011, P. Rog-
away, Ed., vol. 6841 of Lecture Notes in Computer Science. Springer
Berlin Heidelberg, 2011, pp. 487–504.

[17] COUSINS, D., ROHLOFF, K., PEIKERT, C., AND SCHANTZ, R. An
update on SIPHER (Scalable Implementation of Primitives for Ho-
momorphic EncRyption) ; FPGA implementation using Simulink.
In High Performance Extreme Computing (HPEC), 2012 IEEE Confer-
ence on (2012), pp. 1–5.

[18] DIJK, M., GENTRY, C., HALEVI, S., AND VAIKUNTANATHAN, V.
Fully Homomorphic Encryption over the Integers. In Advances in
Cryptology – EUROCRYPT 2010, H. Gilbert, Ed., vol. 6110 of Lecture
Notes in Computer Science. Springer Berlin Heidelberg, 2010, pp. 24–
43.

[19] DOROZ, Y., SUNAR, B., AND HAMMOURI, G. Bandwidth Efficient
PIR from NTRU. In Cryptology ePrint Archive (2014), pp. 1–12.

[20] DUCAS, L., AND MICCIANCIO, D. FHE Bootstrapping in less than
a second. Cryptology ePrint Archive, Report 2014/816, 2014. http:
//eprint.iacr.org/.

[21] FOTIOU, N., TROSSEN, D., MARIAS, G., KOSTOPOULOS, A., AND
POLYZOS, G. Enhancing information lookup privacy through
homomorphic encryption. 2013, pp. 1–11.

[22] GENTRY, C. A fully homomorphic encryption scheme. PhD thesis,
Stanford University, 2009. crypto.stanford.edu/craig.

[23] GENTRY, C. Fully Homomorphic Encryption Using Ideal Lattices.
In Proceedings of the 41st Annual ACM Symposium on Theory of
Computing (New York, NY, USA, 2009), STOC ’09, pp. 169–178.

[24] GENTRY, C., HALEVI, S., AND SMART, N. Homomorphic Evalua-
tion of the AES Circuit. In Advances in Cryptology – CRYPTO 2012,

people.csail.mit.edu/vinodv/Homomorphic-TECHFEST-Final.ppsx
people.csail.mit.edu/vinodv/Homomorphic-TECHFEST-Final.ppsx
http://eprint.iacr.org/
hcrypt.com/scarab-library/
http://eprint.iacr.org/
http://eprint.iacr.org/
crypto.stanford.edu/craig

IEEE TRANS. ON COMPUTERS, IN REVIEW, REVISED JUNE 23, 2015. 11

R. Safavi-Naini and R. Canetti, Eds., vol. 7417 of Lecture Notes in
Computer Science. Springer Berlin Heidelberg, 2012, pp. 850–867.

[25] GENTRY, C., SAHAI, A., AND WATERS, B. Homomorphic
Encryption from Learning with Errors: Conceptually-Simpler,
Asymptotically-Faster, Attribute-Based. In Advances in Cryptology
– CRYPTO 2013, R. Canetti and J. Garay, Eds., vol. 8042 of Lecture
Notes in Computer Science. Springer Berlin Heidelberg, 2013, pp. 75–
92.

[26] GRAEPEL, T., LAUTER, K., AND NAEHRIG, M. ML Confidential:
Machine Learning on Encrypted Data. In Information Security
and Cryptology – ICISC 2012, T. Kwon, M.-K. Lee, and D. Kwon,
Eds., vol. 7839 of Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2013, pp. 1–21.

[27] HALEVI, S., AND SHOUP, V. Design and Implementation of
a Homomorphic-Encryption Library, 2013. researcher.ibm.com/
researcher/files/us-shaih/he-library.pdf.

[28] HAYES, B. Alice and Bob in Cipherspace. vol. 100. 2012, pp. 362–
367.

[29] LINDNER, R., AND PEIKERT, C. Better Key Sizes (and Attacks)
for LWE-based Encryption. In Proceedings of the 11th International
Conference on Topics in Cryptology: CT-RSA 2011 (Berlin, Heidelberg,
2011), CT-RSA’11, Springer-Verlag, pp. 319–339.

[30] LYUBASHEVSKY, V., PEIKERT, C., AND REGEV, O. On Ideal Lattices
and Learning with Errors over Rings. In Advances in Cryptology –
EUROCRYPT 2010, H. Gilbert, Ed., vol. 6110 of Lecture Notes in
Computer Science. Springer Berlin Heidelberg, 2010, pp. 1–23.

[31] MELCHOR, C. A. High-Speed Single-Database PIR Implementa-
tion. In The 8th Privacy Enhancing Technologies Symposium (PETS
2008) (2008), pp. 1–12.

[32] NAEHRIG, M., LAUTER, K., AND VAIKUNTANATHAN, V. Can
Homomorphic Encryption Be Practical?. In Proceedings of the 3rd
ACM Workshop on Cloud Computing Security Workshop (New York,
NY, USA, 2011), CCSW ’11, pp. 113–124.

[33] OPPENHEIM, A. V., AND SCHAFER, R. W. Discrete-Time Signal
Processing. Pearson Education, 2006.

[34] PERL, H., BRENNER, M., AND SMITH, M. Poster: An Imple-
mentation of the Fully Homomorphic Smart-vercauteren Crypto-
system. In Proceedings of the 18th ACM Conference on Computer
and Communications Security (New York, NY, USA, 2011), CCS ’11,
pp. 837–840.

[35] POPA, R. A., REDFIELD, C. M. S., ZELDOVICH, N., AND BALAKR-
ISHNAN, H. CryptDB: Protecting Confidentiality with Encrypted
Query Processing. In Proceedings of the Twenty-Third ACM Sympo-
sium on Operating Systems Principles (New York, NY, USA, 2011),
SOSP ’11, pp. 85–100.

[36] RUSLI, E. M. A Darpa Director on Fully Homomor-
phic Encryption (or One Way the U.S. Could Collect
Data) , 2014. http://blogs.wsj.com/digits/2014/03/
09/a-darpa-director-on-fully-homomorphic-encryption/
-or-one-way-the-u-s-could-collect-data/.

[37] SAHAMI, M., DUMAIS, S., HECKERMAN, D., AND HORVITZ, E. A
Bayesian Approach to Filtering Junk E-Mail. In Learning for Text
Categorization: Papers from the 1998 Workshop (Madison, Wisconsin,
1998), AAAI Technical Report WS-98-05.

[38] SCHÖNHAGE, A., AND STRASSEN, V. Schnelle multiplikation
großer zahlen. Computing 7, 3-4 (1971), 281–292.

[39] SOLINAS, J. A. Generalized Mersenne Numbers. Tech. Rep. CORR
99-39, University of Waterloo, 1999.

[40] WANG, W., HU, Y., CHEN, L., HUANG, X., AND SUNAR, B. Ac-
celerating fully homomorphic encryption using GPU. In High
Performance Extreme Computing (HPEC), 2012 IEEE Conference on
(2012), pp. 1–5.

[41] WANG, W., HU, Y., CHEN, L., HUANG, X., AND SUNAR, B. Ex-
ploring the Feasibility of Fully Homomorphic Encryption. vol. 99.
IEEE Computer Society, Los Alamitos, CA, USA, 2013, pp. 1–10.

[42] WIKIPEDIA. Naive Bayes spam filtering . http://en.wikipedia.
org/wiki/Naive Bayes spam filtering.

[43] YASUDA, M., SHIMOYAMA, T., KOGURE, J., YOKOYAMA, K., AND
KOSHIBA, T. Secure pattern matching using somewhat homomor-
phic encryption. In Proceedings of the 2013 ACM Workshop on Cloud
Computing Security Workshop (New York, NY, USA, 2013), CCSW
’13, pp. 65–76.

[44] YI, X., KAOSAR, M. G., PAULET, R., AND BERTINO, E. Single-
Database Private Information Retrieval from Fully Homomorphic
Encryption. vol. 25. May 2013, pp. 1125–1134.

Alhassan Khedr received his M.Sc and B.Sc
degrees from Electronics and Electrical Com-
munications Engineering Department, Faculty of
Engineering, Cairo University, Cairo, Egypt in
2008 and 2011 respectively. After graduation, he
was appointed as a Teaching Assistant in Cairo
University and American University of Cairo for
3 years. He received numerous awards for his
excellence as a student and as a teaching as-
sistant. He was among the team responsible for
developing and fabricating CUSPARC the first

fully developed Egyptian embedded processor. Alhassan joined Elec-
tronics and Computer Engineering Department at University of Toronto
to pursue his PhD degree in 2011. Alhassan main research interests
include algorithm optimization and VLSI implementation of high perfor-
mance algorithms. He is also interested in parallel and multi/many core
processor architecture design and computer arithmetic.

Dr. Glenn Gulak is a Professor in the Depart-
ment of Electrical and Computer Engineering
at the University of Toronto. He is a Senior
Member of the IEEE and a registered Profes-
sional Engineer in the Province of Ontario. His
present research interests are in the areas of
algorithms, circuits, and CMOS implementations
of high-performance baseband digital commu-
nication systems and, additionally, in the area
of CMOS biosensors. He has authored or co-
authored more than 150 publications in refereed

journals and refereed conference proceedings. In addition, he has re-
ceived numerous teaching awards for undergraduate courses taught
in both the Department of Computer Science and the Department of
Electrical and Computer Engineering at the University of Toronto. From
Jan. 1985 to Jan. 1988 he was a Research Associate in the Information
Systems Laboratory and the Computer Systems Laboratory at Stanford
University. He has served on the ISSCC Signal Processing Technical
Subcommittee from 1990 to 1999, ISSCC Technical Vice-Chair in 2000
and served as the Technical Program Chair for ISSCC 2001. He served
on the Technology Directions Subcommittee for ISSCC from 2005 to
2008. He currently serves as the Vice-President of the Publications
Committee for the IEEE Solid-State Circuits Society and a member of
the IEEE PSPB.

Vinod Vaikuntanathan is a Steven and Renee
Finn Career Development Assistant Professor of
Computer Science at MIT. His main research
interest is in the theory and practice of cryp-
tography. He works on lattice-based cryptogra-
phy, building advanced cryptographic primitives
using integer lattices; leakage-resilient cryptog-
raphy, defining and developing algorithms re-
silient against adversarial information leakage;
and more recently, the theory and practice of
computing on encrypted data, constructing pow-

erful cryptographic objects such as fully homomorphic encryption and
functional encryption. Vinod obtained his Ph.D. from MIT where he
received a 2009 George M. Sprowls Award for the best MIT Ph.D. thesis
in Computer Science. He is also a recipient of the 2008 IBM Josef Raviv
Postdoctoral Fellowship, the 2013 Alfred P. Sloan Research Fellowship,
the 2014 Microsoft Faculty Fellowship, and a 2014 NSF CAREER award.

researcher.ibm.com/researcher/files/us-shaih/he-library.pdf
researcher.ibm.com/researcher/files/us-shaih/he-library.pdf
http://blogs.wsj.com/digits/2014/03/09/a-darpa-director-on-fully-homomorphic-encryption/-or-one-way-the-u-s-could-collect-data/
http://blogs.wsj.com/digits/2014/03/09/a-darpa-director-on-fully-homomorphic-encryption/-or-one-way-the-u-s-could-collect-data/
http://blogs.wsj.com/digits/2014/03/09/a-darpa-director-on-fully-homomorphic-encryption/-or-one-way-the-u-s-could-collect-data/
http://en.wikipedia.org/wiki/Naive_Bayes_spam_filtering
http://en.wikipedia.org/wiki/Naive_Bayes_spam_filtering

	Introduction
	Related Work
	The Encryption System
	The Encryption Scheme
	Homomorphic Operations

	Polynomial Multiplication
	Number Theoretic Transform
	Solinas Prime Numbers

	Candidate Applications
	Homomorphic Spam Filter
	Secure Multiple Keyword Search
	Binary Decision Trees
	Security against attacks

	Performance Results
	Ctxt Multiplication
	Secure Multiple Keyword Search Performance
	Secure Binary Decision Tree Performance

	Conclusion
	References
	Biographies
	Alhassan Khedr
	Dr. Glenn Gulak
	Vinod Vaikuntanathan

