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Abstract

A constrained pseudorandom function F : K × X → Y for family of subsets of X is a function
where for any key k ∈ K and set S from the family one can efficiently compute a short constrained
key kS which allows to evaluate F (k, ·) on all inputs x ∈ S, while given this key, the outputs on all
inputs x /∈ S look random.

Constrained PRFs have been constructed for several families of sets, the most general being
the circuit-constrained PRF by Boneh and Waters [Asiacrypt’13]. Their construction allows for
constrained keys kC , where C is a boolean circuit that defines the set S = {x ∈ X | C(x) = 1}. In
their construction the input length and the size of the circuits C for which constrained keys can be
computed must be fixed a priori during key generation.

In this paper we construct a constrained PRF that has an unbounded input length and con-
strained keys can be defined for any set that can be decided by a polynomial-time Turing machine.
The only a priori bound we make is on the size of the Turing machines. We discuss applications
of our CPRF, such as broadcast encryption where the number of potential receivers need not be
fixed at setup (in particular, the length of the keys is independent of the number of parties), and
identity-based non-interactive key-agreement between sets of users where again there is no bound
on the number of parties that can agree on a shared key.

Our CPRF is simply defined as F (k,H(x)) where F is a puncturable PRF (e.g. the GGM
construction) and H is a collision-resistant hash function. A constrained key for a Turing machine
M is a signature on M . At setup we also publish an obfuscated circuit, which on input M , a
signature σ, a value h and a short non-interactive argument of knowledge π outputs F (k, h) if
(1) σ is a valid signature on M and (2) π proves knowledge of some x s.t. H(x) = h and M(x) = 1.
For our security proof, we assume extractability obfuscation for the particular circuit just explained.
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1 Introduction

Constrained PRFs. A pseudorandom function (PRF) [GGM86] is a keyed function F : K×X → Y
for which no efficient adversary, given access to an oracle O(·), can distinguish the case where O(·) is
F(k, ·) with a random key k ∈ K from the case where O(·) is a uniformly random function X → Y.

Three papers [BW13,BGI14,KPTZ13] independently introduced the concept of a constrained PRF.
Let S be a set of subsets of X , and for S ∈ S let pS denote the predicate where pS(x) = 1 iff x ∈ S.
A constrained PRF for a predicate family P is a PRF F with an additional constrain algorithm
kS ← F.Constr(k, S) that on input a key k ∈ K and a set S ∈ S outputs a (short) constrained key kS
that can be used to compute F(k, x) for all x ∈ S, while, given this key, all values F(k, x) for x 6∈ S
still look pseudorandom.

Constrained PRFs have been constructed for several interesting predicates. All three papers show
that the classical GGM construction [GGM86] of a PRF with input domain {0, 1}n gives a prefix-
fixing constrained PRF. This means that for any v ∈ {0, 1}≤n, one can derive a key kv which allows
to compute F(k, x) for all x ∈ {0, 1}n of the form x = v‖x′. Assuming (leveled) multilinear maps
[GGH13a, CLT13, LSS14], Boneh and Waters [BW13] construct constrained PRFs for much more
general set systems. They present a bit-fixing PRF, for which the sets are defined by vectors v ∈
{0, 1, ?}n, and pv(x) = 1 if x agrees with v on all indices different from ‘?’, i.e., for all i = 1, . . . , n,
either v[i] = ? or v[i] = x[i]. They moreover construct a circuit-constrained PRF, where the predicate
is an arbitrary circuit p : {0, 1}n → {0, 1} of some fixed depth.

Constrained PRFs (CPRF) have already found many interesting applications. From a prefix-
fixing CPRF, one can construct a so-called puncturable PRF, which is a constrained PRF for the sets
S = {Sx = {0, 1}n \ {x} | x ∈ {0, 1}n}; a key kSx allows thus evaluation of F(k, ·) on all inputs except
x. Puncturable PRFs play a crucial role in the security proof of most of the recent constructions based
on indistinguishability obfuscation, and we will also use them in this paper.

The more general bit-fixing and circuit-constrained PRFs can be used directly to construct a
variety of sophisticated cryptographic tools, of which we will just mention two, broadcast encryption
(BE) and identity-based non-interactive key-exchange (ID-NIKE).

Broadcast encryption. In a broadcast encryption scheme [FN93,YFDL04,BGW05,PPS11,BH08,
BWZ14] there is a set of n users, and we want to be able encrypt a message for any given subset
S ⊆ {1, . . . , n} of them. This can be achieved using a bit-fixing PRF with domain {0, 1}n: Sample a
random key k, and give a constrained key kvi to user i where vi[i] = 1 and vi[j] = ? for any j 6= i. To
broadcast a message m to a set S of users, we simply send a symmetric encryption of m under the
key F(k, vS), where vS [i] = 1 if i ∈ S and v[i] = 0 otherwise. Note that user i can compute F(k, vS)
(and thus decrypt) iff her key kvi satisfies vi[i] = vS [i], which by construction holds iff i ∈ S.

Non-interactive key exchange. In an identity-based non-interactive key-exchange (ID-NIKE)
[SOK00, FHPS13, BW13] scheme we have a potentially huge number of parties, each having some
identity id ∈ {0, 1}`. We want that any set S of at most n parties can locally compute a key KS ,
whereas for every party outside of S this key is indistinguishable from random. For this, let F be a
bit-fixing PRF with domain {0, 1}n·`. We sample a key k for F and give to party id ∈ {0, 1}` a set of n

constrained keys k
(1)
id , . . . , k

(n)
id , where k

(i)
id is a key for the set ?(i−1)`‖id‖?(n−i)`. Now, parties id1, . . . , idn

(which we assume are in lexicographic order) can compute a joint key F(k, id1‖id2‖ . . . ‖idn).

CPRFs with unbounded input length. The disadvantage of the BE and ID-NIKE constructions
just outlined is that the number n of possible recipients (for BE) or parties agreeing on a key (for
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ID-NIKE) must be fixed when setting up the system. Moreover, the length of the constrained keys
given to every user is at least linear in n.

In this paper we construct a constrained PRF where the input length can be unbounded. The
constraints on keys are given by Turing machines (TM), that is, given a key k and a TM M , we can
derive a constrained key kM that allows to compute F(k, x) for any input x where M(x) = 1. The only
thing that must be a priori bounded is the size of TMs for constrained keys we want to tolerate. The
constrained key for M will simply be a signature on M together with an obfuscated circuit, which is
however universal in the sense that it is identical for all constrained keys and need not be kept secret.

In Section 4 we show how such a CPRF yields BE and ID-NIKE for an unbounded number of
parties.

Adaptive vs. selective security. We prove selective security of our constrained PRF, that is,
we assume the adversary commits to the input x∗ for which it wants to distinguish F(k, x∗) from
random at the beginning of the security game (that is, before it can query constrained keys for sets
S 63 x∗). From a selectively secure CPRF we can get an adaptively secure CPRF (where the adversary
can decide on x∗ after its key queries) via “complexity leveraging”—but this reduction loses a factor
that is exponential in the input length. Proving adaptive security for CPRFs without an exponential
security loss is generally hard and Fuchsbauer et al. [FKPR14] show that for the bit-fixing CPRF
from [BW13] any “simple” security reduction must lose an exponential factor.

Adaptive security of CPRFs was shown for the simple GGM-based prefix-constrained PRF [BW13,
BGI14,KPTZ13] in [FKPR14], whose proof only loses a quasi-polynomial (rather than an exponential)
factor. Moreover, Hohenberger et al. [HKW14] construct an adaptively secure puncturable PRF with
only polynomial security loss, but they use heavier tools including indistinguishability obfuscation
(iO) [GGH+13b, SW14, PST14]. Hofheinz [Hof14] constructs an adaptively secure bit-fixing PRF,
also using iO, and additionally relying on the random-oracle model. We leave the construction of
adaptively secure constrained unbounded-length PRFs (for any interesting set of constraints) as a
challenging open problem.

Our construction. An obvious approach to construct a constrained PRF is to start with any
standard PRF F. Given a key k and a set S, we can now define a constrained key as a program PS
which on input x checks if x ∈ S, and if so, outputs F(k, x). Of course we cannot just use a normal
program PS , as an adversary could extract the key k from PS , and thus F(k, ·) does not look random
on x 6∈ S given PS .

A circuit-constrained PRF. To avoid the above issue, we must obfuscate PS before outputting it.
The strongest notion of obfuscation is virtual black-box obfuscation, which requires that an obfuscated
program leaks nothing about the program apart from its input/output behavior. Unfortunately, such a
strong notion does not exist for general functionalities [BGI+12]. We therefore use indistinguishability
obfuscation (iO), which only guarantees that obfuscations of two circuits (of the same size) which
output the same on any input are indistinguishable. A candidate iO scheme has recently been proposed
by Garg et al. [GGH+13b]. Although the notion seems very weak, it has proven to be surprisingly
useful.

A useful trick in the iO literature is the use of a puncturable PRF [SW14], for which, given a key k
and some input x∗, one can compute a punctured key kx∗ that lets one evaluate F(k, x) on all x 6= x∗.
Given kx∗ , the value F(k, x∗) is indistinguishable from random. The GGM construction [GGM86] of
a PRF from a length-doubling pseudorandom generator is a puncturable PRF (where the length of
punctured keys is linear in the input length of the PRF).
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Consider a circuit-constrained PRF derived from a PRF F where a constrained key kS is computed
as an iO obfuscation of the circuit PS (which outputs F(k, x) if x ∈ S and ⊥ otherwise). If F is a
puncturable PRF then we can reduce selectively security of this CPRF to selective security of F as
follows. In the selective-security game for CPRFs, an adversary A chooses some input x∗, can then ask
for constrained keys for any sets S with x∗ /∈ S and must distinguish F(k, x∗) from random. We first
define a modified game where A, when asking for a constrained key for a set S, gets an iO obfuscation
of a circuit P ′S that outputs F(kx∗ , x) if x ∈ S and ⊥ otherwise. (The difference of PS and P ′S is that
in the latter F is evaluated using a key kx∗ that is punctured at x∗.)

Recall that the adversary can only submit sets S with x∗ /∈ S to its oracle. We thus have PS(x∗) =
P ′S(x∗) = ⊥. Moreover, on any other input x, PS and P ′S also return the same output (namely F(k, x)
if x ∈ S and ⊥ otherwise.) By security of iO, obfuscations of PS and P ′S are thus indistinguishable,
which means that the modified game is indistinguishable from the original game. From an A winning
the modified game, we easily obtain an adversary B that breaks the puncturable PRF F: When A
commits to x∗, B does the same and asks for a punctured key kx∗ . This key allows B to answer A’s
constrained-key queries in the modified game. If A distinguishes F(k, x∗) from random then so does B.

The drawback with this construction is that iO has only been constructed for circuits, which means
that the above construction only works for an a priori bounded input length.

A Turing-machine-constrained PRF. To overcome this problem and allow for unbounded input
lengths, as a first step we use a collision-resistant hash function H to map long inputs to inputs of
fixed length. Concretely, we define our CPRF F as F(k, x) := PF(k,H(x)), where PF is a puncturable
PRF, like the GGM PRF.

Now how do we define a constrained key for S? Defining a circuit that takes x, checks whether x ∈ S
and if so outputs PF(k,H(x)) is not possible, since there is no bound on x, so it cannot be decided
by a circuit. We “outsource” the verification of whether x ∈ S and use a succinct non-interactive
argument of knowledge (SNARK). A SNARK system allows to give a non-interactive argument (that
is, a proof which is only computationally sound) of an NP statement, whose size is independent of the
size of the witness used to compute it. In particular, we use a SNARK system for the NP language
L := {(H,S, h) | ∃x : x ∈ S ∧ H(x) = h}. We then define a circuit PS that takes input (h, π) and
outputs PF(k, h) if π is a valid SNARK for (H,S, h). This approach solves the problem of checking
the legitimacy of an input (that is, x ∈ S) within a circuit. Moreover, our sets S can now be described
by Turing machines instead of circuits.

Again, a constrained key kS is an obfuscation of the program PS . In order to give a reduction
of security to the puncturable PRF PF, we would, as before, replace the obfuscation of PS by one
of P ′S , which uses kH(x∗) instead of k. Unfortunately, indistinguishability of this replacement is not
guaranteed by indistinguishability obfuscation, as PS and P ′S are not functionally equivalent, which
can be seen as follows. There exist values x with x 6= x∗ and H(x) = H(x∗) and the adversary is
allowed to query a constrained key for a set S containing such an x (provided it does not contain x∗).
It could then compute a SNARK π for (H,S,H(x)) ∈ L and run its constrained key on (H(x), π).
Whereas PS would output PF(k,H(x)) = PF(k,H(x∗)), the modified circuit P ′S would output ⊥, since
its key is punctured at H(x∗).

Intuitively an adversary can only distinguish PS from P ′S if it finds such an x, which together with
x∗ constitutes a collision for H, and should therefore be hard to find. To make this formal in our
security proof, we must construct an adversary that finds such a collision. Instead of iO, we therefore
resort to a stronger form of obfuscation, called differing-input obfuscation or extractability obfuscation
(eO) [BGI+12,BCP14]. Whereas iO provides indistinguishability of obfuscations of equivalent circuits,
eO guarantees that from an adversary that distinguishes obfuscations of two circuits, one can extract
an input on which they differ. From an adversary distinguishing PS and P ′S we can then extract a
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collision for H.

Short constrained keys. In the construction just sketched the master key is simply a key for the
puncturable PRF PF, and evaluating x only consists of hashing x and evaluating PF on the hash. The
expensive operations are issuing constrained keys (which involves obfuscating a circuit) and evaluating
the PRF with a constrained key (which runs an obfuscated circuit). Moreover, being obfuscated
circuits, the constrained keys are long. We modify the construction and reduce the complexity of the
constraining algorithm and the size of keys drastically (whereas evaluation will still be expensive).

When setting up the PRF, we construct one single circuit P which we obfuscate and publish as
public parameters. A constrained key for a set S decided by a Turing machine M is then simply
a signature σ on M (that verifies w.r.t. a verification key contained in the parameters). Given a
constrained key (M,σ), the PRF is evaluated on input x as follows:

• define h := H(x) and compute a SNARK π for the statement (H,M, h) showing that for some
x: M(x) = 1 and H(x) = h;

• run the (obfuscated) circuit P from the public parameters on input (M,h, π, σ),

where P (M,h, π, σ) does the following: if σ is valid on M and π is valid on (H,M, h), it outputs
PF(k, h), otherwise it outputs ⊥. Let us mention that instead of normal signatures, we must use
a functional signatures in order to prove security of the above construction (this is similar to the
construction of functional encryption from eO in [BCP14]).

Assuming a puncturable PRF PF, a collision-resistant hash function H, a SNARK system for the
language Llegit := {(H,M, h) | ∃x : M(x) = 1∧H(x) = h}, extractability obfuscation for circuits, and
functional signatures, we prove that the above construction is a Turing-machine-constrained PRF for
inputs of unbounded length.

2 Preliminaries

2.1 Notations and Conventions

Let {Fλ}λ∈N = {F : Kλ × Xλ → Yλ}λ∈N be a family of keyed functions with key space Kλ, domain
Xλ and range Yλ. (We will often drop the security parameter when it is clear from the context.) A
family of circuits Cλ is of polynomial size if for every C ∈ Cλ the description size of C is polynomial
in λ, i.e., |C| = poly(λ). The same holds for Turing Machine (TM) families.

Let X be a finite set, then x ← X denotes the process of sampling x uniformly at random
from X . Let A be a probabilistic polynomial-time (PPT) algorithm, then Pr[y ← A(x)] denotes the
probability that A(x) outputs y when run on uniformly sampled coins and Pr

[
x1 ← X1;x2 ← X2; . . . :

ϕ(x1, x2, . . .) = 1
]

denotes the probability that the predicate ϕ evaluated on (x1, x2, . . .) is true after
the ordered execution of x1 ← X1, x2 ← X2, etc.

A function ν : N → R is called negligible, if for every positive polynomial p(·), and all sufficiently
large n ∈ N, it holds that ν(n) ≤ 1

p(n) . We use negl(·) to denote that there exists a negligible function.

2.2 Constrained and Puncturable PRFs

Definition 1 (Constrained Functions). A family of keyed functions Fλ = {F : K×X → Y} over a key
space K, a domain X , and a range Y, is efficiently computable if there exist a PPT sampler F.Smp,
and a deterministic polynomial-time (PT) evaluator, F.Eval such that

• k ← F.Smp(1λ): On input a security parameter λ, F.Smp outputs a key k ∈ K.
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ExpO,bF,A(λ) :

k ← F.Smp(1λ); C,E := ∅
(x∗, st)← AO1

1 (1λ)
If x∗ ∈ E, then abort
If b = 1, y := F.Eval(k, x∗), else y ← Y
C := C ∪ {x∗}
b′ ← AO2

2 (st, y); Return b′

Oracle constr(S) :

If S /∈ Sλ ∨ S ∩ C 6= ∅
Return ⊥

E := E ∪ S
kS ← F.Constr(k, S)
Return kS

Oracle eval(x) :

If x /∈ X ∨ x ∈ C
Return ⊥

E := E ∪ {x}
y = F.Eval(k, x)
Return y

Figure 1: ExpO,bF,A(λ): The security game for constrained PRFs.

• F.Eval(k, x) = F(k, x): On input a key k ∈ K, and x ∈ X , F.Eval outputs F(k, x).

We say Fλ is constrained w.r.t. a family Sλ of subsets of X , with constrained key space KS such that
KS ∩K = ∅, if F.Eval accepts inputs from (K∪KS)×X and there exists the following PPT algorithm:

• kS ← F.Constr(k, S): On input a key k ∈ K, and a description1 of a set S ∈ Sλ, F.Constr outputs
a constrained key kS ∈ KS such that

F.Eval(kS , x) =

{
F(k, x) if x ∈ S

⊥ otherwise

Definition 2 (Security of constrained PRFs). A family of (efficiently computable) constrained func-
tions Fλ = {F : K × X → Y} is selectively pseudorandom, if for every PPT adversary A = (A1,A2)
in ExpO,0F,A (Figure 1) with O1 = ∅ and O2 = {constr(·), eval(·)}, it holds that

AdvOF,A(λ) :=
∣∣Pr[ExpO,0F,A(λ) = 1]− Pr[ExpO,1F,A(λ) = 1]

∣∣ ≤ negl(λ) .

The family Fλ is adaptively pseudorandom if the same holds for O1 = O2 = {constr(·), eval(·)}.

Puncturable PRFs [SW14] are a simple type of constrained PRFs, whose domain is {0, 1}n for
some n, and constrained keys can only be derived for “punctured” sets S, that is, S = {0, 1}n \ T
for some T of polynomial size. Moreover, we only require pseudorandomness to hold against selective
adversaries that only make one key query. See Appendix B.1 for a formal definition.

In this work we only require selectively secure PRFs for which keys for sets of the form {0, 1}n\{x}
for some x ∈ {0, 1}n can be derived. Puncturable PRFs are easily obtained from (selectively secure)
prefix-constrained PRFs, which were constructed from the GGM pseudorandom function [GGM86]
for input space {0, 1}n in [BW13,BGI14,KPTZ13].

2.3 Collision-Resistant Hash Functions

A family of hash functions is collision-resistant if given a uniformly sampled hash function, it is hard
to find two inputs on which the function collides, i.e., returns the same hash value.

Definition 3 (Collision-Resistant Hash Functions). A family of (efficiently computable) functions
Hλ = {H : {0, 1}` → {0, 1}n}, for which H.Smp samples a random function, is a family of hash
functions if `(·) > n(·), i.e., H is compressing. The family is collision-resistant if for every PPT
adversary A:

Pr
[
H ← H.Smp(1λ); (x1, x2)← A(1λ, H) : x1 6= x2 ∧ H(x1) = H(x2)

]
≤ negl(λ) .

1We assume that all sets in S have short descriptions.
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2.4 Indistinguishability and Extractability Obfuscation

As a consequence of their impossibility results for virtual black-box obfuscation, Barak et al. [BGI+12],
proposed two relaxations: indistinguishability obfuscation (iO), and differing-input obfuscation, a.k.a.
extractability obfuscation (eO). Both iO and eO provide means to obfuscate families of circuits.
Security of iO guarantees that obfuscations of equivalent circuits are computationally indistinguish-
able. Extractability obfuscation eO strengthens this security guarantee by requiring that for any
efficient adversary that distinguishes obfuscations of two circuits, there exists an efficient extractor
that extracts a point on which the circuits differ.

Definition 4 (Indistinguishability Obfuscation [GGH+13b]). A uniform PPT algorithm iO is an
indistinguishability obfuscator for a family of polynomial-size circuits Cλ, if the following hold:

• For all λ ∈ N, C ∈ Cλ, and x: Pr
[
C̃ ← iO(1λ, C) : C(x) = C̃(x)

]
= 1.

• For every PPT adversary A and all C0, C1 ∈ Cλ such that C0(x) = C1(x) for all x:∣∣∣Pr
[
A
(
iO(1λ, C0)

)
= 1
]
− Pr

[
A
(
iO(1λ, C1)

)
= 1
]∣∣∣ ≤ negl(λ) .

Definition 5 (Extractability Obfuscation [BCP14]). A uniform PPT algorithm eO is an extractability
obfuscator for a family of polynomial-size circuits Cλ and a polynomial-time sampler Sampler, if the
following hold:

• For all λ ∈ N, C ∈ Cλ, and x: Pr
[
C̃ ← eO(1λ, C) : C(x) = C̃(x)

]
≥ 1− negl(λ).

• For every PPT adversary A and every polynomial q(·), there exists a PPT extractor EA and a
polynomial p(·), such that for every λ ∈ N:

Pr

[
(C0, C1, aux)← Sampler(1λ);

b← {0, 1}; C̃b ← eO(1λ, Cb)
: A(1λ, C0, C1, C̃b, aux) = b

]
≥ 1

2
+

1

q(λ)

⇒ Pr
[
x← EA(1λ, C0, C1, aux) : C0(x) 6= C1(x)

]
≥ 1

p(λ)
. (1)

A candidate iO for functionalities implementable by NC1 circuits was constructed based on a
simplified variant of multi-linear maps, and proven secure in an idealized model [GGH+13b]. The
same candidate was conjectured to be an eO for NC1 [BCP14]. In both [GGH+13b] and [BCP14],
the obfuscators were boosted to functionalities implementable by polynomial-size circuits by using
fully-homomorphic encryption [Gen09].

We mention that Garg et al. [GGHW14] presented an implausibility result for eO for general
distributions. Their counterexample used very contrived general auxiliary inputs, and thus seems to
have no implications for the particular auxiliary inputs we use (cf. Proposition 2).

2.5 Succinct Non-interactive Arguments of Knowledge

Succinct non-interactive arguments of knowledge (SNARK) were defined by Bitansky at al. [BCCT13,
BCC+14]. They provide constructions of SNARKs based on knowledge-of-exponent assumptions
[BCCT13] and extractable collision-resistant hash-functions [BCC+14]. These are both non-falsifiable
assumptions, but Gentry and Wichs [GW11] prove that SNARKs cannot be built from falsifiable
assumptions via black-box reductions.
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Definition 6 (The NP language Llegit). We define the following language Llegit which consists of triples
of hash-function descriptions, Turing-machine descriptions and hash values defined by the following
NP relation:

Rlegit

(
(H,M, h), x

)
= 1⇔M(x) = 1 ∧H(x) = h .

In our construction, we will require a SNARK proof system for the language just defined.

Definition 7 (SNARK). A triple of PPT algorithms (Gen,Prove,Verify), where Verify is deterministic,
is a succinct non-interactive argument of knowledge (SNARK) for the language Llegit (Definition 6),
if the following hold:

1. Completeness: For every
(
η = (H,M, h), x

)
∈ Rlegit:

Pr
[
crs← Gen(1λ); π ← Prove(crs, η, x) : Verify(crs, η, π) = 1

]
= 1 .

2. (Adaptive) Soundness: For every PPT adversary A:

Pr
[
crs← Gen(1λ); (η, π)← A(crs) : Verify(crs, η, π) = 1 ∧ η /∈ Llegit

]
≤ negl(λ) .

3. (Adaptive) Proof of Knowledge: For every PPT adversary A there exists a PPT extractor EA
such that

Pr

[
crs← Gen(1λ);
(η, π)← A(crs); x← EA(crs)

: Verify(crs, η, π) = 1 ∧ (η, x) /∈ Rlegit

]
≤ negl(λ) .

4. Succinctness: The length of an honestly generated proof π ← Prove(crs, η, x) and the running
time of Verify(crs, η, π) are both bounded by p(λ+ |H|+ |M |+ |h|+ log T (Rlegit)), where T (Rlegit)
is the running time of Rlegit, and p(·) is a universal polynomial, i.e., it does not depend on Rlegit.

2.6 Functional Signatures

Functional signatures were introduced by Boyle et al. [BGI14]. They generalize the concept of digital
signatures by letting the holder of a secret key sk derive keys skf for functions f .2 Such a key skf
enables signing of (and only of) messages in the range of f : running Sign(f, skf , w) produces a signature
on f(w). Function privacy requires that signatures under different signing keys be indistinguishable
and succinctness requires that the signature length be independent of w and the size of f .

Definition 8 (Functional Signatures [BGI14]). A functional signature scheme FS for message space
M and function family F = {f : Df → Rf} with Rf ⊆ M ∪ {⊥} consists of the following PPT
algorithms:

(msk,mvk) ← Setup(1λ): On input a security parameter λ, Setup outputs a pair of master signing
and verification key (msk,mvk).

skf ← KeyGen(msk, f): On input a master secret key msk, and a function f ∈ F , KeyGen outputs a
signing key skf for f .

σ ← Sign(f, skf , w): On input a function f ∈ F , a signing key skf for f , and w ∈ Df , Sign outputs
a signature σ on f(w) if f(w) 6= ⊥, and ⊥ otherwise.

2In the original definition [BGI14], f is given as a circuit, but in their construction of functional encryption, Boyle et
al. [BCP14] allow f to be a Turing machine. In this work we adopt the latter definition.
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Verify(mvk,m, σ) ∈ {0, 1}: On input a master verification key mvk, a message m ∈ M, and a
signature σ, Verify outputs b ∈ {0, 1}.

Correctness states that correctly generated signatures verify. Unforgeability is formalized via a
game in which an adversary is given the verification key and is allowed queries to a key-generation
oracle, key(f, i), and a signing oracle, sign(f, i,m), that work as follows:

• key(f, i): if a signing key for (f, i) has already been generated, return the recorded key; otherwise
generate and return a fresh signing key skf ← FS.KeyGen(msk, f) and record

(
(f, i), skf

)
.

• sign(f, i, w): check if there is a record
(
(f, i), skif

)
for some skif , if not generate skif for (f, i) and

record it. In both cases, return a signature on f(w) as σ ← Sign(f, skif , w).

Function privacy is formalized via a game in which an adversary is given signing keys for two functions
f0, f1 (of equal description size) of its choice, then outputs (w0, w1) (with |w0| = |w1|), is given the
output of Sign(fb, skfb , wb) for some b ∈ {0, 1}, which it has to guess. Finally, succinctness requires
that the size of a signature is independent of |w| and |f |, the description size of f .

Boyle et al. [BGI14] present a construction based on succinct non-interactive arguments of knowl-
edge (SNARKs).

3 Constrained PRFs for Unbounded Inputs

In this section we construct a family of constrained PRFs with unbounded input length. As a warm-
up, we first construct a family of constrained PRFs w.r.t. polynomial-size circuits, whose inputs are
of some fixed length.

3.1 A Circuit-Constrained PRF

Our circuit-constrained PRF F uses a puncturable PRF PF with input space X = {0, 1}n. The output
of F(k, x) is simply PF(k, x). To constrain F w.r.t. a circuit C, we construct a circuit Pk,C , which, on
input x, runs C on x and outputs PF(k, x) if C(x) = 1, and ⊥ otherwise. A constrained key kC for C
is then an indistinguishability obfuscation of Pk,C , i.e., kC ← iO(1λ, Pk,C).

Construction 1 (Circuit-Constrained PRF). Let Cλ = {C : {0, 1}n → {0, 1}} be a family of
polynomial-size circuits, PFλ = {PF : K × {0, 1}n → Y} a family of puncturable PRFs, and iO an
indistinguishability obfuscator for a family of polynomial-size circuits Pλ, which contains all circuits
defined in (2) for all C ∈ Cλ. We construct a family of PRFs Fλ = {F : K × {0, 1}n → Y} con-
strained w.r.t. Cλ with a constrained-key space KC such that KC ∩ K = ∅.3 Following is a description
of F = (F.Smp,F.Eval,F.Constr):

k ← F.Smp(1λ): On input a security parameter λ, output a secret key k ∈ K as k ← PF.Smp(1λ).

kC ← F.Constr(k,C): On input a secret key k ∈ K and a description of a circuit C ∈ Cλ, output

kC ∈ KC as kC ← iO(1λ, Pk,C), i.e., compute an indistinguishability obfuscation of the circuit
Pk,C ∈ Pλ defined as

Pk,C(x) :=

{
PF(k, x) if |x| = n ∧ C(x) = 1
⊥ otherwise

(2)

3W.l.o.g. we assume from now on that we have K ∩ KC = ∅, as this can always be achieved by simply prepending a
‘0’ to elements from K and a ‘1’ to elements from KC .
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F.Eval(κ, x): On input a key κ ∈ K ∪ KC and x ∈ {0, 1}n, do the following:

• If κ ∈ K, output PF.Eval(κ, x).

• If κ ∈ KC, output κ(x), interpreting κ as a circuit.

The proof of selective security of F , as just constructed, is relatively straightforward. Recall that
in the selective-security game, the adversary A outputs x∗, then the challenger chooses k ← F.Smp
and gives A access to a constrained-key oracle constr, which can be queried on any C with C(x∗) = 0.
A must then distinguish F(k, x∗) from random. We modify this game by deriving from k a key kx∗

which is punctured at x∗ and computing constrained keys as obfuscations of Pkx∗ ,C (defined like Pk,C
but using kx∗ instead of k). Since PF(k, x) = PF(kx∗ , x) for all x 6= x∗, and since for any circuit C
that the adversary can query we have Pk,C(x∗) = Pkx∗ ,C(x∗) = ⊥, the circuits Pkx∗ ,C and Pk,C are
functionally equivalent, and thus by iO the two games are indistinguishable.

An adversary A winning the modified game can then be translated into an adversary B against PF .
In the security game for PF (Figure 3, p. 19), B runs (x∗, st) ← A and outputs (x∗, {x∗}, st). Given
kx∗ and y, B can now simulate the modified game and output whatever A outputs. B’s probability of
breaking the security of PF is the same as that of A winning the modified game.

3.2 A Turing-Machine-Constrained PRF

In this section we construct a family of constrained PRFs for unbounded inputs, whose keys can be
constrained for sets decided by Turing machines. We start by observing that in the circuit-constrained
PRFs (Construction 1) the size of a constrained key kC for a circuit C depends on the running time
of C. This is so, because kC is an indistinguishability obfuscation of the circuit Pk,C that runs C
to check whether the input is legitimate, i.e., whether C(x) = 1, and if so, evaluates PF. Towards
constructing constrained PRFs w.r.t. Turing machines, and avoiding translating running time into key
size, we look at a progression of modifications to the circuit-constrained PRFs.

At first attempt, replacing C in Pk,C with a TM M , we get a TM Pk,M , and therefore we cannot
use obfuscation, as current constructions of iO and eO only exist for circuits. Towards making Pk,M
a circuit, one could outsource the check of input legitimacy outside the circuit to be obfuscated, by
using succinct non-interactive arguments (SNARG). However, legitimate inputs are still unbounded,
and hence we are back to obfuscating a TM. It is thus necessary to compress the unbounded input to
a fixed length in order to obtain a circuit, which in the end we can obfuscate.

We achieve this by applying a collision-resistant hash function H to the unbounded inputs, that
is, we evaluate the PRF on hashed inputs. In order to guarantee input legitimacy, we use a SNARK
to prove that a given hash is the hash value of a legitimate input. We define a circuit Pk,M that is
given a hash value and a SNARK proof and evaluates the PRF on the hash if the proof verifies. The
secret key is then an eO obfuscation of Pk,M .

Let us justify the use of eO and SNARKs. As in the case of circuit-constrained PRFs, we want to
reduce the selective security of the TM-constrained PRF F to the selective security of the underlying
puncturable PRF PF. In a first game hop we replace Pk,M with Pkh∗ ,M , which is identical to Pk,M
except that the key k is replaced with a key kh∗ that punctures out h∗ := H(x∗). Unfortunately, the
use of the hash function makes the two circuits, Pk,M and Pkh∗ ,M , inequivalent: there exists x 6= x∗

such that H(x) = H(x∗), and on input H(x), Pk,M outputs PF(k,H(x)) = PF(k, h∗) and Pkh∗ ,M
outputs ⊥, which means we cannot use iO, and hence we use eO instead.

Hash-function collisions are also the reason we need to use SNARKs rather than SNARGs: if an
adversary can distinguish obfuscations of Pk,M and Pkh∗ ,M by finding a collision for H then we need
to extract this collision in the security proof. Therefore, we use SNARKs (arguments of knowledge).
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In this construction, a constrained key kM for a TM M is now an eO obfuscation of a circuit
Pk,M which is given (h, π) and checks whether π proves knowledge of an x such that H(x) = h and
M(x) = 1, and if so, evaluates PF on h. The size of a constrained key kM depends on the size of the
description of M , but no longer on its running time.

We further enhance this construction by using functional signatures to reduce both the running
time of the key-constraining algorithm and the size of the effective constrained keys (by effective we
mean the part of the key that needs to be kept secret). Instead of obfuscating a circuit for each TM
M , we obfuscate a single circuit C that works for all TMs. A constrained key for a TM M is now
simply a signature σ on M . The circuit C is given σ in addition to (M,h, π), verifies the signature σ
on M in addition to verifying π; and if all checks pass, it evaluates PF on h.

The reason for using functional signatures is the following: in the proof of Proposition 2, we will
use an adversary against F to build a distinguisher between Pk,M and Pkh∗ ,M , who will have to sign
TMs to answer the adversary’s constraining queries. By eO we know that there exists an extractor E
that extracts a differing input. We then need to argue unforgeability of signatures; however, we don’t
know how E answers the adversary’s queries. Thus instead of providing E with a signing oracle, we
give it a functional signing key that allows it to produce all necessary signatures.

Construction 2 (TM-constrained PRF). Let PFλ = {PF : K × {0, 1}n → Y} be a puncturable PRF
with fixed input length, Hλ = {H : {0, 1}∗ → {0, 1}n}λ a family of collision-resistant hash functions,
FS a functional signature scheme, SNARK a SNARK system for the language Llegit (Definition 6) and
eO an extractability obfuscator for a family of polynomial-size circuits Pλ.

We construct a family of PRFs Fλ = {F : K×{0, 1}∗ → Y} constrained w.r.t. to a polynomial-size
family of Turing machines Mλ. Following is a description of F = (F.Smp,F.Eval,F.Constr).

K← F.Smp(1λ): On input a security parameter λ, do the following:

H ← H.Smp(1λ), i.e., sample a collision-resistant hash function.

crs← SNARK.Gen(1λ), i.e., sample a common reference string for the SNARK system.

(msk,mvk) ← FS.Setup(1λ), i,e., sample a pair of master signing and verification key for the
functional signature scheme. Let fI :Mλ →Mλ be the identity function, i.e., fI(M) = M .
Compute a signing key for fI as skfI ← FS.KeyGen(msk, fI).

k ← PF.Smp(1λ), i.e., sample a secret key for the puncturable PRF.

P̃ ← eO(1λ, P ), i.e, compute an extractability obfuscation for the following circuit P ∈ Pλ:

P (M,h, π, σ) :=


PF.Eval(k, h) if SNARK.Verify

(
crs, (H,M, h), π

)
= 1

∧ FS.Verify(mvk,M, σ) = 1
⊥ otherwise

where (H, crs,mvk, k) is hard-coded in P .

Set pp = (H, crs,mvk, P̃ ) and output K := (k, skfI , pp).

kM ← F.Constr(K,M): On input a secret key K, and a TM M ∈ Mλ, compute a signature on M as

σ ← FS.Sign(I, skfI ,M), and output kM := (M,σ, pp).

F.Eval(κ, x): On input a key κ ∈ K ∪ KM, and an x ∈ {0, 1}∗, do the following:

• Case κ ∈ K, κ = (k, skfI , pp = (H, crs,mvk, P̃ )): output PF.Eval(k,H(x)).
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• Case κ ∈ KM, κ = (M,σ, pp = (H, crs,mvk, P̃ )): if M(x) = 1, set h := H(x) (thus
((H,M, h), x) ∈ Rlegit), generate a SNARK proof π ← SNARK.Prove(crs, (H,M, h), x), and

output P̃ (M,h, π, σ).

Remark 1. Although pp and P̃ are computed once and for all, and in fact serve as public parameters
for the constrained PRF, we include them in the constrained key kM for notational simplicity.

P ∈ Pλ with the succinct proof π being the dominating factor in its input length. However, |π| is
polynomially bounded by some universal polynomial independent of Llegit, even for a super-polynomial
witness length |x|.

Theorem 1. Fλ of Construction 2 is a selectively secure family of constrained PRFs with input space
{0, 1}∗ for which constrained keys can be derived for any set that can be decided by a Turing machine
with polynomial description size, if PFλ is a selectively secure family of puncturable PRFs, Hλ is a
family of collision-resistant hash functions, eO is a secure extractability obfuscator for a polynomial-
size family of circuits Pλ, SNARK is a SNARK system for Llegit from Definition 6, and FS is a secure
functional signature scheme.

Proof. LetA be an arbitrary PPT adversary for the game Exp
(∅,{constr,eval}),b
F,A (λ), as defined in Figure 1,

which we abbreviate as Expb for simplicity. We need to show that Exp0 and Exp1 are indistinguish-
able. Our proof will be by game hopping and we define a series of hybrid games Expb,(0) := Expb,
Expb,(1), Expb,(2), Expb,(3) and show that for b = 0, 1 and c = 0, 1, 2 the games Expb,(c) and Expb,(c+1)

are indistinguishable. Finally we show that Exp0,(3) and Exp1,(3) are also indistinguishable, which
concludes the proof. All games are defined in Figure 2, using the following definitions:

fI(M) := M (3)

fx∗(M) :=

{
M if M(x∗) = 0
⊥ otherwise

(4)

PH,crs,mvk,k(M,h, π, σ) :=


PF.Eval(k, h) if SNARK.Verify

(
crs, (H,M, h), π

)
= 1

∧ FS.Verify(mvk,M, σ) = 1
⊥ otherwise

(5)

Expb,(0) is the original game Exp
b,(∅,{constr,eval})
F,A (λ) for Construction 2.

Expb,(1) differs from Expb,(0) by replacing the signing key skfI with skfx∗ , which only allows to sign
machines M with M(x∗) = 0.

Expb,(2) differs from Expb,(1) by replacing the full key of the puncturable PRF PF, with one that is
punctured at H(x∗) in the definition of P .

Expb,(3) differs from Expb,(2) by answering eval queries using the punctured key kh∗ and aborting
whenever the adversary queries its eval oracle on a collision with x∗.

Intuitively, Expb,(0)(λ) and Expb,(1)(λ) are computationally indistinguishable as the only difference
between them is the use of the signing key skfI and skfx∗ , respectively, in answering constraining
queries. By the definition of the selective-security game, a signature is computed only on a TM M
such that M(x∗) = 0. Therefore, fx∗ coincides with fI on all such legitimate queries. By function
privacy of FS = (FS.Setup,FS.KeyGen,FS.Sign,FS.Verify), signatures generated under fx∗ and fI are
computationally indistinguishable. See Appendix C.1 for the proof of the following.
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Exp
(∅,{constr,eval}),b
F,A (λ)

(x∗, st)← A1(1λ)
K← F.Smp(1λ)
If b = 1
y∗ := F.Eval(K, x∗)

Else
y∗ ← Y

b′ ← Aconstr(·),eval(·)
2 (st, y∗)

Return b′

Oracle constr(M)

If M /∈Mλ ∨M(x∗) = 1
Return ⊥

kM ← F.Constr(K,M)
Return kM

Oracle eval(x)

If x = x∗

Return ⊥
y = F.Eval(K, x)
Return y

Exp
b,(c)
F,A(λ) // c ∈ {0, 1, 2, 3}

(x∗, st)← A1(1λ)
H ← H.Smp(1λ)
crs← SNARK.Gen(1λ)

(msk,mvk)← FS.Setup(1λ)
skfI ← FS.KeyGen(msk, fI) with fI defined in Eq. (3)
skfx∗ ← FS.KeyGen(msk, fx∗) with fx∗ defined in Eq. (4)

k ← PF.Smp(1λ)
kh∗ ← PF.Constr(k, {0, 1}n \ {H(x∗)})

If c ≥ 2 then

P := PH,crs,mvk,k as defined Eq. (5)
Else
P := PH,crs,mvk,kh∗ as defined Eq. (5)

P̃ ← eO(1λ, P )

Set pp = (H, crs,mvk, P̃ )

If b = 1, y∗ := PF.Eval(k,H(x∗)), else y∗ ← Y
b′ ← Aconstr(·),eval(·)

2 (st, y∗)
Return b′

Oracle constr(M)

If M /∈Mλ ∨M(x∗) = 1
Return ⊥

If c ≥ 1

σ ← FS.Sign(f, skfx∗ ,M)
Else
σ ← FS.Sign(f, skfI ,M)

Return kM := (M,σ, pp)

Oracle eval(x)

If x = x∗

Return ⊥
If c = 3

If H(x) = H(x∗) then abort
Else y := PF.Eval(kh∗ , H(x))

Else
y := PF.Eval(k,H(x))

Return y

Figure 2: Original security game and hybrids used in the proof of Theorem 1.

Proposition 1. Games Expb,(0) and Expb,(1) are computationally indistinguishable for b = 0, 1 if
FS = (FS.Setup,FS.KeyGen,FS.Sign,FS.Verify) is a correct functional signature scheme satisfying
function privacy and succinctness.

The only difference between Expb,(1) and Expb,(2) is the definition of the circuit P that is obfus-
cated. In Expb,(1) the circuit P is defined as in (5), with k ← PF.Smp(1λ). In Expb,(2), the key k
is replaced by kh∗ ← PF.Constr(k, {0, 1}n \ {H(x∗)}), a key that punctures out H(x∗). An adversary
that distinguishes Expb,(1) and Expb,(2) distinguishes eO obfuscations of Pk and Pkh∗ . There exists
thus an eO extractor that extracts an input on which Pk and Pkh∗ differ.

By correctness of the puncturable PRF, the circuits only differ on inputs (M̂, ĥ, π̂, σ̂), where

ĥ = H(x∗) , (6)

as that is where the punctured key behaves differently. Moreover, the signature σ must be valid on
M , as otherwise both circuits output ⊥. By unforgeability of the functional signature scheme we must
have

M̂(x∗) = 0 , (7)
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as the adversary only obtains signatures via its constrain queries, when it submits machines satisfy-
ing (7).

Finally the extracted proof π̂ must be valid for (H, M̂, ĥ), as otherwise both circuits output ⊥. By
SNARK extractability, we can therefore extract a witness x̂ for (H, M̂, ĥ) ∈ Llegit, that is, (i) M̂(x̂) = 1

and (ii) H(x̂) = ĥ. Now (i) and (7) imply x̂ 6= x∗ and (ii) and (6) imply H(x̂) = H(x∗). Together,
this means (x̂, x∗) is a collision for H. We make this argument formal in the following proposition,
which is proved in Appendix C.2.

Proposition 2. Expb,(1) and Expb,(2) are computationally indistinguishable for b = 0, 1, if eO is a
secure extractability obfuscator, FS is unforgeable and H is collision-resistant.

For the game hop from games Expb,(2) to Expb,(3), indistinguishability follows directly from col-
lision resistance of H, as the only difference is that Expb,(3) aborts when A finds a collision.

Proposition 3. Games Expb,(2) and Expb,(3) are computationally indistinguishable for b = 0, 1, if H
is collision-resistant.

See Appendix C.3 for the proof. We have now reached a game, Expb,(3), in which the key k is
only used to create a punctured key kh∗ . The experiment can thus be simulated by an adversary B
against selective security of PF , who first asks for a key for the set {0, 1}n \ {H(x∗)} and then uses
A to distinguish y∗ = PF.Eval(k,H(x∗)) from random.

Proposition 4. Games Exp0,(3) and Exp1,(3) are indistinguishable if PF is a selectively secure family
of puncturable PRFs.

See Appendix C.4 for the proof. Theorem 1 now follows from Propositions 1, 2, 3 and 4.

4 Applications

Our first application of constrained PRFs with unbounded input length is broadcast encryption (BE).
We construct a scheme where during setup the number of potential receivers need not be known.
Users can be dynamically added to the system and are assigned consecutive numbers i ∈ N.

Our scheme is set up by computing a PRF key k, which is used to broadcast and to derive user
keys. In order to broadcast a message to the set S ⊆ N, let x ∈ {0, 1}∗ be the characteristic vector
of S, i.e., xi = 1 iff i ∈ S. Using a symmetric encryption scheme, the message is encrypted under the
key K := F(k, x). User i is given a key ski ← F.Constr(k, Si) where Si ⊆ {0, 1}∗ is the set of strings
x ∈ {0, 1}∗ with xi = 1. User i can therefore compute all keys K for sets to which she belongs. Due
to space constraints, details are deferred to Appendix A.

4.1 ID-Based Non-interactive Key Exchange for Unbounded Groups

In this section we present a construction of identity-based non-interactive key exchange (ID-NIKE)
[SOK00]. This allows users to compute shared keys without any interaction—it suffices to know the
identity of the users one wants to share a key with. In our construction, a user can compute a shared
key for any group of users and there is no a priori bound on the size of these groups. We generalize the
construction of [BW13,Hof14], where identities are elements from {0, 1}` and the system is set up by
creating a secret key msk for a constrained PRF. A key for a group of users {id1, . . . , idn} is defined as
F.Eval(msk, x), where x = id1‖ . . . ‖idn and we assume identities are always ordered lexicographically.

Since in the previous constructions the CPRF is set up for a fixed input length m there is an a-
prior-fixed maximum number of users which can share a key, namely m/`. As a user’s id could appear
in any position of the string x, the owner of id is given constrained keys for the sets (id‖?(n−1)`) :=
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{id‖z | z ∈ {0, 1}(n−1)·`}, (?`‖id‖?(n−2)`), . . . , (?(n−1)`‖id). These keys thus allow the user to compute
the key for any set which she is part of.

We generalize this to sets of users of unbounded size. Again, a key for a set {id1, . . . , idn} is defined
as F.Eval(msk, id1‖ . . . ‖idn), but now n can be arbitrary and is not fixed in advance. In order to let a
user with identity id compute the keys of the sets which she is part of—but not anything else—, she
is given a constrained key for the following Turing machine Mid: on input x ∈ {0, 1}∗, machine Mid

outputs 1 if and only if id is a substring of x, which starts at position i · `+ 1, for some i ≥ 0, that is,
at position 1 or `+ 1 or 2`+ 1, etc.

ID-NIKE. An (unbounded) ID-NIKE scheme consists of three algorithms:

(pp,msk)← Setup(1λ): on input λ, output public parameters pp and a master secret key msk;

skid ← Extract(msk, id): in input the master key and id ∈ {0, 1}`, output a secret key skid.

kI ← KeyGen(pp, skid, I): on input pp, a key skid for id and a list I ⊆ {0, 1}` of n (for arbitrary n)
users with id ∈ I, output a shared key kI .

Correctness is defined as follows: for all id, id′ ∈ {0, 1}`, all I ⊆ {0, 1}` with id, id′ ∈ I, all (pp,msk)←
Setup(1λ), skid ← Extract(msk, id) and skid′ ← Extract(msk, id′), it holds that KeyGen(pp, skid, I) =
KeyGen(pp, skid′ , I).

Following [PS09] we define security via a game where an adversary can obtain secret keys skid for
identities of his choice and can query secret keys kI for sets I of his choice. The scheme is secure if
the adversary cannot distinguish a key kI∗ for a set I∗ of his choice from random, where we must
have id /∈ I∗ for all id for which the adversary queried key extraction, and I∗ 6= I for all I for which
the adversary queried a shared key. We prove that our scheme satisfies the selective variant of this
definition, where the adversary must output I∗ before getting access to its oracles.

ID-NIKE from constrained PRFs for unbounded inputs. Our unbounded ID-NIKE is ob-
tained from a constrained PRF with unbounded input length (F.Smp,F.Constr,F.Eval) as follows.

• Setup(1λ): Return msk← F.Smp(1λ).

• Extract(msk, id): On input id ∈ {0, 1}` do the following: define a Turing machine Mid that
on input a string x ∈ {0, 1}∗ outputs 1 iff x is of the form x′‖id‖x′′ with x′ ∈ {0, 1}n′·` and
x′′ ∈ {0, 1}n′′·` for some n′, n′′ ∈ N; return skid ← F.Constr(msk,Mid).

• KeyGen(pp, skid, I): If I = {id1, . . . , idn} ⊆ {0, 1}` for some n and id ∈ I then define x :=
idi1‖ . . . ‖idin , with idij < idij+1 for all j, and output kI := F.Eval(skid, x); else output ⊥.

Correctness of our scheme follows from correctness of the underlying constrained PRF. Selective
security of the ID-NIKE follows from selective security of the CPRF (Definition 2). Given an adversary
A against the ID-NIKE, we construct an adversary B against the CPRF. First B runs A to obtain I∗
and sends x∗, the concatenation of the lexicographically ordered elements of I∗, to its challenger.
B answers A’s queries as follows: When A queries a secret key for id ∈ I∗ or the shared key for

I∗ then reply with ⊥. On a legal secret-key query for id, construct a Turing machine Mid as in the
definition of Extract, query the constr oracle on Mid and forward the reply to A. When A queries a
shared key for a set I 6= I∗, construct x as in KeyGen, query eval on x and forward the reply.

Note that B makes no illegal queries (any queried M evaluates x∗ to 0 and x∗ is never queried to
eval) and perfectly simulates the game for A. When B receives a value y which is either F.Eval(msk, x∗)
or random, it forwards y as the challenge key kI∗ to A and outputs whatever A does. B thus breaks
the CPRF with the same probability as A breaking the ID-NIKE, which concludes the proof.
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A Application: Broadcast Encryption to Unbounded Number of
Users

We now show how a constrained PRF for unbounded input lengths can be used to construct broadcast
encryption (BE) [FN93] where there is no limit on the number of receivers. We start with defining
dynamic BE, where users can join the system after it is set up. Each user is identified by a consecutive
number i.

A broadcast encryption scheme BE for a symmetric-key encryption scheme (enc, dec) with key
space Ksym, consists of the following four PPT algorithms:

(bk,msk) ← Setup(1λ): On input a security parameter λ, output a broadcast key bk and a master
secret key msk, used to enroll new members in the system.

ski ← KeyGen(msk, i): On input a master key msk and a member id i, output ski, a secret key for
member i.

(hdr,K)← Encrypt(bk, S): On input a set S ⊆ N and a broadcast key bk, output a header hdr and
a key K ∈ Ksym. (A message m is then broadcast as (S, hdr, enc(K,m)).)

K ← Decrypt(i, ski, S,hdr): On input a member id i and an associated secret key ski, a set S ⊆ N and
a header hdr, if i ∈ S then output a symmetric key K ∈ Ksym. (Given a broadcast (S, hdr, C),
compute m← dec(K,C).)

Like Boneh and Waters [BW13], whose construction we build on, we will construct a secret-key
BE scheme, where bk must only be known to the broadcaster.

Correctness of a BE scheme is defined as follows: for all S ⊆ N, i ∈ S, all (bk,msk)← Setup(1λ),
ski ← KeyGen(msk, i) and (hdr,K)← Encrypt(bk, S), we have K ← Decrypt(i, ski, S,hdr).

Selective security is defined via the following game ExpBE-b for an adversary A:
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ExpBE-b
BE,A(λ)

(bk,msk)← Setup(1λ)
(S∗, st)← A1(1λ)
(hdr∗,K∗)← Encrypt(bk, S∗)
If b = 0 then K∗ ← Ksym

b′ ← Akey(·),encrypt(·)
2 (st, (hdr∗,K∗)); Return b′

Oracle key(i) :

If i ∈ S∗
Return ⊥

ski ← KeyGen(msk, i)
Return ski

Oracle encrypt(S) :

If S = S∗

Return ⊥
(hdr,K)← Encrypt(bk, S)
Return (hdr,K)

We say that BE is secure if AdvBE
BE,A(λ) :=

∣∣Pr[ExpBE-0
BE,A(λ) = 1]− Pr[ExpBE-1

BE,A(λ) = 1]
∣∣ ≤ negl(λ).

BE from constrained PRFs for unbounded inputs. Let (enc, dec) be a symmetric encryption
scheme with key space Ksym. Let F = {F : K × X → Y} be a constrained PRF with input space
X = {0, 1}∗ and range Y = Ksym, for which constrained keys ki for the following set can be computed:

Si := {x ∈ {0, 1}∗ |xi = 1} . (8)

(As Si can be decided by a polynomial-time Turing machine, our construction from Section 3.2 can
be used.) Then we define a broadcast encryption scheme BE with optimal ciphertext length (that is,
the header is empty: hdr = ∅) as follows:

• Setup(1λ): Generate k ← F.Smp(1λ) and return bk := k, msk := k.

• KeyGen(msk, i): Return ki ← F.Constr(msk, Si) with Si as in (8).

• Encrypt(bk, S): Let xS ∈ {0, 1}∗ be the characteristic vector of S, compute K ← F.Eval(bk, xS)
and output (∅,K)

• Decrypt(i, ski, S,hdr): With xS as above, output K ← F.Eval(ski, xS).

Correctness of BE follows from correctness of F ; security follows by reduction to selective pseudo-
randomness of F . Let A be a PPT adversary that breaks security of BE ; then we construct a PPT
algorithm B = (B1,B2) that breaks F with the same probability:

B1(1λ)

– (S∗, stA)← A1(1λ).

– Let x∗ be the charac-
teristic string of S∗.

– Return (x∗, stA).

Bconstr(·),eval(·)2 (st,K∗)

– b′ ← Akey(·),encrypt(·)
2 (st, (∅,K∗));

– simulate key(i): define Si as in (8), query ki ← constr(Si); reply ki;
– simulate encrypt(S): define xS ∈ {0, 1}∗ as the characteristic vector

of S; query K ← eval(xS); reply (∅,K).

– Return b′.

By construction, we have Exp
(∅,{constr,eval}),b
F,B = ExpBE-b

BE,A, which proves the claim.

B Complementary Definitions of Used Primitives

B.1 Puncturable PRFs

Definition 9 (Puncturable PRFs [SW14]). A family of PRFs Fλ = {F : K × {0, 1}n → Y} is called
puncturable if it is constrainable for sets {0, 1}n \ T , where T ⊆ {0, 1}n is of polynomial size. Fλ
is (selectively) pseudorandom if for every PPT adversary A = (A1,A2) in Exppct-b

F,A (λ), defined in
Figure 3, we have

AdvPCT
F,A (λ) :=

∣∣Pr[ExpPCT-0
F,A (λ) = 1]− Pr[ExpPCT-1

F,A (λ) = 1]
∣∣ ≤ negl(λ) .
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ExpPCT-b
F,A (λ) :

(x∗, T, st)← A1(1λ)
If x∗ /∈ T , then abort
k ← F.Smp(1λ)
kT ← F.Constr(k, {0, 1}n \ T )
If b = 1, y := F.Eval(k, x∗), else y ← Y
b′ ← Aeval(·)

2 (st, kT , y)
Return b′

Oracle eval(x) :

If x = x∗, return ⊥
Return F.Eval(k, x)

Figure 3: ExpPCT-b
F,A (λ): The selective-security game for puncturable PRFs.

B.2 Security of Functional Signatures

A functional signature scheme, as defined in Definition 8 is secure if it has the following properties,
where we formalize unforgeability following [BF14], who introduce a similar primitive.

1. Correctness: For all λ ∈ N, all f ∈ F , w ∈ Df , (msk,mvk) ← Setup(1λ), skf ← KeyGen(msk, f),
σ ← Sign(f, skf , w), we have Verify(mvk, f(w), σ) = 1.

2. Unforgeability: For every PPT adversary A, with Expunforg
A (λ) defined in Figure 4, we have:

Pr[Expunforg
A (λ) = 1] ≤ negl(λ) .

3. Function Privacy: For every PPT adversary A, with Exppriv-b
A (λ) defined in Figure 5, we have:∣∣Pr[Exppriv-0

A (λ) = 1]− Pr[Exppriv-1
A (λ) = 1]

∣∣ ≤ negl(λ) .

4. Succinctness: There exists a polynomial s(·) such that for all λ ∈ N, f ∈ F , w ∈ Df , (msk,mvk)←
Setup(1λ), skf ← KeyGen(msk, f), σ ← Sign(f, skf , w), we have |σ| ≤ s(λ, |f(w)|). (Thus the sig-
nature size is independent of |w| and |f |, the length of the description of f .

Expunforg
FS,A(λ) :

` := 0; K := ∅
//K[j][1] holds (f, i); K[j][2] holds skif
//K[j][3] holds signed m’s

//K[j][4] = 1 if A obtained skif
(msk,mvk)← Setup(1λ)
(m∗, σ∗)← Akey(·,·),sign(·,·,·)(1λ,mvk)
If Verify(mvk,m∗, σ∗) = 0, return 0.
For j = 1, . . . , ` do

If m∗ ∈ K[j][3], return 0
(f, i) := K[v][1]
If K[v][4] = 1 and m∗ ∈ Rf , return 0

Return 1

Oracle key(f, i) :

For j = 1, . . . , ` do
If K[j][1] = (f, i)

K[j][4] := 1
Return K[j][2]

skif ← KeyGen(msk, f)
` := `+ 1
K[`][1] := (f, i)

K[`][2] := skif
K[`][4] := 1

Return skif

Oracle sign(f, i, w) :

found := 0; j := 0
While found = 0 ∧ j < ` do
j := j + 1
If K[j][1] = (f, i)

skif := K[j][2]; found := 1
If found = 0

skif ← KeyGen(msk, f)
` := `+ 1; j := `

K[j][1] := (f, i); K[j][2] := skif
K[j][3] := K[j][3] ∪ {f(w)}
Return Sign(f, skif , w)

Figure 4: Expunforg
FS,A(λ): The unforgeability game for functional signatures.
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Exppriv-b
FS,A(λ)

(msk,mvk)← Setup(1λ)
(f0, st1)← A1(1λ,msk,mvk)
skf0 ← KeyGen(msk, f0)
(f1, st2)← A2(st1, skf0)
If |f0| 6= |f1|, return 0
skf1 ← KeyGen(msk, f1)
(w0, w1, st3)← A3(st2, skf1)
If |w0| 6= |w1| ∨ f0(w0) 6= f1(w1)

Return 0
σb ← Sign(fb, skfb , wb) // A signature on fb(wb)
b′ ← A4(st3, σb)
Return b′

Figure 5: Exppriv-b
FS,A(λ): The function privacy game for functional signatures.

C Proofs

C.1 Proof of Proposition 1

Assume towards contradiction that there exists a PPT adversary A = (A1,A2) that distinguishes
Expb,(0)(λ) and Expb,(1)(λ) with non-negligible probability, i.e., there exists a polynomial p(·) such
that for infinitely many λ:∣∣Pr[Exp

b,(0)
A (λ) = 1]− Pr[Exp

b,(1)
A (λ) = 1]

∣∣ ≥ 1

p(λ)
.

Then we use A to construct a series of PPT adversaries D(i), i = 1, . . . , q, one of which breaks
function privacy of FS with non-negligible probability. We construct a series of hybrids between
Expb,(0) and Expb,(1) as follows. Let q = q(λ) be a polynomial upper bound on the total number
of constraining queries A makes. Define the i-th hybrid Expb,(0,i) like Expb,(0), except that the
first i constraining queries are answered by using the signing key skfx∗ , and all remaining queries

are answered by using the signing key skfI . By construction, we have Expb,(0,0) = Expb,(0) and

Expb,(0,q) = Expb,(1).
We useA to construct a PPT adversaryD(i) which runs in the function-privacy game Exppriv-d

FS,D(i)(λ)

of FS (cf. Figure 5) and simulates Expb,(0,i−1) if D(i)’s challenger’s bit d = 0 and Expb,(0,i) if d = 1.

D(i)
1 (λ,msk,mvk)

– (x∗, stA)← A1(1λ).

– H ← H.Smp(1λ).

– crs← SNARK.Gen(1λ).

– k ← PF.Smp(1λ).

– P̃ ← eO(1λ, PH,crs,mvk,k) with PH,crs,mvk,k defined in (5).

– Let fI and fx∗ as defined in (3) and (4).

– Set pp := (H, crs,mvk, P̃ ), st := (x∗, stA, pp, k, fI , fx∗).

– Return (f0 := fI , st), where fI is padded to be of length |fx∗ |.

D(i)
2 (st, skfI )

– Return (f1 := fx∗ , st′ = (st, skfI )).
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D(i)
3 (st, skfx∗ )

– If b = 1 then y∗ := PF.Eval(k,H(x∗)); otherwise y∗ ← Y.

– b′ ← Aconstr(·),eval(·)
2 (stA, y

∗);

– simulate eval(x):
if x = x∗, reply ⊥; else reply y := PF.Eval(k,H(x));

– simulate constr(M):
if M /∈Mλ ∨M(x∗) = 1, reply ⊥; else do the following:

– first i− 1 queries: compute σ ← FS.Sign(fx∗ , skfx∗ ,M); reply kM := (M,σ, pp).
– i-th query M : return (m0,m1) = (M,M) to own challenger.

D(i)
4 (st, σc) // σc is either a signature under skfI or under skfx∗

– Finish the constr query reply for A2 with (M,σc, pp).

– Simulate eval queries like D(i)
3 .

– Simulate further constr queries:
if M /∈Mλ ∨M(x∗) = 1, reply ⊥; else σ ← FS.Sign(I, skfI ,M); reply kM := (M,σ, pp).

– Output b′.

If σc was generated using the signing key skfI then D(i) simulates Expb,(0,i−1) and if skfx∗ was used

then D(i) simulates Expb,(0,i). The only difference between D(i)’s simulation and the actual game is
that D(i) pads the function fI to match the length of fx∗ . This is however oblivious to A, since all A
gets to see are signatures computed using fI , which, by succinctness of FS, are independent of |fI |.
We therefore have

Pr[Exppriv-d

FS,D(i)(λ) = 1] = Pr[Exp
b,(0,i−1+d)
A = 1] . (9)

We assumed that

1
p(λ) ≤

∣∣Pr[Exp
b,(0)
A (λ) = 1]− Pr[Exp

b,(1)
A (λ) = 1]

∣∣ ≤∑q
i=1

∣∣Pr[Exp
b,(0,i−1)
A (λ) = 1]− [Exp

b,(0,i)
A (λ) = 1]

∣∣ .
There must thus exist an i ∈ {1, . . . q} such that for infinitely many λ’s:

1
q(λ)·p(λ) ≤

∣∣Pr[Exp
b,(0,i−1)
A (λ) = 1]− [Exp

b,(0,i)
A (λ) = 1]

∣∣ (9)
=∣∣Pr[Exppriv-0

D(i) (λ) = 1]− Pr[Exppriv-1

D(i) (λ) = 1]
∣∣ .

This contradicts function privacy of the functional-signature scheme, and we conclude that∣∣Pr[Exp
b,(0)
A (λ) = 1]− Pr[Exp

b,(1)
A (λ) = 1]

∣∣ ≤ negl(λ) .

C.2 Proof of Proposition 2

Proof. Assume towards contradiction that there exists a PPT adversary A = (A1,A2) that distin-
guishes Expb,(1) and Expb,(2) with non-negligible probability, i.e., there exists a polynomial q(·) such
that for infinitely many λ,∣∣Pr[Exp

b,(1)
A (λ) = 1]− Pr[Exp

b,(2)
A (λ) = 1]

∣∣ ≥ 1

q(λ)
. (10)

Then we construct B, that distinguishes eO-obfuscations with auxiliary input distributed according
to a PPT sampler (Pk, Pkx∗ , aux)← Sampler(1λ), defined as follows:
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Sampler(1λ)

– (x∗, stA)← A1(1λ).

– H ← H.Smp(1λ), and set h∗ = H(x∗).

– crs← SNARK.Gen(1λ).

– (msk,mvk)← FS.Setup(1λ).

– skfx∗ ← FS.KeyGen(msk, fx∗), with fx∗ as defined in (4).

– k ← PF.Smp(1λ).

– kh∗ ← PF.Constr(k, {0, 1}n \ {h∗}).
– Construct P0 := PH,crs,mvk,k and P1 := PH,crs,mvk,kh∗ as defined in (5).

– Set aux = (mvk, x∗, stA, H, crs, skfx∗ , k).

– Return (P0, P1, aux).

We then define an algorithm B, which is run on the output of Sampler, that can distinguish obfuscations
of P0 and P1.

B(1λ, P̃c, P0, P1, aux)

– pp := (H, crs,mvk, P̃c).

– If b = 1 then y∗ := PF.Eval(k,H(x∗)); otherwise y∗ ← Y.

– b′ ← Aconstr(·),eval(·)
2 (stA, y

∗);

– simulate constr(M):
if M /∈Mλ ∨M(x∗) = 1, reply ⊥;
else compute σ ← FS.Sign(fx∗ , skfx∗ ,M); reply kM := (M,σ, pp);

– simulate eval(x):
if x = x∗, reply ⊥; else reply y := PF.Eval(k,H(x)).

– Output b′.

If P̃c is an obfuscation of P0 then Sampler and B together simulate Expb,(1) for A, if it is an obfuscation
of P1 then they simulate Expb,(2) for A. We thus have for c = 0, 1 and all λ ∈ N:

Pr
[
(P0, P1, aux)← Sampler(1λ); P̃c ← eO(1λ, Pc) : B(1λ, P0, P1, P̃c, aux) = 1

]
= Pr[Exp

b,(c+1)
A (λ) = 1] .

Thus,

Pr
[
(P0, P1, aux)← Sampler(1λ); c← {0, 1}; P̃c ← eO(1λ, Pc) : B(1λ, P0, P1, P̃c, aux) = c

]
=

1

2

(
1− Pr

[
(P0, P1, aux)← Sampler(1λ); P̃0 ← eO(1λ, P0) : B(1λ, P0, P1, P̃0, aux) = 1

]
+

Pr
[
(P0, P1, aux)← Sampler(1λ); P̃1 ← eO(1λ, P1) : B(1λ, P0, P1, P̃1, aux) = 1

])
=

1

2
+

1

2

(
Pr[Exp

b,(1)
A (λ) = 1]− Pr[Exp

b,(2)
A (λ) = 1]

)
≥ 1

2
+
q(λ)

2

for infinitely many λ’s, by Eq. (10). (The last inequality only holds of the difference of probabilities
in that line is positive. This is however w.l.o.g.: if A was such that the difference was negative in (10)
then we would define B to output 1− b′.)

By security of eO (cf. Eq. (1) in Definition 5), there exists a PPT extractor EB, which when
given (P0, P1, aux) computed by Sampler finds a differing input χ := (M,h, π, σ). That is, for some
polynomial p(·), we have for infinitely many λ:

Pr
[
χ← EB

(
1λ, P0, P1, aux = (mvk, x∗, stA, H, crs, skfx∗ , k)

)
: P0(χ) 6= P1(χ)

]
≥ 1

p(λ)
. (11)
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Let χ̂ = (M̂, ĥ, π̂, σ̂) be a differing input output by EB. Recall that σ̂ is a signature on a TM M̂ ,
and π̂ is a short proof of η̂ = (H, M̂, ĥ) ∈ Llegit, i.e., a short proof of knowledge of a witness x such

that M̂(x) = 1 and H(x) = ĥ. By the definitions of P0 := PH,crs,mvk,k and P1 := PH,crs,mvk,kh∗ (cf.
Eq. (5)), the following two conditions must hold.

condition(1): Both SNARK.Verify(crs, (H, M̂, ĥ), π̂) = 1 and FS.Verify(mvk, M̂ , σ̂) = 1 hold, for other-
wise both P0 and P1 output ⊥, and

condition(2): ĥ = h∗ = H(x∗), for otherwise P0 outputs PF.Eval(k, ĥ) and P1 outputs PF.Eval(kh∗ , ĥ),
which are equal by the correctness of puncturing.

Next we will show that moreover any such output must satisfy M̂(x∗) = 0. Intuitively, this is the
case because EB gets a signing key skfx∗ , with which it can only sign machines M with M(x∗) = 0. So

if it outputs M̂ with M̂(x∗) = 1 then (M̂, σ̂), which by condition(1) is a valid signature, is a forgery.
We make this formal in the following claim.

Claim 1. Let Sampler be as defined above and EB be the eO extractor guaranteed by Eq. (11) and
(M̂, ĥ, π̂, σ̂) its output. If FS = (FS.Setup,FS.KeyGen,FS.Sign,FS.Verify) is a secure functional signa-
ture scheme then M̂(x∗) = 0.

Proof. Formally, assume towards a contradiction that M̂(x∗) = 1. Then we construct a PPT adversary
Aforg against FS, such that

Pr[Expunforg
FS,Aforg

(λ) = 1] ≥ 1

p(λ)
.

with Expunforg(λ) defined in Figure 4. Aforg behaves like Sampler but uses its input mvk and obtains
the key skfx∗ from its key oracle, and then runs EB. (Note that the oracle is called on inputs (f, i); we
arbitrarily set i := 1.)

Akey(·,·),sign(·,·,·)
forg (1λ,mvk)

– (x∗, stA)← A1(1λ).

– H ← H.Smp(1λ), and set h∗ = H(x∗).

– crs← SNARK.Gen(1λ).

– Query key(·, ·) on (fx∗ , 1) to obtain skfx∗ for fx∗ as defined in (4).

– k ← PF.Smp(1λ).

– kh∗ ← PF.Constr(k, {0, 1}n \ {h∗}).
– Construct P0 := PH,crs,mvk,k and P1 := PH,crs,mvk,kh∗ as defined in (5).

– Set aux = (mvk, x∗, stA, H, crs, skfx∗ , k).

– (M̂, ĥ, π̂, σ̂)← EB
(
1λ, P0, P1, aux

)
.

– Output (M̂, σ̂).

By condition(1), (M̂, σ̂) satisfies FS.Verify(mvk, M̂ , σ̂) = 1. Furthermore, Aforg asked for a single

signing key skfx∗ , and no signing queries. So, if M̂(x∗) = 1, then by definition of fx∗ , M̂ /∈ Rfx∗ , i.e.,

not in the range of fx∗ , and hence Expunforg
Aforg

(λ) = 1. Consequently, Pr[Expunforg
Aforg

(λ) = 1] ≥ 1
p(λ) , a

contradiction to the unforgeability of functional signatures, and therefore M̂(x∗) = 0.

Since the SNARK π̂ extracted by EB is a proof of knowledge, we can extract a witness x̂ for it.
In order to formally apply item 3. of Definition 7, we first construct a machine Asnrk that outputs π̂

23



together with the statement. Asnrk simply runs Sampler and EB as defined above, except that it uses
crs from its input.

Asnrk(crs)

– (x∗, stA)← A1(1λ).

– H ← H.Smp(1λ), and set h∗ = H(x∗).

– (msk,mvk)← FS.Setup(1λ).

– skfx∗ ← FS.KeyGen(msk, fx∗) with fx∗ defined in (4).

– k ← PF.Smp(1λ).

– kh∗ ← PF.Constr(k, {0, 1}n \ {h∗}).
– Construct P0 := PH,crs,mvk,k and P1 := PH,crs,mvk,kh∗ as defined in (5).

– Set aux = (mvk, x∗, stA, H, crs, skfx∗ , k).

– (M̂, ĥ, π̂, σ̂)← EB
(
1λ, P0, P1, aux

)
.

– Output (η := (H, M̂, ĥ), π̂).

By the construction of Asnrk, Eq. (11) and condition(1) we have that

Pr

[
crs← SNARK.Gen(1λ);

((H, M̂, ĥ), π̂)← Asnrk(crs)
: Verify(crs, (H, M̂, ĥ), π) = 1

]
≥ 1

p(λ)
. (12)

Further, since SNARK is an adaptive proof of knowledge, there exists EAsnrk
which extracts a witness,

that is:

Pr

[
crs← SNARK.Gen(1λ);

((H, M̂, ĥ), π̂)← Asnrk(crs); x̂← EAsnrk
(crs)

:
Verify(crs, (H, M̂, ĥ), π) = 1

∧ ((H, M̂, ĥ), x̂) /∈ Rlegit

]
≤ negl(λ) ,

which together with (12) yields:

Pr

[
crs← SNARK.Gen(1λ);

((H, M̂, ĥ), π̂)← Asnrk(crs); x̂← EAsnrk
(crs)

: ((H, M̂, ĥ), x̂) ∈ Rlegit

]
≥ 1

p(λ)
− negl(λ) .

(13)
We now construct an adversary Acll-fnd against H that on input λ, and a uniform H outputs a collision
for H: Acll-fnd generates a CRS for SNARKs, then runs Asnrk(crs), but using the hash function H from
its input, (the steps marked with ‘◦’) and then runs EAsnrk

to extract a collision:

Acll-fnd(1
λ, H)

– crs← SNARK.Gen(1λ).

◦ (x∗, stA)← A1(1λ); set h∗ = H(x∗).

◦ (msk,mvk)← FS.Setup(1λ).

◦ skfx∗ ← FS.KeyGen(msk, fx∗) with fx∗ defined in (4).

◦ k ← PF.Smp(1λ).

◦ kh∗ ← PF.Constr(k, {0, 1}n \ {h∗}).
◦ Construct P0 := PH,crs,mvk,k and P1 := PH,crs,mvk,kh∗ as defined in (5).

◦ Set aux = (mvk, x∗, stA, H, crs, skfx∗ , k).

◦ (M̂, ĥ, π̂, σ̂)← EB
(
1λ, P0, P1, aux

)
.

– x̂← EAsnrk
(crs).

– Output (x̂, x∗) as a collision pair for H.

By Eq. (13), with non-negligible probability, the values M̂, ĥ, π̂ computed during the execution of
Acll-fnd satisfy ((H, M̂, ĥ), x̂) ∈ Rlegit, that is, M̂(x̂) = 1 and ĥ = H(x̂).
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By Claim 1, M̂(x∗) = 0, and hence x̂ 6= x∗. By condition(2), ĥ = H(x∗), and hence (x, x∗) is a
collision. In particular, the following is non-negligible:

Pr
[
H ← H.Smp(1λ); (x1, x2)← Acll-fnd(1λ, H) : x1 6= x2 ∧ H(x1) = H(x2)

]
.

Therefore we have reached a contradiction to collision resistance of H, and it must be that Expb,(1)

and Expb,(2) are computationally indistinguishable, i.e.,∣∣Pr[Exp
b,(1)
A (λ) = 1]− Pr[Exp

b,(2)
A (λ) = 1]

∣∣ ≤ negl(λ) .

C.3 Proof of Proposition 3

Proof. The only difference between games Expb,(2) and Expb,(3) is whenA queries eval(x) with H(x) =
H(x∗). Then Expb,(3) aborts, while on any other query the oracle eval behaves equivalently in both
games, since H(x) 6= H(x∗) implies PF.Eval(kh∗ , H(x)) = PF.Eval(k,H(x)).

We can therefore build an adversary Acll-fnd against the hash function family H that on input
(1λ, H) simulates Expb,(3) (except that it uses H instead of sampling one) until in an oracle query
eval(x) the game would abort. Acll-fnd then outputs (x∗, x), which is a collision precisely when the
game would have aborted.

C.4 Proof of Proposition 4

Proof. Assume towards a contradiction that there exists a PPT adversary A = (A1,A2) and a poly-
nomial p(·) such that for infinitely many λ,∣∣Pr[Exp

0,(3)
F,A (λ) = 1]− Pr[Exp

1,(3)
F,A (λ) = 1]

∣∣ ≥ 1

p(λ)
.

Then we construct a PPT adversary B = (B1,B2) playing ExpPCT-b
PF ,B (λ), the selective-security game

of PF (cf. Figure 3, p. 19) as follows. (Note that B2 does not use its eval(·) oracle.)

B1(1λ)

– (x∗, stA)← A1(1λ).

– H ← H.Smp(1λ), and set h∗ = H(x∗).

– Return (h∗, T := {h∗}, st := (H,x∗, stA)).

B eval(·)
2 (st, kh∗ , y∗) // y∗ is either PF.Eval(k,H(x∗)) or random

– crs← SNARK.Gen(1λ).

– (msk,mvk)← FS.Setup(1λ).

– skfx∗ ← FS.KeyGen(msk, fx∗) with fx∗ defined in (4).

– P̃ ← eO(1λ, PH,crs,mvk,kh∗ ) with PH,crs,mvk,kh∗ defined in (5).

– Set pp := (H, crs,mvk, P̃ ).

– b′ ← Aconstr(·),eval(·)
2 (stA, y

∗).

– simulate constr(M):
if M /∈Mλ ∨M(x∗) = 1, reply ⊥;
else compute σ ← FS.Sign(fx∗ , skfx∗ ,M); reply kM := (M,σ, pp);

– simulate eval(x):
if x = x∗, reply ⊥; if H(x) = H(x∗) then abort;
else reply y := PF.Eval(kh∗ , H(x)).

– Output b′.
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By construction Pr[ExpPCT-b
PF ,B (λ) = 1] = Pr[Exp

b,(3)
F,A (λ) = 1], and therefore∣∣Pr[ExpPCT-0

PF ,B (λ) = 1]− Pr[ExpPCT-1
PF ,B (λ) = 1]

∣∣ ≥ 1

p(λ)
(14)

for infinitely many λ. This contradicts the selective security of PF, and we conclude that∣∣Pr[Exp
0,(3)
F,A (λ) = 1]− Pr[Exp

1,(3)
F,A (λ) = 1]

∣∣ ≤ negl(λ) .
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