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Abstract

A non-malleable code protects messages against various classes of tampering. Informally, a
code is non-malleable if the effect of applying any tampering function on an encoded message
is to either retain the message or to replace it with an unrelated message. Two main challenges
in this area – apart from establishing the feasibility against different families of tampering – are
to obtain explicit constructions and to obtain high-rates for such constructions.

In this work, we present a compiler to transform low-rate (in fact, zero rate) non-malleable
codes against certain class of tampering into an optimal-rate – i.e., rate 1 – non-malleable codes
against the same class. If the original code is explicit, so is the new one.

When applied to the family of bit-wise tampering functions, this subsumes (and greatly
simplifies) a recent result of Cheraghchi and Guruswami (TCC 2014). Further, our compiler
can be applied to non-malleable codes against the class of bit-wise tampering and bit-level
permutations. Combined with the rate-0 construction in a companion work, this yields the first
explicit rate-1 non-malleable code for this family of tampering functions.

Our compiler uses a new technique for boot-strapping non-malleability by introducing errors,
that may be of independent interest.
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1 Introduction

Non-Malleable Codes have emerged as an object of fundamental interest, at the intersection of
coding theory and cryptography. Informally, a code is non-malleable if the message contained in
a codeword that has been tampered with is either the original message, or a completely unrelated
value. As a relatively new problem, several basic questions are still open. In particular, two main
challenges in this area – apart from establishing the feasibility against different families of tampering
– are to obtain explicit constructions and to obtain high-rates1 for such constructions.

While existential results have been obtained for rate-1 non-malleable codes for very broad classes of
tampering functions [CG14a, FMNV14], explicit constructions have turned out to be much harder,
in such generality. For the relatively simple class of bit-wise tampering functions introduced in
[DPW10], it was only recently that an explicit rate-1 construction was obtained [CG14b]. For the
more general class of “split-state” tampering functions, the first construction in [DKO13] encoded
only a single bit; in a break-through result, an explicit scheme (of rate 0) was proposed for arbitrary
length messages by [ADL14], and more recently, a constant rate construction (for 10 states) was
provided in [CZ14].

All the above explicit results relied on the tampering functions being “compartmentalized” — i.e.,
the codeword is partitioned a priori into separate blocks and each block is tampered independently
of the others — In a companion paper [AGM+14b], we presented the first instance of an explicit non-
malleable code against a class of non-compartmentalized tampering functions. This class consists
of functions which can permute the bits of a codeword, as well as tamper each bit independently.
Apart from being of interest as a natural non-compartmentalized class, non-malleable codes against
this class have direct cryptographic applications: in [AGM+14b] it is used to obtain non-malleable
string-commitments from non-malleable bit-commitments in a hardware token-based model, with
information-theoretic security (or in the standard model under computational assumptions). This
application also highlighted the need for explicit constructions, even if randomized constructions
are efficient, since the latter calls for a trusted party to carry out the randomized construction.

The construction in [AGM+14b] has 0 rate. In this paper, we present a simple but powerful compiler
to transform such a non-malleable code into a rate-1 non-malleable code against the same family. In
fact, our compiler is general enough that it can be applied to non-malleable codes against bit-wise
tampering too, to improve their rate from 0 to 1. This subsumes (and greatly simplifies) a result of
[CG14b].

1.1 Our Contribution

Let F∗ be the class of tampering functions f : {0, 1}N → {0, 1}N of the form f(x) = fπ(f1(x1),
· · · , fN (xN )), where fπ permutes the indices of its input according to a permutation π : [N ] ↪→ [N ],
and each fi : {0, 1} → {0, 1} is one of the four possible binary functions over {0, 1}.

Our main technical result is the following.

Informal Theorem 1. There exists a black-box compiler that takes a non-malleable code NMC0

secure against F∗, which may have a polynomial blowup in size during encoding (and hence rate
1Rate refers to the asymptotic ratio of the length of a message to the length of its encoding (in bits), as the

message length increases to infinity. The best rate possible is 1; if the length of the encoding is super-linear in the
length of the message, the rate is 0.

1



0), and defines a rate-1 non-malleable code NMC1 secure against F∗. The encoding and decoding
algorithms of NMC1 make only black-box calls to the respective functions of NMC0 (on much smaller
inputs).

In fact, we present our compiler as consisting of two black-box components: NMC0 and a rate-1
binary error-correcting code. (We require the error-correcting code to also have an easy to satisfy
privacy requirement.) The encoding and decoding algorithms of NMC1 make only black-box calls
to the encoding, decoding and error-correcting functions of this error-correcting code. An error-
correcting code with the requisite properties is easily instantiated using (low-distance) Reed-Solomon
codes over a field of characteristic 2.

Instantiating NMC0 with the non-malleable code of [AGM+14b] (which has rate 0, as the codewords
are super-linear in the length of the messages), we get our main result.

Corollary 1. There exists an explicit and efficient rate-1 non-malleable code against F∗.

We point out that the above result has immediate implications for the class of all bit-wise tampering
functions FBIT [DPW10]. Non-malleable codes for this family has been studied by [DPW10, CG14b].
We note that FBIT is a subset of F∗ in which π is restricted to be the identity permutation. As a
consequence, we reproduce a result of [CG14b] as a simple corollary to Corollary 1:

Corollary 2. There exists an explicit and efficient rate-1 non-malleable code against FBIT.

In fact, Theorem 1 continues to hold true, without altering the compiler, if F∗ is replaced by FBIT (so
that NMC0 and NMC1 are both secure only against FBIT). This provides a much simpler alternative
to a compiler in [CG14b], and proves Corollary 2 without relying on the recent construction from
[AGM+14b].

1.2 Prior Work

Cramer et al. [CDF+08] introduced the notion of arithmetic manipulation detection (AMD) codes,
which is a special case of non-malleable codes against tampering functions with a simple algebraic
structure; explicit AMD codes with optimal (second order) parameters have been recently provided
by [CPX14]. Dziembowski et al. motivated and formalized the more general notion of non-malleable
codes in [DPW10]. They showed existence of a constant rate non-malleable code against the class
of all bit-wise independent tampering functions.

The existence of rate-1 non-malleable codes against various classes of tampering functions is known.
For example, existence of such codes with rate (1 − α) was shown against any tampering function
family of size 22αn ; but this scheme has inefficient encoding and decoding [CG14a]. For tampering
functions of size 2poly(n), rate-1 codes (with efficient encoding and decoding) exist, and can be
obtained efficiently with overwhelming probability [FMVW14].

However, explicit constructions of non-malleable codes have remained elusive, except for some well
structured tampering function classes. For the setting where the codeword is partitioned into
separate blocks and each block can be tampered arbitrarily but independently, an encoding scheme
was proposed in [CKM11]. In the most general such compartmentalized model of tampering, where
there are only two compartments (known as the split-state model), an explicit encoding scheme for
bits was proposed by [DKO13]. Recently, in a break-through result, an explicit scheme (of rate 0)
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was proposed for arbitrary length messages by [ADL14]. A constant rate construction for 10 states
was provided in [CZ14].

In the computational setting, there has been a sequence of works on improving the rate of error-
correcting codes [Lip94, MPSW05, OPS07, HO08, GS10, CKO14] and constructing non-malleable
codes and its variants [LL12, FMNV14].

An explicit rate 1 code for the class of bit-wise independent tampering function was proposed
by [CG14b]. Note that a tampering function in this class tampers each bit independently and
is subsumed by our work and a companion paper [AGM+14b]. In the construction of [CG14b],
they exhaustively search for an encoding scheme (which is guaranteed by [FMVW14]) for messages
with logarithmic length. This is a complex procedure (and intuitively obscure) and the compiler
which extends the non-malleability to long messages is also complicated. We, on the other hand,
begin with a rate 0 code of [AGM+14b] against a more general class of (non-compartmentalized)
tampering functions and apply our compiler to obtain rate 1 non-malleable code against the more
general class itself.

We remark that preliminary results leading to this work appear in [AGM+14a] (unpublished). The
results of this paper and [AGM+14b] together subsume and significantly extend the results in
[AGM+14a].2

1.3 Technical Overview

Improved Efficiency via Hybrid Encoding. A recurring theme in cryptographic constructions
for improving efficiency (in our setting, efficiency refers to the rate of the code) is a “boot-strapping”
or “hybrid” approach. It takes a scheme with strong security (but low efficiency), and combines it
with an efficient scheme (with a weak form of security) to obtain an efficient scheme with strong
security. Perhaps the most well-known example of this approach in cryptography is that of “hybrid
encryption,” which improves the efficiency of a (non-malleable) public-key encryption scheme by
using it to encrypt a short key for a symmetric-key encryption scheme, and then using the latter to
encrypt the actual message (e.g., see [CS03, Kur11]).

The high-level approach in this work, as well as in many works on improving the rate of error-
correcting codes and non-malleable codes [GS10, CG14b], fits this template. A basic idea for
non-malleable codes in these works involves encoding the message using a high-rate (randomized)
code and appending to it a tag that is encoded using an inefficient non-malleable encoding NMC0.
That is, the final codeword has the form (c,NMC0(τ)), where c is a (malleable) encoding of the
message, and τ consists of some information about c that “binds” c to τ .

Intuitively, the short tag τ should encode some information about the much longer c in a way that
makes it hard to change c without changing τ as well, and since the latter is encoded using a non-
malleable code, one could hope that the over all code is non-malleable. One such choice of the tag,
used in a preliminary version of this result [AGM+14a], is τ = (h, h(c)), where h is a randomly
chosen hash function with a short description from a (statistical) collision-resistant hash function
family. As shown in [AGM+14a], this suffices for the class of attacks involving permutations (but

2In [AGM+14a] a weaker class of tampering functions was considered, which did not contain all bit-wise tampering
functions. While a rate-amplification approach for this class was presented there, it was more complicated, and relied
on the specifics of the rate-0 construction there. The approach for rate-amplification there breaks down when all
bit-wise functions are allowed.
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not allowing the adversary to set/reset the bits). However, when the class of attacks allowed for
the adversary includes the possibility of the adversary creating an entirely new tag τ∗ (and a new
purported codeword c̃ obtained by malleating the original codeword c), this approach fails. This is
because, it raises the possibility that the adversary can pick h such that h(c̃) can be predicted with
non-negligible probability, even though the adversary may have some uncertainty about c̃. While
it is plausible that most of the functions h in a function family would lead to unpredictable values
of h(c̃), in general, it appears difficult to rule out there being no such h, or to provide an efficient
algorithm for detecting them.

Our Approach: Adding Errors for Non-Malleability. We introduce a novel approach to
boot-strapping non-malleability. We first motivate our approach using a loose analogy. Consider a
student plagiarising a homework solution, by copying it from an original source, and blindly making
a few alterations (without actually comprehending the original solution). The student would try to
remove various pieces of identifying information (e.g., change variable names, reorder sentences etc.)
and even introduce minor typographical errors, while hoping to make it look approximately correct
to the grader. If there is not much variability in correct solutions, then, even if confronted with
the original solution, the student will have plausible deniability that she came up with the solution
on her own. However, if the original source happened to contain several minor random errors itself
(which a grader would have recognized as minor, and ignored), then the chances are that many of
them would make their way into the plagiarized solution as well. In this case, it will be unlikely
that the student could have introduced those errors on her own, and this will be a strong indication
of plagiarization.

While our problem of non-malleability is different, our solution follows the above intuition. Our
encoding has the form Enc(s) = (ECSS(s)⊕ eR,NMC0(τ)), where now ECSS is a light-weight (rate-
1) encoding of s, R is an appropriately sized random subset of indices (say, |R| = nδ bits, where
|ECSS(s)| = n), eR is a sparse n-bit vector, with zeros outside of R and uniformly randomly chosen
bits in R. The tag τ is a succinct representation of the bits of ECSS(s) ⊕ eR at the positions in
R. Note that |τ | is much shorter than n (e.g., O(nδ log n)), so that (for an appropriate choice of
δ), NMC0(τ) will be o(n)-bits long. The property we will need from ECSS is that it is an “error-
correcting secret-sharing scheme” which is an error-correcting encoding that also behaves as a (ramp)
secret-sharing scheme, so that any small subset of the bits in an encoding has values independent
of the message it encodes. (Such a code can be readily instantiated using, for example, any linear
error-correcting code of appropriate (sub-linear) distance and dual distance.)

To decode (c, σ), the following consistency check is carried out: apply error-correction to obtain a
codeword ĉ from c; also decode σ using the decoding of NMC0 to obtain τ ; then ensure that at the
locations recorded in τ , c matches the recorded bits, and everywhere else c matches ĉ.

In other words, our encoding amounts to adding random errors to the efficiently encoded messages
(while allowing error-correction); further, we require this to be accompanied by an “errata” (encoded
using a non-malleable code) which lists all the errors in the first part. Now, intuitively, if the
adversary chooses to create an errata on its own, but creates ĉ by tampering c (i.e., using significantly
many bits from c), then it is unlikely that the new errata matches ĉ. On the other hand, if the
adversary retains the errata from a given codeword, then any significant tampering on c will result
in a mismatch; instead, if ĉ is obtained by only lightly tampering c, then, due to the distance of
the code the only possibility to obtain a valid encoding is to have ĉ = c, and by a simple privacy
requirement on the code, the probability of this happening when only a small number of bits in c
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are involved, is independent of the message.

Formal Analysis. We present a modular proof that the above construction is indeed a non-
malleable code against F∗, the family of permutations and bit-wise tampering attacks, by relying
on the security of NMC0 as well as the error-correction and privacy properties of ECSS in a black-
box manner. The proof is somewhat simpler, if instead of considering F∗, we considered only FBIT,
the family of bit-wise tampering functions, as in [CG14b] (in which case, NMC0 need be secure
only against this class of tampering functions). Below we sketch this simpler proof, and indicate in
footnotes the main points of departure for the full proof.

Formally, we need to argue that for any message s and any admissible attack f , for a randomly
constructed codeword Enc(s), the outcome of Dec(f(Enc(s))) is almost identically distributed as
a simulated outcome which probabilistically maps f to the original message s, a fixed message
distributionMf , or ⊥ (withMf and the probabilities depending only on f). The simulated outcome
is defined as follows:

Simulating Dec(f(Enc(s))) (Given only f).

Let L and R denote the set of indices in our code corresponding to c and NMC0(τ), respectively.
Given f , we proceed as follows.

◦ Define attacks f (1) and f (2) obtained by restricting respectively to L and R.3

◦ Then, f (2) is simply a bit-wise tampering attack on NMC0(τ). By the security guarantee of
NMC0, we can sample, based only on f (2) (independent of τ), the outcome of Dec(f (2)(NMC0(τ)))
as ⊥, some string τ∗, or same∗ (i.e., τ itself).

◦ Case simulated outcome of Dec(f (2)(NMC0(τ))) is ⊥: Set the simulated outcome of decoding
Dec1(f(ECSS(s),NMC0(τ))) to be ⊥.

◦ Case simulated outcome of Dec(f (2)(NMC0(τ))) is τ∗: Let c′ = f (1)(c). We consider two
sub-cases, depending on the number of bits in c′ that are not fixed by the attack f (1) (i.e., the
number of bits that depend on the original bit at that position).

– If the number of bits of c that influence c′ is “small,” then they can be sampled inde-
pendent of the message s, by relying on the fact that ECSS is a (ramp) secret-sharing
scheme. Then the simulated outcome is obtained by error-correcting c′, decoding it and
checking for consistency with τ∗.

– If the number of bits of c′ that depend on c is not small, then (following the analogy of
plagiarism from above), there is an overwhelming probability that this set of bits contain
several random bits and the probability that τ∗ correctly records them is negligible. In
this case, the simulated outcome is ⊥.

◦ Case simulated outcome of Dec(f (2)(NMC0(τ))) is same∗: In this case, τ remains unchanged.
Again we consider two sub-cases, this time depending on the number of untampered bits in
the attack f (1).

3When permutations are allowed, this is no more possible. Instead, we follow a more elaborate argument in which
f (2) is defined after sampling the value of the bits from L that are moved to R by the permutation attack. To
be able to do this independent of the encoded message, we rely on the error-correcting scheme ECSS being a ramp
secret-sharing scheme.
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– If there are only a small number of tampered bits in f (1), then f (1)(ECSS(s)) results in
a valid codeword iff f (1) has the effect of not altering ECSS(s). This depends only on
the values of the bits of ECSS(s) which are tampered by f (1) (and τ), which in turn is
independent of the message s, due to ECSS being a secret-sharing scheme. Hence we can
sample τ and these bits, independent of s. This is used to simulate the outcome being
same∗ or ⊥.

– On the other hand, if there are several tampered bits, then we simulate the outcome to
be ⊥.

To argue that the last step results in only a negligible statistical error, we follow an argument similar
to the plagiarism argument, but this time relying on the fact that τ is retained as it is, and will
have a record of all the actual errors. Consider the set of bits that were tampered by f (1). Except
with negligible probability, a significant number of bits in this set would have been recorded in τ .
For each such bit, the probability that the tampered bit does not match the bit recorded in τ is at
least 1

2 (it is 1 if the tampering function is a bit-flip, and 1
2 if it is a set/reset), independent of the

other bits. Hence the probability that τ matches all of those bits is negligible.4 Thus indeed, the
outcome of the actual decoding would be ⊥, except with negligible probability.

2 Preliminaries

We denote the set {1, . . . , n} by [n]. Probability distributions are represented by capital letters. The
distribution US represents a uniform distribution over the set S. Given a distribution X, x ∼ X
represents that x is sampled according to the distribution X. We shall often use the convention
that a realization of a random variable denoted as X will be represented by the variable x.

For a joint variable X = (X1, . . . , Xn) and S = {i1, . . . , i|S|} ⊆ [n], we define the random variable
XS = (Xi1 , . . . , Xi|S|). We use a similar notation for vectors as well, for example xS represents
the vector restricted to indices in the set S. For a function f(·), the random variable Y = f(X)
represents the following distribution: Sample x ∼ X; and output f(x). For a randomized algorithm
A, we write A(z) to denote the distribution of the output of A on an input z.

The statistical distance between two distributions S and T over a finite sample space I is defined
as:

SD (S, T ) :=
1

2

∑
i∈I

∣∣∣∣ Pr
x∼S

[x = i]− Pr
x∼T

[x = i]

∣∣∣∣ .
The hamming distance between two vectors c, c′ ∈ {0, 1}m is defined as

HD(c, c′) :=
∣∣{i ∈ [m]|ci 6= c′i}

∣∣ .
negl stands for an (unspecified) negligible function. All logarithms are to the base 2.

4When we allow permutations, some amount of correlation can exist between the different tampered bits. For
example, if two bits that are recorded got swapped with each other, the probability of not having an error is 1

2
and

not 1
4
. But this is the most extreme example: if k bits recorded in τ have been tampered with, we show that the

error probability is at least 1− ( 1
2
)k/2.
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We write f(x[n]), where the domain of f consists of single elements in the vector x, as a shorthand
for the vector (f(x1) . . . f(xn)).

2.1 Classes of Tampering Functions

We shall consider the following basic tampering function classes.

1. Family of Permutations. Let SN denote the set of all permutations π : [N ] → [N ]. Given
an input codeword x[N ] ∈ {0, 1}N , tampering with function π ∈ SN yields the following
codeword: xπ−1(1) . . . xπ−1(N) =: xπ−1([N ]).

2. Family of Bit-Wise Tampering Functions. This class, represented by FBIT, contains the fol-
lowing four functions, for a single bit input: a) f(x) 7→ x, b) f(x) 7→ 1⊕ x, c) f(x) 7→ 0, and
d) f(x) 7→ 1. These functions are, respectively, called forward, toggle, reset and set functions.

We define a more complex tampering function class FBIT ◦ SN to consist of tampering functions of
the form f = (f1, . . . , fN , π), where π ∈ SN and fi ∈ FBIT, and

f(x[N ]) = fπ−1(1)(xπ−1(1)) . . . fπ−1(N)(xπ−1(N)).

That is, to apply f to x, first we apply fi to each position xi, and apply the permutation π to the
resulting string. Our main result provides an efficient rate-1 non-malleable code against this class.

2.2 Error-Correcting Secret-Sharing Scheme

In this section, we define error-correcting secret-sharing schemes that will be used in our construc-
tion.

Definition 1 (Error-Correcting Secret-Sharing Scheme (ECSS)). Let S = (X0, X1, . . . , XM ) be a
joint distribution over Λ × {0, 1}M , such that the support of X0 is all of Λ. (The random variable
X0 represents the secret being shared and Xi for i ∈ [M ] represents the i-th share.)

We say that S is an [M,L, T,D]-error-correcting secret-sharing scheme if log |Λ| = L, and the
following conditions hold:

1. T -privacy: ∀ s, s′ ∈ Λ, ∀ J ⊆ [M ] such that |J | 6 T , we have

SD
(
(XJ |X0 = s), (XJ |X0 = s′)

)
= 0.

2. D-error-correction: For any two distinct c, c′ ∈ Supp(X[M ]), the hamming distance between
them HD(c, c′) > 2d, where Supp(X[M ]) denotes the support of distribution X[M ].

3. Reconstruction: For any s, s′ ∈ Λ such that s 6= s′, we have

SD
(
(X[M ]|X0 = s), (X[M ]|X0 = s′)

)
= 1.

In the remainder of the paper, by an ECSS scheme, we shall implicitly refer to a family of ECSS
schemes indexed by M , i.e., [M,L(M), T (M), D(M)]-ECSS schemes for each positive integer M .
We define the rate of such a scheme to be limM→∞

L(M)
M . We will be interested in efficient ECSS

schemes. For this, we define three algorithms associated with such a scheme.
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◦ EncECSS(s): This is a randomized algorithm that takes s ∈ Λ as input and outputs a sample
from the distribution (X[M ]|X0 = s).

◦ ECorrECSS(c̃): This algorithm takes a c̃ ∈ {0, 1}M as input, and outputs a c ∈ Supp(X[M ])
such that HD(c, c̃) 6 D. If such a c does not exist, it outputs ⊥.

◦ RecECSS(c): This algorithm takes a c ∈ {0, 1}M as input, and outputs a secret s ∈ Λ such that
c ∈ Supp(X[M ]|X0 = s). If such a secret does not exist, it outputs ⊥.

Note that the uniqueness of the output of algorithms ECorrECSS and RecECSS is guaranteed by the
D-error-correction and reconstruction properties respectively. An ECSS scheme is said to be efficient
if the three algorithms defined above run in time bounded by a polynomial in M .

2.3 Non-malleable codes

In Figure 1 we present the definition of an [N,L, ν]-non-malleable code against a family of tampering
functions F .

Let F be a set of functions of the form f : {0, 1}N → {0, 1}N . Consider two mappings Enc :
{0, 1}L → {0, 1}N (possibly randomized) and Dec : {0, 1}N → {0, 1}L ∪ {⊥}.

For f ∈ F and s ∈ {0, 1}L, define a random variable Tamper
(s)
f over {0, 1}L ∪ {⊥} as follows:

Tamper
(s)
f = Dec(f(Enc(s))).

Let Sim be a map from F to distributions over the sample space {0, 1}L ∪ {same∗,⊥}. For f ∈ F
and s ∈ {0, 1}L, define the random variable Copy

(s)
Sim(f) as follows.

Copy
(s)
Sim(f) =

{
s if Sim(f) = same∗

Sim(f) otherwise.

The simulation error (or, advantage) is defined to be:

advEnc,Dec,F := inf
Sim

max
s∈{0,1}L
f∈F

SD
(
Tamper

(s)
f ,Copy

(s)
Sim(f)

)

(Enc,Dec) is called an [N,L, ν]-non-malleable code against F if the following conditions hold:

◦ Correctness: ∀s ∈ {0, 1}L, Pr[Dec(Enc(s)) = s] = 1.

◦ Non-Malleability: advEnc,Dec,F 6 ν(N).

We say that the coding scheme is efficient if Enc and Dec run in time bounded by a polynomial
in N .

Figure 1: Definition of Non-Malleable Codes
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2.4 Concentration Bound

The following concentration bound will be useful in our proof. Below, we write a 6= b± ε to mean
a 6∈ [b− ε, b+ ε].

Lemma 1 (Tail Inequality for Hypergeometric Distribution [Hoe63, Chv79]). Let c ∈ (0, 1) be a
constant, m,n ∈ N and m ∈ [cn, (1 − c)n]. Let X be a random variable distributed uniformly over
all n-bit strings with exactly m 1s. For every t ∈ N, we have:

Pr
x∼X

∑
i∈[t]

xi 6= t
(m
n
± ε
) 6 2 exp

(
−DKL

(m
n

+ ε,
m

n

)
· t
)
6 2 exp(−ε2t/3),

where DKL (α, β) := α ln α
β + (1− α) ln 1−α

1−β .

3 Construction and Proof

In this section, we shall prove our main theorem:

Theorem 3 (Compiler). Suppose there exists a [t′, t, ν0] non-malleable code NMC0 against the
tampering class FBIT ◦ St′, with t′ 6 td for some constant d > 1, and an [M,L, T,D] binary
error-correcting secret-sharing scheme ECSS. Then there exists an [N,L, ν1] non-malleable code
NMC1 against the tampering class FBIT ◦ SN with N 6 M + Md/(d+1) log2dM and ν1(N) =
negl(M) + ν0(N −M), if T,D > 2Md/(d+1) log2dM . Further, if NMC0 and ECSS are efficient,
then NMC1 is also efficient.

Note that aboveN = M(1+o(1)), and hence the code is a rate-1 code. Also, poly(N) < N−M < N ,
and hence if ν0 is a negligible function, so is ν1.

Our compiler is described in Figure 2. When properly instantiated (see Section 3.2) we can obtain
our main results Corollary 1 and Corollary 2.

Discussion. Note that our compiler is a fully black-box compiler, in that both the components
are used in fully black-box manner and the security of our compiler directly reduces to the security
of its components in a black-box manner. Further, the output code is explicit if both ECSS and
NMC0 are explicit; and encoding and decoding of the new code is efficient if both its components
are efficient.

3.1 Proof of Main Theorem

To achieve the parameters stated in the proof, we shall use the following parameters in our construc-
tion in Figure 2: T,D > 2Md/(d+1) log2dM , N (1) = M , and pe = M−d/(d+1). From the construction,
we get |τ | 6 B(logM + 1) = 2peM log 2M . Using this we get, N (2) 6 |τ |d 6 2dMd/(d+1) logd 2M <
Md/(d+1) log2dM .

We shall interpret the codeword produced by Figure 2 as a two-part codeword. The left-part is
a share-packing based on the ECSS and the right-part has the non-malleable encoding of τ using
NMC0. For ease of notation, let L = [N (1)] and R = [N ] \ L.

9



Ingredients:

1. An [M,L, T,D] binary error correcting secret sharing scheme ECSS with encoding, error-
correcting and reconstruction algorithms EncECSS,ECorrECSS and RecECSS respectively.

2. A [t′, t, ν0] non-malleable coding scheme NMC0 against FBIT◦St′ with encoding and decoding
algorithms EncNMC0 and DecNMC0 respectively, with t′ 6 td for some constant d > 1. We
require that T,D > 2Md/(d+1) log2dM .

Enc(s ∈ {0, 1}L):

1. Enc(s) = (c(1), c(2)), where N (1) :=
∣∣c(1)

∣∣ = M and N (2) :=
∣∣c(2)

∣∣, defined as follows:

2. Sample E = {i1, . . . , iB}, as follows. Let pe = (N (1))−d/(d+1) and B = 2peN
(1). Let

x ∈ {0, 1}N
(1)

be a vector where each index i ∈ [N (1)] is set to 1 with probability pe;
otherwise it is set to 0. Let E = {i : i ∈ [N (1)] and xi = 1}; if |E| > B = 2peN

(1), then
truncate E to first B indices and if |E| < B, then repeat elements in E to increase its size
to B.

3. c(1) is defined as follows: Let a(1) ∼ EncECSS(s). For i ∈ [N (1)], define c(1)
i = a

(1)
i , if i 6∈ E.

Otherwise, c(1)
i = a

(1)
i + ei, where ei ∼ U{0,1}.

4. Let τ = (E, c
(1)
E ), where c(1)

E = (c
(1)
i1
,· · · , c(1)

iB
). Let |τ | represent the bit length of τ .

5. Let c(2) ∼ EncNMC0(τ). Note that |c(2)| = N (2) 6 |τ |d.

Dec(c̃ ∈ {0, 1}N ):

1. Interpret c̃ ≡ (c̃(1), c̃(2)) of length N (1) and N (2), respectively.

2. Let τ∗ = DecNMC0(c̃(2)).

3. Dec∗(c̃(1), τ∗):

(a) If τ∗ = ⊥, output ⊥ and halt.

(b) Let a∗ = ECorrECSS(c̃(1)). If a∗ = ⊥, output ⊥ and halt.

(c) Let s̃ = RecECSS(a∗). If s̃ = ⊥, output ⊥ and halt.

(d) Interpret τ∗ as (E∗, r∗), where positions in r∗ are indexed by elements in E∗. More
formally, if E∗ = {i1, . . . , iB}, then r∗ = (r∗i1 , . . . , r

∗
iB

). Let c∗ be defined as follows: for
i ∈ [N (1)], c∗i = a∗i if i 6∈ E∗ and otherwise c∗i = r∗i . If c

∗ 6= c̃(1), output ⊥; else, output
s̃.

Figure 2: Compiler for Rate-1 Non-Malleable Code

Consider the [t′, t, ν0] non-malleable coding scheme NMC0 against F ′ = FBIT◦St′ with encoding and
decoding algorithms EncNMC0 and DecNMC0 respectively. For τ ∈ {0, 1}t and f ′ ∈ F ′, the random
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variable Tamper
(τ)
f ′,NMC0

over {0, 1}t ∪ {⊥} with respect NMC0 is given by

Tamper
(τ)
f ′,NMC0

= DecNMC0(f ′(EncNMC0(τ))).

The non-malleability of NMC0 guarantees that there exists a map Sim0 from F ′ to distributions
over the sample space {0, 1}t ∪ {same∗,⊥} such that

SD
(
Tamper

(τ)
f ′,NMC0

,Copy
(τ)
Sim0(f ′)

)
6 ν0(t′).

for all τ ∈ {0, 1}t and f ′ ∈ F ′. See Figure 1 for the definition of non-malleable codes. We use
an additional subscript in the notation of Tamper function to distinguish it from the one we define
below for NMC1.

Fix a tampering function f = (f1, . . . , fN , π) ∈ F∗ = FBIT ◦ SN and a message s. The random
variable Tamper

(s)
f,NMC1

over {0, 1}L ∪ {⊥} for the non-malleable coding scheme NMC1 described in
Figure 2 (with encoding and decoding functions Enc and Dec respectively) is given by

Tamper
(s)
f,NMC1

= Dec(f(Enc(s))).

Our goal is to show that there exists a map Sim1 from F∗ to distributions over the sample space
{0, 1}L ∪ {same∗,⊥} such that

SD
(
Tamper

(s)
f,NMC1

,Copy
(s)
Sim1(f)

)
6 ν1(N).

(It is easy to see that NMC1 is correct.)

We provide a description of Sim1 in the next section and show that Copy(s)
Sim1(f) is statistically close

to Tamper
(s)
f,NMC1

after that.

3.1.1 Description of simulator

Given f = (f1, . . . , fN , π) ∈ F∗, we define the following set of indices in [N ] which will be used in
the description of the simulator (and later in the proof):

◦ Let X ⊆ L be the set of all indices which move from left to right as a result of applying the
permutation π, i.e., X = {i ∈ L | π(i) ∈ R}.

◦ Similarly, let Y = {i ∈ R | π(i) ∈ L} be the indices which move from right to left. Note that
|X| = |Y |.

◦ Let X = L \X.

◦ Let J ⊆ X such that for all i ∈ J , fi ∈ {fforward, ftoggle}. In other words, J is the set of all
indices on the left which are mapped into the left codeword using fforward or ftoggle.

◦ Let V ⊆ X such that for all i ∈ V , either π(i) 6= i or fi 6= fforward.

◦ Let V = X \ V . In other words, V denotes the set of indices on the left which are not
tampered.

11



Observe that only the bits at indices X in c(1) affect the tampered right codeword c̃(2). Hence, given
c

(1)
X , we can construct a tampering function f (2) ∈ FBIT ◦ St′ which acts on the right codeword. Let
ρ : Y → X be an arbitrary bijection from Y to X. The function f (2) = (f

(2)
1 , . . . , f

(2)

N(2) , π
(2)) is

given by

f
(2)

i−N(1) =


fi if i ∈ R \ Y
freset if i ∈ Y and fρ(i)(c

(1)
ρ(i)) = 0

fset if i ∈ Y and fρ(i)(c
(1)
ρ(i)) = 1

π(2)(i−N (1)) =

{
π(i)−N (1) if i ∈ R \ Y
π(ρ(i))−N (1) otherwise

(1)

for i ∈ R.

Let DECSS be the distribution of EncECSS(s′) for a random s′ ∈ {0, 1}L. We are now ready to
describe how the distribution Sim1(f) is generated:

(1) Set τ , c(1)
X and f (2) as follows:

First sample E as described in Step 2 of Figure 2. Let τ = (E, r) where r ∼ U{0,1}B (i.e., r is
a random bit-string of length B). The bits in r are indexed by the indices in E. Also, sample
a(1) ∼ DECSS. Together τ and a(1) is used to determine c(1)

X : for i ∈ X, let c(1)
i = a

(1)
i if i 6∈ E;

otherwise, c(1)
i = ri. Finally, define f (2) using c(1)

X , as described in Equation 1.

(2) Draw θ ∼ Sim0(f (2)). Let τ∗ = Copy
(τ)
θ .

(3) Set c(2) as follows:

c(2) is drawn from the output distribution of EncNMC0(τ) conditioned on DecNMC0(f (2)(c(2))) =
τ∗. If no such codeword exists, then the simulator fails.

(4) θ obtained in Step 2 could be an element in {0, 1}t, same∗ or ⊥. Let Eventfix, Eventsame∗ and
Event⊥ denote the corresponding events. Do the following based on which event takes place:

(a) Case Event⊥: Output ⊥ and stop.

(b) Case Eventfix: We have the following two sub cases, based on the size of the set J . Let
α = Md/(d+1) log2M .

i. Case |J | > α: Output ⊥ and stop.

ii. Case |J | 6 α: Extend the definition of c(1)
X using a(1), r from Step 1 to c(1)

J as well:
i.e., for i ∈ J , define c(1)

i = a
(1)
i if i 6∈ E; otherwise, c(1)

i = ri. Combined with c(2)

defined in the previous step, this defines a unique c̃(1) because for any i ∈ L, c̃(1)
i is

either 0 or 1 or has π−1(i) ∈ J ∪ Y . Output Dec∗(c̃(1), τ∗) and stop (where Dec∗ is as
defined in Step 3 of the description of Dec, see Figure 2).

(c) Case Eventsame∗ : Define nnon-id := |V |. We have the following two cases based on nnon-id.
Let β = N (2) +Md/(d+1) log2M .

i. Case nnon-id > β: Output ⊥ and stop.
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ii. Case nnon-id 6 β: Extend the definition of c(1)
X using a(1), r from Step 1 to c(1)

V as well:
i.e., for i ∈ V , define c(1)

i = a
(1)
i if i 6∈ E; otherwise, c(1)

i = ri. Combined with c(2)

defined in the previous step, this defines a unique c̃(1)
V ∪X because for any i ∈ V ∪X,

π−1(i) ∈ V ∪ Y . Output same∗ if c̃(1)
V ∪X = c

(1)
V ∪X , else output ⊥.

3.1.2 Hybrids and their indistinguishability

Recall that we want to show that the distributions Tamper
(s)
f,NMC1

and Copy
(s)
Sim1(f) are statistically

close to each other. Towards this, we first define four intermediate hybrids, (described below, and
summarized, for quick reference, in Figure 3), and show that for every f ∈ F∗ and s ∈ {0, 1}L,

Tamper
(s)
f,NMC1

≡ Hyb0
(s)
f ≡ Hyb1

(s)
f ≡ Hyb2

(s)
f ≈ Hyb3

(s)
f ≈ Copy

(s)
Sim1(f).

Of these, the first equality is because the experiment defining Hyb0
(s)
f is identical to that defining

Tamper
(s)
f,NMC1

, but restated in a convenient form for comparison with the following hybrids. The
second equality relies on the privacy of the ECSS code. The third equality follows since in defining
Hyb2

(s)
f we merely change the order in which two random variables are sampled in Hyb1

(s)
f , taking

care to not change their distributions. The statistical difference between Hyb2
(s)
f and Hyb3

(s)
f will be

bounded by ν0(N−M) using the non-malleability of NMC0. Finally, we upper bound the statistical
difference between Hyb3

(s)
f and Copy

(s)
Sim1(f) by negl(M), relying on the privacy and distance of ECSS

and the “errata” technique. This will show that the statistical distance between Tamper
(s)
f,NMC1

and

Copy
(s)
Sim1(f) is at most negl(M) + ν0(N −M) = ν1(N), thus proving Theorem 3.

We now discuss the above steps in detail.

Tamper vs. Hybrid 0: Our first claim, which is easy to verify, is that Tamper
(s)
f is identically

distributed to Hyb0
(s)
f defined below.

1. Sample E as described in Step 2 of Figure 2. Let τ = (E, r) where r ∼ U{0,1}B . (The bits

in r are indexed by the indices in E.) Sample a(1) ∼ EncECSS(s). For i ∈ L, let c(1)
i = a

(1)
i if

i 6∈ E; otherwise, c(1)
i = ri. With c(1) defined, construct a tampering function f (2) as described

before.

2. Sample c(2) ∼ EncNMC0(τ). Let c̃(2) = f (2)(c(2)).

3. Let τ∗ = DecNMC0(c̃(2)).

4. For i ∈ X ∪ Y , let c̃(1)
π(i) = fi(ci), where X = L \ X. Note that this completely defines c̃(1)

because π(X ∪ Y ) = L5. Output Dec∗(c̃(1), τ∗).

Note that in sampling Tamper
(s)
f,NMC1

= Dec(f(Enc(s))), the same steps as above are carried out, but
in a different order: first (c(1), c(2)) are sampled, then (c̃(1), c̃(2)) are obtained, then τ∗ is generated,
and finally Dec∗(c̃(1), τ∗) is output.

5Here there is a slight abuse of notation: π(S) for any S ⊆ [N ] should be interpreted as the set {π(i) | i ∈ S}.
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Figure 3: For each hybrid experiment, the order in which the random variables are sampled is
defined below. Notation a | b denotes that a is sampled conditioned on b. The definition of the
random variables is as in the description of the simulator. All the hybrids are parametrized by a
function f ∈ F∗ and a message s ∈ {0, 1}L. Items in red indicate differences from the previous
hybrid.

Hybrid 0:

τ

c(1) | τ, s

f (2) | c(1), f

(1)

c(2) | τ(2)

τ∗ = DecNMC0(f (2)(c(2)))(3)

c̃(1) | c(1), c(2), f

Hyb0
(s)
f = Dec∗(c̃(1), τ∗)

(4)

Hybrid 1:

τ

c
(1)
X | τ

f (2) | c(1)
X , f

(1)

c(2) | τ(2)

τ∗ = DecNMC0(f (2)(c(2)))(3)

c(1) | c(1)
X , τ, s

c̃(1) | c(1), c(2), f

Hyb1
(s)
f = Dec∗(c̃(1), τ∗)

(4)

Hybrid 2:

τ

c
(1)
X | τ

f (2) | c(1)
X , f

(1)

τ∗ = DecNMC0(f (2)(EncNMC0(τ)))(2)

c(2) | τ,DecNMC0(f (2)(c(2))) = τ∗(3)

c(1) | c(1)
X , τ, s

c̃(1) | c(1), c(2), f

Hyb2
(s)
f = Dec∗(c̃(1), τ∗)

(4)

Hybrid 3:

τ

c
(1)
X | τ

f (2) | c(1)
X , f

(1)

θ ∼ Sim0(f (2))

τ∗ = Copy
(τ)
θ

(2)

c(2) | τ,DecNMC0(f (2)(c(2))) = τ∗(3)

c(1) | c(1)
X , τ, s

c̃(1) | c(1), c(2), f

Hyb3
(s)
f = Dec∗(c̃(1), τ∗)

(4)
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Hybrid 0 vs. Hybrid 1: Recall that DECSS is the distribution of EncECSS(s′) for a random
s′ ∈ {0, 1}L. In Hyb1

(s)
f , Steps 1 and 4 change as described below (and the other two steps stay the

same):

1. Sample τ = (E, r) in the same way as before. Sample a(1) ∼ DECSS. For i ∈ X, define
c

(1)
i = a

(1)
i if i 6∈ E; otherwise, c(1)

i = ri. Define f (2) using c(1)
X .

4. Compute rest of c(1) consistent with c
(1)
X , τ and s. More formally, sample b(1) from the

distribution EncECSS(s) conditioned on bits at indices X being a(1)
X . For i ∈ X, define c(1)

i =

b
(1)
i if i 6∈ E; otherwise, c(1)

i = ri. Compute c̃(1) as described before and output Dec∗(c̃(1), τ∗).

Effectively, Hyb1(s)
f splits the sampling of c(1) into two parts. Only bits at indices in X are computed

in Step 1, which is enough to define f (2). In order to show that Tamper
(s)
f and Hyb1

(s)
f are identically

distributed, we must prove that c(1)
X can be sampled without knowledge of s as described in modified

Step 1. This is indeed the case, since |X| 6 N (2) 6 T , the privacy parameter of ECSS.

Hybrid 1 vs. Hybrid 2: We now define Hyb2
(s)
f which is a slightly different way of inter-

preting Hyb1
(s)
f . Observe that the Steps 2 and 3 in Hyb1

(s)
f generate a τ∗ from the distribution

Tamper
(τ)

f (2),NMC0
. In Hyb2

(s)
f , we use this distribution to modify the following steps (rest of the steps

remain unchanged):

2. Let τ∗ ∼ Tamper
(τ)

f (2),NMC0
. Recall that Tamper

(τ)

f (2),NMC0
= DecNMC0(f (2)(EncNMC0(τ))).

3. Sample a random codeword c(2) ∼ EncNMC0(τ) such that DecNMC0(f (2)(c(2))) = τ∗.

It is clear that Hyb1(s)
f is identically distributed to Hyb2

(s)
f .

Hybrid 2 vs. Hybrid 3: The next hybrid – Hyb3
(s)
f – is same as Hyb2(s)

f but with one difference:

◦ In Step 2, draw θ ∼ Sim0(f (2)). Let τ∗ = Copy
(τ)
θ .

In order to show that Hyb2
(s)
f and Hyb3

(s)
f are statistically close, we use the non-malleability of

NMC0. Consider an adversary A who, when given f and s as inputs, runs Steps 1 of Hyb2(s)
f (or

Hyb3
(s)
f ) to obtain τ and f (2), and sends them to a challenger. The challenger replies back with either

Tamper
(τ)

f (2),NMC0
or Copy(τ)

Sim0(f (2))
; let τ∗ denote this response. When adv receives τ∗, it runs Steps

3 and 4 of Hyb2(s)
f (or Hyb3(s)

f ), and outputs whatever the output of Step 4 is. It is easy to see that

if challenger responds with Tamper
(τ)

f (2),NMC0
, then output of A is identically distributed to Hyb2

(s)
f ,

and otherwise it is identically distributed to Hyb3
(s)
f . We know that for all f (2) ∈ F ′ and τ ∈ {0, 1}t,

SD
(
Tamper

(τ)

f (2),NMC0
,Copy

(τ)

Sim0(f (2))

)
6 ν0(t′). Hence, SD

(
Hyb2

(s)
f ,Hyb3

(s)
f

)
6 ν0(t′) = ν0(N −M).
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Hybrid 3 vs. Simulator: The final step in the proof is to show that the distributions Hyb3
(s)
f

and Copy
(s)
Sim1(f) are statistically close. Copy

(s)
Sim1(f) is generated by the simulator as defined in

Section 3.1.1, except that in Step 4-(c)-ii, “output same∗” is replaced with “output s.” Then we
note that the first three steps in the experiment defining Hyb3

(s)
f and that defining Copy

(s)
Sim1(f) (or

Sim1(f)) are identical.

Before proceeding further, we restate Step 4 of Hyb3(s)
f here for the convenience of the reader:

◦ Sample c(1)

X
consistent with c

(1)
X , τ and s. Compute c̃(1) as follows: for i ∈ X ∪ Y , let

c̃
(1)
π(i) = fi(ci). Combined with c(2) from the previous step, this completely defines c̃(1) because
π(X ∪ Y ) = L. Output Dec∗(c̃(1), τ∗).

Consider the following case analysis based on the events defined by the value of θ. For each case,
we show that the output of Copy(s)

Sim1(f) is same as that of Hyb3(s)
f , except with probability negl(M).

1. Case Event⊥: In this case τ∗ = ⊥, so Hyb3
(s)
f outputs ⊥, just like Copy

(s)
Sim1(f) does.

2. Case Eventfix: We have the following two cases based on |J |. Recall that J = {i ∈ L | π(i) ∈
L and fi ∈ {fforward, ftoggle}}.

◦ Case |J | > α: In this case, we show that Pr[Hyb3
(s)
f 6= ⊥] 6 negl(M) over randomly chosen

τ = (E, r) (conditioned on c(1)
X ). First, we define some notation. Let Z ⊆ L be set of indices

i ∈ L such that π−1(i) ∈ R, i.e., Z is the set of indices on the left which come from the right.
Let τ∗ = (E∗, r∗), where the bits in r∗ are indexed by the indices in E∗. (We know that
τ∗ ∈ {0, 1}t since θ ∈ {0, 1}t). Let Fτ be the indices i ∈ L such that π(j) = i and j ∈ E, i.e.,
j is an erroneous index according to original tag τ .

Fix any ECSS codeword a(1) for the left consistent with c(1)
X . We first show that, irrespective

of the value of τ , there exists at most one ECSS codeword a∗ such that the tampered left
codeword c̃(1) is consistent with a∗ and τ∗. More precisely, for any two possible values of τ —
τ1 and τ2 — let ĉτ1 and ĉτ2 be the corresponding values of c̃(1). Suppose Dec∗(ĉτ1 , τ∗) 6= ⊥ and
Dec∗(ĉτ2 , τ∗) 6= ⊥. Let ECorrECSS(ĉτ1) = a∗1 and ECorrECSS(ĉτ2) = a∗2. Then, we argue that
there is an element c ∈ {0, 1}M such that HD(a∗1, c),HD(a∗2, c) 6 D. Hence, by the correctness
of ECorrECSS, we have a∗1 = a∗2.

To prove this, we shall let c = ĉτ1 . Then HD(a∗1, c) 6 B < D, since Dec∗(c, τ∗) 6= ⊥ (note
that in the last step of Dec∗ this is ensured). Similarly, HD(a∗2, ĉ

τ2) 6 B. Then,

HD(a∗2, c) 6 HD(a∗2, ĉ
τ2) + HD(c, ĉτ2) 6 B + 2B +N (2),

where we used the fact that, since ĉτ1L\Z and ĉτ2L\Z are derived from the same value of a(1) by
adding at most B errors each, followed by applying a tampering function that cannot increase
the hamming distance, their hamming distance is at most 2B, and |Z| 6 N (2). By the choice
of our parameters, 3B +N (2) 6 D, as required.
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Thus, Hyb3
(s)
f 6= ⊥ only if ECorrECSS(c̃(1)) = a∗, for a value a∗ which is fixed independent of

τ . Further, since τ∗ = (E∗, r∗) is fixed, there is a unique c∗ as in the description of Dec∗ in
Figure 2, and it must be the case that c̃(1) = c∗.

Next, we show that over randomness of τ (conditioned on a(1), c
(1)
X ), the probability that

tampered codeword c̃(1) = c∗ is negligible in M .

Over randomness of τ , we know that number of error indices in J w.r.t. τ are Ω(log2M) with
1− negl(M) probability (see Lemma 1). Let these error indices be G. Note that for a random
τ , the value of erroneous indices outside X is uniform. This implies that each bit in c

(1)
G is

independent uniform bit (even after fixing a(1), c(1)
X and all other bits of c(1)

G ). Moreover, by
definition of set J , for any i ∈ G, we have π(i) ∈ L (since J∩X = ∅) and the bit c̃(1)

π(i) = fi(c
(1)
i )

is a uniform random bit (since fi ∈ {fforward, ftoggle}). Hence Pr[c̃
(1)
π(i) = c∗π(i)] = 1/2, even

conditioned on c̃(1)
π(j) = c∗π(j) for j ∈ G \ {i}. Therefore, probability that c̃(1)

π(G) = c∗π(G) is at

most 2−Ω(log2M) = negl(M).

◦ Case |J | 6 α: In this case, Copy(s)
Sim1(f) and Hyb3

(s)
f behave in the same way except the manner

in which they generate c(1)
J (rest of c(1) is not important). In the former case, c(1)

J is sampled
from DECSS (conditioned on c(1)

X ), while in the latter case it is sampled from EncECSS(s) (again
conditioned on c(1)

X ). This, however, makes no difference because T , the privacy parameter of
ECSS, is at least N (2) + α > |X|+ |J |.

3. Case Eventsame∗: Since θ = same∗, we know that τ∗ = τ . We have the following two cases
based on nnon-id = |V |. Recall that V = {i ∈ L | π(i) ∈ L and (π(i) 6= i or fi 6= fforward)}.

◦ Case nnon-id > β: In this case, we show that Pr[Hyb3
(s)
f 6= ⊥] 6 negl(M) over a random choice

of τ = (E, r) (conditioned on c
(1)
X ). In fact, we will show that for any ECSS codeword a(1)

for the left (consistent with c
(1)
X ), Hyb3(s)

f = ⊥ with 1 − negl(M) probability. Fix an ECSS

codeword a(1) for the left consistent with c(1)
X . Rest of the analysis will be over the randomness

of τ , conditioned on c(1)
X and a(1).

Recall that while sampling τ in Step 1, we begin by sampling a random set of error indices E.
We consider the size of the set V ∩ E \ Z, where Z = {i ∈ L|π−1(i) ∈ R}. Over the random
choice of E, we have |V ∩ E \ Z| = Ω(log2M) with 1−negl(M) probability. This follows from
Lemma 1, because |V \ Z| > β −N (2) = Md/(d+1) log2M and pe = M−d/(d+1). We identify a
set U ⊆ V ∩ E \ Z, such that |U | > |V ∩ E \ Z| /2 and for each i ∈ U , Pr[c̃

(1)
i = c

(1)
i ] 6 1/2,

even conditioned on c̃(1)
i′ = c

(1)
i′ , for any set of i′ ∈ U \ {i}. We build U iteratively: initialize

U = ∅ and W = V ∩ E \ Z. Pick any index i ∈ W , and let j = π−1(i). Update U to U ∪ {i}
and W to W \ {i, j}, and repeat this until W is empty.

Clearly, |U | > |V ∩ E \ Z| /2. To verify the other property of U , note that at any step, when
we pick i ∈ W , and let j = π−1(i), we have either 1) j = i and fi ∈ {ftoggle, freset, fset} or 2)
j 6= i (since i ∈ V ) but j ∈ L (since i 6∈ Z). Thus c̃(1)

i = fi(c
(1)
i ) for fi ∈ {ftoggle, freset, fset}, or

c̃
(1)
i = fj(c

(1)
j ) for j = π−1(i) 6∈ U . Since i ∈ E, each bit c(1)

i is uniformly random and hence

Pr[c̃
(1)
i = c

(1)
i ] 6 1/2. (This probability is 0 if π(i) = i and fi = ftoggle; otherwise it is exactly
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1/2.) Further, the conditions c̃(1)
i = c

(1)
i for i ∈ U are independent of each other, since each

such condition involves either c(1)
i alone or a pair (c

(1)
i , c

(1)
j ) such that c(1)

j never occurs in any
other condition.

Thus, Pr[c̃
(1)
E = c

(1)
E ] 6 Pr[c̃

(1)
U = c

(1)
U ] 6 1/2|V ∩E\Z|/2 6 negl(M). But to be a valid left

codeword, it has to be the case that c̃(1)
E = c

(1)
E , since τ∗ = τ , which records c(1)

E . Hence,
Pr[Hyb3

(s)
f 6= ⊥] 6 negl(M).

◦ Case nnon-id 6 β: We know that most of the indices on the left have been copied identically
to the tampered codeword. We use this to argue that if the tampered codeword c̃(1) is valid
w.r.t. τ then c̃(1) = c(1), and that the probability of this happening depends only on a small
number of bits in c(1) and hence independent of the message s. More formally, we have the
following.

Let a(1) be an ECSS encoding of s consistent with c
(1)
X . The maximum number of errors in

the tampered codeword c̃(1) could be |V |+ |X|+ |E| 6 β +N (2) + 2peN
(1) 6 D, where D is

the error-correction radius of the ECSS code. Hence, a∗ = ECorrECSS(c̃(1)), computed in the
algorithm Dec∗ by Hyb3

(s)
f , must be equal to a(1). Further, since τ∗ = τ , c∗ = c(1). Therefore,

unless c(1) = c̃(1), the output of Hyb3(s)
f would be ⊥.

Since indices in V have been copied identically, c(1) = c̃(1) iff c
(1)
V ∪X = c̃

(1)
V ∪X . This is the

exact check which Sim1 performs, by sampling c(1)
V ∪X itself. Note that Sim1 generates c(1)

V ∪X
from the same distribution as in the experiment for Hyb3

(s)
f , since the privacy parameter T of

ECSS is at least N (2) + β > |X|+ |V |. Hence, in this case, Sim1 outputs same∗ with the same
probability as Hyb3

(s)
f = s; otherwise, both the random variables are ⊥.

This completes the proof.

3.2 Instantiations

We shall use the following results:

1. There exists a [t′, t, ν0] non-malleable code NMC0 against FBIT ◦ St′ , where t′ 6 t · polylog t
and ν0(·) is a suitable negligible function. This follows from the work of [AGM+14b]. For
simplicity, we set d = 2 so that we have t′ < td.

2. Using Shamir’s secret-sharing scheme [Sha79], with a standard share-packing technique [BM85,
FY92], we can obtain an efficient [M,L, T,D] ECSS such that: M = nϕ, L = `ϕ and
T = D = (n − `)/2, where ϕ = 2 log n. We can choose n − ` = n3/4 so that T,D =
Θ̃(M3/4) > 2Md/(d+1) log2dM , for d = 2.

Note that we can also use Algebraic Geometric code [Gop81, GS96] based share-packing
techniques [CC06] over constant size field with characteristic 2. But we forgo this optimization
for ease of presentation and simplicity of the resulting code.

Using the above choices for NMC0 and ECSS, we get the following rate of NMC1 in Theorem 3.

L

N
> 1−N−1/4polylogN.
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This directly yields Corollary 1 and Corollary 2.
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