
Finding Small Solutions of a Class of
Simultaneous Modular Equations and

Applications to Modular Inversion Hidden
Number Problem and Inversive Congruential

Generator

Jun Xu1,2, Lei Hu1,2, Zhangjie Huang1,2, and Liqiang Peng1,2

1 State Key Laboratory of Information Security, Institute of Information Engineering,
Chinese Academy of Sciences, Beijing 100093, China

2 Data Assurance and Communications Security Research Center,
Chinese Academy of Sciences, Beijing 100093, China

{jxu,hu,zhjhuang,lqpeng}@is.ac.cn

Abstract. In this paper we revisit the modular inversion hidden number
problem and the inversive congruential pseudo random number genera-
tor and consider how to more efficiently attack them in terms of few-
er samples or outputs. We reduce the attacking problem to finding s-
mall solutions of systems of modular polynomial equations of the form
ai+bix0+cixi+x0xi = 0 (mod p), and present two strategies to construc-
t lattices in Coppersmith’s lattice-based root-finding technique for the
solving of the equations. Different from the choosing of the polynomials
used for constructing lattices in previous methods, a part of polynomi-
als chosen in our strategies are linear combinations of some polynomials
generated in advance and this enables us to achieve a larger upper bound
for the desired root. Applying the solving of the above equations to an-
alyze the modular inversion hidden number problem, we put forward an
explicit result of Boneh et al. which was the best result so far, and give
a further improvement in the involved lattice construction in the sense
of requiring fewer samples. Our strategies also give a method of attack-
ing the inversive congruential pseudo random number generator, and the
corresponding result is the best up to now.

Keywords: modular inversion hidden number problem, inversion con-
gruential pseudo random number generator, lattice, LLL algorithm, Cop-
persmith’s technique

1 Introduction

In 1996, Boneh and Venkatesan introduced the concept of Hidden Number Prob-
lem (HNP) to show the bit security of the Diffie-Hellman key exchange agreement
[7]. Later, Nguyen and Shparlinski proposed a lattice-based study on HNP and
analyzed the security of the Digital Signature Algorithm (DSA) under the cir-
cumstance with the nounce used is partially known [24]. Shparlinski put forward

the generic definition of HNP, and summarized more variants and applications
of HNP [27]. Recently, Galindo and Vivek showed that attacking the stateful
decryption scheme of the leakage-resilient cryptosystem in [20] can be reduced
to a new variant of HNP [14].

In 2001, Boneh et al. proposed the Modular Inversion Hidden Number Prob-
lem (ModInv-HNP), a variant of HNP, to construct the efficient algebraic pseudo
random number generator (PRNG) and message authentication code (MAC) [6].
An instance of ModInv-HNP is to obtain the unknown α ∈ Zp given n+ 1 sam-
ples (ti,MSBδ(αi)), where the ti are randomly chosen in Zp \ {−α} and and
MSBδ(αi) is the δ most significant bits of αi := (α + ti)

−1 mod p, which is
treated as an integer in {1, · · · , p− 1}.

ModInv-HNP can be reduced to finding small solutions of simultaneous mod-
ular polynomial equations

fi(x0, xi) := ai + bix0 + cixi + x0xi = 0 (mod p), 1 ≤ i ≤ n,

which are obtained from some equations corresponding to the samples (t0,MSBδ(α0))
and (ti,MSBδ(αi)). Similar research can be done for the case that the samples
are given by (ti,LSBδ(αi)), where LSBδ(αi) is the δ least significant bits of αi.

The Inversive Congruential Generator (ICG) proposed by Eichenauer and
Lehn in [13] is an important kind of nonlinear number-theoretic pseudo ran-
dom number generators, and pseudo random number generators are one of the
most fundamental cryptographic primitives. There are extensive applications
of ICG in Quasi-Monto Carlo simulation [25, 26] and public key schemes. In
the cryptographic setting, nonlinear congruential generator is used to input a
secret random seed v0 ∈ Zp for a given prime p into a nonlinear recurrence
function vi+1 = F (vi) mod p to generate a sequence (v1, v2, · · · , vn+1) and
output a random-looking sequence (MSBδ(v1),MSBδ(v2), · · · ,MSBδ(vn+1)) or
(LSBδ(v1),LSBδ(v2), · · · ,LSBδ(vn+1)), as the desired pseudorandom number.
In the case of ICG, the recurrence function is taken as F (x) = ax−1 + b mod p,
a very strong goal of attacking ICG is to recover the seed v0 when given n + 1
outputs MSBδ(vi) or LSBδ(vi) (1 ≤ i ≤ n+ 1). This problem can also be trans-
formed into solving the small solutions of n modular polynomials of the form
ai + bix0 + cixi + x0xi (mod p).

1.1 Previous works

Boneh et al. presented a lattice based analysis for the ModInv-HNP problem
by directly utilizing the polynomials fi in the case that the number of samples
is sufficiently large, and they can recover the hidden number α with a certain
probability when δ/log2 p >

2
3 [6]. Furthermore, by utilizing the idea of Cop-

persmith’s technique, they stated an improved result when δ/log2 p > 1
3 but

no explicit lattice construction for this case was presented. Moreover, they only
focused on sufficiently many samples. Due to these reasons, there are few cryp-
tographic schemes based on ModInv-HNP so far. In 2012, Ling et al. reanalyzed
ModInv-HNP and also made a direct use of these polynomials fi to construct

another lattice [22]. It is interesting that they considered the general case of the
number of samples, and also computed the possibility of recovering α. Their anal-
ysis requires a condition that δ/log2 p > (2

3 +ε), where the positive real number ε
satisfying n = d 2

9εe and n+1 is the number of samples. The asymptotic result in
the sense that n is sufficiently large is the same as the first result of Boneh et al.
in [6]. Recently, Xu et al. observed that the algorithm of Ling et al. is not ideal
when the number of samples is relatively small, and they proposed a heuristic
lattice method by combining Coppersmith’s lattice technique and the priority

queue technique [28]. Their result requires that δ/log2 p ≥
(

1
2 + 1

(n+2)! + ε
)

,

where ε is a real number with very small absolute value depending on the di-
mension of the underlying lattice. This optimal result for n = 1 is the ration
δ/log2 p >

2
3 , and δ/log2 p→ 2

3 , which is the same as the first result of Boneh et
al. and the result of Ling et al. in the case of sufficiently many samples. However,
when n is sufficiently large, the optimal result is δ/log2 p >

1
2 and δ/log2 p→ 1

2 ,
that is weaker than the second result of Boneh et al..

For nonlinear pseudo random number generator and ICG, they were crypt-
analyzed by researchers in [4, 3, 2]. Blackburn et al. used a lattice method inde-
pendent of Coppersmith’s technique and a linearization technique for pointing
out that it can be attacked in polynomial time if sufficiently many bits of some
consecutive values vi are revealed [4, 3]. Later, in the case that the function F is
known and n+ 1 outputs MSBδ(vi) are revealed, Bauer et al. reduced the prob-
lem of attacking ICG to solving small solutions of n modular polynomials of the
same form as the fi and obtained the best result by coppersmith’s technique for
any positive n [2]. Concretely, when n = 1, the optimal result of Bauer et al. is
δ/log2 p >

2
3 and δ/log2 p → 2

3 . When n is sufficiently large, the optimal result
is δ/log2 p >

1
2 and δ/log2 p→ 1

2 .
As an important method of cryptanalysis, Coppersmith’s technique is exten-

sively adopted in the field of public key cryptanalysis such as analyzing RSA and
its variants [5], implicit integer factorization [23] and nonlinear PRNG [2]. It was
firstly used for solving a single univariate modular or a single bivariate integer
polynomial equation to attack RSA [9–11]. Then, it was extended to the case of
a single multivariate equation in [19, 16]. But the lattice construction based on
Coppersmith’s technique is difficult to be designed for dealing with the case of
simultaneous multivariate equations. Up to now, some concrete lattice construc-
tions have been presented for different systems of multivariate equations, such
as [1, 2, 17, 28].

1.2 Our Contribution

We give two new lattice methods for solving small roots of n multivariate mod-
ular polynomial equations fi(x0, xi) = ai + bix0 + cixi + x0xi = 0 (mod p)
(1 ≤ i ≤ n). Unlike the lattice constructions of the previous methods, we first
define a new order of monomials and construct the corresponding monomial sets
according to two strategies, then we generate suitable polynomials such that their
leading monomial are in the predefined monomial sets, and finally, we construct
the lattice using these generated polynomials.

In our basic strategy, a part of generated polynomials are linear combinations
of several polynomials constructed in advance. For n+1 given samples in ModInv-
HNP or n+1 outputs MSBδ(vi) in ICG, the hidden number α or the secret seed
v0 can be recovered when

δ/log2 p ≥

 d(d+ 1)
d∑
s=0

(
n
s

)
+ 2

d∑
s=0

s
(
n
s

)
d(d+ 1)

d∑
s=0

(
n
s

)
+ 2(d+ 1)

d∑
s=0

s
(
n
s

)
 ,

where the parameter d is a positive integer with 1 ≤ d ≤ n. For any above-
mentioned integers n and d, there is always δ/log2 p >

1
3 . When n is sufficiently

large, we can choose suitable d to let the result cover all previous ones. For
example, taking d = 1, we get the first result of Boneh et al. in [6] and the result
of Ling et al. in [22], taking d = bn2 c we obtain the second result of Boneh et
al, and taking d = n we also get results in [2, 28]. For the general case of n, our
result is better than the corresponding result in [22], but it is weaker than the
optimal results in [2, 28].

In the extended strategy, we further improve the lattice construction. For
a fixed monomial xi00 x

i1
1 · · ·xinn in the extended monomial set, we firstly regard

it as the product of some monomials, which are divided according to values
i0, i1, · · · , in. Then, we construct a polynomial that is the product of sever-
al polynomials generated by utilizing the basic strategy for the corresponding
monomial. We get the following result that the hidden number α or the secret
seed v0 can be recovered when

δ/log2 p

≥


(dk+1)dk

dk∑
s=0

(n
s)k+1

+
dk∑
s=0

s(n
s)k+1

+n
k∑

i=0

dk−i∑
s=0

i2(n−1
s)

k+1

(dk+1)dk
dk∑
s=0

(n
s)k+1

+2(dk+1)
dk∑
s=0

s(n
s)k+1

, if 1 ≤ d ≤ n− 1,

3nk+k+5
6nk+6 , if d = n,

where the parameter k is a positive integer and the
(
n
s

)
k+1

is a polynomial-
coefficient which will be explained in Section 2.1. When k = 1, this result is
the same as the result in the basic strategy. When k > 1, it is better and the
ration δ/log2 p is closer to 1

3 . Compared to previous known results, our result
in the extended strategy is also preponderant. For n = 1, the asymptotic result
(k = +∞) is the same as the optimal results in [2, 28]. For n ≥ 4, our asymptotic
result can deduce that the ration δ/log2 p <

1
2 , which is superior to the optimal

results even for sufficiently many samples given in [2, 28].

1.3 Organization of the Paper and Notation

The rest of this paper is organized as follows. In Section 2, we recall some
terminology and preliminary knowledge. In Section 3, we introduce ModInv-
HNP and ICG. In Section 4 and 5, we present two strategies respectively for
analyzing ModInv-HNP and attacking ICG. Section 6 is the conclusion.

Throughout the paper, the set {0, 1, · · · , p − 1} is donoted as Zp, in case
of need, the elements of Zp are also treated as the corresponding integers. The
symbol δ is denoted as the number of the known most (least) significant bits of
some unknown numbers.

2 Preliminaries

Let In = (i1, · · · , in), Jn = (j1, · · · , jn) ∈ Nn, where In−Jn = (i1− j1, · · · , in−
jn). Below we first describe lexicographic reverse order and graded lexicographic
reverse order respectively. Then, we define a new order of monomials.

Lexicographic Reverse Order:

In ≺revlex Jn ⇔ the rightmost nonzero entry in In − Jn is negative.

For example, for u1 = (0, 4, 0, 2) and u2 = (3, 1, 2, 1), we have u2 ≺revlex u1.

Graded Reverse Lexicographic Order:

In ≺grevlex Jn ⇔
n∑

m=1

im <

n∑
m=1

jm or (

n∑
m=1

im =

n∑
m=1

jm and In ≺revlex Jn).

For the above u1 and u2, we have u1 ≺grevlex u2. For more details about the
orders of monomials, please refer to [12].

In this paper we denote the priority of the variables x0, x1, · · · , xn in a mono-
mial as x0, x1, · · · , xn−1, xn from high to low respectively. Let i0, j0 ∈ N, we

define an order of monomials
n∏

m=0
ximm ,

n∏
m=0

xjmm as follows.

New defined order:

n∏
m=0

ximm ≺
n∏

m=0

xjmm ⇔ In ≺grlex Jn or (In = Jn and i0 < j0). (1)

For example, we have x0x
4
2x

2
4 ≺ x31x2x

2
3x4 ≺ x20x

3
1x2x

2
3x4 from the defined order

(1) .
We can also define the leading monomial of a polynomial in terms of the

order (1). In our following construction, we first determine the corresponding
monomial set, then we find appropriate polynomials such that their leading
monomials are in the defined monomial set.

2.1 Polynomial Coefficients

For positive integers k and n, the coefficient of xs in the expansion of the poly-
nomial (1+x+ · · ·+xk)n is called the polynomial coefficient

(
n
s

)
k+1

, 0 ≤ s ≤ nk.
Namely, we have

(1 + x+ · · ·+ xk)n =

nk∑
s=0

(
n

s

)
k+1

xs,

where
(
n
s

)
k+1

=
∑

n1+···+knk=s

(
n

n−n1−···−nk,n1,··· ,nk

)
. Obviously, when k = 1, the

polynomial coefficient
(
n
s

)
k+1

is the binomial coefficient
(
n
s

)
. When m(k + 1) ≤

s ≤ (m+ 1)(k + 1)− 1, we have(
n

s

)
k+1

=

m∑
i=0

(−1)i
(
n+ s− i(k + 1)− 1

s− i(k + 1)

)(
n

i

)
,

where m ∈ N. Euler firstly studied this expansion. For more details on polyno-
mial coefficients, please refer to [8].

2.2 Lattice

Let the vectors b1, . . . , bω be linearly independent in Rn, the set

L = {
ω∑
i=1

kibi, ki ∈ Z}

is called a lattice with basis vectors b1, · · · , bω and basis matrixB = [bT1 , · · · , bTω]T .
The dimension and determinant of L are

dim(L) = ω,det(L) =
√

det(BBT).

If B is a square matrix, then det(L) = |det(B)|. In this paper all lattice basis
matrices are square.

The well known LLL algorithm [21] can find a reduced basis of the lattice
satisfying the following lemma.

Lemma 1 ([21]). Let L be a lattice. Within polynomial time, the LLL algorithm
outputs reduced basis vectors v1, . . . , vω that satisfy

‖v1‖ ≤ ‖v2‖ ≤ · · · ≤ ‖vi‖ ≤ 2
ω(ω−1)

4(ω+1−i) det(L)
1

ω+1−i , 1 ≤ i ≤ ω.

2.3 Coppersmith’s Technique

We use Coppersmith’s technique to find small integer roots of a modular poly-
nomial equation. It first generates some polynomials with these small integers
as roots for constructing the lattice, then uses any lattice reduction algorithm to
get some integer equations with these desired roots. In this process, the following
Lemma reformulated by Howgrave-Graham is needed.

Lemma 2 ([18]). Let f(x0, x1, . . . , xn) =
∑

i0,i1,...,in

ai0,i1,...,inx
i0
0 x

i1
1 · · ·xinn be an

integer polynomial that consists of at most ω monomials. Let m be a positive
integer and the Xi be upper bounds of |x̃i| for 0 ≤ i ≤ n. Suppose that

1. f(x̃0, x̃1, . . . , x̃n) = 0 (mod pm);

2. ‖f(x0X0, x1X2, . . . , xnXn)‖ < pm√
ω

,

then f(x̃0, x̃1, . . . , x̃n) = 0 holds over Z.

In Lemma 2, ‖f(x0X0, x1X2, . . . , xnXn)‖ is the Euclidean norm of the coef-
ficient vector of the polynomial f(x0X0, x1X2, . . . , xnXn), i.e.,

‖f(x0X0, x1X2, . . . , xnXn)‖ =

√ ∑
i0,i1,...,in

(ai0,i1,...,inX
i0
0 X

i1
1 · · ·X

in
n)2.

For computing the small root (x̃0, x̃1, . . . , x̃n), we expect to find at least n+1
algebraically independent polynomials fi(x0, x1, · · · , xn) with fi(x̃0, x̃1, . . . , x̃n) =
0 for 0 ≤ i ≤ n. Then, we give the following heuristic assumption.

Assumption 1. The polynomials corresponding to the first few LLL-reduced
vectors are algebraically independent.

To apply Lemma 1 and Lemma 2, we need

ω
1
2 2

ω(ω−1)
4(ω−n) (det(L))

1
ω−n < pm, (2)

where ω = dim(L). Note that ω is greater than n and p is sufficiently larger than

the term ω
1
2 2

ω(ω−1)
4(ω−n) in general, we neglect these terms in (2) and simply use the

condition
(det(L))1/ dim(L) < pm. (3)

Finally, we compute their common root (x̃0, x̃1, . . . , x̃n) using numerical or
symbolic methods such as the resultant [15] and Gröbner basis methods [12].

3 ModInv-HNP and ICG

Firstly, we restate the definition of ModInv-HNP as follows.

ModInv-HNP. Our goal is to recover the hidden number α ∈ Zp, where p is
a known prime. For n + 1 integers ti randomly chosen from Zp \ {−α}, n + 1
samples

(ti,MSBδ(αi)) , 0 ≤ i ≤ n

are exposed, where αi = (α+ ti)
−1 mod p.

We transform ModInv-HNP into solving small roots of some modular poly-
nomials. Donote MSBδ(αi) as ui and αi as ui + x̃i, we have

(α+ ti)(ui + x̃i) = 1 (mod p)

with |x̃i| ≤ p/2l for 0 ≤ i ≤ n. Eliminate α from the above equations, we obtain
n following equations

aj + bj x̃0 + cj x̃j + x̃0x̃j = 0 (mod p), 1 ≤ j ≤ n,

where
aj = u0uj + (u0 − uj)(t0 − tj)−1 mod p,

bj = uj + (t0 − tj)−1 mod p,

cj = u0 − (t0 − tj)−1 mod p.

Thus, the vector (x̃0, x̃1, · · · , x̃n) are the small solution of n modular polynomials

fj(x0, xj) = aj + bjx0 + cjxj + x0xj (mod p), 1 ≤ j ≤ n. (4)

Remark 1. If n+1 samples (ti,LSBδ(αi)) are given in ModInv-HNP, we can still
reduce it to finding small roots of n simultaneous modular polynomials like (4).
Thus, our following strategies are also fit for the least significant bit case.

Next, we introduce the inversive congruential generator.

ICG. For a given prime p, let F (x) = ax−1 + b mod p, where a, b ∈ Zp. Input
a secret seed v0 ∈ Zp to the recursive relation vi+1 = F (vi). Then, output the δ
consecutive bits of the vi at each iteration, MSBδ(v1), · · · ,MSBδ(vn+1), as the
pseudorandom sequence.

We are concerned with the problem of recovering the seed v0 for given n+ 1
outputs MSBδ(vi). When the a and b in F (x) are known, let xi−1 = vi−MSBl(vi)
with |xi−1| ≤ p/2δ for 1 ≤ i ≤ n+ 1, we can also deduce that the polynomial

aj + bjx0 + cjxj + x0xj (mod p)

has the small solution (x0, xj) for 1 ≤ j ≤ n, where a0,j , b0,j , c0,j can be publicly
computed. Once we get the desired small root of the above modular polynomial-
s, whose form are the same as the fj in (4), we can also recover the secret seed v0.

Thus, our goal in the following sequel is to find the root (x̃0, x̃1, · · · , x̃n) in
(4), where |x̃i| < Xi. We take Xi = X = p/2δ for 0 ≤ i ≤ n in the following
strategies.

4 Solving Desired Roots in (4): Basic Strategy

Let d be a positive integer with 1 ≤ d ≤ n and the monomial set MS(n, d) be

{
n∏

m=0

ximm , 0 ≤ i0 ≤ d, 0 ≤ i1, · · · , in ≤ 1, 0 ≤ i1 + · · ·+ in ≤ d}.

Fix i0 and In = (i1, · · · , in), construct a polynomial fi0;In such that its leading

monomial is
n∏

m=0
ximm according to the monomial order (1). Moreover,

fi0;In(x̃0, x̃1, x̃2, · · · , x̃n) = 0 (mod pWR(i0;In)). (5)

where WR(i0; In) called as the weight of the relation (5) is the maximum integer
satisfied (5).

Let M be max{i1, · · · , in}, obviously, M = 0 or 1 in basic strategy. Next, we
discuss fi0;In and WR(i0; In) according to the case of M .

Case 1. If M = 0, we have
n∏

m=0
ximm = xi00 , then we choose that fi0;In = xi00 and

the corresponding WR(i0; In) = 0.

Case 2. If M = 1, let
n∏

m=0
ximm = xi00

s∏
t=1

xjt , where 1 ≤ s ≤ n, and 1 ≤ j1 <

· · · < js ≤ n. Clearly,
n∑

m=1
im = s. For the sake of discussion, denote the set S

as {xj1 , · · · , xjs}.

(1) If i0 ≥ s, we choose the polynomial

fi0;In = x
(i0−s)
0

s∏
t=1

f0,jt =: f(i0;S)

and the corresponding

WR(i0; In) = s.

(2) If i0 < s, when s = 1, clearly, i0 = 0, then we choose the polynomial

fi0;In = xj1 =: f(i0;S)

and the corresponding

WR(i0; In) = 0.

When s > 1, let the polynomial gm(x0, xj1 , · · · , xjs) = (
∏
t 6=m

f0,jt)xjm for 1 ≤

m ≤ s, clearly,

gm(x̃0, x̃j1 , · · · , x̃js) = 0 (mod ps−1).

Note that g1, · · · , gs have common monomials
s∏
t=1

xjt , x0
s∏
t=1

xjt , · · · , xs−10

s∏
t=1

xjt ,

thus, we rearrange them according to the following way.


g1
g2
...

gs

 = M(S)



s∏
t=1

xjt

x0
s∏
t=1

xjt

...

xs−10

s∏
t=1

xjt


+


h1
h2
...

hs

 mod ps−1, (6)

where the matrixM(S) is the coefficient matrix about monomials
s∏
t=1

xjt , x0
s∏
t=1

xjt ,

· · · , xs−10

s∏
t=1

xjt in h1, · · · , hs, i.e.,

M(S) =


σs−1(∧1) · · · σ2(∧1) σ1(∧1) 1
σs−1(∧2) · · · σ2(∧2) σ1(∧2) 1

· · ·
σs−1(∧s) · · · σ2(∧s) σ1(∧s) 1

 ,
here the σi(y1, · · · , ys−1) is the i-th elementary symmetric polynomial about
s− 1 variables y1, · · · , ys−1 and

∧m = (c0,j1 , · · · , c0,jm−1 , c0,jm+1 , · · · , c0,js)

for 1 ≤ i ≤ s− 1, 1 ≤ m ≤ s.
We can compute out the determinant of the matrix M(S) by mathematical

induction, i.e.,

det(M(S)) =
∏

1≤m<t≤s

(c0,jm − c0,jt).

In general, the matrix M(S) is invertible in Zps−1 since gcd(det(M(S)), p) = 1
in all almost cases. Thus, according to (6), we have

M(S)−1


g1
g2
...

gs

 =



s∏
t=1

xjt

x0
s∏
t=1

xjt

...

xs−10

s∏
t=1

xjt


+ M(S)−1


h1
h2
...

hs

 mod ps−1, (7)

where M(S)−1 is the inverse matrix of M(S) in Zps−1 . For convenience, denote
bl,m as the (l + 1)-th row and the m-th column of the matrix M(S)−1, 0 ≤
l ≤ s − 1, 1 ≤ m ≤ s. In the following discussion, the bl,m are regarded as
corresponding integers.

Note that the hm are composed of the remaining terms in gm except for

the corresponding terms of monomials
s∏
t=1

xjt , x0
s∏
t=1

xjt , · · · , xs−10

s∏
t=1

xjt , then

the order of all monomials in hm is lower than
s∏
t=1

xjt according to the defined

order (1). Hence, the monomial xi00
s∏
t=1

xjt is the leading term of polynomial

s∑
m=1

bi0,mgm. Then, we choose

fi0;In =

s∑
m=1

bi0,mgm =: f(i0;S)

in this case. Clearly, the corresponding

WR(i0; In) =

n∑
m=1

im − 1.

Remark 2. In fact, we only need a matrix M̃(S) such that M̃(S)M(S) mod p is

a lower triangular unimodular matrix. Here, we take M(S)−1 as M̃(S) in (7).

We have concretely generated the polynomial fi0;In according to the above
way, and the corresponding WR(i0; In) was summarized as follows.

WR(i0; In) =


n∑

m=1
im − 1, 0 ≤ i0 <

n∑
m=1

im,

n∑
m=1

im,
n∑

m=1
im ≤ i0 ≤ d.

(8)

Let |x̃i| < Xi, 0 ≤ i ≤ n, we construct a lattice L(n, d) using coefficient
vectors of following polynomials:

p(d−WR(i0;In))fi0;In(x0X0, x1X1, · · · , xnXn),

We order these vectors such that the basis matrix is a lower triangular. Denote

WT(i0; In) =

n∑
m=0

im, (9)

which is called as weight of the term
n∏

m=0
ximm in MS(n, d). Then, diagonal ele-

ments of the basis matrix are

p(d−WR(i0;In))XWT(i0;In),

where 0 ≤ i0 ≤ d, 0 ≤ i1, · · · , in ≤ 1, 0 ≤ i1 + · · ·+ in ≤ d.
Clearly, the dimension of the lattice L(n, d) is equal to the number of mono-

mials in MS(n, d), i.e.,

dim(L(n, d)) = (d+ 1)

d∑
s=0

(
n

s

)
. (10)

We compute out that the determinant of the lattice L is

det(L(n, d)) = p(d·dim(L)−WR(n,d))XWT(n,d), (11)

where

WR(n, d) =

d∑
s=0

d∑
i0=0

(
n

s

)
WR(i0; In),

WT(n, d) =

d∑
s=0

d∑
i0=0

(
n

s

)
WT(i0; In).

From (8) and (9), we get

WR(n, d) = d

d∑
s=0

s

(
n

s

)
,

and

WT(n, d) =
d(d+ 1)

2

d∑
s=0

(
n

s

)
+ (d+ 1)

d∑
s=0

s

(
n

s

)
.

Let

F(n, d) =
WR(n, d)

WT(n, d)
,

According to (3) and (11), there is the following relation

X < pF(n,d),

where

F(n, d) =

2d
d∑
s=0

s
(
n
s

)
d(d+ 1)

d∑
s=0

(
n
s

)
+ 2(d+ 1)

d∑
s=0

s
(
n
s

) . (12)

Note that X = p/2δ, we give the following result about ModInv-HNP and
ICG.

Theorem 1. Given n+ 1 samples in ModInv-HNP or n+ 1 outputs MSBδ(vi)
in ICG. Choose an integer d such that 1 ≤ d ≤ n. Then, under Assumption 1,
we can recover the hidden number α or the secret seed v0 in polynomial time
when

δ/log2 p ≥
d(d+ 1)

d∑
s=0

(
n
s

)
+ 2

d∑
s=0

s
(
n
s

)
d(d+ 1)

d∑
s=0

(
n
s

)
+ 2(d+ 1)

d∑
s=0

s
(
n
s

) . (13)

Remark 3. Our result is suitable for any positive integer n. For positive integers
n and d satisfying 1 ≤ d ≤ n, according to (13) we can get

δ/log2 p >
1

3
+

2

3n+ 3
.

Furthermore, there is always δ/log2 p >
1
3 even when n is sufficiently large.

Remark 4. Take d = 1, the relation (13) becomes

δ/log2 p ≥
2

3
+

1

9n+ 3
.

This result is better than the corresponding result at Journal of Symbolic Com-
putation [22]. The asymptotic result δ/log2 p > 2

3 and δ/log2 p → 2
3 in the

sense that n is sufficiently large is the same as the first result of Boneh et al. at
ASIACRYPT 2001 [7] and the result in [22].

Remark 5. Take d = n, the relation (13) becomes

δ/log2 p ≥
1

2
+

1

2n+ 2
.

When n is sufficiently large, the asymptotic result δ/log2 p >
1
2 and δ/log2 p→ 1

2
is the same as the corresponding optimal results in [2, 28].

Remark 6. Take d = bn2 c, the relation (13) becomes

δ/log2 p ≥
n22n + o(n22n)

3n22n + o(n22n)
.

When n is sufficiently large, the asymptotic result δ/log2 p >
1
3 and δ/log2 p→ 1

3
is the same as the second result of Boneh et al. in [7].

For showing the comparison between this result and previous results, we give
Table 1 and Table 2. We compare the ration δ/log2 p for the same small n in
Table 1. We take the corresponding optimal d for concrete n in our result. In
Table 2, we compare the smallest n needed for fixed δ/log2 p. For n ≥ 9, we can
deduce that the ration δ/log2 p < 1/2, which is better than the result in [2, 22,
28] and the first result in [7]. Interestingly, the ration δ/log2 p in our result is
close to 1

3 when n ≥ 100. The symbol “ − ” in the two tables denotes that no
concrete result was given by the corresponding authors, and the symbol “ × ”
denotes the situation that can not be reached in the corresponding paper.

Table 1. The minimum value of δ/log2 p for small n

PPPPPPPResult
n

1 2 3 4 5 6 7 8 9

[7] - - - - - - - - -

[2] 0.6667 0.5714 0.5333 0.5161 0.5079 0.5039 0.5020 0.5010 0.5005

[22] 0.8889 0.7778 0.7407 0.7222 0.7111 0.7037 0.6984 0.6944 0.6914

[28] 0.6667 0.5417 0.5083 0.5014 0.5002 0.5000 0.5000 0.5000 0.5000

This paper
0.7500 0.6667 0.6250 0.5841 0.5611 0.5378 0.5220 0.5073 0.4953
d = 1 d = 2 d = 2, 3 d = 3 d = 3 d = 4 d = 4 d = 5 d = 5

In order to explain our basic strategy, we give an example of the case n = 2
in Appendix B. Below we give an extended strategy for further improvement.

Table 2. The smallest n needed for fixed δ/log2 p

hhhhhhhhhhhhhhResult
δ/log2 p 0.6678 0.5714 0.5005 0.4953 0.4276 0.3782 0.3419

[7] (the first) − × × × × × ×
[7] (the second) − − − − − − −

[22] 200 × × × × × ×
[2] 1 2 9 × × × ×
[28] 1 2 8 × × × ×

This paper 2 3 9 9 20 50 100

5 Solving Desired Root in (4): Extended Strategy

Let k be a positive integer, and define the monomial set MS(n, d, k) as

{
n∏

m=0

ximm , 0 ≤ i0 ≤ dk, 0 ≤ i1, · · · , in ≤ k, 0 ≤ i1 + · · ·+ in ≤ dk}.

Obviously, the monomial set MS(n, d, k) is equal to MS(n, d) in the basic strategy

when k = 1. For a fixed monomial
n∏

m=0
ximm ∈ MS(n, d, k), we generate the poly-

nomial fi0;In such that
n∏

m=0
ximm is the leading monomial according to the defined

order (1) and compute the corresponding WR(i0; In). Let max{i1, · · · , in} = M ,
below we discuss fi0;In and WR(i0; In) in accordance with M .

Case 1. When M = 0, we choose fi0;In = xi00 and WR(i0; In) = 0.

Case 2. When M > 0, we classify variables x1, · · · , xn according to concrete

values of i1, · · · , in and rewrite
n∏

m=0
ximm as

xi00

M∏
l=1

sl∏
t=1

xjt ,

where integers s1, · · · , sM are satisfied that
0 < sM ≤ · · · ≤ s2 ≤ s1 ≤ n,

0 <
M∑
l=1

sl ≤ dk,

and
1 ≤ j1 < j2 < · · · < js1 ≤ n.

For the sake of discussion, let the set

Sl = {xj1 , · · · , xjsl }, 1 ≤ l ≤M.

It is evident that the positive integer sl is cardinality of the set Sl and

∅ ⊂ SM ⊆ · · · ⊆ S1 ⊆ In.

(1) If 0 ≤ i0 ≤ sM − 1, we choose

fi0;In = (

M−1∏
l=1

f(0;Sl))f(i0;SM)

and

WR(i0; In) =

M∑
l=1

sl −M.

(2) If
M∑

l=j+1

sl ≤ i0 ≤
M∑
l=j

sl − 1, we choose

fi0;In = (

j−1∏
l=1

f(0;Sl))f(i0 −
M∑

l=j+1

sl;Sj)(

M∏
l=j+1

f(sl;Sl))

and

WR(i0; In) =

M∑
l=1

sl − j

for 1 ≤ j ≤M − 1.

(3) If
M∑
l=1

sl ≤ i0 ≤ dk, we choose

fi0;In = x
(i0−

M∑
l=1

sl)

0

M∏
l=1

f(sl;Sl)

and

WR(i0; In) =

M∑
l=1

sl.

Next, we construct a lattice L(n, d, k) using coefficient vectors of polynomials

fi0;In(x0X0, x1X1, · · · , xnXn).

The corresponding lattice matrix is lower triangular, and the form of its diagonal
elements is

p(dk−WR(i0;In))XWT(i0;In),

where

WT(i0; In) =

n∑
m=0

im.

For the sake of the following analysis, let the set S(n, k, dk) be

{(i1, · · · , in), 0 ≤ i1, · · · , in ≤ k, 0 ≤ i1 + · · ·+ in ≤ dk}.

We know that the dimension of the lattice L(n, d, k) is equal to the cardinality
of the monomial set MS(n, d, k). Thus,

dim(L(n, d, k)) = (dk + 1)|S(n, k, dk)|,

where the integer |S(n, k, dk)| is the cardinality of S(n, k, dk). Moreover, |S(n, k, dk)|
can also be regarded as the sum of coefficients of the xs in the expansion of the
polynomial (1 + x+ · · ·+ xk)n, s = 0, 1, · · · , dk. Namely,

dim(L(n, d, k)) = (dk + 1)

dk∑
s=0

(
n

s

)
k+1

. (14)

The determinant of L(n, d, k) is

det(L(n, d, k)) = p(dk dim(L(n,d,k))−WR(n,d,k))XWT(n,d,k), (15)

where

WR(n, d, k) =

dk∑
i0=0

∑
In∈S(n,k,dk)

WR(i0; In),

and

WT(n, d, k) =

dk∑
i0=0

∑
In∈S(n,k,dk)

WT(i0; In).

Furthermore, we compute out

WR(n, d, k)

=


2dk+1

2

dk∑
s=0

s
(
n
s

)
k+1
− n

2

k∑
i=0

dk−i∑
s=0

i2
(
n−1
s

)
k+1

, if 1 ≤ d ≤ n− 1.

1
6nk(3nk − k + 1)(k + 1)n, if d = n.

and

WT(n, d, k) =
(dk + 1)dk

2

dk∑
s=0

(
n

s

)
k+1

+ (dk + 1)

dk∑
s=0

s

(
n

s

)
k+1

.

We leave computation of WR(n, d, k) and WT(n, d, k) in Appendix A.
Let

F(n, d, k) =
WR(n, d, k)

WT(n, d, k)
,

according to (3) and (15), we have

X < pF(n,d,k),

where

F(n, d, k)

=


(2dk+1)

dk∑
s=0

s(n
s)k+1

−n
k∑

i=0

dk−i∑
s=0

i2(n−1
s)

k+1

(dk+1)dk
dk∑
s=0

(n
s)k+1

+2(dk+1)
dk∑
s=0

s(n
s)k+1

, if 1 ≤ d ≤ n− 1.

3nk−k+1
6nk+6 , if d = n.

(16)

From X = p/2δ, we can get the following theorem about ModInv-HNP and
ICG.

Theorem 2. Given n+1 samples in ModInv-HNP or n+1 outputs MSBδ(vi) in
ICG. Choose positive integers d, k such that 1 ≤ d ≤ n. Then, under Assumption
1, we can recover the hidden number α or the secret seed v0 in polynomial time
when

δ/log2 p

≥


(dk+1)dk

dk∑
s=0

(n
s)k+1

+
dk∑
s=0

s(n
s)k+1

+n
k∑

i=0

dk−i∑
s=0

i2(n−1
s)

k+1

(dk+1)dk
dk∑
s=0

(n
s)k+1

+2(dk+1)
dk∑
s=0

s(n
s)k+1

, 1 ≤ d ≤ n− 1.

3nk+k+5
6nk+6 , d = n.

(17)

Remark 7. For any positive integers k, n and d such that 1 ≤ d ≤ n, we can
deduce that

WR(n, d, k) < dk

dk∑
s=0

s

(
n

s

)
k+1

and

WT(n, d, k) >
3(dk + 1)

2

dk∑
s=0

s

(
n

s

)
k+1

.

Then, it leads to

δ >

(
1

3
+

2

3nk + 3

)
log2 p.

Namely, there is always δ/ log2 p >
1
3 even for sufficiently large positive integers

n, k.

Remark 8. When k = 1, the above relation (17) degenerates into the relation
(13) in theorem 1.

We give Table 3 and Table 4 to indicate relations between the ration δ/log2 p
and concrete n. The positive integer d chosen in the tables are optimal for the
corresponding n. When k = 1, the result in the extended strategy is the same as
that in the basic strategy. When k = +∞, the result in the extended strategy
is more ideal than that in the basic strategy. From Table 1 and Table 3, we find
out the result in the extended strategy is the same as the result in [2, 28] when

n = 1. When n = 2 and 3, the result in the extended strategy is better than
the result in [2], but weaker than our recent result in [28]. For n ≥ 4, the result
in the extended strategy can lead to the ration δ/log2 p < 1/2, which is always
better than results in [2, 28].

Table 3. The minimum value of δ/log2 p for small n in the extended strategy

HH
HHHk
n

1 2 3 4 5 6 7 8 9

1
0.7500 0.6667 0.6250 0.5841 0.5611 0.5378 0.5220 0.5073 0.4953
d = 1 d = 2 d = 2, 3 d = 3 d = 3 d = 4 d = 4 d = 5 d = 5

+∞ 0.6667 0.5714 0.5085 0.4748 0.4518 0.4369 0.4235 0.4141 0.4066
d = 1 d = 1 d = 2 d = 3 d = 4 d = 3 d = 4 d = 4 d = 5

Table 4. The smallest n needed for a fixed δ/log2 p in the extended strategy

PPPPPPPk
δ/log2 p 0.6678 0.5714 0.5005 0.4953 0.4276 0.3782 0.3419

1 2 3 9 9 20 50 100

+∞ 1 2 4 4 7 16 86

To illustrate the extended strategy, we give an example when (n, k) = (2, 2)
in Appendix C.

6 Conclusion

We revisited the modular inversion hidden number problem and inversive con-
gruential pseudo random number generator and reduced these two problems to
solving small roots of a class of simultaneous modular polynomial equations.
We presented two strategies based on Coppersmith’s technique to solve such the
equation system, our methods of choosing polynomials for constructing lattices
can make the upper bound of the desired root better. For analyzing the modular
inversion hidden number problem, we gave a concrete lattice for explaining the
best result up to now proposed by Boneh et al., and further improved the lat-
tice construction such that the samples required are fewer. Applying to attack
the inversive congruential pseudo random number generator, we achieved a best
result so far.

References

1. Aono, Y.: Minkowski sum based lattice construction for multivariate simultaneous
coppersmiths technique and applications to RSA. In: Information Security and
Privacy, Springer (2013) 88–103

2. Bauer, A., Vergnaud, D., Zapalowicz, J.C.: Inferring sequences produced by non-
linear pseudorandom number generators using coppersmiths methods. In Fischlin,
M., Buchmann, J., Manulis, M., eds.: Public Key Cryptography-PKC 2012. Vol-
ume 7293 of Lecture Notes in Computer Science. Springer Berlin Heidelberg (2012)
609–626

3. Blackburn, S.R., Gomez-perez, D., Gutierrez, J., Shparlinski, I.E.: Predicting non-
linear pseudorandom number generators. MATH. COMPUTATION 74 (2004)
2004

4. Blackburn, S., Gomez-Perez, D., Gutierrez, J., Shparlinski, I.: Predicting the in-
versive generator. In Paterson, K., ed.: Cryptography and Coding. Volume 2898
of Lecture Notes in Computer Science. Springer Berlin Heidelberg (2003) 264–275

5. Boneh, D., Durfee, G.: Cryptanalysis of rsa with private key d less than n 0.292. In
Stern, J., ed.: Advances in Cryptology EUROCRYPT 99. Volume 1592 of Lecture
Notes in Computer Science. Springer Berlin Heidelberg (1999) 1–11

6. Boneh, D., Halevi, S., Howgrave-Graham, N.: The modular inversion hidden num-
ber problem. In: ASIACRYPT 2001, Springer (2001) 36–51

7. Boneh, D., Venkatesan, R.: Hardness of computing the most significant bits of
secret keys in Diffie-Hellman and related schemes. In: CRYPTO 1996, Springer
(1996) 129–142

8. Comtet, L.: Advanced Combinatorics. D. Reidel Publishing Company (1974)

9. Coppersmith, D.: Finding a small root of a bivariate integer equation; factoring
with high bits known. In: EUROCRYPT 1996, Springer (1996) 178–189

10. Coppersmith, D.: Finding a small root of a univariate modular equation. In:
EUROCRYPT 1996, Springer (1996) 155–165

11. Coppersmith, D.: Small solutions to polynomial equations, and low exponent RSA
vulnerabilities. Journal of Cryptology 10(4) (1997) 233–260

12. Cox, D.A.: Ideals, varieties, and algorithms: an introduction to computational
algebraic geometry and commutative algebra. Springer (2007)

13. Eichenauer, J., Lehn, J.: A non-linear congruential pseudo random number gener-
ator. Statistische Hefte 27(1) (1986) 315–326

14. Galindo, D., Vivek, S.: Limits of a conjecture on a leakage-resilient cryptosystem.
Information Processing Letters 114(4) (2014) 192 – 196

15. Gelfand, I., Gelfand, I., Kapranov, M., Zelevinsky, A.: Discriminants, Resul-
tants, and Multidimensional Determinants. Mathematics (Birkhäuser). Birkhäuser
Boston (2008)

16. Herrmann, M., May, A.: Solving linear equations modulo divisors: On factoring
given any bits. In Pieprzyk, J., ed.: Advances in Cryptology - ASIACRYPT 2008.
Volume 5350 of Lecture Notes in Computer Science. Springer Berlin Heidelberg
(2008) 406–424

17. Herrmann, M., May, A.: Attacking power generators using unravelled linearization:
When do we output too much? In: Advances in Cryptology–ASIACRYPT 2009.
Springer (2009) 487–504

18. Howgrave-Graham, N.: Finding small roots of univariate modular equations revis-
ited. In: Crytography and Coding. Springer (1997) 131–142

19. Jochemsz, E., May, A.: A strategy for finding roots of multivariate polynomials
with new applications in attacking rsa variants. In: ASIACRYPT 2006. Springer
(2006) 267–282

20. Kiltz, E., Pietrzak, K.: Leakage resilient elgamal encryption. In Abe, M., ed.:
Advances in Cryptology - ASIACRYPT 2010. Volume 6477 of Lecture Notes in
Computer Science. Springer Berlin Heidelberg (2010) 595–612

21. Lenstra, A.K., Lenstra, H.W., Lovász, L.: Factoring polynomials with rational
coefficients. Mathematische Annalen 261(4) (1982) 515–534

22. Ling, S., Shparlinski, I.E., Steinfeld, R., Wang, H.: On the modular inversion
hidden number problem. Journal of Symbolic Computation 47(4) (2012) 358–367

23. May, A., Ritzenhofen, M.: Implicit factoring: On polynomial time factoring given
only an implicit hint. In: PKC 2009. Springer (2009) 1–14

24. Nguyen, Shparlinski: The insecurity of the digital signature algorithm with par-
tially known nonces. Journal of Cryptology 15(3) (2002) 151–176

25. Niederreiter, H.: New developments in uniform pseudorandom number and vector
generation. In Niederreiter, H., Shiue, P.S., eds.: Monte Carlo and Quasi-Monte
Carlo Methods in Scientific Computing. Volume 106 of Lecture Notes in Statistics.
Springer New York (1995) 87–120

26. Niederreiter, H., Shparlinski, I.: Recent advances in the theory of nonlinear pseu-
dorandom number generators. In Fang, K.T., Niederreiter, H., Hickernell, F., eds.:
Monte Carlo and Quasi-Monte Carlo Methods 2000. Springer Berlin Heidelberg
(2002) 86–102

27. Shparlinski, I.E.: Playing hide-and-seek with numbers: the hidden number problem,
lattices, and exponential sums. In: proceeding of symposia in applied mathematics.
Volume 62. (2005) 153–177

28. Xu, J., Hu, L., Huang, Z., Peng, L.: Modular inversion hidden number problem
revisited. In: Information Security Practice and Experience. Springer (2014) 537–
551

A Computation of WR(n, d, k) and WT(n, d, k)

First, we compute WR(n, d, k). Fix a vector In ∈ S(n, k, dk), from the concrete
value of WR(i0; In), we have

dk∑
i0=0

WR(i0; In) = (dk + 1)(

M∑
l=1

sl)− (

M∑
l=1

lsl).

We know that WR(i0; In) = 0 when M = 0. When M > 0, note that

n∏
m=1

ximm =

M∏
l=1

sl∏
t=1

xjt ,

we can deduce that

M∑
l=1

sl =

n∑
m=1

im,

M∑
l=1

lsl =

n∑
m=1

im∑
t=1

t.

Thus,
dk∑
i0=0

WR(i0; In) =
2dk + 1

2

n∑
m=1

im −
1

2

n∑
m=1

i2m.

According to

WR(n, d, k) =

dk∑
i0=0

∑
In∈S(n,k,dk)

WR(i0; In),

we have

WR(n, d, k) =
2dk + 1

2

∑
In∈S(n,k,dk)

n∑
m=1

im −
1

2

∑
In∈S(n,k,dk)

n∑
m=1

i2m.

We rewrite WR(n, d, k) using the concept of polynomial coefficients as

WR(n, d, k) =
2dk + 1

2

dk∑
s=0

s

(
n

s

)
k+1

− n

2

k∑
i=0

min{dk−i,(n−1)k}∑
s=0

i2
(
n− 1

s

)
k+1

.

Furthermore, if d = n, we have

WR(n, n, k) =
1

6
nk(3nk − k + 1)(k + 1)n.

If 1 ≤ d ≤ n− 1, we get

WR(n, d, k) =
2dk + 1

2

dk∑
s=0

s

(
n

s

)
k+1

− n

2

k∑
i=0

dk−i∑
s=0

i2
(
n− 1

s

)
k+1

.

Finally, we compute WT(n, d, k). Note that WT(i0; In) =
n∑

m=0
im, we have

dk∑
i0=0

WT(i0; In) =
(dk + 1)dk

2
+ (dk + 1)

n∑
m=1

im.

From

WT(n, d, k) =

dk∑
i0=0

∑
In∈S(n,k,dk)

WT(i0; In),

we get

WT(n, d, k) =
(dk + 1)dk

2

∑
In∈S(n,k,dk)

1 + (dk + 1)
∑

In∈S(n,k,dk)

n∑
m=1

im.

Namely,

WT(n, d, k) =
(dk + 1)dk

2

dk∑
s=0

(
n

s

)
k+1

+ (dk + 1)

dk∑
s=0

s

(
n

s

)
k+1

.

B An Example of the Basic Strategy

We consider n = 2, the corresponding monomial set

MS(2, d) = {xi00 x
i1
1 x

i2
2 , 0 ≤ i0 ≤ d, 0 ≤ i1, i2 ≤ 1, 0 ≤ i1 + i2 ≤ d}

for 1 ≤ d ≤ 2.

When d = 1, we arrange the order of all monomials in MS(2, 1) according to
the order (1), i.e.,

1 ≺ x0 ≺ x1 ≺ x0x1 ≺ x2 ≺ x0x2.

Then, we generate following polynomials fi0;I2 as follows.

f0;(0,0) = 1, f1;(0,0) = x0, f0;(1,0) = x1, f1;(1,0) = f01, f0;(0,1) = x2, f1;(0,1) = f02.

Next, we construct the lattice L(2, 1) using the coefficients vector of polynomials

p1−WT(i0;In)fi0;In(x0X0, x1X1, x2X2),

where Xi = p/2δ, 0 ≤ i ≤ 2. Finally, we compute out

dim(L(2, 1)) = 6, F (2, 1) = 2/7.

Namely, we can recover the hidden number α when δ/ log2 p ≥ 5
7 .

When d = 2, we arrange the order of all monomials in MS(2, 2) as follows.

1 ≺ x0 ≺ x20 ≺ x1 ≺ x0x1 ≺ x20x1 ≺ x2 ≺ x0x2 ≺ x20x2 ≺ x1x2 ≺ x0x1x2 ≺ x20x1x2.

Then, we generate remaining polynomials fi0;I2 respectively.

f2;(0,0) = x20, f2;(1,0) = x0f01, f2;(0,1) = x0f02,

f0;(1,1) = (b02 − b01)−1(x2f01 − x1f02) mod p.

f1;(1,1) = x2f01, f2;(1,1) = f01f02.

Next, we construct the lattice L(2, 2) using the coefficients vector of polynomials

p2−WT(i0;In)fi0;In(x0X0, x1X1, x2X2).

Finally, we compute out

dim(L(2, 2)) = 12, F (2, 2) = 1/3.

Thus, we can recover the hidden number α when δ/ log2 p ≥ 2
3 .

C An Example of the Extended Strategy

We consider the case that (n, k) = (2, 2), when d = 1, the corresponding mono-
mial set MS(2, 1, 2) is

{xi00 x
i1
1 x

i2
2 , 0 ≤ i0 ≤ 2, 0 ≤ i1 + i2 ≤ 2}.

We arrange all monomials in MS(2, 1, 2) according to the order (1) as follows.

1 ≺ x0 ≺ x20 ≺ x1 ≺ x0x1 ≺ x20x1 ≺ x2 ≺ x0x2 ≺ x20x2 ≺

x21 ≺ x0x21 ≺ x20x21 ≺ x1x2 ≺ x0x1x2 ≺ x20x1x2 ≺ x22 ≺ x0x22 ≺ x20x22.

We have obtained some fi0;I2 in Appendix B. Then, we generate the remaining
polynomials

f0;(2,0) = x21, f1;(2,0) = x1f01, f2;(2,0) = f201,

f0;(0,2) = x22, f1;(0,2) = x2f01, f2;(0,2) = f202.

Next, we construct the lattice L(2, 1, 2) using the coefficients vector of polyno-
mials

p2−WT(i0;In)fi0;In(x0X0, x1X1, x2X2).

Finally, we compute out

dim(L(2, 1, 2)) = 18, F (2, 1, 2) = 1/3.

Namely, we can recover the hidden number α when δ/ log2 p ≥ 2
3 .

When d = 2, the monomial set MS(2, 2, 2) is

{xi00 x
i1
1 x

i2
2 , 0 ≤ i0 ≤ 4, 0 ≤ i1, i2 ≤ 2, 0 ≤ i1 + i2 ≤ 4}.

All monomials in MS(2, 2, 2) are ordered according to the following way:

1 ≺ x0 ≺ x20 ≺ x30 ≺ x40 ≺

x1 ≺ x0x1 ≺ x20x1 ≺ x30x1 ≺ x40x1 ≺

x2 ≺ x0x2 ≺ x20x2 ≺ x30x2 ≺ x40x2 ≺

x21 ≺ x0x21 ≺ x20x21 ≺ x30x21 ≺ x40x21 ≺

x1x2 ≺ x0x1x2 ≺ x20x1x2 ≺ x30x1x2 ≺ x40x1x2 ≺

x22 ≺ x0x22 ≺ x20x22 ≺ x30x22 ≺ x40x22 ≺

x21x2 ≺ x0x21x2 ≺ x20x21x2 ≺ x30x21x2 ≺ x40x21x2 ≺

x1x
2
2 ≺ x0x1x22 ≺ x20x1x22 ≺ x30x1x22 ≺ x40x1x22 ≺

x21x
2
2 ≺ x0x21x22 ≺ x20x21x22 ≺ x30x21x22 ≺ x40x21x22.

We generate the remaining polynomials fi0;I2 as follows.

f3;(0,0) = x30, f4;(0,0) = x40, f3;(1,0) = x20f01, f4;(1,0) = x30f01,

f3;(0,1) = x20f02, f4;(0,1) = x30f02, f3;(1,1) = x0f01f02, f4;(1,1) = x20f01f02,

f3;(2,0) = x0f
2
01, f4;(2,0) = x20f

2
01, f3;(0,2) = x0f

2
02, f4;(0,2) = x20f

2
02,

f0;(1,2) = x2f0;(1,1), f1;(1,2) = f02f0;(1,1), f2;(1,2) = f02f1;(1,1),

f3;(1,2) = f01f
2
02, f4;(1,2) = x0f01f

2
02, f0;(2,1) = x1f0;(1,1),

f1;(2,1) = f01f0;(1,1), f2;(2,1) = f01f1;(1,1), f3;(2,1) = f201f02,

f4;(2,1) = x0f
2
01f02, f0;(2,2) = f20;(1,1), f1;(2,2) = f0;(1,1)f1;(1,1),

f2;(2,2) = f01f02f0;(1,1), f3;(2,2) = f01f02f1;(1,1), f4;(2,2) = f201f
2
02.

Similarly, we can construct the lattice L(2, 2, 2) and compute out

dim(L(2, 2, 2)) = 45, F (2, 2, 2) = 11/30.

Further, we can recover the hidden number α when δ/ log2 p ≥ 19
30 .

