
Two-Round Adaptively Secure MPC from

Indistinguishability Obfuscation

Sanjam Garg
University of California, Berkeley

Antigoni Polychroniadou
Aarhus University

Abstract

Adaptively secure multiparty computation first studied by Canetti, Feige, Goldreich, and
Naor in 1996, is a fundamental notion in cryptography. Adaptive security is particulary hard
to achieve in settings where arbitrary number of parties can be corrupted and honest parties
are not trusted to properly erase their internal state. We still do not know how to realize
constant round protocols for this task against even if we were to restrict ourselves to semi-
honest adversaries and to the simpler two-party setting. Specifically the round complexity
of known protocols grows with the depth of the circuit the parties are trying to compute.

In this work, using indistinguishability obfuscation, we construct a UC-secure two-round
adaptively secure multiparty computation protocol.

1 Introduction

The notion of secure computation is central in cryptography. Introduced in the seminal work
of [Yao82, GMW87] secure multiparty computation (MPC) allows several mutually distrustful
parties P1, . . . , Pn to compute a joint function f on their private inputs x1, . . . , xn, in a way
that ensure that honest parties obtain the correct outputs and no group of colluding malicious
parties learns anything beyond their own inputs and the prescribed output. For this problem,
we are interested in the natural setting where the attacker can on-the-fly decide on which parties
to corrupt. This model of adaptive corruption was first studied by Canetti et al. [CFGN96].
In this paper we consider adaptive adversaries that are allowed to corrupt arbitrary number of
honest parties. Additionally we only consider non-erasure protocols, specifically the protocols
whose security does not depend on having honest parties erase any of their internal state. We
refer the reader to [CFGN96, Section 1] for discussion on the importance of considering adaptive
adversaries.

One fundamental complexity measure of an MPC protocol is its round complexity. For the
static setting, Yao’s original two-party secure computation protocol [Yao82] was already round-
optimal. Analogous results for the multi-party setting were obtain recently [AJL+12, GGHR14].

However achieving similar results in the adaptive setting has remained open. Specifically,
round complexity of all know adaptively secure protocols grows (see, e.g. [CLOS02, DN03, KO04,
GS12, DMRV13]) linearly in the depth of the circuit that the parties are trying to compute. We
stress that for this problem, this limitation holds for essentially every special case of interest —
namely, even if we were to restrict to semi-honest/passive adversaries or to the special case of
two-party protocols. In this work we ask the following fundamental question:

Is it possible to construct a constant round protocol secure against adaptive
corruption of arbitrary number of parties?

1.1 Our Result

We answer the above question in the affirmative and show how to obtain a two-round adaptively
secure MPC protocol. Specifically:

Theorem 1 (informal) Assuming indistinguishability obfuscation and other standard assump-
tions, we show that arbitrary functions can be adaptively UC-securely [Can01] computed with
just two rounds of broadcast messages.

We stress that in the above claim we are in the standard setting where security holds against a
adversary corrupting any arbitrary number of parties. Furthermore honest parties in our case are
not required to erase anything. Also note that our results are for the strongest notion of security,
the UC security. This means that our protocol remains secure even when multiple instances
of our protocol are executed simultaneously. Since it is impossible to achieve UC security for
dishonest majority without assuming trusted setup assumptions [CF01, CKL03, Lin03], we base
our construction in the common reference string model.

In our results we consider an asynchronous multi-party network1 where the communication
is open (i.e. all the communication between the parties is seen by the adversary) and delivery
of messages is not guaranteed. For simplicity, we assume that the delivered messages are
authenticated. This can be achieved using standard methods.

1.2 Technical Difficulties and New Ideas

The key technical tool that we use in our construction is obfuscation so let us start by recalling
it briefly.

Obfuscation. Obfuscation was first rigorously defined and studied by Barak et al. [BGI+12].
Most famously, they defined the notion of virtual black box (VBB) obfuscation, and proved
that this notion is impossible to realize in general — i.e., there exists functions, though a bit
unnatural, that are VBB unobfuscatable.

Barak et al. also defined a weaker notion of indistinguishability obfuscation (iO), which
avoids their impossibility results. Indistinguishability obfuscation requires that for any two
circuits C0, C1 of similar size that compute the same function, it is hard to distinguish an
obfuscation of C0 from an obfuscation of C1. In a recent result, Garg et al. [GGH+13b] proposed
a construction of iO for all circuits, basing security on assumptions related to multilinear maps
[GGH13a].

Starting point — Garg et al. [GGHR14] construction. In a recent work, Garg et
al. [GGHR14] constructed a two-round multiparty computation protocol secure against static
adversaries. Though our goal is to realize a protocol secure in the adaptive setting it would be
illustrative to see how Garg et al.’s construction works.

With the goal of explaining intuition [GGHR14] better we will describe the ideas assuming we
have access to VBB obfuscation, rather than just indistinguishability obfuscation. We start by
noting that two rounds of interaction are essential for realizing multiparty secure computation.
This is because a 1-round protocol is inherently susceptible to the “residual function” attack
in which a corrupted party could repeatedly evaluate the “residual function” with the inputs
of the honest parties fixed on many different inputs of its own (e.g., see [HLP11]). This attack
can be circumvented by having two rounds of interaction — where in the first round the parties

1The fact that the network is asynchronous means that the messages are not necessarily delivered in the order
which they are sent.

2

commit to their inputs and the output is generated only in the second round. The first round
commitments help guarantee that the “residual function” attack can not be performed in this
setting.

The key idea of the Garg et al. construction is to have every party commit to its input
along with its randomness in the first round. The second round of the Garg et al. protocol is a
actually a simple compiler: it takes any (possibly highly interactive) underlying MPC protocol,
and has each party obfuscate their “next-message” function in that protocol, providing one
obfuscation for each round. This enables each party to independently evaluate the obfuscations
one by one, generating messages of the underlying MPC protocol and finally obtain the output.
Party i’s next-message circuit for round j in the underlying MPC protocol depends on its input
xi and randomness ri (which are hard-coded in the obfuscation). This circuit takes as input
the transcript through round j − 1, and it produces as output the next broadcast message.

However, there is another complication. Unlike the initial interactive protocol being com-
piled, the obfuscations are susceptible to a “reset” attack – i.e., they can be evaluated on multiple
inputs. To prevent such an attack, we need to limit the obfuscations to be used for evaluation
only on a unique set of values – namely, values consistent with the inputs and randomness that
the parties committed to in the first round, and the current transcript of the underlying MPC
protocol. Note that this would implicitly fix the transcript to a unique value. To ensure this
consistency, Garg et al. [GGHR14] use non-interactive zero-knowledge (NIZK) proofs. Since
the NIZKs apply not only to the committed values of the first round, but also to the transcript
as it develops in the second round, the obfuscations themselves must also generate these NIZKs
“on the fly”. In other words, the obfuscations are now augmented to perform not only the
next-message function, but also to prove that their output is consistent with their input, ran-
domness and transcript so far. Also, obfuscations in round j of the underlying MPC protocol
verify NIZKs associated to obfuscations in previous rounds before providing any output.

Garg et al. show that this construction can be adapted so that security can be based on
indistinguishability obfuscation alone but we will not delve into that. Instead we will argue that
this approach is fundamentally problematic for achieving the task at hand, i.e. avoiding use of
obfuscation.

Our approach – starting afresh. Note that the above intuitive description uses multiple
obfuscations that are generated by honest parties. This however only works in the static setting
and our goal is adaptive security. The challenge in proving adaptive security is that, a simulator
would have a hard time explaining these obfuscations as being honestly generated. Towards
solving this problem we first would like to limit the use of obfuscation in our construction;
specifically not requiring honest parties to generate any obfuscations.

Still assuming we have access to VBB obfuscation, we need a fresh direction to solve the
above problem. Here is our first stab at the problem: assume the parties had access to a
trusted third party. In this case each party could encrypt its input and deliver it to the trusted
party. The trusted party could then decrypts these values to obtain the inputs of all the parties,
compute the function on the inputs and then deliver the output back to the parties. Our idea is
to have an obfuscated program given out as part of the CRS implement this trusted party. Just
like the Garg et al. construction, in order to make this construction secure against “residual
function” attack we will need to consider a setting with two rounds. In the first round, we will
have all parties commit to their inputs and then in the second round we will have them provide
encryptions of the openings previously committed.

Making this construction adaptively secure seems more amenable — specifically, by using
adaptive commitments for the first round and a deniable encryption scheme for the second.
We actually need the first round commitments to be simulation extractable. This allows our

3

simulator to extract the values committed to by the adversary on behalf of corrupted parties,
even as it equivocates on its own commitments. Once the simulator has access to the inputs of
the corrupted outputs it can force the output by including it in its own second round encryption.

Basing it on Indistinguishability Obfuscation. The protocol described so far relies on
VBB and we would like to instantiate our construction based on iO. The CRS of the scheme
includes an obfuscation that takes as input encryptions of inputs of all the parties and computes
the desired functionality on their decryptions. A reader might have observed that this bears
resemblance with functional encryption or even multi-input functional encryption [GGG+14].
One might wonder if the use of “two key trick” can help us realize this construction using just
indistinguishability obfuscation — in a way similar to the functional encryption construction
of Garg et al. [GGH+13b]. In particular the idea would be that each party encrypts its input
along with the opening twice under two different keys and attach along with them a NIZK proof
proving that they indeed encrypt the same value.

Unfortunately, this solution is fundamentally problematic as we are in the adaptive setting.
Even if we were to use an adaptively secure NIZK the problem is that NIZKs given on deniable
encryptions are useless. This is because the encryption scheme is deniable. The deniability
of the encryption scheme allows the adversary to encrypt two different plaintexts under the
two public keys but still succeed in explaining them as encrypting the same message. This
also allows the attacker to successfully prove that the two ciphertexts indeed encrypt the same
message.

In summary, what we really need is a system with two ciphertexts and a proof proving that
the two ciphertexts encrypt the same message with the property that only valid proofs exists.
Additionally we need the property that both the ciphertexts and the proof can be denied upon
in the proof of security. These requirements indeed seem to be in conflict with each other. For
example,simultaneously achieving perfect soundness for NIZK and the ability to explain the
simulated proofs as though they were honestly generated seems like bottleneck.

Our solution to this seemingly paradoxical problem is to first construct a two key encryption
scheme which comes attached with a NIZK and then build deniability on top of it. In particular,
the underlying encryption scheme consists of two copies of a perfectly correct encryption scheme
along with a NIZK proving that the two ciphertexts encrypt the same message. The NIZK we
use will have statistical soundness. This underlying encryption scheme is then made deniable
using the Sahai and Waters [SW14] deniable encryption construction. The resulting encryption
is deniable in a very strong sense — specifically, it allows the encrypter to deny not just on
the two ciphertexts but also on the NIZK directly. However interestingly proofs for invalid
statements don’t exist.

Finally various other technical challenges arise in the security proof. For example in the
proof of security the simulator needs to hardcode the output that the adversary gets as part
of its ciphertext in a way that remains indistinguishable from honest execution. We refer the
reader to the full construction and proof for details on how we resolve this and other issues.

1.3 Application to leakage tolerant protocols

As another application of our techniques, we observe that our adaptively secure protocol is also
leakage tolerant in a way that previous protocols failed to be. The study of leakage tolerant
protocols was initiated by Bitansky et al. [BCH12] and Garg et al. [GJS11]. Very roughly,
leakage tolerant protocols preserve security even when the adversary can obtain arbitrary leakage
on the entire internal state of honest parties, however only up to the leaked information.

One limitation of known leakage tolerant secure computation protocols [BGJ+13] (see also

4

[DHP11]) from the literature is that the leakage in the ideal world queries needs to depend on
the inputs of all honest parties rather than just on the input of the party being leaked upon. Our
adaptively secure protocol also turns out to be leakage resilient further avoiding this limitation.
Another advantage of our protocol is that it is much simpler that the Boyle et al. [BGJ+13]
construction.

In a recent result, Garg et al. [GGKS14] show an alternative way of avoiding this limitation,
without using indistinguishability obfuscation. However their result is restricted to a setting
where at least one of the parties is never leaked on. We do not make such an assumption.

2 Preliminaries

In this section we recall preliminary notions needed in this work. We will start by recalling
notions of indistinguishability obfuscation and non-interactive zero-knowledge. Next we recall
the notion of publicly deniable encryption scheme that we adapt from [SW14].

2.1 Notation

Throuhgout the paper λ ∈ N will denote the security parameter. We say that a function
f : N → R is negligible if ∀c ∃ nc such that if n > nc then f(n) < n−c. We will use negl(·)
to denote an unspecified negligible function. We often use [n] to denote the set {1, ..., n}. The
concatenation of a with b is denoted by a||b. Moreover, we use d← D to denote the process of
sampling d from the distribution D or, if D is a set, a uniform choice from it. If D1 and D2 are
two distributions, then we denote that they are statistically close by D1 ≈s D2; we denote that
they are computationally indistinguishable by D1 ≈c D2; and we denote that they are identical
by D1 ≡ D2.

2.2 Indistinguishability Obfuscators

We will start by recalling the notion of indistinguishability obfuscation (iO) recently realized
in [GGH+13b] using candidate multilinear maps [GGH13a].

Definition 1 (Indistinguishability Obfuscator (iO)) A uniform PPT machine iO is called
an indistinguishability obfuscator for a circuit class {Cλ} if the following conditions are satisfied:

• For all security parameters λ ∈ N, for all C ∈ Cλ, for all inputs x, we have that

Pr[C ′(x) = C(x) : C ′ ← iO(λ,C)] = 1

• For any (not necessarily uniform) PPT distinguisher D, there exists a negligible function
α such that the following holds: For all security parameters λ ∈ N, for all pairs of circuits
C0, C1 ∈ Cλ, we have that if C0(x) = C1(x) for all inputs x, then∣∣∣Pr

[
D(iO(λ,C0)) = 1

]
− Pr

[
D(iO(λ,C1)) = 1

]∣∣∣ ≤ negl(λ)

2.3 Non-Interactive Zero-Knowledge Proofs

Let R be an NP-relation. For pairs (x,w) ∈ R we call x the statement and w the witness. Let
L be the language consisting of statements in R. A Non-Interactive Zero Knowledge (NIZK)
Proof system [BFM88, FLS90] consists of three PPT algorithms (K,P, V), a common reference
string generation algorithm K, a prover P and a verifier V .

5

• K(1λ) expects as input the unary representation of the security parameter λ and outputs
a common reference string σ of length Ω(λ).

• P (σ, x, w) takes as input a common reference string σ, a statement x together with a
witness w such that R(x,w) and produces a proof π.

• V (σ, x, π) takes as input a common reference string σ, a statement x, a proof π and
outputs 1 if the proof is accepting and 0 otherwise.

We call (K,P, V) a non-interactive proof system for R if it satisfies the following properties.

Perfect completeness. A proof system is complete if an honest prover with a valid witness
can convince an honest verifier. Formally, ∀x ∈ L, ∀w witness of x

Pr
[
σ ← K(1λ);π ← P (σ, x, w) : V (σ, x, π) = 1

]
= 1.

Statistical soundness. A proof system is sound if it is infeasible to convince an honest
verifier when the statement is false. Formally, we have

Pr
[
σ ← K(1λ);∃(x, π) : x 6∈ L ∧ V (σ, x, π) = 1

]
< negl(λ).

Computational zero-knowledge. We say a non-interactive proof (K,P, V) is computa-
tional zero-knowledge if there exists a PPT simulator S = (S1, S2), where S1 returns a simulated
common reference string σ̃ together with a simulation trapdoor τ that enables S2 to simulate
proofs without having access to the witness. For all non-uniform PPT adversaries A = (A1,A2)
we have:

∣∣∣∣∣Pr
[
σ ← K(1λ); (x, state)← A1(σ);π ← P (σ, x, w) : A2(x, σ, π, state) = 1

]
−

Pr
[
(σ, τ)← S1(1

λ); (x, state)← A1(σ);π ← S2(σ, τ, x) : A2(x, σ, π, state) = 1
]∣∣∣∣∣ < negl(λ).

2.4 Double Key Encryption and its Deniable Variant

Our protocol will use a special publicly deniable encryption scheme that we construct by first
describing a special public-key encryption scheme that we then transform it to its deniable
variant using [SW14].

Let (Setup,Enc,Dec) be a perfectly correct IND-CPA secure public-key encryption scheme
and let (K,P , V) be a NIZK proof system with statistical soundness and computational zero-
knowledge. The special encryption scheme we consider is very similar to the Naor-Yung CCA
[NY90] secure encryption scheme. Recall that in the Naor-Yung construction a ciphertext con-
sists of encryption of a message under two different public keys and a NIZK proof certifying that
the two ciphertexts indeed encrypt the same message. In our encryption scheme a ciphertext
will also consist of two ciphertexts under the two public keys but the NIZK proof will be used
to certify a more sophisticated requirement. More formally:

Definition 2 (Double Key Encryption Scheme) Let (Setup,Enc,Dec) be a IND-CPA se-
cure encryption scheme with perfect correctness. Let (K,P , V) be a NIZK proof system for an
NP -Language L. A Double Key encryption scheme, parametrised by a language L, consists of
three algorithms DKL = (SetupDK,EncDK,DecDK).

6

• SetupDK(1λ, 1`) is a polynomial time procedure that takes as input the unary representation
of the security parameter λ, the description of length of messages encrypted 1`. It computes
(pk0, sk0), (pk1, sk1) ← Setup(1λ) and the common reference string σ ← K(1λ) for the
NIZK proof. It outputs the public key PK = (pk0, pk1, σ) and the secret key SK =
(sk0, sk1).

• EncDK(PK,m0,m1, aux, w; r): This polynomial time procedure takes as input public key
PK = (pk0, pk1, σ), messages m0,m1 ∈ {0, 1}`, auxiliary information aux and some w
which will be used as part of the witness for the language L. It generates c = Enc(pk0,m0; s0)
and c′ = Enc(pk1,m1; s1) and outputs (c, c′, π), where π ← P (σ, (c, c′, aux), (m0,m1, s0, s1, w))
for the language L.

• DecDK(PK,SK, (c, c′, π)): is a polynomial time procedure that takes as input PK =
(pk0, pk1, σ), SK = (sk0, sk1) and ciphertext (c, c′, π). Outputs ⊥, in case that V (σ, (c, c′, aux), π) =
0 else output (Dec(sk0, c),Dec(sk1, c

′)).

Double Key Deniable Encryption Scheme. Next we want to transform the above public
key encryption into its deniable variant using the universal deniable encryption transformation
of Sahai and Waters [SW14, Section 4.2]. In particular, we obtain a double key deniable
encryption scheme DDKL = (SetupDDK,EncDDK,DecDDK,DenEncDDK,ExplainDDK) parametrized
by the language L with associate relation RL where the procedures EncDDK and DecDDK are
same as EncDK and DecDK. Here SetupDDK is obtained by augmenting the procedure SetupDK to
additionally output a public denying key DK generated using UniversalSetup(PK) as defined
in [SW14, Section 4.2] which is going to be included in PK. Further the scheme is augmented
with the following two procedures where PK = (σ, pk0, pk1, DK).

• DenEncDDK(PK,m0,m1, aux, w; r) is a polynomial time procedure that takes as input PK
which includes the public denying key DK, m0,m1 ∈ {0, 1}`, auxiliary information aux
and witness w and uses random coins r. It then outputs (c, c′, π).

• ExplainDDK(PK, (c, c′, π), (m0,m1, aux, w)): This polynomial time procedure takes as in-
put public key PK which includes the public denying key DK, messages m0,m1 ∈ {0, 1}`,
auxiliary information aux and witness w. It also takes as input a value (c, c′, π) and outputs
a string e, that is the same size as the randomness r taken by DenEncDDK above.

This new scheme has the following two additional properties.

Indistinguishability of source of ciphertext. We say that the scheme has indistinguisha-
bility of source of ciphertext if for any λ and any PPT adversary A = (A1,A2):∣∣∣∣∣∣∣∣∣∣∣∣
Pr


(PK,SK)← SetupDDK(1λ, 1`),

(m0,m1, aux, w)← A1(PK),

ct = EncDDK(PK,m0,m1, aux, w; r)

A2(PK, ct) = 1

such that RL((m0,m1, aux), w)

 − Pr


(PK,SK)← SetupDDK(1λ, 1`),

(m0,m1, aux, w)← A1(PK),

ct = DenEncDDK(PK,m0,m1, aux, w; r)

A2(PK, ct) = 1

such that RL((m0,m1, aux), w)



∣∣∣∣∣∣∣∣∣∣∣∣
≤ negl(λ).

Indistinguishability of explanation. We say that the scheme has indistinguishability of
explanation if for any λ and any PPT adversary A = (A1,A2):

7

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Pr



(PK,SK)← SetupDDK(1λ, 1`),

(m0,m1, aux, w)← A1(PK),

ct = DenEncDDK(PK,m0,m1, aux, w; r)

A2(PK, ct, r) = 1

such that RL((m0,m1, aux), w)


− Pr



(PK,SK)← SetupDDK(1λ, 1`),

(m0,m1, aux, w)← A1(PK),

ct = DenEncDDK(PK,m0,m1, aux, w; r)

e = ExplainDDK(PK, ct, (m0,m1, aux, w))

A2(PK, ct, e) = 1

such that RL((m0,m1, aux), w)



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
≤ negl(λ).

2.5 Equivocal and Extractable Commitments

An Equivocal and Extractable Commitment scheme COM consists of a tuple of PPT algorithms
(Setupbind

Com,Setupequiv
Com ,Com,Extr,Equiv). We will describe our definitions for the setting of bit

commitment and note that they extend to the setting of strings in a natural way.

• Setupbind
Com(1λ) expects as input the unary representation of the security parameter λ and

outputs a public parameter CK together with a trapdoor µ (used for extraction).

• Setupequiv
Com (1λ) expects as input the unary representation of the security parameter λ and

outputs a public parameter CK together with trapdoors µ and ν (used for extraction and
equivocation).

• Com(CK, b; r) takes as input CK, a bit b ∈ {0, 1} and randomness r ∈ {0, 1}λ and outputs
a commitment β.

Let us define the following language (the extraction procedure Extr is defined below):

LCom = {(β, b) | ∃t : β = Com(CK, b; t) ∨ b = Extr(CK, t, β)}.

We note that the language naturally extends to a setting where commitments are defined over
strings instead of just bits. Also we defined associated relation RCom. The above commitment
scheme should satisfy the following properties.

Indistinguishability of Public Parameters. We require that:∣∣∣Pr
[
(CK,µ)←Setupbind

Com(1λ) : A(CK,µ) = 1
]
−

Pr
[
(CK,µ, ν)← Setupequiv

Com (1λ) : A(CK,µ) = 1
]∣∣∣ < negl(λ).

Computational Hiding. Hiding means that no computationally bounded adversary can
distinguish as to which bit is locked in the commitment. Let A be any non-uniform adversary
running in time poly(λ). We say that the commitment scheme is computationally hiding if:

Pr

[
b = b′

∣∣∣∣ b← {0, 1}; (CK,µ)← Setupbind
Com(1λ);

β = Com(CK, b; r); b′ ← A(β)

]
=

1

2
+ negl(λ) .

The same applies to the setup algorithm Setupequiv
Com .

Perfectly Binding. Intuitively speaking, binding requires that no (even unbounded) adver-
sary can open the commitment in two different ways. Here, we define the strongest variant
known as perfectly binding. Formally we require that for all (CK,µ) ← Setupbind

Com(1λ) there

8

exists no values (r0, r1) such that Com(CK, 0; r0) = Com(CK, 1; r1). For perfectly binding we
require that either (c, 0) ∈ LCom or (c, 1) ∈ LCom, but not both.

Polynomial equivocality. The setup algorithm Setupequiv
Com generates public parameters to-

gether with trapdoors µ and ν such that Equiv using ν is able to produce commitments which
can then be explained to either 0 and 1. More formally, Equiv can be viewed as a pair of PPT
algorithms (Equiv1,Equiv2) such that the following holds. Let (CK,µ, ν)← Setupequiv

Com (1λ) then
(β, state) ← Equiv1(CK, ν) and rb ← Equiv2(CK, ν, β, state, b) such that Com(CK, b; rb) = β.
Furthermore we require that for b ∈ {0, 1} the distribution of {(CK, β, rb)} generated in
this way is computationally indistinguishable from the distribution {(CK, β, rb)} where β =
Com(CK, b; rb).

Simulation extractability. We require that the commitment remains binding for any
adversary A, even after A obtains polynomially many equivocal commitments along with their
openings. More formally, it should hold that

Pr

[
b 6= b′

∣∣∣∣ (CK,µ, ν)← Setupequiv
Com (1λ); (β, b, open)← AEquiv1(CK,ν),Equiv2(CK,ν,·,·,·)(CK);

Com((CK, b, open) = β ∧ Extr(CK,µ, β) = b′

]
= negl(λ) .

In this paper, we use the non-interactive equivocal and extractable commitment scheme
of [CLOS02] (CLOS commitment) which assumes the existence of enhanced trapdoor permu-
tations. At the heart of their commitment scheme is the Feige-Shamir trapdoor commitment
scheme [FS89], which they transform to obtain a UC Commitment scheme secure against adap-
tive adversaries.

3 Our Protocol

In this section we will present our adaptively secure two-round MPC protocol, described in
Figure 1. For simplicity, we assume that the delivered messages are authenticated. Also for
simplicity of exposition, in the sequel, we will assume that random coins are an implicit input
to the commitment and encryption functions, unless specified explicitly.

Theorem 2 Let f be any deterministic poly-time function with n inputs and single output. As-
sume the existence of an Indistinguishability Obfuscator iO, a Double Key Deniable encryption
scheme DDKL = (SetupDDK,EncDDK,DecDDK,DenEncDDK,ExplainDDK) and an adaptively secure
Commitment scheme COM = (Setupbind

Com, Setupequiv
Com ,Com,Extr,Equiv). Then the protocol Π pre-

sented in Figure 1 UC-securely realizes the ideal functionality Ff in the FCRS-hybrid model with
computational security against any adaptive, active adversary corrupting an arbitrary number
of parties in two rounds of broadcast.

Corollary 1 Assume the existence of indistinguishability obfuscation and doubly enhanced trap-
door permutation then any ideal functionality Ff can be UC-securely realized in the FCRS- model
against any adaptive, active adversary corrupting an arbitrary number of parties. Furthermore
this protocol involves only two rounds of broadcast.

We start by noting that the protocol is correct. Observe that if all the parties behave honestly
then the protocol ends us executing the circuit f on the inputs of all parties, leading to the
correct output. Security is proved via a simulator provided in Section 4 and indistinguishability
is argued in Section 5.

9

Protocol Π

Protocol Π uses an Indistinguishability Obfuscator iO, a Double Key Deniable encryption
scheme DDKL = (SetupDDK,EncDDK,DecDDK,DenEncDDK,ExplainDDK) based on the scheme
(Setup,Enc,Dec) with perfect correctness, where the relation L is defined below, and an adap-
tively secure Commitment scheme COM = (Setupbind

Com,Com).a Let f : ({0, 1}`in)n → {0, 1}`out

be the circuit parties want to evaluate on their private inputs.

Private Inputs: Party Pi for i ∈ [n], receives its input xi.
CRS: Output (PK,CK, oP) as the common reference string generated as follows:

• Generate (PK,SK) ← SetupDDK(1λ, 1`in+`out) where PK = (σ, pk0, pk1, DK) and
SK = (sk0, sk1)

• Generate (CK,µ)← Setupbind
Com(1λ).

• Let oP = iOProgsk0,PK,CK,f
be the obfuscation of the program Progsk0,PK,CK,f , described

in Figure 2.

Round 1: Each party Pi generates βi = Com(CK, xi;ωi) and broadcasts it to all parties.

Round 2: Each party Pi generates (ci, c
′
i, πi) = DenEncDDK(PK, xi||φ`out , xi||φ`out , (i, {βj}j∈[n]),

(0n·`in , 0`out , {tj}j∈[n]); ri) where φ is a special fixed symbol and ti = ωi and tj = 0∗ for all
j ∈ [n] such that j 6= i. It then broadcasts (ci, c

′
i, πi) to all parties.

Output phase: Each party Pi outputs oP ({βj}j∈[n], {cj , c′j , πj}j∈[n]).

Language L for the Double Key deniable encryption scheme DDKL: Recall LCom as
the language defined in Section 2.5, and let RCom be the associated relation. We have that
(c, c′, (i, {βj}j∈[n])) ∈ L if (c, c′, (i, {βj}j∈[n])) ∈ L1 ∨ L2 defined as follows:b

L1 =

(c, c′, (i, {βj}j∈[n]))

∣∣∣∣∣∣∣∣∣
∃ (m0,m1, s0, s1, ({xj}j∈[n], out, {tj}j∈[n])) such that

c = Enc(pk0,m0; s0) ∧ c′ = Enc(pk1,m1; s1)

∧ m0 = m1 = xi||φ`out

∧ RCom((βi, xi), ti)

 (1)

L2 =

(c, c′, (i, {βj}j∈[n]))

∣∣∣∣∣∣∣∣∣
∃ (m0,m1, s0, s1, ({xj}j∈[n], out, {tj}j∈[n])) such that

c = Enc(pk0,m0; s0) ∧ c′ = Enc(pk1,m1; s1)

∧ m0 = xi||φ`out ∧m1 = φ`in ||out
∧ ∀j ∈ [n],RCom((βj , xj), tj) ∧ out = f({xj}j∈[n])

 (2)

aWe note that COM provides more procedures but we note that they only affect the proof. Hence for
simplicity of exposition we skip mentioning them here.

bChanges in L2 from L1 are highlighted in red.

Figure 1: The Π Protocol.

3.1 Extensions

Now we give some natural extensions of our protocol and remove assumptions that were made
to simplify exposition.

General Functionality. Our basic MPC protocol as described in Figure 1, only considers
deterministic functionalities where all the parties receive the same output. We would like to

10

Program ProgSKb,PK,CK,f

Input: ({βj}j∈[n], {cj , c′j , πj}j∈[n]).
Description:

1. If there exists j ∈ [n] such that DecDDK((cj , c
′
j , πj)) =⊥ then output ⊥.

2. Parse cj as dj,0||ej,0 where dj,0 is the encryption of the first `in bits and ej,0 is the
encryption of the rest of the bits. Similarly parse c′j as dj,1||ej,1.

If ∃j ∈ [n] such that Dec(skb, ej,b) 6= φ`out , then let i be the first such j. If this is the
case then output Dec(skb, ei,b).

3. Otherwise for each j ∈ [n], let xj = Dec(skb, dj,b) and output f({xj}j∈[n]).

Figure 2: The Program ProgSKb,PK,CK,f
.

generalize it to handle randomized functionalities and individual outputs (just as in [AJW11]).
First, the standard transformation from a randomized functionality to a deterministic one (See
[Gol04, Section 7.3]) works for this case as well. In this transformation, instead of comput-
ing some randomized function g(x1, . . . xn; r), the parties compute the deterministic function

f((r1, x1), . . . , (rn, xn))
def
= g(x1, . . . , xn;⊕ni=1ri). We note that this computation does not add

any additional rounds. We note that since we are in the setting of adaptive security we can
only realize adaptively well-formed [CLOS02] functionalities, which reveals its randomness if all
the parties are corrupted.

Next, we move to individual outputs. Again, we use a standard transformation (See [LP09],
for example). Given a function g(x1, . . . , xn) → (y1, . . . , yn), the parties can evaluate the fol-
lowing function which has a single output:

f((k1, x1), . . . , (kn;xn)) = (g1(x1, . . . , xn)⊕ k1|| . . . ||gn(x1, . . . , xn)⊕ kn)

where gi indicates the ith output of g, and ki is randomly chosen by the ith party. Then, the
parties can evaluate f , which is a single output functionality, instead of g. Subsequently every
party Pi uses its secret input ki to recover its own output. The only difference is that f has one
additional exclusive-or gate for every circuit-output wire. Again, this transformation does not
add any additional rounds of interaction.

Making CRS independent of the circuit being computed. Note that in our construction
the obfuscation oP that is given as part of the CRS depends on the circuit f parties are trying
to compute on their joint inputs. We can remove this dependence by using a universal circuit
and having the parties feed in the actual circuit that they want along with their private inputs.

4 Description of our Simulator

Let A be an active, adaptive adversary that interacts with parties running the protocol Π from
Figure 1 in the FCRS-hybrid model. We construct a simulator S (the ideal world adversary)
with access to the ideal functionality Ff , which simulates a real execution of Π with A such
that no environment Z can distinguish the ideal world experiment with S and Ff from a real
execution of Π with A.

Recall that S interacts with the ideal functionality Ff and with the environment Z. The
ideal adversary S starts by invoking a copy of A and running a simulated interaction of A with
the environment Z and the parties running the protocol. Our simulator S proceeds as follows:

11

Simulated CRS: The common reference string is chosen by S in the following manner (recall
that S chooses the CRS for the simulated A as we are in the FCRS-hybrid model):

1. S runs the setup algorithm SetupDDK(1λ, 1`in+`out) of the Double Key deniable encryp-
tion scheme, but replaces its internal call to the algorithm K with S = (S1, S2) of the
NIZK proof system. More specifically, S generates (pk0, sk0), (pk1, sk1) ← Setup(1λ),
(σ, τ) ← S1(1

λ), along with the public denying key DK. It sets the public key PK =
(pk0, pk1, σ,DK).

2. S runs the algorithm Setupequiv
Com (1λ) of the adaptively secure commitment scheme COM

and obtains (CK,µ, ν).

3. S computes oP = iOProgsk1,PK,CK,f
where the latter is the obfuscation of the program

Prog, as described in Figure 2, parameterized with the key sk1.

S sets the common reference string equal to (PK,CK, oP) and locally stores (SK, τ, µ, ν).
Looking ahead, the trapdoor µ will be used to extract the inputs of the corrupted parties

and ν to equivocate on the commitment S provides on behalf of honest parties. The trapdoor
τ for the simulated σ will be used to generate simulated proofs.

Simulating the communication with Z: Every input value that S receives from Z is
written on A’s input tape. Similarly, every output value written by A on its own output tape
is directly copied to the output tape of S.

Simulating actual protocol messages in Π: Note that there might be multiple sessions
executing concurrently. Let sid be the session identifier for one specific session. We will specify
the simulation strategy corresponding to this specific session. The simulator strategy for all
other sessions will be the same. Let P = {P1, . . . , Pn} be the set of parties participating in
the execution of Π corresponding to the session identified by the session identifier sid. Also let
PA ⊆ P be the set of parties corrupted by the adversary A at any time. Recall that we are
in the setting of adaptive corruption so more parties could be added to this set as the protocol
proceeds. At any point S only generates messages on behalf of parties P\PA. In the following,
if at the end of some round all parties are corrupted then S does not need to go to do anything
else.

Round 1 Messages S → A: In the first round S must generate messages on behalf of the
honest parties, i.e. parties in the set P\PA. For each party Pi ∈ P\PA our simulator proceeds
as:

1. Generate a fake commitment (βi, statei)← Equiv1(CK, ν).

It then sends βi to A on behalf of party Pi and it internally saves statei.

Round 1 Messages A → S: Also in the first round the adversary A generates the messages
on behalf of corrupted parties in PA. For each party Pi ∈ PA our simulator proceeds as follows:

1. Extracting inputs of corrupted parties: Let βi be the commitment that A sends on behalf
of Pi. Our simulator S runs the extraction algorithm Extr(CK,µ, βi) in order to obtain
xi.

Note that it is possible that A sends a commitment βi on behalf of Pi such that it is not
well-formed, or in other words extraction using the function Extr fails. In this case S sets
xi = ⊥ and proceeds to the next step. (Looking ahead, we note that in this case the
adversary will not be able to generate a valid second round message.)

12

2. Next S sends (input, sid,P, Pi, xi) to Ff on behalf of the corrupted party Pi.

Simulating corruption of parties in Round 1: When A corrupts a real world party Pi,
then S first corrupts the corresponding ideal world party Pi and obtains its input xi. Next S
prepares the internal state on behalf of Pi such that it will be consistent with the commitment
value βi that it had provided to A earlier. Specifically S computes Equiv2(CK, ν, βi, statei, xi) in
order to obtain randomness ωi such that βi = Com(CK, βi;ωi). S provides ωi as the randomness
of party Pi to A. Note that S can do this at any point during 1st round.

Completion of Round 1: After S has submitted the inputs of all the corrupted parties to
Ff then it responds by sending back the message (output, sid,P, out) where out = f({xj}j∈[n]).
Note that in case S had failed to extract an input for some player Pi then it would have sent ⊥
to Ff and would have received ⊥ as the output from the ideal functionality.

Round 2 Messages S → A: In the second round S generates messages on behalf of the
honest parties, i.e. parties in the set P\PA as follows:

1. For each party Pi ∈ P\PA, S generates ci = Enc(pk0, φ
`in ||out), c′i = Enc(pk1, φ

`in ||out)
and generates πi as a simulated proof for the statement (ci, c

′
i, (i, {βj}j∈[n])). More specif-

ically it generates πi ← S2(σ, τ, (ci, c
′
i, (i, {βj}j∈[n]))).

S sends (ci, c
′
i, πi) to A on behalf of Pi.

Round 2 Messages A → S: In the second round the adversary A generates the messages
on behalf of corrupted parties in PA. For each party Pi ∈ PA our simulator proceeds as:

1. Let (ci, c
′
i, πi) be the message that A sends on behalf of party Pi. S checks to see if

V (σ, (ci, c
′
i, (i, {βj}j∈[n])), πi) = 1 for each Pi ∈ PA.

If all the proofs verify then S sends the message (generateOutput, sid,P) to the ideal functionality
Ff .

Simulating corruption of parties during/at the end of Round 2: When A corrupts
a party Pi in the real word, then S corrupts the corresponding party Pi in the ideal world
and obtains its input xi. Next S prepares the internal state on behalf of Pi such that it
will be consistent with messages it had sent on behalf of Pi. As explained before, S gen-
erates randomness ωi that explains the commitment βi to the value xi running the algo-
rithm ωi = Equiv2(CK, ν, βi, statei, xi). Next S needs to explain the second round mes-
sage (ci, c

′
i, πi). S has to explains the message (ci, c

′
i, πi) by computing the randomness as

ψi = ExplainDDK(PK, (ci, c
′
i, πi), (xi||φ`out , xi||φ`out , (i, {βj}j∈[n]), (0n·`in , 0`out , {tj}j∈[n])) where

ti = ωi and tj = 0∗ for all j ∈ [n] such that j 6= i. S provides ωi||ψi as the randomness of party
Pi to A. Note that S can do this at any point in during or after the round 2 of the protocol.

This completes the description of the simulator.

5 Proof of Security

In this section, via a sequence of hybrids, we will prove that no environment Z can distinguish
the ideal world experiment with S and Ff (as defined above) from a real execution of Π with
A. We will start with the real world execution in which the adversary A interacts directly with
the honest parties holding their inputs and step-by-step make changes till we finally reach the

13

simulator as described in Section 4. At each step we will argue that the environment cannot
distinguish the change except with negligible probability.

Hybrid 0. This hybrid corresponds to the Z interacting with the real world adversary A and
honest parties that hold their private inputs.

We can restate the above experiment with the simulator as follows. We replace the real
world adversary A with the ideal world adversary S. The ideal adversary S starts by invoking
a copy of A and running a simulated interaction of A with the environment Z and the honest
parties. S forwards the messages that A generates for it environment directly to Z and vice
versa (as explained in the description of the simulator S). In this hybrid the simulator S holds
the private inputs of the honest parties and generates messages on their behalf using the honest
party strategies as specified by Π.

Hybrid 1. In this hybrid, we change how the internal randomness of the corrupted party is
explained to A on being adaptively corrupted. Specifically we change the randomness that
is used to explain the ciphertext S generates on behalf of parties in round 2 of protocol
Π.

Recall that in the second round S on behalf of an honest party Pi generates the second mes-
sage as (ci, c

′
i, πi) = DenEncDDK(PK, xi||φ`out , xi||φ`out , (i, {βj}j∈[n]), (0n·`in , 0`out , {tj}j∈[n]); ri)

where ti is the randomness used in generating commitment βi and tj = 0∗ for all j ∈ [n]
such that j 6= i. So if A corrupts Pi then the randomness ri would be reveal to A. In Hy-
brid 1, instead we provide ψi = ExplainDDK(PK, (ci, c

′
i, πi), (xi||φ`out , xi||φ`out , (i, {βj}j∈[n]),

(0n·`in , 0`out , {tj}j∈[n])) where tj values are as before.

Lemma 1 Hybrid0 ≈c Hybrid1.

Proof. The indistinguishability of Hybrid1 from Hybrid0 follows from the indistinguisha-
bility of explanation property of the Double Key deniable encryption scheme.

Hybrid 2. In this hybrid we change the way S generates the message (ci, c
′
i, π) on behalf of

the honest parties.

Recall that in the second round in Hybrid 1, S on behalf of an honest party Pi generates the
second message as (ci, c

′
i, πi) = DenEncDDK(PK, xi||φ`out , xi||φ`out , (i, {βj}j∈[n]), (0n·`in ,

0`out , {tj}j∈[n]); ri) where ti is the randomness used in generating commitment βi and
tj = 0∗ for all j ∈ [n] such that j 6= i. We will change this by generating the ciphertexts
directly using procedures Enc and the prover P .

Specifically, ci = Enc(pk0, xi||φ`out ; si0) and c′i = Enc(pk1, xi||φ`out ; si1) and outputs (ci, c
′
i, πi),

where πi ← P (σ, (ci, c
′
i, {i, {β}j∈[n]}), (xi||φ`out , xi||φ`out , si0, si1, (0n·`in , 0`out , {tj}j∈[n]))) where

ti is the randomness used in generating commitment βi and tj = 0∗ for all j ∈ [n] such
that j 6= i.

Lemma 2 Hybrid1 ≈c Hybrid2.

Proof. The indistinguishability of Hybrid2 from Hybrid1 follows immediately from the
indistinguishability of source of ciphertext property of the Double Key deniable encryption
scheme.

14

Hybrid 3. In this hybrid, we change how σ, which is a part of PK, and the proofs πi for
every Pi ∈ P\PA are generated.

More specifically, S runs the setup algorithm SetupDDK(1λ, 1`in+`out) of the Double Key
deniable encryption scheme, but replaces its internal call to the algorithm K with S =
(S1, S2) of the NIZK proof system. More specifically, S generates (pk0, sk0), (pk1, sk1)←
Setup(1λ), (σ, τ)← S1(1

λ), along with the public denying key DK. It sets the public key
PK = (σ, pk0, pk1, DK).

We also generate fake proofs πi using trapdoor τ . Specifically we generate πi ← S2(σ, τ, (ci, c
′
i,

(i, {βj}j∈[n]))).

Lemma 3 Hybrid2 ≈c Hybrid3.

Proof. The indistinguishability of Hybrid3 from Hybrid2 follows immediately from the
computational zero-knowledge property of the NIZK proof system.

Hybrid 4. We don’t change anything in the output of the hybrid itself. We just use knowledge
of µ to extract the inputs A commits to in the 1st round messages that it sends on behalf
of the corrupted parties.

More specifically, S for every Pi ∈ PA obtains xi = Extr(CK,µ, βi). If extraction fails
then it sets xi = ⊥.

Hybrid 5. In this hybrid, we change how the simulator S generates c′i in the second round
message (ci, c

′
i, πi) on behalf of honest parties Pi ∈ P\PA. In particular, S instead of

computing the ciphertext c′i = Enc(pk1, xi||φ`out ; si1), generates c′i = Enc(pk1, φ
`in ||out; si1),

where out is the output computed as f({xj}j∈[n]) using the inputs xi of the honest parties,
that the simulator has access to, and extracted inputs of the malicious parties.

Lemma 4 Hybrid4 ≈c Hybrid5.

Proof. We base the indistinguishability between hybrids Hybrid4 and Hybrid5 on the
semantic security of the encryption scheme (Setup,Enc,Dec).

Hybrid 6. In this hybrid we essentially reverse the change that was made in going from
Hybrid 2 to Hybrid 3. In particular we change the σ so that it is sampled from the honest
distribution and generate the proof honestly. Note that since now we have changed the
ciphertext c′i the proof will have to be generated with respect to language L2.
More specifically, S uses K to generate σ instead of S1. Also for every Pi ∈ P\PA, S gen-
erates πi ← P (σ, (ci, c

′
i, (i, {βj}j∈[n])), (xi||φ`out , φ`in ||out, si0, si1, ({xi}i∈[n], out, {tj}j∈[n])))

where tj is the witness that βj ∈ LCom .

Lemma 5 Hybrid5 ≈c Hybrid6.

Proof. The indistinguishability of Hybrid5 from Hybrid6 follows immediately from the
computational zero-knowledge property of the NIZK proof system.

15

Hybrid 7. In this hybrid we change how oP , the obfuscated program in the CRS is gener-
ated. More specifically, oP is generated as an obfuscation of Progsk1,PK,CK,f instead of
Progsk0,PK,CK,f .

In the following we show that the program Prog is equivalent under sk0 and sk1 with
overwhelming probability. This allows us to conclude that the Hybrid 6 and Hybrid 7 are
indistinguishable based on indistinguishability obfuscation.

Lemma 6 Progsk0,PK,CK,f ≡ Progsk1,PK,CK,f .

Proof.

Recall that the underlying language L of the Double Key deniable encryption scheme
consists of two languages, namely L1 and L2. Note that since the NIZK has statistical
soundness with overwhelming probability over the choices of σ we have that all ciphertexts
with an accepting proof must be from one of the two languages. We refer to the two types
of ciphertexts corresponding to the language L1 and L2, as Type-1 and Type-2 ciphertext,
respectively.

Recall that the program Prog takes {βj}j∈[n] and {cj , c′j , πj}i∈[n] as input. Recall from
Figure 2 that in Step 1, Prog checks to see that all the proofs πi are accepting and otherwise
it outputs ⊥. This means that for the program to do anything interesting all the proofs
must be valid. Next we will show that in such cases the output of the program is identical
regardless of whether sk0 or sk1 is used.

All ciphertexts are of Type-1: In this case, cj and c′j for j ∈ [n] encrypted under pk0
and pk1 respectively, encrypt the same value. Hence, regardless of whether sk0 is used or
sk1 is used the program outputs the exact same value f({xj}j∈[n]).

There is at least one Type-2 ciphertext: Note that, in case sk0 is used then we
have that Step 2 of Prog is never invoked. On the other hand in case sk1 is used then we
have that Step 2 of Prog is necessarily invoked.

In other words if sk0 is used then the xj values are decrypted and output is calculated.
On the other hand if sk1 is used then a hard-coded out value is generated. We will argue
that in both cases the output generated by Prog is identical. We argue this by showing
that the only acceptable value for the hard-coded value out is f({xj}j∈[n]), where xj are
the inputs parties commit to in the first round. Recall that the commitment scheme is
perfectly binding, meaning that for every commitment βi there is exactly one xi such that
(βi, xi) ∈ LCOM. This proves our claim. �

Hybrid 8. In this hybrid we do the same change that was made in going from Hybrid 2 to
Hybrid 3. In this hybrid, we change how σ, which is a part of PK, and the proofs πi for
every Pi ∈ P\PA are generated.

More specifically, S runs the setup algorithm SetupDDK(1λ, 1`in+`out) of the Double Key
deniable encryption scheme, but replaces its internal call to the algorithm K with S =
(S1, S2) of the NIZK proof system. More specifically, S generates (pk0, sk0), (pk1, sk1)←
Setup(1λ), (σ, τ)← S1(1

λ), along with the public denying key DK. It sets the public key
PK = (σ, pk0, pk1, DK).

We also generate fake proofs πi using trapdoor τ . Specifically, it generates πi ← S2(σ, τ, (ci, c
′
i,

(i, {βj}j∈[n]))).

16

Lemma 7 Hybrid7 ≈c Hybrid8.

Proof. The indistinguishability of Hybrid7 from Hybrid8 follows immediately from the
computational zero-knowledge of the NIZK proof system.

Hybrid 9. In this hybrid, we change how the simulator S generates cj in the second round
message (cj , c

′
j , πj) on behalf of honest parties Pj ∈ P\PA. More specifically, S instead

of computing cj = Enc(pk0, xi||φ`out), it computes cj = Enc(pk0, φ
`in ||out) where out =

f({xj}j∈[n]).

Lemma 8 Hybrid8 ≈c Hybrid9.

Proof. We base the indistinguishability between hybrids Hybrid8 and Hybrid9 on the
semantic security of the encryption scheme, (Setup,Enc,Dec).

Hybrid 10. In this hybrid we change the way the public parameters of the commitment
scheme COM are generated. In particular, S runs the setup algorithm Setupequiv

Com (1λ)
(instead of Setupbind

Com(1λ)) of the adaptively secure commitment scheme COM and obtains
(CK,µ, ν) where the trapdoor µ is still being used for extraction of adversary’s inputs.

Lemma 9 Hybrid9 ≈c Hybrid10.

Proof. Indistinguishability between hybrids Hybrid9 and Hybrid10 follows from the in-
distinguishability of the public parameters of the commitment scheme COM.

Hybrid 11. In this hybrid we change the way S generates the commitments on behalf of
the honest parties. In particular we will remove the inputs and make these commitments
equivocal. More specifically, for every party Pi ∈ P\PA the first round message is com-
puted by S running (βi, statei) ← Equiv1(CK, ν). If the party later gets corrupted then
S will produce randomness ωi to equivocate the commitment βi to the prescribed input
xi. To this end, S will run ωi = Equiv2(CK, ν, βi, statei, xi).

Lemma 10 Hybrid10 ≈c Hybrid11.

Proof. We base the indistinguishability between hybrids Hybrid10 and Hybrid11 on the
polynomial equivocality of the adaptively secure commitment scheme COM.

Note that Hybrid11 is identical to the simulation strategy described in Section 4. This
concludes the proof.

6 Extending to leakage tolerant secure computation

The adaptively secure protocol presented in this paper also turns out to be leakage tolerant.
We recall the model of leakage in Section A.1.

Lemma 11 Assume the existence of indistinguishability obfuscation and doubly enhanced trap-
door permutation then any ideal functionality Ff can be UC-securely realized in the FCRS- model
against any adaptive, active adversary corrupting an arbitrary number of parties and allowed
with arbitrary leakage. Furthermore this protocol involves only two rounds of broadcast.

17

This lemma follows immediately from our construction and proof except for some syntactic
differences. We explain this next. We will only describe how our simulator for adaptive security
(from Section 4) can be converted into a simulator for the setting of leakage tolerance. The
proof of indistinguishability for the adaptive simulator was already provided in Section 5.

Recall that that the simulator for arguing adaptive security, on corruption of an honest party,
uses the honest party’s input alone in order to explain the messages it had previously sent on
behalf of the honest party. In the setting of leakage, we note that this method of explanation
can directly be expressed by a circuit that on input the input of the honest party outputs the
internal secret state of that party. Furthermore note that the way in which simulator explains
its first round messages of honest parties remains the same even after it has sent the second
round messages.

Using this explanation procedure as a translation method, allows us to immediately conclude
that any leakage query of the real-world adversary can be reduced directly to a leakage query
in the ideal-world.

References

[AJL+12] Gilad Asharov, Abhishek Jain, Adriana López-Alt, Eran Tromer, Vinod Vaikun-
tanathan, and Daniel Wichs. Multiparty computation with low communication,
computation and interaction via threshold FHE. In David Pointcheval and Thomas
Johansson, editors, Advances in Cryptology – EUROCRYPT 2012, volume 7237 of
Lecture Notes in Computer Science, pages 483–501, Cambridge, UK, April 15–19,
2012. Springer, Berlin, Germany.

[AJW11] Gilad Asharov, Abhishek Jain, and Daniel Wichs. Multiparty computation with
low communication, computation and interaction via threshold FHE. Cryptology
ePrint Archive, Report 2011/613, 2011. http://eprint.iacr.org/2011/613.

[BCH12] Nir Bitansky, Ran Canetti, and Shai Halevi. Leakage-tolerant interactive protocols.
In Ronald Cramer, editor, TCC 2012: 9th Theory of Cryptography Conference,
volume 7194 of Lecture Notes in Computer Science, pages 266–284, Taormina,
Sicily, Italy, March 19–21, 2012. Springer, Berlin, Germany.

[BCL+05] Boaz Barak, Ran Canetti, Yehuda Lindell, Rafael Pass, and Tal Rabin. Secure
computation without authentication. In Victor Shoup, editor, Advances in Cryp-
tology – CRYPTO 2005, volume 3621 of Lecture Notes in Computer Science, pages
361–377, Santa Barbara, CA, USA, August 14–18, 2005. Springer, Berlin, Ger-
many.

[BFM88] Manuel Blum, Paul Feldman, and Silvio Micali. Proving security against cho-
sen cyphertext attacks. In Shafi Goldwasser, editor, Advances in Cryptology –
CRYPTO’88, volume 403 of Lecture Notes in Computer Science, pages 256–268,
Santa Barbara, CA, USA, August 21–25, 1988. Springer, Berlin, Germany.

[BGI+12] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai,
Salil P. Vadhan, and Ke Yang. On the (im)possibility of obfuscating programs. J.
ACM, 59(2):6, 2012.

[BGJ+13] Elette Boyle, Sanjam Garg, Abhishek Jain, Yael Tauman Kalai, and Amit Sahai.
Secure computation against adaptive auxiliary information. In Ran Canetti and
Juan A. Garay, editors, Advances in Cryptology – CRYPTO 2013, Part I, volume

18

8042 of Lecture Notes in Computer Science, pages 316–334, Santa Barbara, CA,
USA, August 18–22, 2013. Springer, Berlin, Germany.

[Can01] Ran Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In 42nd Annual Symposium on Foundations of Computer Science, pages
136–145, Las Vegas, Nevada, USA, October 14–17, 2001. IEEE Computer Society
Press.

[CF01] Ran Canetti and Marc Fischlin. Universally composable commitments. In Joe
Kilian, editor, Advances in Cryptology – CRYPTO 2001, volume 2139 of Lecture
Notes in Computer Science, pages 19–40, Santa Barbara, CA, USA, August 19–23,
2001. Springer, Berlin, Germany.

[CFGN96] Ran Canetti, Uriel Feige, Oded Goldreich, and Moni Naor. Adaptively secure multi-
party computation. In 28th Annual ACM Symposium on Theory of Computing,
pages 639–648, Philadephia, Pennsylvania, USA, May 22–24, 1996. ACM Press.

[CKL03] Ran Canetti, Eyal Kushilevitz, and Yehuda Lindell. On the limitations of uni-
versally composable two-party computation without set-up assumptions. In Eli
Biham, editor, Advances in Cryptology – EUROCRYPT 2003, volume 2656 of Lec-
ture Notes in Computer Science, pages 68–86, Warsaw, Poland, May 4–8, 2003.
Springer, Berlin, Germany.

[CLOS02] Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Universally com-
posable two-party and multi-party secure computation. In 34th Annual ACM
Symposium on Theory of Computing, pages 494–503, Montréal, Québec, Canada,
May 19–21, 2002. ACM Press.

[CLP10] Ran Canetti, Huijia Lin, and Rafael Pass. Adaptive hardness and composable
security in the plain model from standard assumptions. In 51st Annual Symposium
on Foundations of Computer Science, pages 541–550, Las Vegas, Nevada, USA,
October 23–26, 2010. IEEE Computer Society Press.

[DHP11] Ivan Damg̊ard, Carmit Hazay, and Arpita Patra. Leakage resilient secure two-party
computation. IACR Cryptology ePrint Archive, 2011:256, 2011.

[DMRV13] Dana Dachman-Soled, Tal Malkin, Mariana Raykova, and Muthuramakrishnan
Venkitasubramaniam. Adaptive and concurrent secure computation from new
adaptive, non-malleable commitments. In Kazue Sako and Palash Sarkar, edi-
tors, Advances in Cryptology – ASIACRYPT 2013, Part I, volume 8269 of Lecture
Notes in Computer Science, pages 316–336, Bengalore, India, December 1–5, 2013.
Springer, Berlin, Germany.

[DN03] Ivan Damg̊ard and Jesper Buus Nielsen. Universally composable efficient multi-
party computation from threshold homomorphic encryption. In Dan Boneh, ed-
itor, Advances in Cryptology – CRYPTO 2003, volume 2729 of Lecture Notes in
Computer Science, pages 247–264, Santa Barbara, CA, USA, August 17–21, 2003.
Springer, Berlin, Germany.

[FLS90] Uriel Feige, Dror Lapidot, and Adi Shamir. Multiple non-interactive zero knowl-
edge proofs based on a single random string (extended abstract). In 31st Annual
Symposium on Foundations of Computer Science, pages 308–317, St. Louis, Mis-
souri, October 22–24, 1990. IEEE Computer Society Press.

19

[FS89] Uriel Feige and Adi Shamir. Zero knowledge proofs of knowledge in two rounds.
In Gilles Brassard, editor, Advances in Cryptology – CRYPTO’89, volume 435
of Lecture Notes in Computer Science, pages 526–544, Santa Barbara, CA, USA,
August 20–24, 1989. Springer, Berlin, Germany.

[GGG+14] Shafi Goldwasser, S. Dov Gordon, Vipul Goyal, Abhishek Jain, Jonathan Katz,
Feng-Hao Liu, Amit Sahai, Elaine Shi, and Hong-Sheng Zhou. Multi-input func-
tional encryption. In Phong Q. Nguyen and Elisabeth Oswald, editors, Advances
in Cryptology – EUROCRYPT 2014, volume 8441 of Lecture Notes in Computer
Science, pages 578–602, Copenhagen, Denmark, May 11–15, 2014. Springer, Berlin,
Germany.

[GGH13a] Sanjam Garg, Craig Gentry, and Shai Halevi. Candidate multilinear maps from
ideal lattices. In Thomas Johansson and Phong Q. Nguyen, editors, Advances
in Cryptology – EUROCRYPT 2013, volume 7881 of Lecture Notes in Computer
Science, pages 1–17, Athens, Greece, May 26–30, 2013. Springer, Berlin, Germany.

[GGH+13b] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent
Waters. Candidate indistinguishability obfuscation and functional encryption for
all circuits. In 54th Annual Symposium on Foundations of Computer Science, pages
40–49, Berkeley, CA, USA, October 26–29, 2013. IEEE Computer Society Press.

[GGHR14] Sanjam Garg, Craig Gentry, Shai Halevi, and Mariana Raykova. Two-round secure
MPC from indistinguishability obfuscation. In Yehuda Lindell, editor, TCC 2014:
11th Theory of Cryptography Conference, volume 8349 of Lecture Notes in Com-
puter Science, pages 74–94, San Diego, CA, USA, February 24–26, 2014. Springer,
Berlin, Germany.

[GGKS14] Sanjam Garg, Divya Gupta, Dakshita Khurana, and Amit Sahai. All-but-one
leakage resilient multiparty computation and incoercible multiparty computation.
Personal Communication, 2014.

[GJS11] Sanjam Garg, Abhishek Jain, and Amit Sahai. Leakage-resilient zero knowledge.
In Phillip Rogaway, editor, Advances in Cryptology – CRYPTO 2011, volume 6841
of Lecture Notes in Computer Science, pages 297–315, Santa Barbara, CA, USA,
August 14–18, 2011. Springer, Berlin, Germany.

[GMR89] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity
of interactive proof systems. SIAM Journal on Computing, 18(1):186–208, 1989.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game
or A completeness theorem for protocols with honest majority. In Alfred Aho,
editor, 19th Annual ACM Symposium on Theory of Computing, pages 218–229,
New York City,, New York, USA, May 25–27, 1987. ACM Press.

[Gol01] Oded Goldreich. Foundations of Cryptography: Basic Tools, volume 1. Cambridge
University Press, Cambridge, UK, 2001.

[Gol04] Oded Goldreich. Foundations of Cryptography: Basic Applications, volume 2. Cam-
bridge University Press, Cambridge, UK, 2004.

[GS12] Sanjam Garg and Amit Sahai. Adaptively secure multi-party computation with
dishonest majority. In Reihaneh Safavi-Naini and Ran Canetti, editors, Advances in

20

Cryptology – CRYPTO 2012, volume 7417 of Lecture Notes in Computer Science,
pages 105–123, Santa Barbara, CA, USA, August 19–23, 2012. Springer, Berlin,
Germany.

[HLP11] Shai Halevi, Yehuda Lindell, and Benny Pinkas. Secure computation on the web:
Computing without simultaneous interaction. In Phillip Rogaway, editor, Advances
in Cryptology – CRYPTO 2011, volume 6841 of Lecture Notes in Computer Science,
pages 132–150, Santa Barbara, CA, USA, August 14–18, 2011. Springer, Berlin,
Germany.

[KO04] Jonathan Katz and Rafail Ostrovsky. Round-optimal secure two-party computa-
tion. In Matthew Franklin, editor, Advances in Cryptology – CRYPTO 2004, vol-
ume 3152 of Lecture Notes in Computer Science, pages 335–354, Santa Barbara,
CA, USA, August 15–19, 2004. Springer, Berlin, Germany.

[Lin03] Yehuda Lindell. Bounded-concurrent secure two-party computation without setup
assumptions. In 35th Annual ACM Symposium on Theory of Computing, pages
683–692, San Diego, California, USA, June 9–11, 2003. ACM Press.

[LP09] Yehuda Lindell and Benny Pinkas. A proof of security of Yao’s protocol for two-
party computation. Journal of Cryptology, 22(2):161–188, April 2009.

[NY90] Moni Naor and Moti Yung. Public-key cryptosystems provably secure against cho-
sen ciphertext attacks. In 22nd Annual ACM Symposium on Theory of Computing,
pages 427–437, Baltimore, Maryland, USA, May 14–16, 1990. ACM Press.

[SW14] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: deni-
able encryption, and more. In David B. Shmoys, editor, 46th Annual ACM Sym-
posium on Theory of Computing, pages 475–484, New York, NY, USA, May 31 –
June 3, 2014. ACM Press.

[Yao82] Andrew Chi-Chih Yao. Protocols for secure computations (extended abstract).
In 23rd Annual Symposium on Foundations of Computer Science, pages 160–164,
Chicago, Illinois, November 3–5, 1982. IEEE Computer Society Press.

A UC Security

In this section we briefly review UC security. For full details see [Can01]. A large part of this
introduction has been taken verbatim from [CLP10].

The basic model of execution. Following [GMR89, Gol01], a protocol is represented as
an interactive Turing machine (ITM), which represents the program to be run within each
participant. Specifically, an ITM has three tapes that can be written to by other ITMs: the input
and subroutine output tapes model the inputs from and the outputs to other programs running
within the same “entity” (say, the same physical computer), and the incoming communication
tapes and outgoing communication tapes model messages received from and to be sent to the
network. It also has an identity tape that cannot be written to by the ITM itself. The identity
tape contains the program of the ITM (in some standard encoding) plus additional identifying
information specified below. Adversarial entities are also modeled as ITMs.

We distinguish between ITMs (which represent static objects, or programs) and instances
of ITMs, or ITIs, that represent interacting processes in a running system. Specifically, an ITI
is an ITM along with an identifer that distinguishes it from other ITIs in the same system.

21

The identifier consists of two parts: A session-identifier (SID) which identifies which protocol
instance the ITM belongs to, and a party identifier (PID) that distinguishes among the parties in
a protocol instance. Typically the PID is also used to associate ITIs with “parties”, or clusters,
that represent some administrative domains or physical computers.

The model of computation consists of a number of ITIs that can write on each other’s tapes
in certain ways (specified in the model). The pair (SID,PID) is a unique identifier of the ITI in
the system.

With one exception (discussed within) we assume that all ITMs are probabilistic polynomial
time (PPT). An ITM is PPT if there exists a constant c > 0 such that, at any point during its
run, the overall number of steps taken by M is at most nc, where n is the overall number of
bits written on the input tape of M in this run. (In fact, in order to guarantee that the overall
protocol execution process is bounded by a polynomial, we define n as the total number of bits
written to the input tape of M , minus the overall number of bits written by M to input tapes of
other ITMs.; see [Can01].)

Security of protocols. Protocols that securely carry out a given task (or, protocol problem)
are defined in three steps, as follows. First, the process of executing a protocol in an adversarial
environment is formalized. Next, an “ideal process” for carrying out the task at hand is formal-
ized. In the ideal process the parties do not communicate with each other. Instead they have
access to an “ideal functionality,” which is essentially an incorruptible “trusted party” that is
programmed to capture the desired functionality of the task at hand. A protocol is said to
securely realize an ideal functionality if the process of running the protocol amounts to “emu-
lating” the ideal process for that ideal functionality. Below we overview the model of protocol
execution (called the real-life model), the ideal process, and the notion of protocol emulation.

The model for protocol execution. The model of computation consists of the parties running
an instance of a protocol Π, an adversary A that controls the communication among the parties,
and an environment Z that controls the inputs to the parties and sees their outputs. We
assume that all parties have a security parameter n ∈ N. (We remark that this is done merely
for convenience and is not essential for the model to make sense). The execution consists of
a sequence of activations, where in each activation a single participant (either Z, A, or some
other ITM) is activated, and may write on a tape of at most one other participant, subject to
the rules below. Once the activation of a participant is complete (i.e., once it enters a special
waiting state), the participant whose tape was written on is activated next. (If no such party
exists then the environment is activated next.)

The environment is given an external input z and is the first to be activated. In its first
activation, the environment invokes the adversary A, providing it with some arbitrary input.
In the context of UC security, the environment can from now on invoke (namely, provide input
to) only ITMs that consist of a single instance of protocol Π. That is, all the ITMs invoked by
the environment must have the same SID and the code of Π.

Once the adversary is activated, it may read its own tapes and the outgoing communication
tapes of all parties. It may either deliver a message to some party by writing this message on the
party’s incoming communication tape or report information to Z by writing this information
on the subroutine output tape of Z. For simplicity of exposition, in the rest of this paper we
assume authenticated communication; that is, the adversary may deliver only messages that
were actually sent. (This is however not essential as shown in [BCL+05].)

Once a protocol party (i.e., an ITI running Π) is activated, either due to an input given by
the environment or due to a message delivered by the adversary, it follows its code and possibly
writes a local output on the subroutine output tape of the environment, or an outgoing message
on the adversary’s incoming communication tape. Finally our adversary can decide to corrupt
any honest party. In this case the input and the random coins used by this party are revealed

22

to the adversary.
The protocol execution ends when the environment halts. The output of the protocol exe-

cution is the output of the environment. Without loss of generality we assume that this output
consists of only a single bit.

Let EXECπ,A,Z(n, z, r) denote the output of the environment Z when interacting with par-
ties running protocol Π on security parameter n, input z and random input r = rZ , rA, r1, r2, . . .
as described above (z and rZ for Z; rA for A, ri for party Pi). Let EXECπ,A,Z(n, z) random
variable describing EXECπ,A,Z(n, z, r) where r is uniformly chosen. Let EXECπ,A,Z denote
the ensemble {EXECπ,A,Z(n, z)}n∈N,z∈{0,1}∗ .

Ideal functionalities and ideal protocols. Security of protocols is defined via comparing
the protocol execution to an ideal protocol for carrying out the task at hand. A key ingredient
in the ideal protocol is the ideal functionality that captures the desired functionality, or the
specification, of that task. The ideal functionality is modeled as another ITM (representing
a “trusted party”) that interacts with the parties and the adversary. More specifically, in the
ideal protocol for functionality F all parties simply hand their inputs to an ITI running F . (We
will simply call this ITI F . The SID of F is the same as the SID of the ITIs running the ideal
protocol. (the PID of F is null.)) In addition, F can interact with the adversary according to
its code. Whenever F outputs a value to a party, the party immediately copies this value to its
own output tape. We call the parties in the ideal protocol dummy parties. Let Π(F) denote the
ideal protocol for functionality F .

Securely realizing an ideal functionality. We say that a protocol Π emulates protocol φ
if for any adversary A there exists an adversary S such that no environment Z, on any input,
can tell with non-negligible probability whether it is interacting with A and parties running Π,
or it is interacting with S and parties running φ. This means that, from the point of view of the
environment, running protocol Π is ‘just as good’ as interacting with φ. We say that Π securely
realizes an ideal functionality F if it emulates the ideal protocol Π(F). More precise definitions
follow. A distribution ensemble is called binary if it consists of distributions over {0, 1}.

Definition 3 Let Π and φ be protocols. We say that Π UC-emulates φ if for any adversary A
there exists an adversary S such that for any environment Z that obeys the rules of interaction
for UC security we have EXECφ,S,Z ≈ EXECπ,A,Z .

Definition 4 Let F be an ideal functionality and let Π be a protocol. We say that Π UC-realizes
F if Π UC-emulates the ideal process Π(F).

The Common Reference String Model. In the common reference string (CRS) model [CF01,
CLOS02], all parties in the system obtain from a trusted party a reference string, which is sam-
pled according to a pre-specified distribution D. The reference string is referred to as the CRS.
In the UC framework, this is modeled by an ideal functionality FDCRS that samples a string ρ
from a pre-specified distribution D and sets ρ as the CRS. FDCRS is described in Figure 3.

General Functionality. We consider the general-UC functionality F , which securely evalu-
ates any polynomial-time (possibly randomize) function f : ({0, 1}`in)n → ({0, 1}`out)n. The
functionality Ff is parameterized with a function f and is described in Figure 4.

Our protocol in Figure 3 (also Theorem 2) is for UC-securely realizing general functionality
Ff when the function f is restricted to be any deterministic poly-time function with n inputs
and single output. This functionality has been formally defined in Figure 5. As explained in
Section 3.1 the same protocol can be used to obtain a protocol that UC-securely realizes the
general functionality Ff for any function f .

23

Functionality FD
CRS

1. Upon activation with session id sid proceed as follows. Sample ρ =
D(r), where r denotes uniform random coins, and send (crs, sid, ρ) to
the adversary.

2. On receiving (crs, sid) from some party send (crs, sid, ρ) to that party.

Figure 3: The Common Reference String Functionality.

Functionality Ff

Ff parameterized by an (possibly randomized) n-ary function f , running
with parties P = {P1, . . . Pn} (of which some may be corrupted) and an
adversary S, proceeds as follows:

1. Each party Pi (and S on behalf of Pi if Pi is corrupted) sends
(input, sid,P, Pi, xi) to the functionality.

2. Upon receiving the inputs from all parties, evaluate (y1, . . . yn) ←
f(x1, . . . , xn). For every Pi that is corrupted send adversary S the
message (output, sid,P, Pi, yi).

3. On receiving (generateOutput, sid,P, Pi) from S the ideal functionality
outputs (output, sid,P, Pi, yi) to Pi. (And ignores the message if inputs
from all parties in P have not been received.)

4. If all the parties in P are corrupted then the ideal functionality reveals
the internals coins used in the computation of f .

Figure 4: General Functionality.

A.1 Extending to the setting of leakage

Towards extending our definition to leakage-tolerant MPC, we modify the real/ideal worlds
above in the following manner.

In the real world, in addition to corrupting arbitrary parties, the adversary can now obtain
leakage information on the secret internal states of the honest parties (including their inputs)
at any point during the protocol execution. A leakage query may be adaptively chosen based
on all information received up to that point (including responses to previous leakage queries),
and computed on the joint secret states of one or more honest parties.

During the protocol honest parties have the ability to toss fresh coins at any point in the
protocol; these coins are added to the state of that party at the time they are generated.

The outputs of the leakage queries along with the parties being leaked on in each query are
included as part of output of the experiment. We stress that we do not allow any leakage-free
phase at any point prior to or during the protocol execution.

Similarly in the ideal world, the ideal world adversary is allowed to make leakage queries on
the joint inputs of one or more honest parties. The queries are answered directly by the ideal
functionality. The outputs of the leakage queries along with the parties being leaked on in each
query are included as part of the experiment.

24

Functionality Ff

Ff parameterized by an n-ary deterministic single output function f , running
with parties P = {P1, . . . Pn} (of which some may be corrupted) and an
adversary S, proceeds as follows:

1. Each party Pi (and S on behalf of Pi if Pi is corrupted) sends
(input, sid,P, Pi, xi) to the functionality.

2. Upon receiving the inputs from all parties, evaluate y ← f(x1, . . . , xn).
Send adversary S the message (output, sid,P, y).

3. On receiving (generateOutput, sid,P, Pi) from S the ideal functionality
outputs (output, sid,P, y) to Pi. (And ignores the message if inputs
from all parties in P have not been received.)

Figure 5: General Functionality for Deterministic Single Output Functionalities.

Note that in the definition above including the output of leakage queries in the outputs of
the experiments places a restriction on the nature of leakage queries that the simulator may
make to the ideal functionality. In our proof the simulator will actually work independent of
the leakage queries of the real-world adversary. Instead, it only provides a “state translation”
function to the ideal functionality to help compute the correct answers to the leakage queries
of the adversary.

25

