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Abstract. Slide attacks use pairs of encryption operations which are
slid against each other. Slide with a twist attacks are more sophisticated
variants of slide attacks which slide an encryption operation against
a decryption operation, and were used in 2000 to attack several cryp-
tosystems, including DESX, the Even-Mansour construction, and Feistel
structures with four-round self-similarity. They were further extended in
2012 to the mirror slidex framework, which was used to attack 20-round
GOST and several additional variants of the Even-Mansour construction.
In this paper, we revisit all the previously published applications of these
techniques and show that in almost all cases, the same or better results
can be achieved by a simpler attack which is based on the seemingly
unrelated idea of exploiting their internal fixed points. The observation
that such fixed points can be useful in cryptanalysis had already been
pointed out in 2007 by Kara, but all the examples he gave for his re-

flection attack were based on particular constructions such as Feistel
structures or GOST key schedules in which it was easy to explicitly list
and count their fixed points. In this paper, we generalize Kara’s reflec-
tion attack by using the combinatorial result that random involutions on
2n values are expected to have a surprisingly large number of O(2n/2)
fixed points (whereas random permutations are expected to have only
O(1) fixed points). This makes it possible to reduce the complexity of
the best known attack on additional cryptographic schemes in which it
is difficult to explicitly characterize and count their internal fixed points.

Keywords: Cryptanalysis, Reflection attack, Slide with a twist, Fixed points,
Random Involutions, Feistel structures, Even-Mansour scheme, DESX, GOST



1 Introduction

Many cryptographic schemes have some form of self similarity (in which the
scheme can be compared to a modified form of itself), and many cryptanalytic
techniques had been developed over the last 15 years to take advantage of this
fact. The simplest technique (which was proposed by Biryukov and Wagner [1] at
FSE’99) is the slide attack, which compares the encryption process to a slightly
shifted version of itself (e.g., by a single round). A pair of encryptions is called a
slid pair if they contain the same corresponding values after each round in their
overlapping part. Such a pair makes it possible to consider only the short non-
overlapping parts at the beginning and the end of the encryption, and to recover
the key from their known inputs and outputs. One of the unique properties
of slide attacks is that they can break an arbitrarily large number of rounds
with the same complexity, since they ignore the long common part of the two
encryptions.

One year later, at Eurocrypt 2000, Biryukov and Wagner developed an ad-
vanced version of this attack called a slide with a twist attack [2] by considering
a more complicated form of self similarity, which shifts and reverses one encryp-
tion in order to get the other encryption. In their paper, they used such slid
pairs of an encryption and a decryption in order to attack the Even-Mansour
scheme and some variants of DES with modified key schedules.

In 2007, Kara [11] developed a different approach which he called a reflec-
tion attack, in which he showed how to improve the attack on the encryption
scheme 2K-DES by exploiting the existence of some internal fixed points. This
scheme is defined as a Feistel structure with an arbitrary number of rounds
which alternately uses two keys in subsequent rounds, and the fixed point is
created whenever the F function in a particular round produces a zero value.
Kara showed that in this case there is a palindromic structure of values before
and after this round, which can be exploited by the cryptanalyst. It is interesting
to note that the same type of fixed point was already used by Coppersmith [4]
at Crypto’85 to explain a mysterious cycling behavior of iterated DES which
was experimentally observed by Rivest. More recently, Soleimany et al. [12] used
such a fixed point based property of the lightweight block cipher PRINCE in
order to construct a new type of distinguisher for that cipher.

At Eurocrypt 2012, Dunkelman, Keller and Shamir developed the mirror
slidex attack, which avoided the need to compare encryptions with decryptions by
using the existence of an involution (acting as a reflecting “mirror”) in the middle
of the encryption. They used this technique to obtain an attack on variants of
DES, GOST, and the Even-Mansour scheme.

In this paper, we show that almost all the slide with a twist attacks mentioned
above can be either matched or improved by using a unified technique (that we
call enhanced reflection) which combines involutions and fixed points in a new
way. In particular, we use a classical combinatorial result (which does not seem
to be well known in our community) that randomly chosen involutions over
2n values are expected to have O(2n/2) fixed points (whereas randomly chosen
permutations are expected to have only O(1) fixed points). By identifying a large
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involution deep inside a given scheme, we can use a relatively small number of
encryptions in order to obtain with high probability either one or two fixed
points of this involution, and then proceed to extract the key from the parts of
the scheme that remain after deleting the involution. This eliminates the need
in previous reflection attacks to characterize and count all the possible fixed
points of such an involution. In fact, the only previously studied cases in which
we could not apply this new technique were when the involutions were so simple
that they behaved in a completely non-random way. For example, XORing a key
to a value is an involution, but it clearly has no fixed points when the key is
nonzero.

In addition to generalizing and unifying previous attacks based on such self
similarity, the new approach makes it possible to improve the best known attack
on several cryptographic schemes. For example, while a slide with a twist attack
on 18-round GOST requires a barely-practical time complexity of 264, the en-
hanced reflection attack can break the same version with a practical 233 time
complexity using the same amount of data.5

Likewise, while the mirror slidex attack on a single-key Even-Mansour con-
struction with addition operations requires either 2n/2 adaptively chosen plain-
texts or 2n/2 memory, our enhanced reflection attack requires only 2n/2 known
plaintexts and a constant amount of memory to achieve the same goal. Finally,
we can apply our technique to a Feistel structure with four-round self-similarity
surrounded by key whitenings, which was conjectured in [7] to be immune to
slide-type attacks.

2 The Slide With a Twist and the Mirror Slidex Attacks

In this section, we present a brief description of the slide with a twist attack and
of its enhancement – the mirror slidex attack. For sake of brevity, we present the
general framework of the mirror slidex attack, and view the original slide with
a twist attack as a special case. After describing the attack techniques, we list
the applications presented in [2,7,6]. A detailed treatment of these applications
is given in Sections 3 and 4.

5 For sake of simpler presentation, we slightly disregard the exact success probability
of the attacks. All the attacks reported in the paper have a constant non-negligible
success rate (for the proposed complexities). At the same time, we alert the reader
that sometimes, the success rate might be slightly lower than 50% (e.g., when we
assume a collision occurs given 2n/2 n-bit strings, rather than 1.17 · 2n/2). Addition-
ally, when previous results used a slightly larger constant (to increase the success
rate), we quote a similar data complexity.
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Fig. 1. A Mirror Slid Pair (P, P ∗)

2.1 The General Attack Framework

The mirror slidex attack can be applied in principle to any block cipher that can
be decomposed as a cascade of three sub-ciphers: E = E2 ◦ E1 ◦ E0, where the
middle layer E1 is an involution, i.e., E1 ◦ E1 is the identity mapping.6

Let E be such a cipher, and assume that for two plaintext/ciphertext pairs
(P,C), (P ∗, C∗), we have

E0(P ) = E−1
2 (C∗). (1)

Note that for a random choice of two pairs, this event happens with probability
2−n. Since E1 is an involution for which E1 = (E1)

−1, in this case we can also
deduce that:

E1(E0(P )) = E−1
1 (E−1

2 (C∗)).

By the construction, this implies that:

E−1
2 (C) = E1(E0(P )) = E−1

1 (E−1
2 (C∗)) = E0(P

∗). (2)

If Equation (1) holds (and thus, Equation (2) also holds), the pair (P, P ∗) is
called a mirror slid pair (depicted in Figure 1).

The mirror slid pairs can be used to mount a cryptanalytic attack on E. In
the attack, the adversary asks for the encryption of O(2n/2) known plaintexts
P1, P2, . . . (where n is the block size of E) and denotes the corresponding cipher-
texts by C1, C2, . . .. For each of the O(2n) pairs (Pi, Pj), the adversary assumes
that it is a mirror slid pair and tries to solve the system of equations:

{

Cj = E2(E0(Pi)),

Ci = E2(E0(Pj))
(3)

6 Note that any cryptosystem can be represented in such a way by artificially adding
an identity operation (which is an involution) in its middle, but since the omission of
E1 does not simplify the cryptosystem in this case, we will not get a better attack.
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(which is equivalent to Equations (1) and (2)). If E0 and E2 are “simple enough”,
the adversary can solve the system efficiently and recover the key material used
in E0 and E2.

If the amount of subkey material used in E0 and E2 is at most n bits (in
total), it is expected that at most a few of the systems of equations generated
by the 2n plaintext pairs7 are consistent (since the equation system is a 2n-
bit condition). One of them is the system generated by the mirror slid pair,
which is expected to exist in the data with a non-negligible probability since the
probability of a random pair to be a mirror slid pair is 2−n. Hence, the adversary
obtains only a few suggestions for the key, which contain the right key with a
non-negligible probability. If the amount of key material used in E0 and E2 is
larger than n bits, the adversary can still find the right key, by enlarging the
data set by a small factor and using key ranking techniques (exploiting the fact
that the right key is suggested by all mirror slid pairs, while the other pairs
suggest “random” keys).

The data complexity of the attack is O(2n/2) known plaintexts, and its time
complexity is O(2n) · t, where t is the time required for solving the system (3).

The slide with a twist attack is a special case of the mirror slidex framework
in which E2 = Identity. In such a case, the system of equations presented above
is simplified to:

{

Cj = E0(Pi),

Ci = E0(Pj).
(4)

We note that in [2] where the slide with a twist attack was introduced, it was
presented in a different way. However, the presentations are equivalent and for
the purpose of the current paper, the presentation given here is sufficient.

2.2 Applications of the Slide with a Twist Attack

In [2,7,6], the authors presented numerous applications of the slide with a twist
and the mirror slidex techniques.

1. Feistel constructions with self similarity. These constructions are based
on DES, with the sequence of subkeys replaced by a periodic sequence, such
as k0, k1, k0, k1, . . .. In [2], the authors considered two such constructions
called 2K-DES and 4K-DES (with two-round and four-round self similarity,
respectively), and presented known plaintext attacks of complexity 2n/2 and
chosen plaintext attacks of complexity 2n/4 on both variants. They also con-
sidered DES with a modified key schedule proposed by Brown and Seberry,
which appears to be 4-round self-similar, and devised an even faster attack
on it, using specific properties of DES.

2. Feistel constructions with self similarity surrounded by key whiten-
ings. These constructions are based on the block cipher DESX (defined as

7 We note that in some cases, it is possible to discard candidate plaintext pairs before
applying the attack on E0 and E2.
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DES surrounded by key whitenings), with the sequence of subkeys replaced
by a periodic sequence. In [6], the authors considered 2K-DESX and 4K-
DESX (with two-round and four-round self similarity, respectively). They
presented a known plaintext attack of complexity 2n/2 on 2K-DESX, but
stated that they could not find any attack which is faster than 2n on 4K-
DESX.

3. Reduced variants of GOST. In [2], the authors considered a variant of
the GOST block cipher in which the key additions are replaced by XORs.
They showed that 20 rounds of this variant can be broken in 233 data and
270 time, and presented a set of 2128 weak keys for this variant, for which the
encryption is reduced to a Feistel construction with 4-round self similarity.
In [7], it was shown that 20 rounds of original GOST can also be broken by
slide with a twist, in a slightly increased time of 277.

4. DESX and the Even-Mansour construction. In [2], the authors showed
that the Even-Mansour construction (defined as E(P ) = K2 ⊕ F (P ⊕K1),
where K1,K2 are secret keys and F is a publicly known permutation) can
be broken in 2n/2 time and memory, using 2n/2 queries to E and 2n/2 com-
putations of F . They also presented a similar attack that breaks DESX in
233 data and 289 time.8

5. Variants of the Even-Mansour construction. In [7] it was shown that
if the public permutation used in the Even-Mansour construction is an in-
volution, the construction can be broken in 2n/2 time and memory, with
2n/2 queries to E and no computations of F . Numerous other variants of
the Even-Mansour construction were studied in [7], most notably a variant
defined as E(P ) = K + F (P +K) where F is a publicly known involution,
that was shown to be completely breakable in 2n/2 time and memory, with
2n/2 queries to E and no computations of F .

We consider all these applications in detail in the next two sections, and
show that for all of them (except for the simplest attacks of [2] on DESX and
Even-Mansour, in which the involution is just a XOR with a key, which is not
sufficiently random), our enhanced reflection attack performs at least as well as
the slide with a twist attack, and in some cases it performs significantly better.

We consider applications (3)–(5) in Section 3, right after the presentation of
the new technique. Applications (1)–(2) will be considered in Section 4, as our
results for those variants require some additional observations specific to Feistel
constructions, and are directly related to the original reflection attack [11] (that
is also considered in Section 4).

8 We alert the reader that in DES the key length is 56 bits, and thus the time com-
plexity of the attack is essentially about 256 · 264/2 (again taking into account that
a small multiplicative constant in the data/time complexities increases the success
rate).
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Application Technique Reference Data Time Memory

18-Round GOST slide with a twist [2,7] 233 264 233

enhanced reflection Section 3 233 233 233

20-Round GOST slide with a twist [2,7] 233 277 233

enhanced reflection Section 3 233 277 233

DESX slide with a twist [2] 233 KP 289 233

enhanced reflection Section 3 (fails) (fails) (fails)

Even-Mansour mirror slidex [7] 2n/2 KP 2n/2 2n/2

Variant (AIEM) enhanced reflection Section 3 2n/2 KP 2n/2 2n/2

Even-Mansour mirror slidex [7] 2n/2 KP 2n/2 2n/2

Variant (ASIEM) enhanced reflection Section 3 2n/2 KP 2n/2 O(1)

2K-DES and slide with a twist [2] 2n/2 KP 2n/2 2n/2

4K-DES slide with a twist [2] 2n/4 CP 2n/4 2n/4

enhanced reflection Section 4 2n/2 KP 2n/2 O(1)

2K-DESX mirror slidex [6] 2n/2 KP 2n/2 2n/2

enhanced reflection Section 4 2n/2 KP 2n/2 2n/2

4K-DESX mirror slidex [6] (fails) (fails) (fails)

enhanced reflection Section 4 n · 2n/2 KP n · 2n/2 2n/2

Table 1. Summary of Applications

3 Enhanced Reflection Attacks Using Fixed Points of

Involutions

In this section we present our enhanced reflection attack which is based on the
simple fact that random involutions have a surprisingly large number of fixed
points. We describe scenarios in which the attack is advantageous over the slide
with a twist attack. Then we consider several specific applications of the slide
with a twist attack presented in [2,7,6] and show how the enhanced reflection
attack applies to them.

3.1 The Basic Idea

The starting point of the enhanced reflection attack is a classical result on the
number of fixed points of involutions.

Theorem 1 ([9], page 596). Let I : S → S be drawn at random from the set
of involutions on a set S with N elements. Then the expected number of fixed
points of I is

√
N − 1/2 + o(1).

The proof of the theorem is a standard generating functions argument.
The theorem allows to significantly simplify the attack of the mirror slidex

framework presented in Section 2. Let E be a block cipher that can be decom-
posed as a cascade of three sub-ciphers: E = E2 ◦ E1 ◦ E0, where the middle
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layer E1 is an involution. Assume that for a plaintext/ciphertext pair (P,C), the
intermediate encryption value after the application of E0, i.e., E0(P ), is a fixed
point of E1 (for a random involution on n-bit values, this happens with prob-
ability 2−(n/2)). In such a case, we have C = E2(E1(E0(P ))) = E2(E0(P )). If
the same condition holds for two plaintext/ciphertext pairs (P,C), (P ∗, C∗), we
obtain the following system of equations, that resembles (but is not equivalent
to) the system of equations (3):

{

C = E2(E0(P )),

C∗ = E2(E0(P
∗)).

(5)

We call plaintext/ciphertext pairs (P,C) for which the condition holds “special
plaintexts”.

The system of equations (5) can be constructed for a general scheme E =
E2 ◦ E1 ◦ E0, even if E1 is not an involution. However, in general permutations
there is only one fixed point on average, and thus, we need the entire codebook
in order to exploit (5). When E1 is an involution, we expect that it has about
2n/2 fixed points by Theorem 1, and thus, we can exploit (5) given as little as
2n/2 known plaintexts (we remind the reader that a small increase in the data
complexity can increase the success rate).

The attack algorithm is very simple: The adversary asks for the encryption of
O(2n/2) known plaintexts P1, P2, . . . (where n is the block size of E) and denotes
the corresponding ciphertexts by C1, C2, . . .. For each of the O(2n) pairs (Pi, Pj),
the adversary assumes that both Pi and Pj are special plaintexts and tries to
solve the system of equations:

{

Ci = E2(E0(Pi)),

Cj = E2(E0(Pj)).
(6)

If E0 and E2 are “simple enough”, the adversary can solve the system efficiently
and recover the key material used in E0 and E2. The data complexity of the
attack is O(2n/2) known plaintexts, and its time complexity is O(2n) · t, where
t is the time required for solving the system (6).

In the special case in which E2 = Identity, that was considered in the slide
with a twist attack, the system of equations (6) is simplified to:

{

Ci = E0(Pi),

Cj = E0(Pj).
(7)

The rest of the algorithm is the same as in the attack above.

3.2 Advantages Over the Mirror Slidex Attack

While the enhanced reflection framework looks very similar to the mirror slidex
attack framework, it has several advantages over it:
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1. Attacks when E2 ◦E0 is simple. In some cases, the function E2 ◦E0 is so
simple, that a single pair C = E2(E0(P )) is sufficient for breaking E2 ◦ E0.
In such a case, the advantage of the enhanced reflection attack over mirror
slidex can be huge, as its time complexity is only O(2n/2·t) instead ofO(2n·t).
Indeed, instead of iterating over all O(2n) pairs, it is sufficient to go over
O(2n/2) known plaintexts, assume for each plaintext Pi that it is special, and
try to solve the equation Ci = E2(E0(Pi)). Such an optimization does not
seem to be possible in the mirror slidex attack which inherently works with
pairs and thus requires O(2n · t) time. We demonstrate this advantage below
in the concrete example of 18-round GOST, where mirror slidex requires 264

time and the enhanced reflection attack requires only 232 time.
2. Exploiting differentials in E1. Consider the slide with a twist framework,

i.e., ciphers of the form E = E1 ◦ E0, and assume that there exists a dif-
ferential α → β for E1 with probability p ≫ 2−n/2. In such a case, we can
mount an improved chosen ciphertext attack in which we attach to each
plaintext/ciphertext pair (P,C) the pair C∗ = C ⊕ β, P ∗ = E−1(C ⊕ β). If
some pair (P,C) is special, i.e., E−1

1 (C) = C, then with probability p, we
have E−1

1 (C ⊕ β) = C ⊕ α, and thus, we obtain the system of equations:
{

C = E0(P ),

C ⊕ α = E0(P
∗).

(8)

As the probability that a random plaintext (P,C) is special is 2n/2, this
attack requires only O(2n/2 ·(1/p)·t) time, which may be significantly smaller
than the O(2n ·t) time complexity of the slide with a twist attack on the same
variant. The same improvement can be obtained when the differential uses
addition rather than XOR. Note that the slide with a twist attack cannot
exploit differential properties of E1 since it is inherently independent of the
structure of E1, apart from the fact that it is an involution.

3. Reducing the memory complexity in certain cases. In some of the
scenarios considered in [2,7], the mirror slidex attack can be optimized by
reducing the system of equations (3) to a single equation of the form P⊕C =
P ∗ ⊕ C∗. In such cases, the attack can be performed in time O(2n/2) by
sorting the plaintext/ciphertext pairs according to P ⊕ C, and searching
for a collision. Such an attack requires either O(2n/2) memory or O(2n/2)
adaptively chosen plaintext queries (if we use Pollard’s rho method). As we
show in the examples of variants of the Even-Mansour construction below,
in some of these cases, system (6) can be reduced to an extremely simple
equation of the form P⊕C = f(K), for some simple function f . In such cases,
the enhanced reflection attack can be performed in a memoryless manner,
by iterating over O(2n/2) known plaintexts, assuming for each plaintext that
it is special, and testing the key suggestion instantly by trial encryption.

4. Applying the two techniques in parallel. As the enhanced reflection
attack and the mirror slidex attacks exploit different properties of the data
and both require only known plaintexts, they can be applied in parallel, using
the same data set. While this does not reduce the overall time complexity
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of the attack, it reduces the data complexity by a factor of up to
√
2 (the

exact factor depends on the desirable success probability of the attack).

3.3 Applications of the Enhanced Reflection Attack

In this section, we review several applications of the slide with a twist and
mirror slidex attacks, and investigate how the enhanced reflection attack applies
to them.

Reduced-Round Variants of GOST GOST [10] is the Russian government
standard block cipher. It is a 64-bit block and 256-bit key cipher with a Feistel
structure of 32 rounds. The round function accepts an input and a subkey of 32
bits each. As the exact structure of the round function is irrelevant to this work,
we refer the interested reader to [10].

The key schedule algorithm takes the 256-bit key and treats it as eight 32-bit
words, i.e., K = K1, . . . ,K8. The subkey SKr of round r is

SKr =

{

K(r−1) mod 8+1 r ∈ {1, . . . , 24};
K33−r r ∈ {25, . . . , 32}.

In [7], Dunkelman et al. showed that a reduced variant of GOST that consists
of its last 20 rounds can be broken by a slide with a twist attack. The basic
observation behind the attack is that the last 16 rounds of GOST constitute an
involution, and thus, the last 20 rounds of GOST can be written as E = E1 ◦E0,
where E1 is an involution and E0 is 4-round GOST. Thus, the slide with a twist
attack can break 20-round GOST with 233 known plaintexts and 265 · t time,
where t is the time required to solve the system (4) for 4-round GOST. Since
Dinur et al. [5] showed that 4-round GOST can be broken in 212 time given two
known plaintexts, the overall complexity of the attack is 277 encryptions.

Using the enhanced reflection attack, we can break 20-round GOST with
the same number of known plaintexts. Instead of the system of equations (4),
we obtain the system (7) that can be solved with the same time complexity. In
this case the enhanced reflection attack has the same time complexity as the
previous attack. However, the advantage of the new technique over slide with a
twist can be demonstrated by considering another reduced variant of GOST that
consists of the last 18 rounds. This variant can again be written as E = E1 ◦E0,
where E1 is an involution, but in this case E0 is 2-round GOST, which can be
broken instantly given a single known plaintext/ciphertext pair. Hence, the new
technique allows us to break this variant with about 233 known plaintexts and
233 time using key ranking techniques on the last two round keys. The slide with
a twist attack on this variant requires 264 time, as one cannot avoid checking all
the 264 candidate slid pairs.

We note that this attack on 18-round GOST can be considered as an instance
of the original reflection attack [11] on GOST, which is based on exploiting fixed
points of the last 16 rounds of GOST. However, the approach here is more general

10



than in the reflection attack, and the same attack applies when the last 16 rounds
of GOST are replaced by any involution, unlike in the original reflection attack
that studies only certain special classes of involutions.

We further note that although our attacks on reduced GOST (as well as the
previous attacks of [7]) we do not recover the full 256-bit key, we still consider
them as valid breaks of the scheme. The reason for this is that after we “peel
off” the key material the surrounds the involution, the remaining scheme is not
stronger than an involution, which is clearly a weak cipher (e.g., it has about
2n/2 fixed points, and therefore does not provide the privacy level required from
a block cipher).

DESX and the Even-Mansour Construction DESX is an extension of DES
proposed by Rivest in 1984, in order to defend DES against exhaustive key search
attacks without changing its design significantly. It is defined as:

DESXK0,K1,K2
(P ) = K2 ⊕DESK1

(P ⊕K0).

The Even-Mansour (EM) construction was proposed in 1991 by Even and Man-
sour [8], as an attempt to devise the “simplest possible” block cipher using a
single unkeyed permutation. It is defined as:

EMK0,K1
(P ) = K1 ⊕F(P ⊕K0),

where F is modelled as a publicly known random permutation.
In [2], Biryukov and Wagner showed that the slide with a twist technique

can be used to attack DESX and EM. The basic idea behind the attack is that
since XOR with a key is an involution, EM can be represented as E = E1 ◦ E0,
where E1 is an involution and E0(P ) = F(P ⊕K0). In this case, the system of
equations (4) can be written as:

{

F−1(Ci) = Pj ⊕K0,

F−1(Cj) = Pi ⊕K0.
(9)

Summing these equations leads to cancellation of K0, and after rearranging we
obtain the single equation Pi⊕F−1(Ci) = Pj⊕F−1(Cj). This allows to break EM
in data and time of O(2n/2), by sorting the plaintext/ciphertext pairs according
to the value Pi ⊕F−1(Ci) and looking for collisions.

DESX can be attacked in the same way, after guessing the value of K1, as
this guess transforms DES into a public permutation. As the effective key length
of DES is 56 bits, the complexity of the attack on DESX is 233 known plaintexts
and 289 time.

Somewhat surprisingly, these two attacks are the only cases we encountered
so far in which the slide with a twist attack cannot be transformed to the new
framework. The reason is prosaic: the XOR with a key, that is used as the involu-
tion in the attack, is so simple that it cannot be treated as a random involution,
and thus, Theorem 1 does not apply. In fact, it is clear that unless the XORed
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key equals zero, this operation has no fixed points at all. This demonstrates that
there exist very specific cases in which the enhanced reflection attack cannot
replace the slide with a twist technique, and emphasizes the need to apply this
attack carefully.

Variants of the Even-Mansour Construction In [7,6], Dunkelman et al.
considered variants of EM where the random permutation F is an involution.
Six variants were considered, and in all of them I is chosen at random among
the set of involutions over n-bit values, and K0,K1 are independent n-bit keys.
The first three variants are the following:

1. EM with involution (IEM): E(P ) = K1 ⊕ I(P ⊕K0)
2. Addition EM with involution (AIEM): E(P ) = K1 + I(P +K0),
3. Conjugation EM with involution (CIEM): E(P ) = −K1 + I(P +K0),

The last three variants are a special case of the first three, in which K1 =
K0. They are denoted SIEM, ASIEM, and CSIEM, respectively (“S” stands for
single-key). Dunkelman et al. showed that in the variants IEM, AIEM, CIEM,
and ASIEM the mirror slidex attack allows to recover K0⊕K1 or K0+K1 using
O(2n/2) queries to E and no queries at all to I. For the variant ASIEM, this
constitutes a complete break of the construction, as the knowledge of K0+K0 =
2K0 reveals all the bits of K0 except its most significant bit.

We present the enhanced reflection attack on AIEM, where similar attacks
are applicable to the other variants. In the attack, AIEM is written as E =
E2 ◦E1 ◦E0, where E1 = I is an involution, and E0, E2 are addition with a key.
The system of equations (3) can be simplified in this case to

{

Ci = Pj +K0 +K1,

Cj = Pi +K0 +K1.
(10)

If we subtract the two equations, the subkeys are cancelled, and after rearranging
we obtain the equation Pi + Ci = Pj + Cj . The latter equation can be solved
in O(2n/2) time and memory using 2n/2 queries to E and no queries to I. The
solution is then substituted into (10) to obtain K0 +K1.

The attack of [7] translates easily to the enhanced reflection framework. We
consider pairs of special points (Pi, Ci), (Pj , Cj). Instead of the system of equa-
tions (10), we obtain the system:

{

Ci = Pi +K0 +K1,

Cj = Pj +K0 +K1.
(11)

After subtracting the two equations and rearranging we obtain the equation
Pi − Ci = Pj − Cj . The latter equation can be solved in O(2n/2) time and
memory using 2n/2 known plaintext queries to E and no queries to I.9 The
solution is then substituted into (11) to obtain K0 +K1.

9 We note that both the slide with a twist attack as well as the reflection-based attack
can be transformed into memoryless attacks using adaptive chosen plaintext queries
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In ASIEM, the situation turns out to be simpler. Each special plaintext yields
the equation C = P +K0 +K0, which suggests only two values for K0. These
values can be tested immediately by a trial encryption. Hence, the enhanced
reflection attack on ASIEM is memoryless: The adversary examines 2n/2 plain-
text/ciphertext pairs sequentially, and for each one of them she obtains two
key suggestions that are checked immediately by a trial encryption. There is no
need for more than a constant number of memory cells. It should be mentioned
that in [7], memoryless variants of the mirror slidex attacks were also consid-
ered. However, these variants require 2n/2 adaptively chosen plaintexts, while
our attack requires the same number of known plaintexts.

4 Improved Attacks on Feistel Constructions with Self

Similarity: Reflection Attacks and Beyond

One of the first applications of the slide attack [1] is the cryptanalysis of Feistel
constructions with self-similar round functions. Consider a Feistel construction
E whose round function is F (x) = f(x⊕k), where k is a subkey and f is a public
permutation. If the list of subkeys used in the encryption process is periodic with
a period of length r, i.e., K1,K2, . . . ,Kr,K1,K2, . . ., we say that E has an r-
round self similarity. As this construction is obviously a generalization of the
structure of DES, Biryukov and Wagner [1] called it rK-DES.

In [1], the slide attack was used to break 2K-DES using 233 adaptively chosen
plaintexts and 233 time. In [2], Biryukov and Wagner used the slide with a twist
attack to break 2K-DES and 4K-DES in 233 data and time in the known plaintext
model, and in 217 data and time in the chosen plaintext model. Dunkelman et
al. [6] used the mirror slidex framework to extend the attacks to 2K-DESX,
defined as 2K-DES surrounded by key whitenings. It was mentioned in [6] that
the mirror slidex attack cannot be extended to 4K-DESX.

In [11], Kara showed that 2K-DES can be broken by the original reflection
attack that exploits fixed points of (2m− 1)-round 2K-DES that turns out to be
an involution. Kara’s attack requires 233 known plaintexts and time, but unlike
the slide with a twist attack, it requires only a constant amount of memory.
Kara’s idea is essentially the same as the idea behind our attacks, but while we
rely on a general property of random involutions to assure the existence of a large
number of fixed points, Kara uses specific properties of Feistel constructions to
determine the fixed points explicitly. As a result, the original reflection attack
can be applied only in specific scenarios, and in particular, it cannot be applied
against the ciphers considered in Section 3.3.

Since Feistel constructions with self similarity fall into the original reflection
attack framework, we base our results in this section on the original reflection at-
tack and its extensions. First, we present Kara’s original reflection attack on 2K-
DES, as well as two extensions that will allow extending the attack to 4K-DES.

and cycle finding algorithms. The resulting data complexity is about 2n/2 adaptively
chosen plaintexts, and the time complexity is the same (and no additional memory
is needed).

13



P

F
⊕ ⊕

F
⊕ ⊕

F
⊕ ⊕

F
⊕ ⊕

...

F
⊕ ⊕

F
⊕ ⊕

C

P

F
⊕ ⊕

F
⊕ ⊕

F
⊕ ⊕

F
⊕ ⊕

...

F
⊕ ⊕

F
⊕ ⊕

C

K1

K2

K1

K2

K1

K2

K1

K2

K3

K4

K3

K4

XL
0 XR

0 XL
0 XR

0

XL
2m XR

2m XL
4m XR

4m

Fig. 2. The Structure of 2K-DES and 4K-DES

Then, we consider all known slide with a twist attacks on Feistel constructions
with self similarity, and show that in all cases, the (enhanced) reflection attack
can break the cipher with the same data and time complexities (in the known
plaintext model). Finally, we show that the variant 4K-DESX, that cannot be
attacked using mirror slidex (according to [6]), can be broken in less than 240

data, memory and time, using an enhanced reflection attack.

4.1 Reflection Properties of 2K-DES and 4K-DES

Throughout this section, E denotes a 2K-DES (or 4K-DES) construction with
2m (or 4m) rounds (see Figure 2 for a figure describing 2K-DES). We denote the
input to round i by (XL

i , X
R
i ). Hence, the plaintext is P = (XL

0 , X
R
0 ) and the

ciphertext is C = (XL
2m, XR

2m) (or C = (XL
4m, XR

4m), respectively). The output
of the F -function in round r is denoted Outr.
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Kara’s Reflection Attack on 2K-DES The original reflection attack on E
is based on the following observation, made already in 1985 by Coppersmith [4].

Proposition 1. Let (P,C) be a plaintext/ciphertext pair for 2m-round 2K-DES,
such that in the encryption process of P we have Outm = 0. Then PL = CL and
PR = CR ⊕Out2m.

Proof. We prove by induction that for any i ≥ 1, we have XL
m+i = XL

m−i. For
i = 1, we have XL

m+1 = XL
m−1 ⊕Outm, and thus, the assertion follows from the

assumption Outm = 0. Assume that the claim holds for all i < t. The assumption
implies that XL

m+t−1 = XL
m−t+1, and hence, Outm+t−1 = FKm+t−1

(XL
m+t−1) =

FKm−t+1
(XL

m−t+1) = Outm−t+1, as Km+t−1 = Km−t+1 by the 2K-DES key
schedule. Therefore,

XL
m+t = XL

m+t−2 ⊕Outm+t−1 = XL
m−t+2 ⊕Outm−t+1 = XL

m−t.

This completes the inductive proof. Substituting i = m, we obtain PL = XL
0 =

XL
2m = CL. Substituting i = m + 1 (and treating a natural extension of the

cipher in both directions), we obtain PR = XL
−1 = XL

2m+1 = CR ⊕ Out2m, as
asserted.

We note that plaintext/ciphertext pairs that satisfy the assumption of the
proposition are fixed points of the involution I composed of the 2m− 1 rounds
starting at 2 and ending at 2m of E. Hence, the proposition shows that if F is
a permutation then the number of fixed points of I is at least 2n/2. In fact, as
noted by Kara [11], Coppersmith [4] showed that these are the only fixed points
of I, and thus, I has exactly 2n/2 fixed points.

Definition 1. If a plaintext/ciphertext pair (P,C) satisfies a reflection property
(like the assumption of Proposition 1), it is called a reflection point of E.

The property PL = CL makes it possible to detect reflection points instantly.
Then, given a reflection point, the equation PR = CR⊕Out2m yields the sugges-
tion K2 = f−1(PR ⊕ CR)⊕ CL. The suggestion can be checked instantly given
another reflection point. Hence, the reflection attack requires O(2n/2) known
plaintexts and time and only a constant amount of memory.

Another Reflection Property of 2K-DES The following is an alternative
reflection property of 2K-DES:

Proposition 2. Let (P,C) be a plaintext/ciphertext pair for 2m-round 2K-DES,
such that in the encryption process of P we have XL

m−1 = XL
m ⊕ ∆, where

∆ = K1 ⊕K2. Then PL = CR ⊕∆ and PR = CL ⊕∆.

Proof. We prove by induction that for any i ≥ 1, we have XL
m+i−1 = XL

m−i⊕∆.
For i = 1, this is exactly the assumption. Assume that the claim holds for
all i < t. The assumption implies that XL

m+t−2 = XL
m−t+1 ⊕ ∆, and hence,
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Outm+t−2 = FKm+t−2
(XL

m+t−2) = FKm−t+1
(XL

m−t+1) = Outm−t+1 (as in 2K-
DES the key schedule assures the Km+t−2 ⊕Km−t+1 = ∆ for all t). Therefore,

XL
m+t−1 = XL

m+t−3 ⊕Outm+t−2 = XL
m−t+2 ⊕∆⊕Outm−t+1 = XL

m−t ⊕∆.

This completes the inductive proof. Substituting i = m, we obtain PL = XL
0 =

XL
2m−1⊕∆ = CR⊕∆. Substituting i = m+1 (and treating a natural extension

of the cipher in both directions), we obtain PR = XL
−1 = XL

2m ⊕∆ = CL ⊕∆,
as asserted.

Reflection points (according to the new property) can be detected instantly
using the equation PL⊕CR = PR⊕CL = ∆, along with a suggestion K1⊕K2 =
∆. The attack can be completed, e.g., by exhaustive search over K1 (given that
K1⊕K2 is already known). The complexity of the attack is 2n/2 known plaintexts
and time, and only a constant amount of memory. Finally, as the reflection points
exploited in this attack are different from Kara’s fixed points, this attack can
be applied in parallel with Kara’s attack, which results in reducing the data
complexity by a factor of 2.

Reflection Property for 4K-DES Combining the ideas behind the two re-
flection properties for 2K-DES presented above, one can obtain the following
reflection property of 4K-DES:

Proposition 3. Let (P,C) be a plaintext/ciphertext pair for 4m-round 4K-DES,
such that in the encryption process of P we have XL

2m−1 = XL
2m+1 ⊕∆, where

∆ = K2 ⊕K4. Then PL = CL and PR = CR ⊕Out4m ⊕∆.

Proof. We prove by induction that for any i ≥ 1, we have

XL
2m+2i−1 = XL

2m−2i+1 ⊕∆ and XL
2m+2i−2 = XL

2m−2i+2.

For i = 1, this is exactly the assumption. Assume that the claim holds for all
i < t. The assumption implies that XL

2m+2t−3 = XL
2m−2t+3 ⊕ ∆, and hence,

Out2m+2t−3 = FK2m+2t−3
(XL

2m+2t−3) = FK2m−2t+3
(XL

2m−2t+3) = Out2m−2t+3

by the key schedule of 4K-DES that assures that K2m+2t−3⊕K2m−2t+3 = ∆ for
all t. Therefore,

XL
2m+2t−2 = XL

2m+2t−4 ⊕Out2m+2t−3 = XL
2m−2t+4 ⊕Out2m−2t+3 = XL

2m−2t+2.
(12)

By the structure of 4K-DES, the subkeys of rounds 2m+2t− 2 and 2m− 2t+2
are equal for all t. Hence, (12) implies Out2m+2t−2 = Out2m−2t+2. Therefore,

XL
2m+2t−1 = XL

2m+2t−3⊕Out2m+2t−2 = XL
2m−2t+3⊕∆⊕Out2m−2t+2 = XL

2m−2t+1⊕∆.

This completes the inductive proof (depicted in Figure 3). Substituting i = 2m,
we obtain PL = XL

0 = XL
4m = CL. Substituting i = 2m + 1 (and treating a

natural extension of the cipher in both directions), we obtain PR = XL
−1 =

XL
4m+1 ⊕∆ = CR ⊕Out4m ⊕∆, as asserted.
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Fig. 3. The New 4K-DES Reflection Property

The property PL = CL allows us to detect reflection points instantly. Then,
given a reflection point, the adversary guesses ∆ and obtains a suggestion for K4

from the equation PR = CR ⊕Out4m ⊕∆. As suggestions for K4 from different
reflection points must coincide, three reflection points are sufficient to determine
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both K4 and ∆. The rest of the attack is trivial.10, Therefore, the reflection
attack requires O(2n/2) known plaintexts (to obtain 3 reflection points) and
time, and only a constant amount of memory.

4.2 Applications of the New Reflection Properties

In this section, we consider all Feistel constructions with self similar round func-
tions studied in [2,6]. We show that all of them (including 4K-DESX for which
the mirror slidex attack fails) can be broken by an enhanced reflection attack
with the same data and time complexities (in the known plaintext model) as the
slide with a twist attack, and sometimes with a lower memory complexity.

2K-DES and 4K-DES In [2], Biryukov and Wagner showed that 2K-DES
and 4K-DES can be broken using the slide with a twist attack. The attacks
require either O(2n/2) data, time, and memory in the known plaintext model,
and O(2n/4) data, time and memory in the chosen plaintext model. The attack
on 4K-DES is applied to a variant of DES proposed by Brown and Seberry [3]
and to a 24-round variant of GOST under a weak key class, as both these ciphers
are Feistel constructions with a 4-round self-similarity.

The attack on 2K-DES can be viewed as a typical application of the mirror
slidex framework E = E2 ◦ E1 ◦ E0, where E2 is the identity function, E1 is
(2m− 1)-round 2K-DES (which is an involution), and E0 is a single DES round.
The attack on 4K-DES is a bit more involved, as the role of E1 is played by
(4m− 3)-round 4K-DES, which is not an involution.

As was shown in Section 4.1, both 2K-DES and 4K-DES can be broken by a
reflection attack (either Kara’s original attack or our enhanced reflection attacks)
in data and time of O(2n/2) and a constant amount of memory. Hence, our
enhanced reflection attacks strictly improve over the attacks of [2] in the known
plaintext model. It should be noted, however, that the reflection framework
does not allow obtaining a speedup in the chosen plaintext model, and thus,
when chosen plaintexts are available, the slide with a twist attacks of [2] are
advantageous over our attacks.

Attacking 2K-DESX The construction 2K-DESX is defined asE(P ) = Kpost⊕
(E′(Kpre ⊕ P )), where E′ is 2K-DES with subkeys K1,K2. Note that K1,K2

are n/2-bit keys, while Kpre,Kpost are n-bit keys.
In [6], Dunkelman et al. showed that 2K-DESX can be broken in O(2n/2)

known plaintexts and time using a variant of the mirror slidex attack. It was men-
tioned in [6] that the mirror slidex attack cannot break 4K-DESX. Instead, [6]
considers a variant of 4K-DESX in which the last round of the middle Feistel
part is removed, and shows that it can be broken in O(2n/2) data and time, like
2K-DESX.
10 We note that a similar reflection property exists with PR = CR and PL = CL

⊕

Out1 ⊕∆′ for ∆′ = K1 ⊕K3. This property can be exploited while reusing the data
used for the other attack.
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Using our alternative reflection property for 2K-DES, we can break 2K-DESX
in O(2n/2) data and time (thus, achieving the same result as the mirror slidex
attack of [6]). Let (P ′, C′) be a reflection point of E′ (that is an instantiation
of 2K-DES, as defined above) according to our property. Then P ′L ⊕ C′R =
P ′R ⊕ C′L = K1 ⊕ K2. Hence, if (P = P ′ ⊕ Kpre, C = C′ ⊕ Kpost) is the
corresponding plaintext/ciphertext pair for E, then (P,C) satisfies the system
of equations:

{

PL ⊕ CR = K1 ⊕K2 ⊕KL
pre ⊕KR

post,

PR ⊕ CL = K1 ⊕K2 ⊕KR
pre ⊕KL

post.
(13)

Note that the right hand side of both equations is equal for all reflection points.
Hence, an adversary can ask for the encryption of O(2n/2) known plaintexts and
store them in a hash table, sorted according to (PL⊕CR, PR⊕CL). Each pair of
reflection points must yield a collision in the table (due to the system (13). On the
other hand, as a collision is an n-bit condition, the table is expected to contain
only O(1) collisions. One of them is expected to follow from a pair of reflection
points. Once the reflection points are detected, the system of equations (13)
yields n bits of information on the secret keys. The rest of the keys can be
recovered using auxiliary techniques.

The data and time complexities of the attack are O(2n/2). Note that unlike
the attack on 2K-DES, this attack cannot be performed in a memoryless manner
(unless adaptively chosen plaintexts are used), since the reflection points are
detected using a hash table. Thus, the complexity of this attack is exactly equal
to the complexity of the mirror slidex attack on the same variant.

We note that Kara’s reflection property cannot be used directly to attack
2K-DESX. Indeed, a fixed point (P ′, C′) of E′ with respect to Kara’s property
satisfies P ′L = C′L, or equivalently, PL = CL⊕KL

pre⊕KL
post. Thus, any reflection

point yields a suggestion for KL
pre⊕KL

post. However, as mentioned in Section 4.1,

E′ has exactly 2n/2 reflection points and any non-reflection point satisfies P ′L 6=
C′L, and thus, necessarily suggests an incorrect value for KL

pre ⊕KL
post. Hence,

the probability of the correct value of KL
pre ⊕ KL

post to be suggested is exactly

2−n/2, that is equal to the probability of a random suggestion. Therefore, the
key material cannot be detected in a straightforward way.

Attacking 4K-DESX The advantage of the enhanced reflection attack over
mirror slidex can be seen in the example of 4K-DESX that according to [6]
cannot be attacked by mirror slidex. Our reflection property for 4K-DES allows
to break 4K-DESX in O(n2n/2) data and time.

Let (P ′, C′) be a reflection point of E′ (that is an instantiation of 4K-DES,
as defined above), i.e., P ′L = C′L. Hence, if (P = P ′ ⊕ Kpre, C = C′ ⊕ Kpost)
is the corresponding plaintext/ciphertext pair for E, then (P,C) satisfies PL ⊕
CL = KL

pre⊕KL
post. In addition, a non-reflection point can be assumed to satisfy

the n/2-bit condition PL ⊕ CL = KL
pre ⊕ KL

post with probability 2−n/2. (Note
that at this point, 4K-DESX differs from 2K-DESX where non-reflection points
necessarily suggest wrong keys). Hence, the correct value of KL

pre ⊕ KL
post is
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suggested with probability 2 ·2−n/2, while each incorrect value is suggested with
probability close to 2−n/2. This allows to detect the correct suggestion of KL

pre⊕
KL

post using O(n2n/2) known plaintexts and time. After the correct suggestion is
detected, the adversary can detect the reflection points (as these points suggest
the correct value of KL

pre ⊕KL
post), and then she can retrieve more key material

by solving the second equation PR = CR ⊕Out4m ⊕ (K2 ⊕K4)⊕KR
pre ⊕KR

post.

(For example, she can guess (K2 ⊕K4) ⊕KR
pre ⊕KR

post and check whether two
reflection points yield the same suggestion for K4 – the subkey used in F4m).
The rest of the key can be retrieved by auxiliary techniques.

The total data and time complexities of the attack are O(n2n/2). As in the
attack on 2K-DESX, it is not clear how to execute this attack in a memoryless
manner, since the reflection points are detected using a key ranking procedure.

5 Conclusions

In this paper we devised an enhanced reflection attack which exploits the large
number of fixed points we expect to find in random involutions which are located
deep inside the cryptosystem. We showed that this attack is at least as good (and
in many cases better) than the slide with a twist attack which was introduced in
2000, except when the involution is too simple and non-random (e.g., XORing a
non-zero key is an involution which has no fixed points). In particular, we used
it to improve the best known attack on GOST reduced to 18 rounds, and on
DESX in which the key schedule repeats itself every four rounds.
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