
A Proxy Re-Encryption Scheme

with the Unforgeability of Re-Encryption Keys

against Collusion Attacks

Ryotaro Hayashi and Tatsuyuki Matsushita

Toshiba Corporation
1, Komukai Toshiba-Cho, Saiwai-Ku, Kawasaki-Shi, Kanagawa 212-8582, Japan

{ryotaro.hayashi, tatsuyuki.matsushita}@toshiba.co.jp

Abstract

Proxy re-encryption (PRE) schemes are cryptosystems which allow a proxy who has a re-
encryption key to convert a ciphertext originally encrypted for one party into a ciphertext which
can be decrypted by another party. In [1], Hayashi et al. proposed the new security notion for
PRE called “unforgeability of re-encryption keys against collusion attacks,” UFReKey-CA for
short. They proposed the PRE schemes and claimed that their schemes meet UFReKey-CA.
However, Isshiki et al. [2] pointed out that the schemes do not meet UFReKey-CA in IWSEC
2013. It is an open problem of constructing the scheme which meets UFReKey-CA. In this
paper, we propose new PRE schemes which meet confidentiality (RCCA security) assuming
that the q-wDBDHI problem is hard and meet UFReKey-CA assuming that the 2-DHI problem
is hard.
Keywords: Proxy re-encryption, non-transferability, unforgeability of re-encryption keys
against collusion attacks, UFReKey-CA.

1 Introduction

Proxy re-encryption(PRE) schemes introduced by Blaze, Bleumer, and Strauss [3], are cryptosys-
tems with the following special property. Alice, the original recipient of some ciphertext, can
delegate the decryption rights to Bob by creating a re-encryption key then giving it to a semi-
trusted entity called proxy. Consequently, Alice lets the proxy to convert ciphertexts for Alice
into ciphertexts for Bob without revealing any information about the underlying plaintexts to the
proxy. In PRE, Alice and Bob are called a delegator and a delegatee, respectively.

Needless to say, the basic security property of PRE is confidentiality (indistinguishability).
After Blaze et al. introduced the concept of PRE, many concrete PRE schemes with high con-
fidentiality (e.g. RCCA security [4, 5, 6, 7], full CCA (or more strong) security [8, 9, 10]) have
been proposed. In the definition of the confidentiality, it is assumed that proxies who have the
re-encryption keys for converting ciphertexts of the (target) honest delegators are not corrupted.

In addition to the above basic security property, it is also important to consider the security
where such proxies are corrupted. As an example of such kind of security notions, Hayashi et
al. [1] introduced the unforgeability of re-encryption keys against collusion attack (UFReKey-
CA). Roughly speaking, UFReKey-CA means that even colluding proxies and delegatees cannot
generate a re-encryption key which convert ciphertexts for delegator into those for some (malicious)

1

user. They also proposed PRE schemes and claimed that their scheme meets UFReKey-CA
under the assumption that the 2-Diffie-Hellman inversion with randomized answers (2DHIwRA)
problem, originally proposed in their paper, is hard. The 2DHIwRA problem is the 2-DHI problem
with some additional inputs related to the instance of 2-DHI problem. The additional inputs are
used to generate (simulate) the re-encryption keys in the UFReKey-CA proof of the scheme by
Hayashi et al. However, Isshiki et al. [2] pointed out that the 2DHIwRA problem is not hard
since 2-DHI problem can be solved by using the additional inputs in the 2DHIwRA problem.
Isshiki et al. also showed that the scheme in [1] does not meet UFReKey-CA. More precisely,
a re-encryption key can be forged when a proxy and two or more delegatees collude. They also
mentioned that it is an open problem of constructing the scheme which meets UFReKey-CA.

In this paper, we propose a new (unidirectional single-hop) PRE scheme which meets confiden-
tiality (RCCA security) assuming that the 3-wDBDHI problem is hard and meets UFReKey-CA
assuming that the 2-DHI problem is hard. Our scheme is based on the scheme in [1]. To prevent
re-encryption key forgery, we change the form of the re-encryption key. We mask every secret
key of the delegatee in the exponents of the re-encryption keys with a randomness (or a system
secret parameter). Due to this change, we also change the verification equation for first level
ciphertexts. In our scheme, the secret key is required to verify the first level ciphertext. Inter-
estingly, in the proof of security, we can simulate the evaluation of whether the equation holds
or not without knowing the secret key. Further, we prove that our scheme meets UFReKey-CA
under the assumption that the 2-DHI problem is hard. Namely, in the proof of our scheme, we
can generate (simulate) the re-encryption key directly from the instance of 2-DHI problem (not
required some additional inputs). In this paper, we also propose a scheme which is an extension
of the first scheme with temporary delegation, which limits the duration of re-encryption key
within a certain time interval. This scheme meets confidentiality (RCCA-CK security) assuming
the 1-wDBDHI problem is hard and meets UFReKey-CA assuming that 2-DHI problem is hard.

This paper is organized as follows. In Section 2, we review the definitions related to our
proposal. We propose a concrete PRE scheme and prove its security in Section 3, and that
supporting temporary delegation in Section 4. Concluding remarks are shown in Section 5.

2 Preliminaries

2.1 Bilinear Maps and Complexity Assumptions

2.1.1 Bilinear Maps

Groups (G1,G2,GT) of prime order p are called bilinear map groups if there exists a mapping
e : G1 × G2 → GT with the following properties: (1)bilinearity: e(ga, hb) = e(g, h)ab for any
(g, h) ∈ G1 ×G2 and a, b ∈ Z, (2) e(·, ·) is efficiently computable for any input pair, and (3) non-
degeneracy: e(g, h) ̸= 1GT

whenever g ̸= 1G1 and h ̸= 1G2 . We say that the pairing is symmetric
if G1 = G2 and it is asymmetric if G1 ̸= G2.

2.1.2 Complexity Assumptions

We describe q-weak the decision bilinear Diffie–Hellman Inversion (q-wDBDHI) problem. The
confidentiality of the PRE schemes in [4] and [1] are proved by assuming the hardness of this
problem (symmetric version). By using the framework in [11], we can prove this problem is hard
in the generic group model.

2

Definition 1 (q-wDBDHI problem). The q-weak decision bilinear Diffie–Hellman Inversion prob-
lem is to distinguish the two distributions

• (g, ga, ga
2
, . . . , ga

q
, gb, h, ha, ha

2
, . . . , ha

q
, hb, e(g, h)b/a), and

• (g, ga, ga
2
, . . . , ga

q
, gb, h, ha, ha

2
, . . . , ha

q
, hb, e(g, h)z)

where g ∈ G1, h ∈ G2, and a, b, z
R← Z∗

p.

We next describe 2-Diffie–Hellman inversion (2-DHI) problem. The hardness of this problem
was used to prove the security of the schemes in [12, 13, 14] 1. By using the framework in [11],
we can prove this problem is hard in the generic group model.

Definition 2 (2-DHI problem). The 2-Diffie–Hellman inversion problem is, given g, ga, ga
2
, h, ha, ha

2
,

computing h1/a for g ∈ G1, h ∈ G2, and a
R← Z∗

p.

In case of symmetric version of the above problems, the generator h is replaced by g.

2.2 Strong One-Time Signature

We review the strong one-time signature which we employ to construct our scheme.
One-time signature Sig = (G,S,V) consists of a triple of algorithms. The algorithm G takes

a security parameter λ and returns a pair of signing/verification keys (ssk, svk). Then, for any
message M , V(σ, svk,M) returns 1 whenever σ = S(ssk,M) and 0 otherwise.

We say that Sig is a strong one-time signature (or Sig meets strong unforgeability) if no
polynomial time adversary can create a new signature for a previously signed message. The
definition of the strong one-time signature [4] is as follows.

Definition 3. We say that Sig = (G,S,V) is a strong one-time signature (or Sig meets strong
unforgeability) if for any polynomial time algorithm F ,

Pr[(ssk, svk)← G(λ); (M,St)← F(svk);σ ← S(ssk,M); (M ′, σ′)← F(M,σ, svk, St)
: V(σ′, svk,M ′) = 1 ∧ (M ′, σ′) ̸= (M,σ)]

is negligible.

3 A UFReKey-CA Secure Proxy Re-Encryption Scheme

In this section, we propose a unidirectional PRE scheme which meets the RCCA security and
sUFReKey-CA.

3.1 Definitions

In this section, we describe the syntactic definition of unidirectional proxy re-encryption [15, 16]
and its security notion [4, 1].

1In [12], 2-DHI problem is called as Weak Diffie–Hellman problem.

3

3.1.1 Model

First, we describe the syntactic definition of unidirectional proxy re-encryption.

Definition 4. A (single-hop) unidirectional proxy re-encryption (PRE) scheme consists of the
following algorithms:

Global-setup(λ) is a probabilistic algorithm which takes a security parameter λ and returns public
parameters par with a plaintext space M.

Keygen(λ, par) is a probabilistic algorithm which takes parameters λ and par and returns a pub-
lic/secret key pair (pk, sk).

Enc1(m, pkj , par) is a probabilistic algorithm which takes a plaintext m ∈ M, a user j’s public
key pkj, and par, and returns a first level ciphertext Cj for j, which cannot be re-encrypted
for another user.

Enc2(m, pki, par) is a probabilistic algorithm which takes a plaintext m ∈ M, a user i’s public
key pki, and par, and returns a second level ciphertext Ci for i, which can be re-encrypted
with re-encryption keys for another user.

Rekeygen(ski, pkj , par) is a probabilistic algorithm which takes a user i’s secret key ski, a user
j’s public key pkj, and par, and returns a re-encryption key Rij to re-encrypt second level
ciphertexts for i into first level ciphertexts for j.

Reenc(Rij , Ci, par) is a probabilistic algorithm which takes a re-encryption key Rij, a second
level ciphertext Ci encrypted under pki, and public parameters par, and returns a first level
ciphertext Cj re-encrypted for j or a distinguished message ’invalid.’

Dec1(Cj , skj , par) is a deterministic algorithm which takes a first level ciphertext Cj for j, a user
j’s secret key skj, and par, and returns a plaintext m or a distinguished message ’invalid’.

Dec2(Ci, ski, par) is a deterministic algorithm which takes a second level ciphertext Ci for i, a user
i’s secret key ski, and par, and returns a plaintext m or a distinguished message ’invalid’.

To lighten notations, we will sometimes omit to explicitly write public parameters par, taken
as input by all but one of the above algorithms.

3.1.2 Security Definitions – Confidentiality

Next, we describe the definition of the replayable chosen ciphertext security of unidirectional PRE
schemes by Libert and Vergnaud [4]. In unidirectional single-hop PRE schemes, there exist two
types of ciphertexts, first level and second level ciphertexts. Therefore, it is necessary to prove
the confidentiality of each types of ciphertexts. First, we describe the security definition of second
level ciphertexts.

Definition 5 (Second level RCCA security). A unidirectional single-hop proxy re-encryption
scheme is second level secure against replayable chosen-ciphertext attack (RCCA) (or second level

4

RCCA secure for short) if

|Pr[par← Global-setup(λ); (pk∗, sk∗)← Keygen(λ); {(pkh, skh)← Keygen(λ)};
{(pkc, skc)← Keygen(λ)}; {R∗h ← Rekeygen(sk∗, pkh)}; {Rh∗ ← Rekeygen(skh, pk∗)};
{Rhc ← Rekeygen(skh, pkc)}; {Rhh′ ← Rekeygen(skh, pkh′)};
(m0,m1, St)← AOreenc,O1-dec(pk∗, {pkh}, {(pkc, skc)}, {R∗h}, {Rh∗}, {Rhc}, {Rhh′});
d∗

R← {0, 1}; C∗ ← Enc2(md∗ , pk∗); d′
R← AOreenc,O1-dec(C∗, St) : d′ = d∗]− 1/2|

is negligible for any polynomial time algorithm A. Above, St is the state information maintained
by A. (pk∗, sk∗) is the target user’s key pair. For honest users other than target user, keys are
subscripted by h or h′. We subscript corrupt keys by c or c′. Oracles Oreenc and O1-dec proceed as
follows:

• Re-encryption oracle Oreenc: on input (pki, pkj , C) where C is a second level ciphertext
and pki, pkj were produced by Keygen, this oracle responds with invalid if C is not prop-
erly shaped (ill-formed) with respect to pki. It returns a special symbol ⊥ if j is a cor-
rupted user and (pki, C) = (pk∗, C

∗). Otherwise, the re-encrypted first level ciphertext
Cj = Reenc(Rekeygen(ski, pkj), C) is returned to A.

• First level decryption oracle O1-dec: given a pair (pk, C), where C is a first level ciphertext
and pk was produced by Keygen, this oracle returns invalid if C is ill-formed with respect to
pk. If the query occurs in the guess stage, it outputs ⊥ if (pk, C) is a Derivative of (pk∗, C

∗).
Otherwise, the plaintext m = Dec1(sk, C) is returned to A. Derivatives of (pk∗, C

∗) are
defined as follows: If C is a first level ciphertext and pk is an honest user’s key, (pk,C) is
a Derivative of (pk∗, C

∗) if Dec1(sk, C) ∈ {m0,m1}.

Next, we describe the definition of RCCA security of first level ciphertexts.

Definition 6 (First level RCCA security). A unidirectional single-hop proxy re-encryption scheme
is first level secure against replayable chosen-ciphertext attack (RCCA) (or first level RCCA secure
for short) if

|Pr[par← Global-setup(λ); (pk∗, sk∗)← Keygen(λ); {(pkh, skh)← Keygen(λ)};
{(pkc, skc)← Keygen(λ)}; {R∗c ← Rekeygen(sk∗, pkc)}; {R∗h ← Rekeygen(sk∗, pkh)};
{Rh∗ ← Rekeygen(skh, pk∗)}; {Rhc ← Rekeygen(skh, pkc)}; {Rhh′ ← Rekeygen(skh, pkh′)};
(m0,m1, St)← AO1-dec(pk∗, {pkh}, {(pkc, skc)}, {R∗c}, {R∗h}, {Rh∗}, {Rhc}, {Rhh′});
d∗

R← {0, 1};C∗ ← Enc1(md∗ , pk∗); d
′ R← AO1-dec(C∗, St) : d′ = d∗]− 1/2|

is negligible for any polynomial time algorithm A. Oracle O1-dec is the same as that in Definition 5
except that the definition of Derivatives: If C is a first level ciphertext and pk = pk∗, (pk,C) is a
Derivative of (pk∗, C

∗) if Dec1(sk, C) ∈ {m0,m1}.

Above, all re-encryption keys are available to the adversary. Therefore, the re-encryption
oracle becomes useless and is not given to the adversary.

3.1.3 Security Definitions – Unforgeability of Re-Encryption Keys

Finally, we review the definition of (strong) unforgeability of re-encryption keys against collusion
attacks proposed in [1].

5

In addition to the above basic security property, it is also important to consider the security
where such proxies are corrupted. Recently, as cloud computing emerges, PRE gains much more
attention as one of the key security components to provide secure cloud services. The security
against corrupted proxies is especially important in such applications since the proxies may be out
of control of honest users and the proxies are more likely to be attacked than those in on-premise
systems.

As an example of such kind of security notions, Ateniese et al. proposed the informal definition
of “non-transferability [15]”. Consider the situation that a (target) user i∗ delegated her decryption
rights to users {c} (i.e. a proxy has re-encryption keys {R∗c}). Intuitively, the scheme is non-
transferable when the only way for users {c} and the proxy (colluding parties) to transfer the
(offline) decryption capabilities of i∗ to some user j (malicious user) is to expose the secret key of
anyone in {c}. Hayashi et al. [1] proposed the formal definition of non-transferability. See [1] for
details.

Hayashi et al. also proposed the definition of “unforgeability of re-encryption keys against
collusion attacks (UFReKey-CA).”

Definition 7 (Unforgeability of Re-Encryption Keys against Collusion Attack, UFReKey-CA [1]).
A unidirectional single-hop proxy re-encryption scheme meets the unforgeability of re-encryption
keys against collusion attack if there exists a polynomial time algorithm P such that

Pr[par← Global-setup(λ);
(pk∗, sk∗)← Keygen(λ); (pkh, skh)← Keygen(λ); {(pkci , skci)← Keygen(λ)};

(pkj , skj)← Keygen(λ); {R∗ci ← Rekeygen(sk∗, pkci)}; {Rhci ← Rekeygen(skh, pkci)};
m

R←M; C∗ ← Enc2(m, pk∗); {mi
R←M}; {Ci ← Enc2(mi, pkci)};

{m′
i

R←M}; {C ′
i ← Enc1(m

′
i, pkci)}; {m′′

i
R←M}; {C ′′

i ← Reenc(Rhci ,Enc2(m
′′
i , pkh))};

X ← C(pk∗, {(pkci , skci)}, {R∗ci}); R†
∗j ← J (X, (pkj , skj));

mP ← P(X, (pkj , skj), {Ci}, {C ′
i}, {C ′′

i })
: m ̸= Dec1(Reenc(R

†
∗j , C

∗), skj) ∨mP ∈ {mi} ∪ {m′
i} ∪ {m′′

i }]

is overwhelming for any polynomial time algorithm C, J .

Intuitively, the scheme meets UFReKey-CA when the only way for the users {ci} and the
proxy to expose information which enable the user j to generate a re-encryption key R∗j is to
expose the secret key of anyone in {ci}. Therefore, it is easy to see that UFReKey-CA is a relaxed
notion (necessary condition) of the non-transferability. Thus, to construct the scheme which meets
non-transferability, it is necessary that the scheme meets UFReKey-CA.

Further, Hayashi et al. proposed the definition of “strong unforgeability of re-encryption keys
against collusion attacks (sUFReKey-CA).” We review the definition which is used in this paper.

Definition 8 (Strong Unforgeability of Re-Encryption Keys against Collusion Attack, sUFReKey-CA [1]).
A unidirectional single-hop proxy re-encryption scheme meets the strong unforgeability of re-
encryption keys against collusion attack if the following probability is negligible for any polynomial
time algorithm A.

Pr[par← Global-setup(λ); (pk∗, sk∗)← Keygen(λ); {(pkc, skc)← Keygen(λ)};
(pkj , skj)← Keygen(λ); {R∗c ← Rekeygen(sk∗, pkc)};m

R←M; C∗ ← Enc2(m, pk∗);

R†
∗j ← A(pk∗, {(pkc, skc)}, (pkj , skj), {R∗c}) : m = Dec1(Reenc(R

†
∗j , C

∗), skj)]

6

The scheme meets sUFReKey-CA when the users {c}, the proxy who has {R∗c}, and the user
j cannot generate (forge) a re-encryption key R∗j . Since sUFReKey-CA implies UFReKey-CA,
and the security definition (model) of sUFReKey-CA is more simple than that of UFReKey-CA,
the definition of sUFReKey-CA is useful to prove UFReKey-CA property.

3.2 Our Proposed Scheme

Our scheme is based on the scheme in [1]. To prevent re-encryption key forgery, we change the
form of the re-encryption key. We mask every secret key of the delegatee with a randomness
or a system secret parameter. Due to this change, we also change the verification equation for
first level ciphertexts. In our scheme, the secret key is required to verify the first level ciphertext.
Interestingly, in the proof of security, we can simulate the evaluation of whether the equation holds
or not without knowing the secret key. Further, we prove that our scheme meets UFReKey-CA
under the assumption that the 2-DHI problem is hard. Namely, in the proof of our scheme, we
can generate (simulate) the re-encryption key directly from the instance of 2-DHI problem (not
required some additional inputs).

3.2.1 Description

Global-setup(λ): given a security parameter λ, first choose bilinear map groups (G1,G2,GT) of
prime order p > 2λ, and generators g ∈ G1 and h ∈ G2. Next, compute g1 = gα, g2 =

gβ, u = gδ, v = gω, h1 = hα, h2 = hβ, û = hδ, v̂ = hω where α, β, δ, ω
R← Z∗

p. Finally,
choose a one-time signature scheme Sig = (G,S,V). The public parameters are par =
{p, (G1,G2,GT), g, g1, g2, u, v, h, h1, h2, û, v̂, Sig}. The message spaceM is equal to GT .

Keygen(λ, par): user i chooses xi, yi, zi
R← Z∗

p. The secret key is ski = (xi, yi, zi). The public key

is pki = (Xi, Y1i, Zi, Z1i, X̂i, Ŷ1i, Ŷ2i) where Xi = gxi , Y1i = g1
yi , Zi = gzi , Z1i = g1

zi , X̂i =
hxi , Ŷ1i = h1

yi , Ŷ2i = h2
yi .

Enc1(m, pkj , par): to encrypt a message m ∈ GT under the public key pkj at the first level, the
sender proceeds as follows:

1. Select a one-time signature key pair (svk, ssk)← G(λ) and set C1 = svk.

2. Pick r, s, t, k
R← Z∗

p and compute C ′
2X = Y1j

s, C ′′
2X = Y1j

rs, C ′
2Y = Xj

t, C ′′
2Y = Xj

rt, C ′
2Z =

Y1j
k, C ′′

2Z = Y1j
rk, C ′

2Z1 = Xj
k, C ′′

2Z1 = Xj
rk, C3 = m · e(g1g2, h)r, C4 = (usvk ·v)r, Ĉ4 =

(ûsvk · v̂)r, C5X = h2
1
s = h

β
s , C5Y = h

1
t , C5Z = (h · h2)

1
k = h

1+β
k .

3. Generate a one-time signature σ ← S(ssk, (C3, C4)) on (C3, C4).

The (first level) ciphertext is Cj = (C1, C
′
2X , C ′′

2X , C ′
2Y , C

′′
2Y , C

′
2Z , C

′′
2Z , C

′
2Z1, C

′′
2Z1, C3, C4, Ĉ4,

C5X , C5Y , C5Z , σ).

Enc2(m, pki, par): to encrypt a message m ∈ GT under the public key pki at the second level, the
sender proceeds as follows:

1. Select a one-time signature key pair (svk, ssk)← G(λ) and set C1 = svk.

2. Pick r
R← Z∗

p and compute C2X = Xi
r, C2Y = Y1i

r, C2Z = Zi
r, C2Z1 = Z1i

r, C3 =

m · e(g1g2, h)r, C4 = (usvk · v)r, Ĉ4 = (ûsvk · v̂)r.

7

3. Generate a one-time signature σ ← S(ssk, (C3, C4)) on (C3, C4).

The (second level) ciphertext is Ci = (C1, C2X , C2Y , C2Z , C2Z1, C3, C4, Ĉ4, σ).

Rekeygen(ski, pkj , par): given user i’s secret key ski and user j’s public key pkj , choose ℓ, n
R← Z∗

p

and generate a re-encryption key Rij = (Rij1, Rij2, Rij3) as Rij1 = (X̂ℓ
j · Ŷ

ℓ−n−1
1j)

1
xi =

h
ℓxj+α(ℓ−n−1)yj

xi , Rij2 = (X̂n
j · Ŷ2j)

1
yi = h

nxj+βyj
yi , and Rij3 = (X̂ℓ

j · Ŷ2j)
1
zi = h

ℓxj+βyj
zi .

Reenc(Rij , Ci, par): on input of the re-encryption key Rij and a second level ciphertext Ci, check
the validity of the ciphertext by testing:

e(C2X , ûC1 · v̂) = e(Xi, Ĉ4), e(C2Y , û
C1 · v̂) = e(Y1i, Ĉ4), e(C2Z , û

C1 · v̂) = e(Zi, Ĉ4),

e(C2Z1, û
C1 · v̂) = e(Z1i, Ĉ4), e(g, Ĉ4) = e(C4, h), V(C1, σ, (C3, C4)) = 1.

(1)

If the relations (1) hold (well-formed), Ci is re-encrypted by choosing s, t, k
R← Z∗

p and com-

puting C ′
2X = Xi

s, C ′′
2X = C2X

s = Xi
rs, C ′

2Y = Y1i
t, C ′′

2Y = C2Y
t = Y1i

rt, C ′
2Z = Zi

k, C ′′
2Z =

C2Z
k = Zi

rk, C ′
2Z1 = Z1i

k, C ′′
2Z1 = C2Z1

k = Z1i
rk, C5X = Rij1

1
s , C5Y = Rij2

1
t , C5Z = Rij3

1
k ,

and a re-encrypted ciphertext Cj = (C1, C
′
2X , C ′′

2X , C ′
2Y , C

′′
2Y , C

′
2Z , C

′′
2Z , C

′
2Z1, C

′′
2Z1, C3, C4, Ĉ4,

C5X , C5Y , C5Z , σ) is returned. Otherwise, ‘invalid’ is returned.

Dec1(Cj , skj): the validity of the first level ciphertext Cj is checked by testing:

e(C ′′
2X , ûC1 · v̂) = e(C ′

2X , Ĉ4), e(C ′′
2Y , û

C1 · v̂) = e(C ′
2Y , Ĉ4),

e(C ′′
2Z , û

C1 · v̂) = e(C ′
2Z , Ĉ4), e(C ′′

2Z1, û
C1 · v̂) = e(C ′

2Z1, Ĉ4), e(g, Ĉ4) = e(C4, h),

V(C1, σ, (C3, C4)) = 1,

(
e(C ′

2Z , C5Z)

e(C ′
2X , C5X)

) 1
yj

(
e(C ′

2Z1, C5Z)

e(C ′
2Y , C5Y)

) 1
xj

= e(g1g2, h).

(2)

If the relations (2) hold (well-formed), the plaintext is returned as

m = C3

/{(
e(C ′′

2Z , C5Z)

e(C ′′
2X , C5X)

) 1
yj

(
e(C ′′

2Z1, C5Z)

e(C ′′
2Y , C5Y)

) 1
xj

}
.

Otherwise (ill-formed), the algorithm outputs ‘invalid.’

Dec2(Ci, ski): if the second level ciphertext Ci satisfies the relations (1), the plaintext m =

C3

/
e(C2X , h1h2)

1
xi is returned. Otherwise, ‘invalid’ is returned.

We can check the correctness property of the above scheme as follows. Note that Equations
(1) ensure (r =) logXi

C2X = logY1i
C2Y = logZi

C2Z = logZ1i
C2Z1 = loguC1v C4 = logûC1 v̂ Ĉ4, and

Equations (2) ensure (r =) logC′
2X

C ′′
2X = logC′

2Y
C ′′
2Y = logC′

2Z
C ′′
2Z = logC2Z1

C2Z1 = loguC1v C4 =

logûC1 v̂ Ĉ4.

• Dec2(Enc2(m, pki, par), ski, par) = m · e(g1g2, h)r
/
e(gxir, h1h2)

1
xi

= m · e(g, h)(α+β)r/e(g, h)(α+β)r = m.

8

• Dec1(Enc1(m, pkj , par), skj , par)

= C3

/{(
e(gαyjrk,h(1+β)/k)

e(gαyjrs,hβ/s)

) 1
yj ·
(
e(gxjrk,h(1+β)/k)

e(gxjrt,h1/t)

) 1
xj

}
= C3

/(
e(gαyjr, h)

1
yj · e(gxjr, hβ)

1
xj

)
= m · e(g1g2, h)r

/
(e(g, h)αr · e(g, h)βr) = m.

• Dec1(Reenc(Rekeygen(ski, pkj , par),Enc2(m, pki, par), par), skj , par)

= C3

/{(
e(gzirk,h(ℓxj+βyj)/zik)

e(gxirs,h(ℓxj+α(ℓ−n−1)yj)/xis)

) 1
yj

·
(

e(gαzirk,h(ℓxj+βyj)/zik)

e(gαyirt,h(nxj+βyj)/yit)

) 1
xj

}

= C3

/{(
e(gr,hβyj)

e(gr,hα(ℓ−n−1)yj)

) 1
yj

·
(

e(gαr,hℓxj)
e(gαr,hnxj)

) 1
xj

}
= C3

/{
e(gr,hβ)

e(gr,hα(ℓ−n−1))
· e(g

αr,hℓ)
e(gαr,hn)

}
= m · e(g1g2, h)r

/
(e(g, h)βr · e(g, h)αr) = m.

3.2.2 Security

Now, we show that our scheme meets RCCA security and sUFReKey-CA.

Theorem 1. Our proposed scheme with the strong one-time signature satisfies second level RCCA
security if the 3-wDBDHI problem is hard.

Proof. We use the following lemma. The symmetric pairing version of this lemma is proved in [4].
The proof of this lemma is similar to that in [4]

Lemma 1. The 3-wDBDHI problem is equivalent to the the modified 3-wDBDHI problem which
is to distinguish

• (g, g1/a, ga, ga
2
, gb, h, h1/a, ha, ha

2
, hb, e(g, h)b/a

2
) and

• (g, g1/a, ga, ga
2
, gb, h, h1/a, ha, ha

2
, hb, e(g, h)z)

where a, b, z
R← Z∗

p.

Proof of Lemma 1. Given an instance of modified 3-wDBDHI problem, (g, g1/a, ga, ga
2
, gb, h, h1/a, ha,

ha
2
, hb, T), we can construct an instance of 3-wDBDHI problem by setting (y = g1/a, yA = g, yA

2
=

ga, yA
3
= ga

2
, yB = gb, z = h1/a, zA = h, zA

2
= ha, zA

3
= ha

2
, zB = hb, T) which implicitly de-

fines A = a and B = ab. Note that e(y, z)B/A = e(g1/a, h1/a)ab/a = e(g, h)b/a
2
. The converse

implication is easily considered.

Now we prove Theorem 1. We prove that our proposed scheme is second level RCCA secure
under the assumption that the above (modified 3-wDBDHI) problem is hard. We build an algo-
rithm B which is, given (g,A−1 = g1/a, A1 = ga, A2 = ga

2
, B = gb, h, Â−1 = h1/a, Â1 = ha, Â2 =

ha
2
, B̂ = hb, T), solving the modified 3-wDBDHI problem using second level RCCA adversary A.
In the following, we call HU the set of honest users, including the target user i∗ that is assigned

the target public key pk∗, and CU the set of corrupt users. The algorithm B simulates A’s input
and oracles as follows.

Public parameters: B chooses α, β
R← Z∗

p and computes g1 = gα, g2 = gβ, h1 = hα, h2 = hβ.

B chooses the key pair (svk∗, ssk∗)
R← G(1λ) of the one-time signature scheme. The generator

u, v, v̂, v̂ are set as u = Aα1
1 , v = A−α1svk∗

1 Aα2
2 , û = Âα1

1 , v̂ = Â−α1svk∗

1 Âα2
2 , where α1, α2

R← Z∗
p.

9

Public and secret keys: For the corrupt user i ∈ CU , B computes ski = (xi, yi, zi) and pki by
using the key-generation algorithm. For the target user i∗ and the honest users h ∈ HU\{i∗}, B
chooses x∗, y∗, z∗, xh, yh, zh

R← Z∗
p and computes

• pk∗ = (A2
x∗ , A2

αy∗ , A2
z∗ , A2

αz∗ , Âx∗
2 , Âαy∗

2 , Âβy∗
2) = (ga

2x∗ , g1
a2y∗ , ga

2z∗ , g1
a2z∗ , ha

2x∗ , h1
a2y∗ , h2

a2y∗),

• pkh = (A1
xh , A1

αyh , A1
zh , A1

αzh , Âxh
1 , Âαyh

1 , Âβyh
1) = (gaxh , g1

ayh , gazh , g1
azh , haxh , h1

ayh , h2
ayh).

Here, the secret keys for i∗ and h are (a2x∗, a
2y∗, a

2z∗) and (axj , ayj , azj), respectively. Note that
B does not have to compute the secret keys of honest users i∗ and h to compute the corresponding
public keys.

Re-encryption keys: The re-encryption keys Rc∗, Rch, Rcc′ can be computed by following

Rekeygen. The other re-encryption keys can be computed as follows where ℓ, n
R← Z∗

p.

• Rh∗ = (Â
ℓx∗+α(ℓ−n−1)y∗

xh
1 , Â

nx∗+βy∗
yh

1 , Â
ℓx∗+βy∗

zh
1) = (h

a2x∗+α(ℓ−n−1)a2y∗
axh , h

na2x∗+βa2y∗
ayh , h

ℓa2x∗+βa2y∗
azh),

• R∗h = (Â
ℓxh+α(ℓ−n−1)yh

x∗
−1 , Â

nxh+βyh
y∗

−1 , Â
ℓxh+βyh

z∗
−1) = (h

ℓaxh+α(ℓ−n−1)ayh
a2x∗ , h

naxh+βayh
a2y∗ , h

ℓaxh+βayh
a2z∗),

• Rhc = (Â
ℓxc+α(ℓ−n−1)yc

xh
−1 , Â

nxc+βyc
yh

−1 , Â
ℓxc+βyc

zh
−1) = (h

ℓxc+α(ℓ−n−1)yc
axh , h

nxc+βyc
ayh , h

ℓxc+βyc
azh),

• Rhh′ = (h
ℓxh′+α(ℓ−n−1)yh′

xh , h
nxh′+βyh′

yh , h
ℓxh′+βyh′

zh) = (h
ℓaxh′+α(ℓ−n−1)ayh′

axh , h
naxh′+βayh′

ayh , h
ℓaxh′+βayh′

azh)

Re-encryption oracle: For the re-encryption query (pki, pkj , Ci), B checks the validity of Ci

by using the equations (1). Note that equations (1) are publicly verified. If Ci is ill-formed, B
outputs invalid. Otherwise, if i ̸= i∗ or j ̸∈ CU , B uses the re-encryption key and responds
the query. If i = i∗ and j ∈ CU , C1 ̸= svk∗ holds with overwhelming probability (because of
the strong unforgeability of the one-time signature). Then, the re-encrypted ciphertext Cj can be

computed as follows where s′, t′, k′
R← Z∗

p.

Cj = (C1, A1
s′ , (A1

r)s
′
, A1

αt′ , (A1
r)αt

′
, A1

k′ , (A1
r)k

′
, A1

αk′ , (A1
r)αk

′
, C3, C4, Ĉ4,

Â
ℓxj+α(ℓ−n−1)yj

s′
−1 , Â

nxj+βyj
t′

−1 , Â
ℓxj+βyj

k′
−1 , σ).

Note thatA1
r can be computed asA1

r = (C4/C
α2/x∗
2X)

1
α1(C1−svk∗) since C4 = (Aα1C1

1 A−α1svk∗

1 Aα2
2)r =

A
α1(C1−svk∗)r
1 Aα2r

2 and C2X = X∗
r = Ax∗r

2 . Since we have

Cj = (C1, (g
a2x∗)s

′/ax∗ , ((ga
2x∗)r)s

′/ax∗ , (ga
2y∗

1)t
′/ay∗ , ((ga

2y∗
1)r)t

′/ay∗ ,

(ga
2z∗)k

′/az∗ , ((ga
2z∗)r)k

′/az∗ , (ga
2z∗

1)k
′/az∗ , ((ga

2z∗
1)r)k

′/az∗ , C3, C4, Ĉ4,

(h
ℓxj+α(ℓ−n−1)yj

a2x∗)
1

s′/ax∗ , (h
nxj+βyj

a2y∗)
1

t′/ay∗ , (h
ℓxj+βyj

a2z∗)
1

k′/az∗ , σ),

this is a valid ciphertext with the randomness s = s′/ax∗, t = t′/ay∗, k = k′/az∗.
First level decryption oracle: For the first level decryption query (pkj , Cj), B checks the validity

of Cj by using the equations (2). Here, the secret key is needed to verify the seventh (final)
equation in equations (2), but B does not have the secret key of the honest users. Thus, B checks
the following equation instead of the seventh equation in equations (2).

10

• If j ∈ HU\{i∗}, the secret key of j is equal to (axh, ayh, azh) where B knows (xh, yh, zh).

Thus B checks
(

e(C′
2Z ,C5Z)

e(C′
2X ,C5X)

) 1
yh

(
e(C′

2Z1,C5Z)

e(C′
2Y ,C5Y)

) 1
xh = e(g1g2, Â1).

• If j = i∗, the secret key of j is equal to (a2x∗, a
2y∗, a

2z∗) where B knows (x∗, y∗, z∗). Thus

B checks
(

e(C′
2Z ,C5Z)

e(C′
2X ,C5X)

) 1
y∗
(
e(C′

2Z1,C5Z)

e(C′
2Y ,C5Y)

) 1
x∗ = e(g1g2, Â2).

If Cj is ill-formed, B outputs invalid. When Cj is well-formed (and j ∈ HU), if C1 = svk∗ and
(C3, C4, σ) = (C∗

3 , C
∗
4 , σ

∗), B returns ⊥ since Cj is a Derivative of the challenge ciphertext. In the
other case, C1 ̸= svk∗ holds with overwhelming probability (because of the strong unforgeability
of the one-time signature). Then, we consider the following two cases.

• If j ∈ HU\{i∗}, since Cj is a valid ciphertext and user j’s secret key is equal to (axh, ayh, azh),
we have

– e(C4, Â−1) = e((Aα1C1
1 A−α1svk∗

1 Aα2
2)r, Â−1) = e(g, h)(C1−svk∗)α1r+α2ar

– U =
(

e(C′′
2Z ,C5Z)

e(C′′
2X ,C5X)

) 1
yh

(
e(C′′

2Z1,C5Z)

e(C′′
2Y ,C5Y)

) 1
xh = e(g1g2, h)

ar.

Thus, B computes X = {e(C4, Â−1)
α+β/Uα2}

1
(C1−svk∗)α1 (= e(g1g2, h)

r), and m = C3/X.

• If j = i∗, since Cj is a valid ciphertext and user j’s secret key is equal to (a2x∗, a
2y∗, a

2z∗),
we have

– e(C4, Â−1) = e((Aα1C1
1 A−α1svk∗

1 Aα2
2)r, Â−1) = e(g, h)(C1−svk∗)α1r+α2ar,

– e(C4, h) = e(C4, Â−1)
a = e(g, h)(C1−svk∗)α1ar+α2a2r,

– V =
(

e(C′′
2Z ,C5Z)

e(C′′
2X ,C5X)

) 1
y∗
(
e(C′′

2Z1,C5Z)

e(C′′
2Y ,C5Y)

) 1
x∗ = e(g1g2, h)

a2r,

– Y = {e(C4, h)
α+β/V α2}

1
(C1−svk∗)α1 = e(g1g2, h)

ar.

Thus, B computes Z = {e(C4, Â−1)
α+β/Y α2}

1
α1(C1−svk∗) (= e(g1g2, h)

r), and m = C3/Z.
Note that if m ∈ {m0,m1}, B returns ⊥.

Challenge ciphertext: The challenge ciphertext C∗ is computed as follows where d∗
R← {0, 1}.

C∗ = (svk∗, Bx∗ , Bαy∗ , Bz∗ , Bαz∗ ,md∗ · T (α+β), Bα2 , B̂α2 ,S(ssk∗, (C∗
3 , C

∗
4)).

If T = e(g, h)b/a
2
, we have

C∗ = (svk∗, (ga
2x∗)b/a

2
, (gαa

2y∗)b/a
2
, (ga

2z∗)b/a
2
, (gαa

2z∗)b/a
2
,md∗ · e(g1g2, h)b/a

2
,

(gα2a2)b/a
2
, (hα2a2)b/a

2
,S(ssk∗, (C∗

3 , C
∗
4)).

Thus, C∗ is a valid ciphertext with the random exponent r = b/a2. In contrast, if T is random,
A cannot guess d∗ with probability better than 1/2. Therefore, B decides that T = e(g, h)b/a

2
if

d∗ equals to the adversary’s output and that T is random otherwise.

Theorem 2. Our proposed scheme with the strong one-time signature satisfies first level RCCA
security if the 3-wDBDHI problem is hard.

11

Proof. The proof is almost the same as that of Theorem 1. We can build an algorithm B which
is, given (g,A−1 = g1/a, A1 = ga, A2 = ga

2
, B = gb, h, Â−1 = h1/a, Â1 = ha, Â2 = ha

2
, B̂ = hb, T),

solving the modified 3-wDBDHI problem using RCCA adversary A at level 1.
The algorithm B simulates A’s input and oracles as follows. The public parameters are set in

the same way as that in the proof of Theorem 1. The algorithm B generates the public key for tar-
get user i∗ as pk∗ = (A1

x∗ , A1
αy∗ , A1

z∗ , A1
αz∗ , Âx∗

1 , Âαy∗
1 , Âβz∗

1) = (gax∗ , g1
ay∗ , gaz∗ , g1

az∗ , hax∗ , h1
ay∗ ,

h2
az∗). Here, the secret keys for the target user is sk∗ = (ax∗, ay∗, az∗). Note that B does not

have to compute the secret keys of the target user to compute the corresponding public keys.
For other users j ̸= i∗, B computes skj = (xj , yj , zj) and pkj by using the key-generation algo-

rithm. The re-encryption keys R∗j can be computed R∗j = (Â
ℓxj+α(ℓ−n−1)yj

x∗
−1 , Â

nxj+βyj
y∗

−1 , Â
ℓxj+βyj

z∗
−1) =

(h
ℓxj+α(ℓ−n−1)yj

ax∗ , h
nxj+βyj

ay∗ , h
ℓxj+βyj

az∗) where ℓ, n
R← Z∗

p. The other re-encryption keys can be com-
puted by following Rekeygen. For the first level decryption query, B responds in the same way as
that for the honest user’s case in the proof of Theorem 1.

For the challenge ciphertext C∗, B chooses d∗
R← {0, 1} and computes as follows where

s′, t′, k′
R← Z∗

p.

C∗ = (svk∗, A2
αy∗s′ , Bαy∗s′ , A2

x∗t′ , Bx∗t′ , A2
αy∗k′ , Bαy∗k′ , A2

x∗k′ , Bx∗k′ ,md∗ · Tα+β,

Bα2 , B̂α2 , Â
β
s′
−1, Â

1
t′
−1, Â

1+β
k′

−1 ,S(ssk∗, (C∗
3 , C

∗
4)).

If T = e(g, h)b/a
2
, we have

C∗ = (svk∗, (g1
ay∗)as

′
, ((g1

ay∗)b/a
2
)as

′
, (gax∗)at

′
, ((gax∗)b/a

2
)at

′
, (g1

ay∗)ak
′
, ((g1

ay∗)b/a
2
)ak

′
,

(gax∗)ak
′
, ((gax∗)b/a

2
)ak

′
,md∗ · e(g1g2, g)b/a

2
, (gα2a2)b/a

2
, (hα2a2)b/a

2
,

h
β
as′ , h

1
at′ , h

1+β
ak′ ,S(ssk∗, (C∗

3 , C
∗
4))).

Thus, C∗ is a valid ciphertext with the random exponents r = b/a2, s = as′, t = at′, k = ak′. In
contrast, if T is random, A cannot guess d∗ with probability better than 1/2. Therefore, B decides
that T = e(g, h)b/a

2
if d∗ equals to the adversary’s output and that T is random otherwise.

Theorem 3. Our proposed scheme meets sUFReKey-CA if the 2-DHI problem is hard.

Proof. We specify the polynomial time algorithm B which solves the 2-DHI problem by using the
polynomial time algorithm A which breaks the strong unforgeability of re-encryption keys against
collusion attack of the proposed scheme. Given (g,A1 = ga, A2 = ga

2
, h, Â1 = ha, Â2 = ha

2
), B

runs A with the following inputs:

Public parameters: B chooses b, d
R← Z∗

p, and sets g1 = A1 · g−d = ga−d, g2 = g1
b = g(a−d)b,

h1 = Â1 · g−d = ha−d and h2 = h1
b = h(a−d)b (i.e. α = a− d, β = (a− d)b). B generates u, v, û, v̂

by following Global-setup.

Public key pk∗ for target user: B chooses x, y, z
R← Z∗

p and computes pk∗ = ((A2 ·A1
−d)x, (A2 ·

A1
−d)y, (A1·g−d)z, (A2·A1

−2d·gd2)z, (Â2·Â−d
1)x, (Â2·Â−d

1)y, (Â2·Â−d
1)by) = (g(a−d)ax, (ga−d)ay, g(a−d)z,

(ga−d)(a−d)z, h(a−d)ax, (ha−d)ay, (h(a−d)b)ay). Here, the corresponding secret key of the target hon-
est user is sk∗ = (x∗, y∗, z∗) where x∗ = (a − d)ax, y∗ = ay, z∗ = (a − d)z Note that B does not
have to compute sk∗.

12

Public and secret keys (pkc, skc), (pkj , skj) for malicious users: The secret keys of the corrupt

user skc = (xc, yc, zc) and the malicious user skj = (xj , yj , zj) are set as xc, yc, zc
R← Z∗

p and

yj , zj
R← Z∗

p, xj = dyj . The public keys pkc and pkj are computed by following Keygen.
Re-encryption key R∗c: The re-encryption key R∗c = (R∗c1, R∗c2, R∗c3) is computed as

• R∗c1 =

[
h−n′ ·

(
(Â1 · hs−d)ℓ

′ · h−
1

s−d

)−(s+bd)
] yc

sx

=
[
h−n′ · h−(s+bd)((a+s−d)ℓ′− 1

s−d
)
] yc

sx
,

• R∗c2 = h
(n′+b)yc

y , and

• R∗c3 =
[
(Âℓ′

1 · h
− 1

s−d)−(s+bd) · hb
] yc

z
=
[
h−(aℓ′− 1

s−d
)(s+bd)+b

] yc
z
.

Here, ℓ′, n′ R← Z∗
p and s = xc

yc
. This is a correct re-encryption key with the randomness ℓ =

−(a− d)(aℓ′ − 1
s−d)

s+bd
s , n = an′+bd

s . We can check this as follows.

• R∗c1 = h
ℓxc+α(ℓ−n−1)yc

x∗ = h
ℓsyc+(a−d)(ℓ−n−1)yc

(a−d)ax =

(
h−

n+1
a · h

ℓ(s+a−d)
(a−d)a

) yc
x

. Here, we have

– h−
n+1
a = h−

an′+bd
s +1

a = h−
n′
s · h−

s+bd
sa , and

– h
ℓ(s+a−d)
(a−d)a = h

−(a−d)(aℓ′− 1
s−d

) s+bd
s (s+a−d)

(a−d)a = h
− s+bd

s (a(s+a−d)ℓ′− s+a−d
s−d

)

a = h
− s+bd

s (a(a+s−d)ℓ′−a+(s−d)
s−d

)

a

= h−
s+bd

s
((a+s−d)ℓ′− 1

s−d
− 1

a
) = h−

s+bd
s

((a+s−d)ℓ′− 1
s−d

) · h
s+bd
sa .

Thus, R∗c1 =
(
h−

n′
s · h−

s+bd
sa · h−

s+bd
s

((a+s−d)ℓ′− 1
s−d

) · h
s+bd
sa

) yc
x
=
[
h−n′ · h−(s+bd)((a+s−d)ℓ′− 1

s−d
)
] yc

sx
.

• R∗c2 = h
nxc+βyc

y∗ = h
nsyc+(a−d)byc

ay = h
(ns+(a−d)b)yc

ay = h

(
an′+bd

s s+(a−d)b

)
yc

ay

= h
(an′+bd+ab−bd)yc

ay = h
(n′+b)yc

y .

• R∗c3 = h
ℓxc+βyc

z∗ = h
ℓsyc+(a−d)byc

(a−d)z = h
(ℓs+(a−d)b)yc

(a−d)z = h
(−(a−d)(aℓ′− 1

s−d
) s+bd

s s+(a−d)b)yc
(a−d)z

= h
(−(aℓ′− 1

s−d
)(s+bd)+b)yc
z =

[
h−(aℓ′− 1

s−d
)(s+bd)+b

] yc
z
.

Then, B receives A’s output R†
∗j = (R1, R2, R3). Finally, B outputs W =

(
R3

z

R1
dx·R2

y

) 1
(1+b)xj as

the answer of the 2-DHI problem.
We show that the algorithm B outputs h

1
a with non-negligible probability. The distributions

of the public parameters and the public/secret/re-encryption keys are identical to those of our
proposed scheme except when any one of the following events occurs: “a − d = 0”, “s − d = 0”,
“ℓ = −(a − d)(aℓ′ − 1

s−d)
s+bd
s = 0”, “n = an′+bd

s = 0”. It is easy to see that the probability that
any one of the above events occurs is negligible. Therefore, the algorithm A outputs a (forged)

re-encryption key R†
∗j = (R1, R2, R3) which satisfies m = Dec1(Reenc(R

†
∗j ,Enc2(m, pk∗)), skj)

with non-negligible probability. From this equation and the encryption/decryption/re-encryption
algorithms of our proposed scheme, we have

13

m = m · e(g1g2, h)r
/{(

e(gz∗rk,R3
1/k)

e(gx∗rs,R1
1/s)

) 1
yj ·

(
e(gαz∗rk,R3

1/k)

e(gαy∗rt,R2
1/t)

) 1
xj

}
⇔ m · e

(
g, R3

z∗(xj+αyj)

R1
x∗xj ·R2

αy∗yj

)r
= m · e(g, hxjyj(α+β))r.

Therefore, R3
z∗(xj+αyj)

R1
x∗xj ·R2

αy∗yj = hxjyj(α+β). Since we set x∗ = (a − d)ax, y∗ = ay, z∗ = (a − d)z,

xj = dyj , α = a − d, β = (a − d)b, and the probability that a − d = 0 or 1 + b = 0 is negligible,
we have

R3
(a−d)z(dyj+(a−d)yj)

R1
(a−d)axdyj ·R2

(a−d)ayyj
= hxjyj(a−d+(a−d)b) ⇔ (W =)

(
R3

z

R1
dx ·R2

y

) 1
(1+b)xj

= h
1
a .

Thus, algorithm B outputs h
1
a with non-negligible probability.

4 A UFReKey-CA Secure Proxy Re-Encryption Scheme with
Temporary Delegation

In this section, we apply similar modification of the re-encryption keys to the PRE scheme with
temporary delegation in [4] and propose the PRE scheme supporting temporary delegation which
meets sUFReKey-CA.

4.1 Definitions

In this section, we describe the syntactic definition of unidirectional proxy re-encryption with
temporary delegation and its security notion [4]. In the PRE scheme with temporary delegation,
it only allows the proxy to re-encrypt messages during a limited time period.

4.1.1 Model

First, we describe the model of unidirectional PRE scheme supporting temporary delegation. It is
almost the same as that in Definition 4 except that re-encryption key generation, encryption, and
re-encryption algorithms take a period L ∈ {1, ..., Lmax} as input. Intuitively, the re-encryption
key generated by Rekeygen with a period L, can be used to re-encrypt the ciphertext generated
by Enc2 with the same period L. Note that the public and secret keys are common to all time
periods.

First, we describe the syntactic definition of unidirectional proxy re-encryption.

Definition 9. A (single-hop) unidirectional proxy re-encryption (PRE) scheme with temporary
delegation consists of the following algorithms:

Global-setup(λ) is a probabilistic algorithm which takes a security parameter λ and returns public
parameters par with a plaintext space M.

Keygen(λ, par) is a probabilistic algorithm which takes parameters λ and par and returns a pub-
lic/secret key pair (pk, sk).

Enc1(L,m, pkj , par) is a probabilistic algorithm which takes a time period L, a plaintext m ∈M,
a user j’s public key pkj, and par, and returns a first level ciphertext Cj for L and j, which
cannot be re-encrypted for another user.

14

Enc2(L,m, pki, par) is a probabilistic algorithm which takes a time period L, a plaintext m ∈M,
a user i’s public key pki, and par, and returns a second level ciphertext Ci for L and i, which
can be re-encrypted with re-encryption keys for another user.

Rekeygen(L, ski, pkj , par) is a probabilistic algorithm which takes a time period L, a user i’s secret
key ski, a user j’s public key pkj, and par, and returns a re-encryption key RijL for L to
re-encrypt second level ciphertexts for i into first level ciphertexts for j.

Reenc(L,RijL, Ci, par) is a probabilistic algorithm which takes a time period L, a re-encryption
key RijL, a second level ciphertext Ci for L encrypted under pki, and public parameters par,
and returns a first level ciphertext Cj for L which is re-encrypted for j or a distinguished
message ’invalid.’

Dec1(Cj , skj , par) is a deterministic algorithm which takes a first level ciphertext Cj for j, a user
j’s secret key skj, and par, and returns a plaintext m or a distinguished message ’invalid’.

Dec2(Ci, ski, par) is a deterministic algorithm which takes a second level ciphertext Ci for i, a user
i’s secret key ski, and par, and returns a plaintext m or a distinguished message ’invalid’.

To lighten notations, we will sometimes omit to explicitly write public parameters par, taken
as input by all but one of the above algorithms.

4.1.2 Security Definitions – Confidentiality

Next, we describe the security notion of a PRE scheme with temporary delegation. In Definition 5,
the challenger generates public keys for all parties and allows the adversary to obtain private keys
for some of them (known key model).

On the other hand, in [4], a stronger security notion is also proposed, called RCCA security
in the chosen key model (RCCA-CK security). In this model, the adversary can arbitrarily choose
public keys without demonstrating knowledge of the private keys. This provides the adversary with
much more flexibility and power in attacking other honest parties in the system. The definition
of RCCA-CK security can be extended to that for PRE schemes with temporary delegation.

First, we describe the definition of RCCA-CK security of second level ciphertexts for PRE
schemes with temporary delegation.

Definition 10 (Second level RCCA-CK security for PRE schemes with temporary delegation).
A unidirectional single-hop proxy re-encryption scheme with temporary delegation is second level
secure against replayable chosen-ciphertext attack in the chosen key model (or RCCA-CK secure
for short) if

|Pr[par← Global-setup(λ); {(pki, ski)← Keygen(λ)}i∈HU ; {Rii′ ← Rekeygen(ski, pki′)}i,i′∈HU ;

(m0,m1, i
∗, L∗, St)← AOdeleg,Oreenc,O1-dec({pki}, {Rii′}); d∗

R← {0, 1};
C∗ R← Enc2(L

∗,md∗ , pki∗); d′
R← AOdeleg,Oreenc,O1-dec(C∗, St) : d′ = d∗]− 1/2|

is negligible for any polynomial time algorithm A. Above, St is the state information maintained
by A, HU is the set of honest users, i∗ ∈ HU is the target user, and L∗ is the target time period.

Oracles Odeleg, Oreenc, and O1-dec proceed as follows:

• Delegation oracle Odeleg: on input (L, pki, pkj) where L is a time period, pki is a public key
of honest user i ∈ HU (and either L ̸= L∗ or i ̸= i∗ in any stage), and pkj is a public key
which A chooses arbitrary, this oracle responds with Rekeygen(L, ski, pkj).

15

• Re-encryption oracle Oreenc: on input (L, pki, pkj , C) where L is a time period, C is a second
level ciphertext, pki is a public key of honest user i ∈ HU , and pkj is a public key which A
chooses arbitrary, this oracle responds with invalid if C is ill-formed with respect to pki.
It returns a special symbol ⊥ if j ̸∈ HU and (L, pki, C) = (L∗, pk∗, C

∗). Otherwise, the
re-encrypted first level ciphertext Cj = Reenc(Rekeygen(L, ski, pkj), C) is returned to A.

• First level decryption oracle O1-dec: given a pair (pki, C), where C is a first level ciphertext
and i ∈ HU , this oracle returns invalid if C is ill-formed with respect to pki. If the
query occurs in the guess stage, it outputs a special symbol ⊥ if (pki, C) is a Derivative of
the challenge pair (pki∗ , C

∗). Otherwise, the plaintext m = Dec1(ski, C) is returned to A.
Derivatives of (pki∗ , C

∗) are defined as follows: If C is a first level ciphertext and i ∈ HU ,
(pki, C) is a Derivative of (pki∗ , C

∗) if C and C∗ are encrypted for the same time period L∗

and Dec1(ski, C) ∈ {m0,m1}.

Next, we describe the definition of RCCA-CK security of first level ciphertexts for PRE schemes
with temporary delegation.

Definition 11 (First level RCCA-CK security for PRE schemes with temporary delegation). A
unidirectional single-hop proxy re-encryption scheme with temporary delegation is first level secure
against replayable chosen-ciphertext attack in the chosen key model (RCCA-CK) (or RCCA-CK
secure for short) if

|Pr[par← Global-setup(λ); {(pki, ski)← Keygen(λ)}i∈HU ; {Rii′ ← Rekeygen(ski, pki′)}i,i′∈HU ;

(m0,m1, i
∗, L∗, St)← AOdeleg,O1-dec({pki}, {Rii′}); d∗

R← {0, 1};
C∗ R← Enc1(L

∗,md∗ , pki∗); d′
R← AOdeleg,O1-dec(C∗, St) : d′ = d∗]− 1/2|

is negligible for any polynomial time algorithm A. Above, St is the state information maintained by
A, HU is the set of honest users, i∗ ∈ HU is the target user, and L∗ is the target time period. An
oracle Odeleg responds with Rekeygen(L, ski, pkj) for any query (L, pki, pkj) where i ∈ HU . That
is, (L∗, pki∗ , pkj) can be queried to Odeleg. An oracle O1-dec is the same as that in Definition 10
except that the definition of Derivatives: If C is a first level ciphertext and pk = pk∗, (pk, C) is a
Derivative of (pk∗, C

∗) if Dec1(sk, C) ∈ {m0,m1}.

In the above definition, all re-encryption keys are available to the adversary. Therefore, the
re-encryption oracle becomes useless and is not given to the adversary.

4.1.3 Security Definitions – Unforgeability of Re-Encryption Keys

We describe the definition of sUFReKey-CA for PRE schemes with temporary delegation. In this

security game, the adversary, given a target time period L∗ R← {1, ..., Lmax}, re-encryption keys
R∗cL for any corrupted delegatee c(̸= j) at any period 1 ≤ L ≤ Lmax, and re-encryption keys
R∗jL for the malicious user j at period L ̸= L∗, tries to forge R∗jL∗ .

Definition 12 (Strong Unforgeability of Re-Encryption Keys against Collusion Attack for PRE
schemes with temporary delegation [1]). A unidirectional single-hop proxy re-encryption scheme
with temporary delegation meets the strong unforgeability of re-encryption keys against collusion
attack if the following probability is negligible for any polynomial time algorithm A and any Lmax

16

which is polynomially bounded.

Pr[par← Global-setup(λ); (pk∗, sk∗)← Keygen(λ); {(pkc, skc)← Keygen(λ)};
(pkj , skj)← Keygen(λ); L∗ R← {1, 2, ..., Lmax};
{R∗cL ← Rekeygen(L, sk∗, pkc)}; {R∗jL ← Rekeygen(L, sk∗, pkj)}L ̸=L∗ ;

m
R←M; C∗ ← Enc2(L

∗,m, pk∗);

R†
∗jL∗ ← A(L∗, pk∗, {(pkc, skc)}, (pkj , skj), {R∗cL}, {R∗jL}L ̸=L∗) :

m = Dec1(Reenc(L
∗, R†

∗jL∗ , C∗), skj)]

4.2 Our Proposed Scheme

In this section, we propose a PRE scheme with temporary delegation which meets RCCA-CK and
sUFReKey-CA. In [4], Libert and Vergnaud proposed the PRE scheme with temporary delegation
by modifying their PRE scheme. By using the similar modification, we can construct the PRE
scheme with temporary delegation from our proposed PRE scheme described in Section 3.

4.2.1 Description

Global-setup(λ): the same as that in Section 3.

Keygen(λ, par): user i chooses xi, yi, zi
R← Z∗

p. The secret key is ski = (xi, yi, zi). The public

key is pki = (Xi, Y1i, Zi, Z1i,Wi, X̂i, Ŷ1i, Ŷ2i, Ŵi) where Xi = gxi , Y1i = g1
yi , Zi = gzi , Z1i =

g1
zi ,Wi = gwi , X̂i = hxi , Ŷ1i = h1

yi , Ŷ2i = h2
yi , Ŵi = hwi .

Enc1(L,m, pkj , par): to encrypt a message m ∈ GT under the public key pkj at the first level
during period L, the sender proceeds as follows:

1. Select a one-time signature key pair (svk, ssk)← G(λ) and set C1 = svk.

2. Pick r, s, t, k, π, δx, δy
R← Z∗

p and compute,

C ′
2X = Y1j

s, C ′′
2X = Y1j

rs, C ′
2Y = Xj

t, C ′′
2Y = Xj

rt, C ′
2Z = Y1j

k, C ′′
2Z = Y1j

rk, C ′
2Z1 =

Xj
k, C ′′

2Z1 = Xj
rk, C ′

2F = (gL · Wj)
π, C ′′

2F = (gL · Wj)
rπ, C3 = e(g1g2, h)

r · m,C4 =

(usvk · v)r, Ĉ4 = (ûsvk · v̂)r, C5X = (h2 · (hL · Ŵj)
δy)

1
s = h

β+(L+wj)δy

s , C5Y = (h · (hL ·
Ŵj)

δx)
1
t = h

1+(L+wj)δx

t , C5Z = (h · h2)
1
k = h

1+β
k , C5FX = (Ŷ1j)

δy
π , C5FY = (X̂j)

δx
π

3. Generate a one-time signature σ ← S(ssk, (L,C3, C4)) on (L,C3, C4).

The (first level) ciphertext is Cj = (L,C1, C
′
2X , C ′′

2X , C ′
2Y , C

′′
2Y , C

′
2Z , C

′′
2Z , C

′
2Z1, C

′′
2Z1, C

′
2F , C

′′
2F ,

C3, C4, Ĉ4, C5X , C5Y , C5Z , C5FX , C5FY , σ).

Enc2(L,m, pki, par): to encrypt a message m ∈ GT under the public key pki at the second level
during period L, the sender proceeds as follows:

1. Select a one-time signature key pair (svk, ssk)← G(λ) and set C1 = svk.

2. Pick r
R← Z∗

p and compute, C2X = Xi
r, C2Y = Y1i

r, C2Z = Zi
r, C2Z1 = Z1i

r, C2F =

(gL ·Wi)
r, C3 = e(g1g2, g)

r ·m,C4 = (usvk · v)r, Ĉ4 = (ûsvk · v̂)r.
3. Generate a one-time signature σ ← S(ssk, (L,C3, C4)) on (L,C3, C4).

The (second level) ciphertext is Ci = (L,C1, C2X , C2Y , C2Z , C2Z1, C2F , C3, C4, Ĉ4, σ).

17

Rekeygen(L, ski, pkj , par): given a period number L, user i’s secret key ski and user j’s public
key pkj , generate the re-encryption key RijL = (RijL1, RijL2, RijL3, RijL4, RijL5) where

θ, n, δx, δy
R← Z∗

p and

RijL1 = (X̂ℓ
j · Ŷ

ℓ−n−1
1j)1/xi · (hL · Ŵi)

δx = h
ℓxj+α(ℓ−n−1)yj

xi
+(L+wi)δx ,

RijL2 = (X̂n
j · Ŷ2j)1/yi · (hL · Ŵi)

δy = h
nxj+βyj

yi
+(L+wi)δy , RijL3 = (X̂ℓ

j · Ŷ2j)1/zi = h
ℓxj+βyj

zi ,

RijL4 = X̂δx
i = hxiδx , RijL5 = Ŷ

δy
1i = hαyiδy .

Reenc(L,RijL, Ci, par): on input of the re-encryption key RijL for period L and a second level
ciphertext Ci, check the validity of the ciphertext by testing:

e(C2X , ûC1 · v̂) = e(Xi, Ĉ4), e(C2Y , û
C1 · v̂) = e(Y1i, Ĉ4), e(C2Z , û

C1 · v̂) = e(Zi, Ĉ4),

e(C2Z1, û
C1 · v̂) = e(Z1i, Ĉ4), e(C2F , û

C1 · v̂) = e(gL ·Wi, Ĉ4), e(g, Ĉ4) = e(C4, h),
V(C1, σ, (L,C3, C4)) = 1.

(3)

If the relations (3) hold (well-formed), Ci is re-encrypted by computing
C ′
2X = Xi

s, C ′′
2X = C2X

s, C ′
2Y = Y1i

t, C ′′
2Y = C2Y

t, C ′
2Z = Zi

k, C ′′
2Z = C2Z

k, C ′
2Z1 =

Z1i
k, C ′′

2Z1 = C2Z1
k, C ′

2F = (gL ·Wi)
π, C ′′

2F = C2F
π, C5X = RijL1

1
s , C5Y = RijL2

1
t , C5Z =

RijL3
1
k , C5FX = RijL4

1
π , C5FY = RijL5

1
π where s, t, k, π

R← Z∗
p, and re-encrypted ciphertext

Cj = (L,C1, C
′
2X , C ′′

2X , C ′
2Y , C

′′
2Y , C

′
2Z , C

′′
2Z , C

′
2Z1, C

′′
2Z1, C

′
2F , C

′′
2F , C3, C4, Ĉ4, C5X , C5Y , C5Z ,

C5FX , C5FY , σ) is returned. Otherwise (ill-formed), the algorithm outputs ‘invalid.’

Dec1(Cj , skj): the validity of the first level ciphertext Cj is checked by testing:

e(C ′′
2X , ûC1 · v̂) = e(C ′

2X , Ĉ4), e(C ′′
2Y , û

C1 · v̂) = e(C ′
2Y , Ĉ4),

e(C ′′
2Z , û

C1 · v̂) = e(C ′
2Z , Ĉ4), e(C ′′

2Z1, û
C1 · v̂) = e(C ′

2Z1, Ĉ4),

e(C ′′
2F , û

C1 · v̂) = e(C ′
2F , Ĉ4), e(g, Ĉ4) = e(C4, h), V̂ (C1, σ, (L,C3, C4)) = 1,(

e(C′
2Z ,C5Z)·e(C′

2F ,C5FX)

e(C′
2X ,C5X)

) 1
yj ·

(
e(C′

2Z1,C5Z)·e(C′
2F ,C5FY)

e(C′
2Y ,C5Y)

) 1
xj = e(g1g2, h).

(4)

If the relations (4) hold (well-formed), the plaintext

m = C3

/{(
e(C ′′

2Z , C5Z) · e(C ′′
2F , C5FX)

e(C ′′
2X , C5X)

) 1
yj

·
(
e(C ′′

2Z1, C5Z) · e(C ′′
2F , C5FY)

e(C ′′
2Y , C5Y)

) 1
xj

}
is returned. Otherwise (ill-formed), the algorithm outputs ‘invalid.’

Dec2(Ci, ski): if the second level ciphertext Ci satisfies the relations (3) (well-formed), the plain-

text m = C3

/
e(C2X , h1h2)

1
xi is returned. Otherwise (ill-formed), the algorithm outputs

‘invalid.’

We can check the correctness property of the above scheme as follows. Note that Equa-
tions (3) ensure (r =) logXi

C2X = logY1i
C2Y = logZi

C2Z = logZ1i
C2Z1 = loggL·Wi

C2F =

loguC1v C4 = logûC1 v̂ Ĉ4, and Equations (4) ensure (r =) logC′
2X

C ′′
2X = logC′

2Y
C ′′
2Y = logC′

2Z
C ′′
2Z =

logC2Z1
C2Z1 = logC′

2F
C ′′
2F = loguC1v C4 = logûC1 v̂ Ĉ4.

• Dec2(Enc2(L,m, pki, par), ski, par) = C3

/
e(C2X , h1h2)

1
xi = m · e(g1g2, h)r

/
e(gxir, h1h2)

1
xi

= m · e(g, h)(α+β)r/e(g, h)(α+β)r = m.

18

• Dec1(Enc1(L,m, pkj , par), skj , par)

= C3

/{(
e(C′′

2Z ,C5Z)·e(C′′
2F ,C5FX)

e(C′′
2X ,C5X)

) 1
yj ·

(
e(C′′

2Z1,C5Z)·e(C′′
2F ,C5FY)

e(C′′
2Y ,C5Y)

) 1
xj

}
= C3

/
(

e(gαyjrk,h
1+β
k)·e(g(L+wj)rπ ,h

αyjδy
π)

e(gαyjrs,h
β+(L+wj)δy

s)

) 1
yj

·

(
e(gxjrk,h

1+β
k)·e(g(L+wj)rπ ,h

xjδx
π)

e(gxjrt,h
1+(L+wj)δx

t)

) 1
xj


= C3

/{(
e(gαyjr,h1+β)·e(g(L+wj)r,hαyjδy)

e(gαyjr,hβ+(L+wj)δy)

) 1
yj

·
(

e(gxjr,h1+β)·e(g(L+wj)r,hxjδx)

e(gxjr,h1+(L+wj)δx)

) 1
xj

}
= C3

/{
e(gαyjr, h)

1
yj · e(gxjr, hβ)

1
xj

}
= m · e(g1g2, h)r

/
(e(g, h)αr · e(g, h)βr) = m.

• Dec1(Reenc(L,Rekeygen(L, ski, pkj , par),Enc2(L,m, pki, par), par), skj , par)

C3

/{(
e(C′′

2Z ,C5Z)·e(C′′
2F ,C5FX)

e(C′′
2X ,C5X)

) 1
yj ·

(
e(C′′

2Z1,C5Z)·e(C′′
2F ,C5FY)

e(C′′
2Y ,C5Y)

) 1
xj

}

= C3

/
(

e(gzirk,h

ℓxj+βyj
zik)·e(g(L+wi)rπ ,h

xiδx
π)

e(gxirs,h
((ℓxj+α(ℓ−n−1)yj)/xi)+(L+wi)δx

s)

) 1
yj

·

(
e(gαzirk,h

ℓxj+βyj
zik ,)·e(g(L+wi)rπ ,h

αyiδy
π)

e(gαyirt,h
((nxj+βyj)/yi)+(L+wi)δy

t ,)

) 1
xj


= C3

/{(
e(gr,hℓxj+βyj)·e(g(L+wi)r,hxiδx)

e(gr,hℓxj+α(ℓ−n−1)yj+(L+wi)xiδx)

) 1
yj

·
(

e(gαr,hℓxj+βyj)·e(g(L+wi)r,hαyiδy)

e(gαr,hnxj+βyj+(L+wi)yiδy)

) 1
xj

}

= C3

/{(
e(gr,hℓxj+βyj)

e(gr,hℓxj+α(ℓ−n−1)yj)

) 1
yj

·
(

e(gαr,hℓxj+βyj)

e(gαr,hnxj+βyj)

) 1
xj

}

= C3

/{(
e(gr,hβyj)

e(gr,hα(ℓ−n−1)yj)

) 1
yj

·
(

e(gαr,hℓxj)
e(gαr,hnxj)

) 1
xj

}
= C3

/{
e(gr,hβ)

e(gr,hα(ℓ−n−1))
· e(g

αr,hℓ)
e(gαr,hn)

}
= m · e(g1g2, h)r

/
(e(g, h)βr · e(g, h)αr) = m.

4.2.2 Security

We prove the following theorems with respect to the confidentiality (RCCA-CK security) of our
scheme.

Theorem 4. Assuming the strong unforgeability of one-time signature, our proposed scheme with
temporary delegation satisfies second level RCCA-CK security if the 1-wDBDHI problem is hard.

Proof. We prove that our proposed scheme is second level RCCA-CK secure under the 1-wDBDHI
problem. We build an algorithm B which is, given (g,A = ga, h, Â = ha, B = gb, B̂ = hb, T),
solving the 1-wDBDHI problem using second level RCCA-CK adversary A.

The algorithm B simulates A’s input and oracles as follows.

Target user and target period: B randomly chooses i∗
R← HU and L∗ R← {1, . . . , Lmax}. The

probability that the adversary A chooses (i∗, L∗) in the guess stage is 1
|HU |Lmax

and it is non-

negligible since |HU | and Lmax are polynomially bounded. In the following, we consider the case
that the adversary chooses (i∗, L∗) in the guess stage.

19

Public parameters: B chooses α, β
R← Z∗

p and computes g1 = gα, g2 = gβ, h1 = hα, h2 = hβ.

B chooses the key pair (svk∗, ssk∗)
R← G(1λ) of the one-time signature scheme. The generator

u, v, v̂, v̂ are set as u = gα1 , v = g−α1svk∗Aα2 , û = hα1 , v̂ = h−α1svk∗Âα2 , where α1, α2
R← Z∗

p.

Public and secret keys: For the target user i∗, B chooses x∗, y∗, z∗, w∗
R← Z∗

p and computes

pk∗ = (Ax∗ , Aαy∗ , Az∗ , Aαz∗ , g−L∗ ·Aw∗ , Âx∗ , Âαy∗ , Âβy∗ , h−L∗ ·Âw∗ ,) = (gax∗ , g1
ay∗ , gaz∗ , g1

az∗ , g−L∗+aw∗ ,

hax∗ , h1
ay∗ , h2

ay∗ , h−L∗+aw∗). For the honest user h ∈ HU\{i∗}, B chooses xh, yh, zh, wh
R← Z∗

p and

computes pkh = (Axh , Aαyh , Azh , Aαzh , gwh , Âxh , Âαyh , Âβyh , hwh ,) = (gaxh , g1
ayh , gazh , g1

azh , gwh ,
haxh , h1

ayh , h2
ayh , hwh). Here, the secret keys for i∗ and h are (ax∗, ay∗, az∗,−L∗ + aw∗) and

(axh, ayh, azh, wh), respectively. Note that B does not have to compute these secret keys.
Delegation oracle: For the query (L, pki, pkj) to the delegation oracle, B responds as follows.

• If i, j ∈ HU , B chooses ℓ, n, δx, δy
R← Z∗

p and computes RijL = (h
ℓxj+α(ℓ−n−1)yj

xi (hLŴi)
δx ,

h
nxj+βyj

yi (hLŴi)
δy , h

ℓxj+βyj
zi , Axiδx , Aαyiδy).

• If i ∈ HU\{i∗} and j ∈ CU , ski = (axi, ayi, azi, wi). Then, B chooses ℓ′, n′, δ′x, δy
R← Z∗

p and

computes RijL = ((X̂ℓ′
j Ŷ

ℓ′−n′

1j)
1
xi h(L+wi)δ

′
x , X̂

n′
yi
j h(L+wi)δy , X̂

ℓ′
zi
j , (Ŷ1j Ŷ2j)

1
L+wi Âxiδ

′
x , Âαyiδy).

This is a correct re-encryption key with the randomness ℓ = aℓ′ − βyj
xj

, n = an′ − βyj
xj

, δx =
(α+β)yj

(L+wi)axi
+ δ′x, since

– RijL1 = h
ℓxj+α(ℓ−n−1)yj

axi
+(L+wi)δx = h

(aℓ′−
βyj
xj

)xj+α((aℓ′−
βyj
xj

)−(an′−
βyj
xj

)−1)yj

axi
+(L+wi)(

(α+β)yj
(L+wi)axi

+δ′x)

= h
aℓ′xj−βyj+α(aℓ′−an′−1)yj

axi
+

(α+β)yj
axi

+(L+wi)δ
′
x = h

a(ℓ′xj+α(ℓ′−n′)yj)−(α+β)yj
axi

+
(α+β)yj

axi
+(L+wi)δ

′
x

= h
ℓ′xj+α(ℓ′−n′)yj

xi
+(L+wi)δ

′
x = (X̂ℓ′

j Ŷ
ℓ′−n′

1j)
1
xi h(L+wi)δ

′
x ,

– RijL2 = h
nxj+βyj

ayi
+(L+wi)δy = h

(an′−
βyj
xj

)xj+βyj

ayi
+(L+wi)δy = h

an′xj−βyj+βyj
ayi

+(L+wi)δy

= h
n′xj
yi

+(L+wi)δy = X̂
n′
yi
j h(L+wi)δy ,

– RijL3 = h
ℓxj+βyj

azi = h

(aℓ′−
βyj
xj

)xj+βyj

azi = h
aℓ′xj−βyj+βyj

azi = h
aℓ′xj
azi = h

ℓ′xj
zi = X̂

ℓ′
zi
j ,

– RijL4 = h(axi)δx = h
axi(

(α+β)yj
(L+wi)axi

+δ′x) = h
(α+β)yj
L+wi

+axiδ
′
x = (Ŷ1j Ŷ2j)

1
L+wi Âxiδ

′
x ,

– RijL5 = hα(ayi)δy = Âαyiδy .

• If i = i∗, j ∈ CU , and L ̸= L∗, ski = (ax∗, ay∗, az∗,−L∗ + aw∗). Then, B chooses

ℓ′, n′, δ′x, δy
R← Z∗

p and computes R∗jL = ((X̂ℓ′
j Ŷ

ℓ′−n′

1j)
1
x∗ h(L−L∗)δ′x(Ŷ1j Ŷ2j)

w∗
(L−L∗)x∗ Âw∗δ′x ,

X̂
n′
y∗
j (hL−L∗

Âw∗)δy , X̂
ℓ′
z∗
j , (Ŷ1j Ŷ2j)

1
L−L∗ Âx∗δ′x , Âαy∗δy). This is a correct re-encryption key

with the randomness ℓ = aℓ′ − βyj
xj

, n = an′ − βyj
xj

, δx =
(α+β)yj

(L−L∗)ax∗
+ δ′x, since

– RijL1 = h
ℓxj+α(ℓ−n−1)yj

ax∗
+(L−L∗+aw∗)δx

= h

(aℓ′−
βyj
xj

)xj+α((aℓ′−
βyj
xj

)−(an′−
βyj
xj

)−1)yj

ax∗
+(L−L∗+aw∗)(

(α+β)yj
(L−L∗)ax∗

+δ′x)

20

= h
aℓ′xj−βyj+α(aℓ′−an′−1)yj

ax∗
+

(α+β)yj
ax∗

+(L−L∗)δ′x+
w∗(α+β)yj
(L−L∗)x∗

+aw∗δ′x

= h
a(ℓ′xj+α(ℓ′−n′)yj)−(α+β)yj

ax∗
+

(α+β)yj
ax∗

+(L−L∗)δ′x+
w∗(α+β)yj
(L−L∗)x∗

+aw∗δ′x

= h
ℓ′xj+α(ℓ′−n′)yj

x∗
+(L−L∗)δ′x+

w∗(α+β)yj
(L−L∗)x∗

+aw∗δ′x

= (X̂ℓ′
j Ŷ

ℓ′−n′

1j)
1
x∗ h(L−L∗)δ′x(Ŷ1j Ŷ2j)

w∗
(L−L∗)x∗ Âw∗δ′x ,

– RijL2 = h
nxj+βyj

ay∗
+(L−L∗+aw∗)δy = h

(an′−
βyj
xj

)xj+βyj

ay∗
+(L−L∗+aw∗)δy

= h
an′xj−βyj+βyj

ay∗
+(L−L∗+aw∗)δy = h

n′xj
y∗

+(L−L∗+aw∗)δy = X̂
n′
y∗
j (hL−L∗

Âw∗)δy ,

– RijL3 = h
ℓxj+βyj

az∗ = h
(aℓ′−

βyj
xj

)xj+βyj

az∗ = h
aℓ′xj−βyj+βyj

az∗ = h
aℓ′xj
az∗ = h

ℓ′xj
z∗ = X̂

ℓ′
z∗
j ,

– RijL4 = h(ax∗)δx = h
ax∗(

(α+β)yj
(L−L∗)ax∗

+δ′x) = h
(α+β)yj
L−L∗ +ax∗δ′x = (Ŷ1j Ŷ2j)

1
L−L∗ Âx∗δ′x ,

– RijL5 = hα(ay∗)δy = Âαy∗δy .

Re-encryption oracle: For the re-encryption query (L, pki, pkj , Ci), B checks the validity of
Ci by using equations (3). Note that equations (3) are publicly verified. If Ci is ill-formed, B
outputs invalid. Otherwise, if either i ̸= i∗, j ̸∈ CU , or L ̸= L∗, B uses the re-encryption key and
responds the query. If i = i∗, j ∈ CU , and L = L∗, C1 ̸= svk∗ holds with overwhelming probability
(because of the strong unforgeability of the one-time signature). Then, the re-encrypted ciphertext
Cj can be computed as

(C1, g
s′ , (gr)s

′
, gαt

′
, (gr)αt

′
, gk

′
, (gr)k

′
, gαk

′
, (gr)αk

′
, gπ

′
, (gr)π

′
, C3, C4, Ĉ4,

(X̂ℓ
j · Ŷ

ℓ−n−1
1j ·Aw∗x∗δ′x)

1
s′ , (X̂n

j · Ŷ2j ·Aw∗y∗δ′y)
1
t′ , (X̂ℓ

j · Ŷ2j)
1
k′ , A

w∗x∗δ′x
π′ , A

αw∗y∗δ′y
π′ , σ)

where s′, t′, k′, π′ R← Z∗
p. Note that gr can be computed as gr = (C4/C2X

α2/x∗)
1

α1(C1−svk∗) since

C4 = (gα1C1g−α1svk∗Aα2)r = g(C1−svk∗)α1rAα2r and C2X = X∗
r = Ax∗r. This is a valid ciphertext

with the randomness s = s′/ax∗, t = t′/ay∗, k = k′/az∗, π = π′/aw∗, δx = δ′x/a, δy = δ′y/a.
First level decryption oracle: For the first level decryption query (pkj , Cj), B checks the validity

of Cj by using the equations (4). Here, the secret key is needed to verify the eighth (final) equation
in equations (4). Since the first and second elements of the secret key of the honest user are formed
as axj and ayj , respectively, B checks the following equation instead of the eighth equation in
equations (4):(

e(C ′
2Z , C5Z) · e(C ′

2F , C5FX)

e(C ′
2X , C5X)

) 1
yj

·
(
e(C ′

2Z1, C5Z) · e(C ′
2F , C5FY)

e(C ′
2Y , C5Y)

) 1
xj

= e(g1g2, Â).

If Cj is ill-formed, B outputs invalid. When Cj is well-formed (and j ∈ HU), if C1 = svk∗

and (L,C3, C4, σ) = (L∗, C∗
3 , C

∗
4 , σ

∗), B returns ⊥ since Cj is a Derivative of the challenge ci-
phertext. In the other case, C1 ̸= svk∗ holds with overwhelming probability (because of the
strong unforgeability of the one-time signature). Since the first and second elements of the se-

cret key are formed as axj and ayj , respectively, B computes X =
(
e(C′′

2Z ,C5Z)·e(C′′
2F ,C5FX)

e(C′′
2X ,C5X)

) 1
yj ·(

e(C′′
2Z1,C5Z)·e(C′′

2F ,C5FY)

e(C′′
2Y ,C5Y)

) 1
xj (= e(g1g2, h)

ar), Y = {e(C4, h)
α+β/Xα2}

1
(C1−svk∗)α1 (= e(g1g2, h)

r) and

m = C3/Y . Note that if m ∈ {m0,m1}, B returns ⊥.

21

Challenge ciphertext: The challenge ciphertext is computed as C∗ = (L∗, svk∗, Bx∗ , Bαy∗ , Bz∗ ,

Bαz∗ , Bw∗ ,md∗ · Tα+β, Bα2 , B̂α2 ,S(ssk∗, (L∗, C∗
3 , C

∗
4))) where d∗

R← {0, 1}. If T = e(g, h)b/a, C∗

is a valid ciphertext with the random exponent r = b/a. In contrast, if T is random, A cannot
guess d∗ with probability better than 1/2. Therefore, B decides that T = e(g, h)b/a if d∗ equals
to the adversary’s output and that T is random otherwise.

Theorem 5. Assuming the strong unforgeability of one-time signature, our proposed scheme with
temporary delegation satisfies first level RCCA-CK security if the 1-wDBDHI problem is hard.

Proof. The proof is almost the same as that for the second level RCCA-CK security. We can build
an algorithm B which is, given (g,A = ga, h, Â = ha, B = gb, B̂ = hb, T), solving the 1-wDBDHI
problem using first level RCCA-CK adversary A.

The algorithm B simulates A’s input and oracles as follows. The target user, the target
period, and the public parameters are set in the same way as that in the proof of first level
RCCA-CK security. The algorithm B generates the public key for target user i∗ as pk∗ =
(Ax∗ , Aαy∗ , Az∗ , Aαz∗ , gw∗ , Âx∗ , Âαy∗ , Âβy∗ , hw∗ ,) = (gax∗ , g1

ay∗ , gaz∗ , g1
az∗ , gw∗ , hax∗ , h1

ay∗ , h2
ay∗ , hw∗)

where x∗, y∗, z∗, w∗
R← Z∗

p. Here, the secret keys for the target user is sk∗ = (ax∗, ay∗, az∗, w∗).
Note that B does not have to compute the secret keys of the target user to compute the corre-
sponding public keys. The public keys for other honest users h ∈ HU{i∗} are set in the same way
as that in the proof of first level RCCA-CK security.

For the delegation query (L, pki, pkj), B responds in the same way as that for i ∈ HU\{i∗}
and j ∈ CU in the proof of first level RCCA-CK security. B can respond any first level decryption
query in the same way as that in the proof of first level RCCA-CK security.

For the challenge ciphertext C∗, B chooses s, t, k, π′, δ′x, δ
′
y

R← Z∗
p d∗

R← {0, 1} and computes

(svk∗, Aαy∗s, Bαy∗s, Ax∗t, Bx∗t, Aαy∗k, Bαy∗k, Ax∗k, Bx∗k, A(L∗+w∗)π′
, B(L∗+w∗)π′

,md∗ ·Tα+β, Bα2 , B̂α2 ,

(hβ · Â(L∗+w∗)δ′y)
1
s , (h · Â(L∗+w∗)δ′x)

1
t , h

1+β
k , A

αy∗δ′y
π′ , A

x∗δ′x
π′ ,S(ssk∗, (L∗, C∗

3 , C
∗
4))). If T = e(g, h)b/a,

C∗ is a valid ciphertext with the random exponent r = b/a, π = aπ′, δx = aδ′x, δy = aδ′y. In
contrast, if T is random, A cannot guess d∗ with probability better than 1/2. Therefore, B decides
that T = e(g, h)b/a if d∗ equals to the adversary’s output and that T is random otherwise.

We show the strong unforgeability of re-encryption keys against collusion attack (sUFReKey-
CA) for our proposed scheme with temporary delegation.

Theorem 6. Our proposed scheme with temporary delegation meets sUFReKey-CA if the 2-DHI
problem is hard.

Proof. We specify the polynomial time algorithm B which solves the 2-DHI problem by using
the polynomial time algorithm A which breaks the strong unforgeability of re-encryption keys
against collusion attack of the proposed scheme described in Section 4. Given (g,A1 = ga, A2 =
ga

2
, h, Â1 = ha, Â2 = ha

2
), B runs A with the following inputs:

Public parameters: The public parameters par are the same as those in the proof of Theorem 3.

That is, B chooses b, d
R← Z∗

p, and sets g1 = A1·g−d = ga−d, g2 = g1
b = g(a−d)b, h1 = Â1·g−d = ha−d

and h2 = h1
b = h(a−d)b (i.e. α = a − d, β = (a − d)b). B generates u, v, û, v̂ by following Global-

setup.

Public key pk∗ for target user: B chooses x, y, z
R← Z∗

p and computes pk∗ = ((A2 ·A1
−d)x, (A2 ·

A1
−d)y, (A1·g−d)z, (A2·A1

−2d·gd2)z, g−L∗ ·(A2·A−d
1)w(Â2·Â−d

1)x, (Â2·Â−d
1)y, (Â2·Â−d

1)by, h−L∗ ·(Â2·
Â−d

1)w) = (g(a−d)ax, (ga−d)ay, g(a−d)z, (ga−d)(a−d)z, g−L∗+(a−d)aw, h(a−d)ax, (ha−d)ay, (h(a−d)b)ay,

22

h−L∗+(a−d)aw). Here, the corresponding secret key of the target honest user is sk∗ = (x∗, y∗, z∗, w∗)
where x∗ = (a− d)ax, y∗ = ay, z∗ = (a− d)z, w∗ = −L∗ + (a− c)aw. Note that B does not have
to compute sk∗.

Public and secret keys (pkc, skc), (pkj , skj) for malicious users: The secret keys of the corrupt

user skc = (xc, yc, zc, wc) and the malicious user skj = (xj , yj , zj , wj) are set as xc, yc, zc, wc
R← Z∗

p

and yj , zj , wj
R← Z∗

p, xj = dyj . The public keys pkc and pkj are computed by following Keygen.
Re-encryption key R∗cL: The re-encryption key R∗cL = (R∗cL1, R∗cL2, R∗cL3, R∗cL4, R∗cL5) is

computed as

R∗cL1 = R∗c1 · (hLŴ∗)
δx , R∗cL2 = R∗c2 · (hLŴ∗)

δy , R∗cL3 = R∗c3, R∗cL4 = X̂δx
∗ , R∗cL5 = Ŷ

δy
1∗

where R∗c1, R∗c2, R∗c3 are the same as those in the proof of Theorem 3, respectively and δx, δy
R←

Z∗
p. From the proof of Theorem 3, we have R∗c1 = (X̂ℓ

c · Ŷ ℓ−n−1
1c)1/x∗ , R∗c2 = (X̂n

c · Ŷ2c)1/y∗ ,
R∗c3 = (X̂ℓ

c · Ŷ2c)1/z∗ for some random ℓ and n, it is easy to see that R∗cL is a correct re-encryption
key.

Re-encryption key R∗jL (L ̸= L∗): The re-encryption keyR∗jL = (R∗jL1, R∗jL2, R∗jL3, R∗jL4, R∗jL5)
for L ̸= L∗ is computed as

R∗jL1 = h
(ℓ′−n′)yi

x
+(L−L∗)δ′xD

w
x Ewδ′x , R∗jL2 = h

(n′d+b)yi
y

+(L−L∗)δ′yD
bdw
y Ewδ′y , R∗jL3 = h

(ℓ′d+b)yj
z ,

R∗jL4 = DExδ′x , R∗jL5 = DbdEyδ′y

where D = (Â1h
−d)

yj
L−L∗ = h

(a−d)yj
L−L∗ , E = Â2Â

−d
1 = h(a−d)a, and ℓ′, n′, δ′x, δ

′
y

R← Z∗
p. This is a

correct re-encryption key with the randomness ℓ = (a − d)ℓ′, n = an′, δx =
yj

a(L−L∗)x + δ′x, δy =
bdyj

a(L−L∗)y + δ′y, since

• R∗jL1 = h
ℓxj+α(ℓ−n−1)yj

x∗
+(L+w∗)δx = h

(a−d)ℓ′dyj+(a−d)((a−d)ℓ′−an′−1)yj
(a−d)ax

+(L−L∗+(a−d)aw)(
yj

a(L−L∗)x+δ′x)

= h
ℓ′dyj+((a−d)ℓ′−an′−1)yj

ax
+(L−L∗+(a−d)aw)(

yj
a(L−L∗)x+δ′x) = h

(aℓ′−an′−1)yj
ax

+(L−L∗+(a−d)aw)(
yj

a(L−L∗)x+δ′x)

= h
(ℓ′−n′)yj

x
−

yj
ax

+
yj
ax

+(L−L∗)δ′x+
(a−d)wyj
(L−L∗)x +(a−d)awδ′x = h

(ℓ′−n′)yj
x

+(L−L∗)δ′xD
w
x Ewδ′x ,

• R∗jL2 = h
nxj+βyj

y∗
+(L+w∗)δy = h

an′dyj+(a−d)byj
ay

+(L−L∗+(a−d)aw)(
bdyj

a(L−L∗)y+δ′y)

= h
an′dyj+abyj−bdyj

ay
+(L−L∗+(a−d)aw)(

bdyj
a(L−L∗)y+δ′y)

= h
(n′d+b)yj

y
−

bdyj
ay

+
bdyj
ay

+(L−L∗)δ′y+
(a−d)wbdyj
(L−L∗)y +(a−d)awδ′y = h

(n′d+b)yj
y

+(L−L∗)δ′yD
bdw
y Ewδ′y ,

• R∗jL3 = h
ℓxj+βyj

z∗ = h
(a−d)ℓ′dyj+(a−d)byj

(a−d)z = h
ℓ′dyj+byj

z = h
(ℓ′d+b)yj

z ,

• R∗jL4 = hx∗δx = h
(a−d)ax(

yj
a(L−L∗)x+δ′x) = h

(a−d)yj
L−L∗ +(a−d)axδ′x = DExδ′x ,

• R∗jL5 = hαy∗δy = h
(a−d)ay(

bdyj
a(L−L∗)y+δ′y) = h

(a−d)bdyj
L−L∗ +(a−d)ayδ′y = DbdEyδ′y .

Then, B receives A’s output R†
∗jL∗ = (R1, R2, R3, R4, R5). Finally, B outputs

W =

(
R3

zR4
dwR5

w

R1
dx ·R2

y

) 1
(1+b)xj

23

as the answer of the 2-DHI problem.
We show that the algorithm B outputs h

1
a with non-negligible probability. The distributions

of the public parameters and the public/secret/re-encryption keys are identical to those of our
proposed scheme except when any one of the following events occurs: “a − d = 0”, “s − d = 0”,
“−(a−d)(aℓ′− 1

s−d)
s+bd
s = 0”, “an′+bd

s = 0”. Note that s−d,−(a−d)(aℓ′− 1
s−d)

s+bd
s , an

′+bd
s are used

to generate (simulate) re-encryption key R∗cL. It is easy to see that the probability that any one of
the above events occurs is negligible. Therefore, the algorithm A outputs a (forged) re-encryption

key R†
∗jL∗ = (R1, R2, R3, R4, R5) which satisfies m = Dec1(Reenc(L

∗, R†
∗jL∗ ,Enc2(L,m, pk∗)), skj)

with non-negligible probability. From this equation and the encryption/decryption/re-encryption
algorithms of our proposed scheme, we have

m = m · e(g1g2, h)r
/{(

e(gz∗rk,R3
1/k)·e(g(L∗+w∗)rπ ,R4

1/π)

e(gx∗rs,R1
1/s)

) 1
yj ·

(
e(gαz∗rk,R3

1/k)·e(g(L∗+w∗)rπ ,R5
1/π)

e(gαy∗rt,R2
1/t)

) 1
xj

}
⇔ m · e

(
g, R3

z∗(xj+αyj)R4
(L∗+w∗)xjR5

(L∗+w∗)yj

R1
x∗xj ·R2

αy∗yj

)r

= m · e(g, hxjyj(α+β))r.

Therefore, R3
z∗(xj+αyj)R4

(L∗+w∗)xjR5
(L∗+w∗)yj

R1
x∗xj ·R2

αy∗yj = hxjyj(α+β). Since we set x∗ = (a − d)ax, y∗ = ay,

z∗ = (a− d)z, w∗ = −L∗ + (a− d)aw, xj = dyj , α = a− d, β = (a− d)b, and the probability that
a− d = 0 or 1 + b = 0 is negligible, we have

R3
(a−d)z(dyj+(a−d)yj)R4

L∗−L∗+(a−d)awdyjR5
L∗−L∗+(a−d)awyj

R1
(a−d)axdyj ·R2

(a−d)ayyj
= hxjyj(a−d+(a−d)b)

⇔ R3
azR4

awdR5
aw

R1
axd ·R2

ay
= hxj(1+b) ⇔ (W =)

(
R3

zR4
dwR5

w

R1
dx ·R2

y

) 1
(1+b)xj

= h
1
a .

Thus, the algorithm B outputs h
1
a with non-negligible probability.

5 Concluding Remarks

In this paper, we have proposed two PRE schemes. They satisfy the RCCA security and the
strong unforgeability of re-encryption keys if the q-wDBDHI problem and the 2-DHI problem are
hard.

Note that our schemes can be realized on a symmetric bilinear group (G,GT) by setting g =
h ∈ G. In this case, û, v̂, X̂i, Ŷ1i, Ŵi, Ĉ4 are equal to u, v,Xi, Y1i,Wi, C4, respectively. Thus, the
sizes of the public key and the ciphertext can be reduced by replacing û, v̂ in the public parameters,
X̂i, Ŷ1i, Ŵi in the public key, and Ĉ4 in the ciphertext with u, v,Xi, Y1i,Wi, C4, respectively, and
removing û, v̂, X̂i, Ŷ1i, Ŵi, Ĉ4. We can also remove the equation “e(g, Ĉ4) = e(C4, h)” from (1)–(4).
We can prove that these schemes meet confidentiality and sUFReKey-CA under the assumption
that q-wDBDHI problem and 2-DHI problem are hard in (G,GT). The proofs are almost the
same as those for the asymmetric schemes.

Unfortunately, our schemes do not meet the non-transferability since the attack shown [1]
(Section 6) can be applied to our scheme. It might be interesting to construct a non-transferable
PRE scheme. Constructing the scheme which meets full CCA security and UFReKey-CA might
be one of future works.

24

References

[1] Hayashi, R., Matsushita, T., Yoshida, T., Fujii, Y., Okada, K.: Unforgeability of Re-
Encryption Keys against Collusion Attack in Proxy Re-Encryption. In: IWSEC 2011. Volume
7038 of LNCS. (2011) 210–229

[2] Isshiki, T., Manh Ha, N., Tanaka, K.: Attacks to the Proxy Re-Encryption Schemes from
IWSEC2011. In: IWSEC 2013. Volume 8231 of LNCS. (2013) 290–302

[3] Blaze, M., Bleumer, G., Strauss, M.: Divertible Protocols and Atomic Proxy Cryptography.
In: EUROCRYPT ’98. Volume 1403 of LNCS. (1998) 127–144

[4] Libert, B., Vergnaud, D.: Unidirectional Chosen-Ciphertext Secure Proxy Re-Encryption.
In: PKC 2008. Volume 4939 of LNCS. (2008) 360–379

[5] Shao, J., Cao, Z.: CCA-Secure Proxy Re-Encryption without Pairings. In: PKC 2009.
Volume 5443 of LNCS. (2009) 357–376

[6] Chow, S.S.M., Weng, J., Yang, Y., Deng, R.H.: Efficient Unidirectional Proxy Re-Encryption.
In: AFRICACRYPT 2010. Volume 6055 of LNCS. (2010) 316–332

[7] Sur, C., Jung, C.D., Park, Y., Rhee, K.H.: Chosen-Ciphertext Secure Certificateless Proxy
Re-Encryption. In: CMS 2010. Volume 6109 of LNCS. (2010) 214–232

[8] Canard, S., Devigne, J., Laguillaumie, F.: Improving the Security of an Efficient Unidirec-
tional Proxy Re-Encryption Scheme. Journal of Internet Services and Information Security
1 (2011) 140–160

[9] Hanaoka, G., Kawai, Y., Kunihiro, N., Matsuda, T., Weng, J., Zhang, R., Zhao, Y.: Generic
Construction of Chosen Ciphertext Secure Proxy Re-Encryption. In: CT-RSA 2012. Volume
7178 of LNCS. (2012) 349–364

[10] Isshiki, T., Nguyen, M.H., Tanaka, K.: Proxy Re-Encryption in a Stronger Security Model
Extended from CT-RSA2012. In: CT-RSA 2013. Volume 7779 of LNCS. (2013) 277–292

[11] Boneh, D., Boyen, X., Goh, E.J.: Hierarchical Identity Based Encryption with Constant Size
Ciphertext. In: EUROCRYPT 2005. Volume 3493 of LNCS. (2005) 440–456 Full version is
available at https://eprint.iacr.org/2005/015.

[12] Mitsunari, S., Sakai, R., Kasahara, M.: A New Traitor Tracing. IEICE Transactions E85-A
(2002) 481–484

[13] Boneh, D., Boyen, X.: Efficient Selective-ID Identity Based Encryption without Random
Oracles. In: EUROCRYPT 2004. Volume 3027 of LNCS. (2005) 223–238

[14] Dodis, Y., Yampolskiy, A.: A Verifiable Random Function With Short Proofs and Keys. In:
PKC 2005. Volume 3386 of LNCS. (2005) 416–431

[15] Ateniese, G., Fu, K., Green, M., Hohenberger, S.: Improved Proxy Re-Encryption Schemes
with Applications to Secure Distributed Storage. In: NDSS 2005. (2005)

25

[16] Ateniese, G., Fu, K., Green, M., Hohenberger, S.: Improved Proxy Re-Encryption Schemes
with Applications to Secure Distributed Storage. ACM Transactions on Information and
System Security (TISSEC) 9 (2006) 1–30

26

