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Abstract. This report summarizes our results from security analysis
covering all 57 CAESAR first round candidates and over 210 implementa-
tions. We have manually identified security issues with three candidates,
two of which are more serious, and these ciphers been withdrawn from
the competition. We have developed a testing framework, BRUTUS, to
facilitate automatic detection of simple security lapses and susceptible
statistical structures across all ciphers. From this testing we have security
usage notes on four submissions and statistical notes on a further four.
We highlight that some of the CAESAR algorithms pose an elevated risk
if employed in real-life protocols due to a class of adaptive chosen plain-
text attacks. Although AEADs are often defined (and are best used) as
discrete primitives that authenticate and transmit only complete mes-
sages, in practice these algorithms are easily implemented in a fashion
that outputs observable ciphertext data when the algorithm has not re-
ceived all of the (attacker-controlled) plaintext. For an implementor, this
strategy appears to offer seemingly harmless and compliant storage and
latency advantages. If the algorithm uses the same state for secret keying
information, encryption, and integrity protection, and the internal mix-
ing permutation is not cryptographically strong, an attacker can exploit
the ciphertext-plaintext feedback loop to to reveal secret state informa-
tion or even keying material. We conclude that the main advantages of
exhaustive, automated cryptanalysis is that it acts as a very necessary
sanity check for implementations and gives the cryptanalyst insights that
can be used to focus more specific attack methods on given candidates.

Keywords: Adaptive Chosen Plaintext Attacks, Authenticated Encryption, CAE-
SAR, BRUTUS, Automated Cryptanalysis.

1 Introduction

Authenticated Encryption with Associated Data (AEAD) algorithms provide
message confidentiality and integrity protection with a single cryptographic
primitive. As such, they offer functionality similar to combining a stream or
block cipher with a Message Authentication Code (MAC) on protocol level.
† This research was carried out during the tenure of an ERCIM “Alain Bensoussan”
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This two-algorithm approach has been the predominant way of securing mes-
sages in popular Internet security protocols since mid-1990’s. Its potential prob-
lems were identified early by H. Krawczyk and others [21]. Still, current TLS
1.2 [10] mandates support only for the TLS_RSA_WITH_AES_128_CBC_SHA cipher
suite, which combines AES [27] in CBC [11] Confidentiality Mode with SHA-1
[30] hash algorithm in HMAC [29] Message Authentication mode and a TLS-
specific padding scheme. Similar approaches have been taken by other popular
security protocols such as IPSec [19, 20] and SSH [52]. This separation has been
exploited by numerous real-life attacks [9, 33, 45].

When Authenticated Encryption techniques such as GCM [28] are used, most
problems related to intermixing of two separate algorithms (such as padding) are
removed. Furthermore, AES-GCM works in a single pass, resulting in increased
throughput and a decreased implementation footprint. AES-GCM has rapidly
replaced older methods in practical usage. It is endorsed and effectively enforced
for U.S. and Allied National Security Systems [8]. AES-GCM has been adopted
for use in many protocols, including TLS, SSH, and IPSec [6, 17, 41].

However, GCM is widely seen as an unsatisfactory standard with brittle se-
curity assurances [31] and therefore a new NIST-sponsored competition, CAE-
SAR (Competition for Authenticated Encryption: Security, Applicability, and
Robustness) was launched in 2014 [7]. The CAESAR competition has multiple
stages or “elimination rounds.” The call for algorithms resulted in 57 first round
candidates.

Structure of this paper and our contributions. We give a description of
AEADs that most CAESAR candidates conform to in Section 2. We started our
evaluation by getting to know the voluminous supplied documentation, which
led to cryptanalytic results on three candidates (Section 3). We then describe
the development of our framework for automated cryptanalysis, BRUTUS, in
Section 4, together with security usage notes obtained. A key observation which
may not have been fully considered by all submitters is the non-atomic nature of
AEADs in real life, which is captured in the notion of adaptive chosen plaintext
attacks (Section 5). The candidates can be classified according to their robustness
against adaptive chosen plaintext attacks, which generally do not apply to AES-
GCM. This is done in Section 6, followed by conclusions in Section 7.

2 Authenticated Encryption with Associated Data
Most CAESAR Authenticated Encryption Algorithm with Associated Data (AEAD)
algorithms have the following inputs:
K : A secret, shared confidentiality and integrity key.
N : Public Nonce or Initialization Vector. Optionally transmitted.
P : Message payload, for which both confidentiality and integrity is protected.
A : Associated “header” data. This data is only authenticated.1

1 Associated Data A may be transmitted unencrypted or implicitly known to both
parties (meta information such message sequence numbers, endpoint identities).



The AEAD transform will output a single binary string C that contains additional
entropy bits for detection of modifications:

AEAD(K,N,P,A) → C. (1)

The inverse transform will only return the original message payload P if correct
values for K, N , A, and C are supplied:

AEAD−1(K,N,C,A) → P or FAIL. (2)

We may semi-formally characterize the security requirements for AEAD and
AEAD−1 which are relevant to this work as follows:

Confidentiality. Even if a large number of chosen (N,P,A) (with non-
repeating N) can be supplied by an attacking algorithm to an encryption
oracle AEAD(?, N, P,A) → C, it should be infeasible to distinguish the cor-
responding outputs C from equal-length random strings.

Integrity. It should be infeasible to create any new set (N,C,A) that would
not output AEAD−1(?, N,C,A) = FAIL for an unknown key, even if a very
large number of valid (N,P,C,A) sets for that secret key are available.

More trivial security properties follow from these requirements. Each submis-
sion was free to define what “infeasible” in their particular case means. For the
confidentiality requirement this is traditionally expected to mean effort com-
mensurate with an exhaustive search for the secret key K. The forgery effort
(integrity goal) depends on the size of authentication variable (message expan-
sion from P to C), but can be defined to be lower. For example AES-GCM
archives a significantly lower level of integrity protection than information theo-
retically expected [34, 37]. As CAESAR is a cryptographic competition, we may
consider all such suboptimal features to be relative weaknesses.

3 Manual Cryptanalysis

CAESAR candidates came in many shapes and sizes. We refer to [32] and the
Authenticated Encryption Zoo web site for classification and current status of
each one of the candidates.2 Here’s our rough breakdown:

8 are clearly based on the Sponge construction.
9 are somehow constructed from AES components.

19 are AES modes of operation.
21 are based on other design paradigms or are entirely ad hoc.

A group of proposals cannot be even evaluated according to established crypto-
logic criteria and we sidestep those in this report. We trust that the CAESAR
selection committee will arrive at the same conclusion for the second round.
2 https://aezoo.compute.dtu.dk/



We spent some time familiarizing ourselves with the substantial amount of
technical documentation after it was released in March 2014. Based on the speci-
fications alone, we identified clear cryptanalytic problems with three candidates:
1. PAES [51] suffered from rotational cryptanalytic flaws as round constants

were not used. Similar observations were made simultaneously by Sasaki-
Wang [42] and Jean-Nikolić [18] teams. PAES has been withdrawn from the
CAESAR competition.

2. HKC [15] was found to suffer from an almost linear authentication function,
which could be used for high-probability message forgeries. HKC has been
withdrawn from the CAESAR competition.

3. iFeed[AES] [53]. We offered criticism towards this proposal as the authen-
tication tag depends only on the last block of the plaintext.3

In addition to these, we have identified more minor problems with other propos-
als which have been addressed privately or via the CAESAR mailing list.

4 Exhaustive Methodology: The BRUTUS Framework
By June 2014, most of the 57 teams had submitted reference implementations
for their candidates. Many of these candidates had multiple parameter choices
and optimizations, bringing the total number of implementations to over 210.

The implementations were integrated into the SUPERCOP4 speed testing
framework by D. Bernstein. In addition to very rudimentary coherence testing,
the sole functionality of SUPERCOP is in performance measurement. SUPER-
COP is not very well suited for statistical testing or other experimental work.

Development Process. We decided to build our own testing framework which
would allow more rapid experimentation. We lifted the reference implementa-
tions from the SUPERCOP framework as we had no use for it. Our BRUTUS5

toolkit compiles each reference implementation into a dynamically linked library
that can be loaded “on the fly” into an arbitrary experimentation program. The
standard test module performs coherence testing, speed tests, and generates
test vectors known as Known Answer Tests (KATs). Interfacing with arbitrary
languages can be archived via small native components.

Due to the disappointingly poor quality of some of the code (even from some
prominent cryptologic security teams), many implementations had to be cor-
rected to fix memory leaks and other elementary errors that affected stability of
experimentation. We avoided modifying the mathematical structure of the im-
plementations even when it appeared to contradict the supplied documentation.
BRUTUS is intended purely as a research and experimentation tool.
3 Similar issues apply to some other proposals such as OCB[23] and OTR[24], which

restricts their usage in protocols where some level of collision resistance is expected.
Furthermore iFeed decryption cannot be parallelized (thereby forming a bottleneck)
and hence we see no real advantages in its use over GCM.

4 http://bench.cr.yp.to/supercop.html
5 Framework only, no statistical tools: https://github.com/mjosaarinen/brutus/



AES-GCM [28] RIVER KEYAK [3] AEZ [16]
No feedback. Strong Sponge Permutation. All-or-Nothing Transform.

Online, small ACPA risk. Online, small ACPA risk. Not online, small ACPA risk.

AEGIS [50] MORUS1280 [48] TIAOXIN [26]
Mixed Authentication and Encryption State, incomplete mixing.

Online, significant adaptive chosen plaintext attack risk.

Fig. 1. Visualization of feedback properties of some CAESAR candidates. Here each
pixel represents a single byte. Grid lines are every 16 bytes (128 bits). The Y coordinate
is the single plaintext byte change location offset. Each pixel line represents 256 bytes
of ciphertext difference, with affected ciphertext bytes darkened. The authentication
tag is usually seen as a bar on the right side; those bytes are affected by any change.
The “ripples” on the lower three diagrams are one indication of inconsistent mixing.

Identifying Ciphers and Modes. An interesting advantage gained from hav-
ing a coherent and easy interface for all ciphers is that an “identifying gallery”6

of proposed modes and ciphers can be constructed. This allows black-box identi-
fication of ciphers in some cases. The diagrams are independent of secret keying
information. Figure 1 shows some members of this gallery.

Implementability and side channels. It is clear that some proposals are
poorly suited for hardware-only implementation. For example, any algorithm ac-
tually requiring malloc() dynamic memory allocation – which in itself is a side
channel security headache – is difficult to implement in hardware. How this will
6 https://mjos.fi/aead_feedback/



be addressed is left to the CAESAR committee as hardware implementations are
not expected before the second round. Some proposals have been implemented in
FPGA. The proposed SÆHI API allows generic, hybrid software-hardware im-
plementations and is therefore able to cover almost all candidates [40]. BRUTUS
is capable of supporting this API.

Performance. We refer to SUPERCOP results for software performance met-
rics across a number of implementation targets. Speed-optimized implementa-
tions were not even expected for first round candidates, so such comparisons
would be unfair (the call was for “readable” implementations, which was rather
liberally interpreted by some teams). Efficient implementation of parallelized
modes in plain ANSI C is nontrivial. As a generic note, none of the proposed
AES modes seem to reach the authentication speeds attained by AES-GCM
– thanks to AES-NI finite field instructions that directly support GCM. Fur-
thermore, some modes are not entirely parallel, and therefore cannot reach the
maximum throughput speeds attainable by AES-GCM and offer little or no
advantage over it. We urge careful analysis of these factors during selection.

Security usage notes on various ciphers. We tested basic forgery strategies,
the effect of key and nonce modifications to ciphertext, and diffusion of changes
in the cipher state. From our automated testing we arrived at the following notes:

1. CMCC [44] does not use all of its keying material for short messages and
therefore a trivial forgery can be made even if a part of the secret key is not
known. The author has proposed a tweak.

2. CALICO [43] had an extraordinarily long key (32+16 = 48 bytes), which
consists of a 32-byte decryption key and a 16-byte MAC key. If you have
a false key (with something else in the first key 32 bytes), CALICO will
not detect it and will just output nonsense. This can be circumvented in
implementations but does violate basic AEAD security expectations. The
author withdrew CALICO from the competition earlier.

3. PAEQ [4] implementations exhibited a property in which authentication of
associated data only (i.e. no payload) did not depend on the supplied nonce
at all, leading to replay forgery attacks in case a protocol is sending A only.
The authors noted that the specification forbids such messages (but were
allowed in actual implementation for compatibility), but are working on a
tweak. We encourage such a tweak as this would make the proposal plug-in
compatible with AES-GCM in security protocols where signaling frequently
demands authentication of metadata only.

4. YEASv2 [5]. Although it is mentioned the specification, the nonce has only
127 effective bits. The ignored bit is bit 0 of the last of byte of the 16-byte
IV sequence. This is an unfortunate selection; if we are using network (big
endian) byte order, this is the least significant bit of the nonce. If running
sequence numbers are used, every two consecutive messages will have equiv-
alent nonces and security will break.



All of these issues are fairly easy to address. Again we ignore less professional
proposals that do not meet basic sanity and CAESAR compliance criteria.

Implementation Security. Based on our cursory code review of the 210+
implementations, our general advice is strongly against using CAESAR reference
ciphers as a part of any real-life application requiring stability or security at this
stage of competition.

5 Most AEADs are not Atomic

When described in the fashion of Equations 1 and 2, an AEAD transform ap-
pears to be an atomic, indivisible operation. Two-pass CAESAR candidates can
essentially only be implemented this way. The AEZ [16] and SIV [22] candidates
are examples of such “All-or-nothing Transforms” [35].

Due to efficiency and memory conservation reasons, most CAESAR can-
didates can work in “online” mode where the full plaintext block P is not re-
quired for the encryption algorithm to be able to produce some of the ciphertext.
This is generally done by dividing the message to uniform-sized message blocks
pad(M) = M1 || M2 || · · · || Mn. The AEAD maintains an internal state X
which is initialized with some value derived from K and N . This is then iter-
ated over blocks Mi and the final state is subjected to another transformation
to produce a MAC tag T .

X0 = key(K,N) Initialize state from Key and Nonce.
Xi = mix(Mi, Xi−1) Mix message blocks with state, 1 ≤ i ≤ n.
Ci = out(Xi) Ciphertext block derived from state, 1 ≤ i ≤ n.
T = fin(Xn) Finalization – compute the authentication tag.

The ciphertext is constructed as C = C1 || C2 || · · · || Cn || T . This type of
construction allows Ci to be output immediately after Mi is fed into the mixing
transform. All Sponge-based [2] constructions and many proposed block cipher
modes of operation fall into this category.

The Adaptive Chosen Plaintext Attack also applies AEAD designs which
are not necessarily based on block ciphers at all. We assume that an attacker can
adaptively feed a plaintext block Mi to the cipher as a function of previously
observed ciphertext blocks

Mi = fatk(C1, C2, · · · , Ci−1). (3)

The attacker function fatk can perform some reasonable amount of computation
for the feedback operation.

We argue that this is a relevant model offering insights especially to smart
card applications and other lightweight applications where an attacker has full
control over the communication channel.

The goal of the attacker is to derive information about the internal state Xi.
This information can be used in attacks of various degrees of severity:



1. Distinguish or partially predict Ci+1.
2. Fully derive Xi; predict all future Ci and T .
3. Derive information about K.

Note that message authentication is not an issue in an adaptive chosen plain-
text attack on an AEAD as encryption cannot really fail. The inverse scenario
of Equation 3, a chosen ciphertext attack, is less realistic as it would seem to
automatically break the definition given by Equation 2. However, this scenario
has been considered in the literature [1].

6 CAESAR Candidates and Real-life Protocols:
Susceptibility to Adaptive Chosen Plaintext Attacks

In order to integrate a CAESAR AEAD into a real-life protocol such as TLS,
SSH, or IPSec, one has to not only define the appropriate ciphersuite identifiers
but also usage and formatting mechanisms.

In case of all AEADs, an obvious path of integration is to adopt the mecha-
nisms used for AES-GCM in relevant RFCs: TLS in [41], SSH in [17], and IPSec
in [6]. This will allow implementors to essentially “plug in” the algorithms into
existing protocol implementation frameworks. In many protocol instances, the
ciphers are subjected to adaptive chosen plaintext attacks with relative ease.

Even though the CAESAR call for algorithms7 was careful to require concrete
security claims for full AEAD transforms, the security claims related to this type
of attack are not explicitly stated for many ciphers. However, internal mixing
qualities of a design offer a direct insight into the robustness of a cipher against
adaptive chosen plaintext attacks.

Based on our automated analysis, at least ACORN [47], AEGIS [50], MORUS
[48], and TIAOXIN [26] represent significantly elevated adaptive chosen plain-
text attack risk. We are currently formalizing our observations, but we note
that – as an example – the effective internal state can be trivially forced to be
smaller, helping birthday attacks. These proposals have a single state without
separation between authentication, confidentiality, or keying state. In this, they
are similar to Sponge designs. Indeed, if these had been labeled “sponge designs”
they could be declared “broken” due to the weakness of their mixing functions.
This illustrates the difficulty of security comparisons among candidates.

In many ways these ciphers resemble Helix [14] and Phelix [46], which were
proposed as an authenticated stream ciphers a decade ago. These ciphers were
attacked in under various assumptions [25, 49]. Another earlier, similar (but
lightweight) authenticated design is the Hummingbird cipher [12, 13], which was
successfully cryptanalyzed [36, 38].

These ciphers seem to have been created with ad hoc design methods and offer
no provable security assurances. This by no means indicates that they cannot be
used securely and use of these candidates may be highly justified in many cases
as they are among fastest (or, in case of ACORN, smallest) candidates.
7 http://competitions.cr.yp.to/caesar-call.html



In comparison, we offer the following proof sketches for resistance of certain
other essential classes of algorithms to adaptive chosen plaintext attacks of this
type.

Theorem 1. AES-GCM is not vulnerable to adaptive chosen plaintext attacks.

Proof. The Galois/Counter Mode has an essentially independent counter mode
and a polynomial-based authentication mechanism. Since the counter mode
keystream can be generated a priori to encryption, any ciphertext-plaintext feed-
back will not yield useful information about the internal state of the mode. ⊓⊔

Theorem 2. Sponge modes with strong permutations such as DuplexWrap
[3] or BLNK [39] are not vulnerable to adaptive chosen plaintext attacks.

Proof. These modes utilize a cryptographically strong permutation between any
two blocks of data and therefore the adaptive attacker has no access to capacity
beyond that barrier. ⊓⊔

As there are some proposals that employ various stronger notions of provable
security, we make the following general observation:

Observation 1 Provably secure modes that have two or more passes over data
are not vulnerable to adaptive chosen plaintext attacks.

Figure 1 offers a visualization of Theorems 1 and 2 and the final observation.

7 Conclusions and Further Work

We have presented a summary of our initial examination and analysis covering all
57 CAESAR first round proposals (we are only presenting results that we have
obtained ourselves). As an executive note, we currently strongly recommend
against using any of the CAESAR ciphers in real-life applications despite their
novelty and often famous authorship.

During manual examination we have identified cryptographic problems with
three proposals, two of which have been withdrawn from the competition.

We have described our development of the BRUTUS testing framework which
allows tests to be made that automatically cover all candidates. As performance
testing was not even required in the first round (and is adequately addressed
by the SUPERCOP toolkit), we focused on the structural differences of various
candidates. We offer security usage notes for four candidates.

From the BRUTUS automated tests we observe that some candidates offer
less than convincing resistance against adaptive chosen plaintext attacks. This is
significant since one of the main motivations for the CAESAR competition is to
seek secure replacements for the AES-GCM algorithm which is provably secure
against this type of attack. Sponge permutation designs and two-pass provably



secure modes are also resistant. Such an attack can be mounted with relative
ease in conceivable instances of real-life protocols such as TLS, SSH, and IPSec.

Based on our experience, the most valuable output from exhaustive, auto-
mated testing across actual cipher implementations is that it catches implemen-
tation errors and possible errors in security usage – discrepancies between the
assumptions of the users of the algorithm and its designers. These often break
real-life protocols and applications that utilize encryption algorithms. The in-
sights obtained from statistical testing of (internal) quantities can be used by a
cryptanalyst to focus more specific analysis efforts against those candidates that
are expected to be vulnerable to a particular method of attack.

We intend to extend this work to performance analysis, analysis of hard-
ware implementations, and statistical analysis of the internal cipher state for
the second round CAESAR candidates.
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