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Abstract. We initiate the study of good rate homomorphic encryption schemes. Based on previous
work on securely evaluating (binary I/O) branching programs, we propose a leveled homomorphic
encryption scheme for large-output polynomial-size branching programs (which we call LBP) that
possesses near optimal-rate. The rate analysis of the new scheme is intricate: the best rate is
achieved if a certain parameter s is set equal to the only positive root of a degree-m polynomial,
where m is the length of the branching program. We employ the Newton-Puiseux algorithm to find
a Puiseux series for this parameter, and based on this, propose a Θ(logm)-time algorithm to find
an integer approximation to s.
We also describe a rate-optimal 1-out-of-n CPIR based on rate-optimal homomorphic encryption.
In concrete terms, when applied to say, a movie database with n = 216 elements of ` = 3.8 · 109-
bits, the client can privately download a movie with a communication rate of almost 0.99, hence
sacrificing only about 1% of bandwidth for privacy.
We also analyze the optimality of the rate efficiency of our scheme in a novel model that may be
of independent interest. Our 1-out-of-n CPIR has rate 1 − 1.72

√
k/` · log2 n + O`(`

−1), while we

show that no black-box construction surpasses 1−
√
k/`(logn/ log logn)+O`(`

−1) in terms of rate,
where ` is the length of the database elements and k the security parameter.
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1 Introduction

The rate of regular public-key encryption scheme |x|/|Enc(x)| as a function of ` = |x| is typically
of no great concern in cryptography. This is because given any sub-optimal public-key encryption
scheme Enc it is possible to transform it to a near optimal one via hybrid encryption. The
construction amounts encrypting a key K by using Enc, and then encrypting the plaintext x
using a rate-optimal symmetric encryption scheme SE(·) (which are easy to construct); this
results in a near optimal ciphertext 〈Enc(K), SEK(x)〉.

While the above construction preserves security (assuming a suitable SE(·)), it does not pre-
serve any homomorphic property that Enc(·) may have. This poses the fundamental question we
are concerned with in this work: is it possible to construct a (near) optimal-rate homomorphic
public-key encryption? In fact, fully homomorphic encryption schemes (introduced in [Gen09b])
have very low and typically subconstant rate, see [CLO+13] for a recent analysis of the param-
eters5. For rates that are arbitrarily close to 1, the current only documented scheme is due to
Damg̊ard and Jurik [DJ01] that allows only an additive homomorphic property, i.e., an evalua-
tion of arithmetic circuits with only an addition gate.6

5 Furthermore, performing hybrid encryption using fully homomorphic encryption 〈FHE(K), SEK(x)〉 and then
homomorphically evaluating AES [GHS12]) does not give any advantage over straight FHE since given f it
will merely enable the computation of another FHE ciphertext containing FHE(SEK(f(x))) while our objective
in this case is to obtain a ciphertext of the form 〈FHE(K),SEK(f(x))〉.

6 There were occasional claims of a ring-LWE based optimal rate scheme for PIR (e.g., e-print draft [Lip11] that
is now withdrawn). However, to the best of our knowledge, no optimal rate PIR or FHE scheme is documented
in the published literature; as we exemplify, the performance analysis for optimal rate is involved and we
certainly hope that our work will motivate further research in this direction.
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Our Contributions. We initiate the study of good rate homomorphic encryption schemes
by proposing the first optimal-rate (leveled) homomorphic encryption scheme for a non-trivial
family of languages. The new construction is a variation of older constructions; however, the
performance analysis needed to optimize various parameters is complicated and seems to be
novel in cryptographic research. We show how our construction can be used to optimize the
communication of cryptographic tasks such as private information retrieval (PIR) assuming
large enough data are to be transferred. We mention several open questions such as achieving
optimal rate for larger classes of functions (e.g., via optimizing fully homomorphic encryption)
and optimizing the computation of these protocols. We hope that our work gives an impetus to
the design of efficient rate public-key cryptographic primitives.

Let C be a class of programs. A C-homomorphic PKE scheme is an encryption scheme
where given an encryption ψx = Enc(x) and a program Pf ∈ C that implements a function
f , it is possible to produce a value ψf(x) = Eval(Pf ,Enc(x)) that can be decrypted to f(x). It
is also required that the output of Eval is succinct and program-private (i.e., it will reveal no
information about Pf , [Gen09b]). Such scheme is leveled (cf. [Gen09b]) if Enc(x) should restrict
to a subclass of C for which Eval can be applied (e.g., the restriction is typically of the form
“programs up to certain length”). Designing homomorphic PKE’s for wide classes of programs
C is one of the major endeavors in cryptography research, and it has resulted in XOR-circuits
stemming from [GM82], addition over ZN in [Pai99], NC1-homomorphic encryption [SYY99],
(L/poly)-homomorphic encryption [IP07] and finally P-homomorphic encryption[Gen09b].

The rate of a C-homomorphic PKE scheme is the ratio (|x|+ |f(x)|)/(|ψx|+ |ψf(x)|). Here,
we include the length of the input x, since x also has to be transported during the protocols,
and in many applications |x| is at least as large as |f(x)|. The focus on the rate of homomorphic
PKE’s is a novel characteristic of our work.

Let LBP be the class of all branching programs with large output7, that are polynomial-
size in terms of their input variables and number of sinks (see Sect. 2 for a precise definition).
We construct a leveled LBP-homomorphic encryption scheme with optimal rate — i.e., a rate-
(1−1/r(`)), for a rapidly increasing function r. While the existence of such scheme is considered
folklore (e.g., it is alluded in [Lip09] but also mentioned informally earlier) no previous work
presented a construction or an analysis of its rate. It turns out the design (the choice of optimal
parameters) and analysis are both very intricate. In fact, we consider the analysis (that uses
powerful techniques from mathematical analysis) of this construction to be one of the main
contributions of this work.

The construction is a culmination of a long line of previous schemes that employ additive
homomorphic public-key encryption (i.e., G+-homomorphic encryption where G+ is the class
of all arithmetic circuits over addition gates) and they employ recursion in order to enhance
the class of programs that are computable; the technique was introduced by Kushilevitz and
Ostrovsky [KO97] and followed (implicitly or explicitly) by a number of works including [Ste98]
and [Lip05,IP07,Lip09]. The latter three papers use the high-rate PKE from [DJ01]; nevertheless,
none of the previous works provided a way to utilize it in such a way that optimal rate is achieved
in the evaluated program. More specifically, we present the following:

Construction. We construct an LBP-homomorphic PKE scheme that evaluates efficiently any
(leveled) branching program Pf for a function f : {0, 1}χ → {0, 1}` where we assume that Pf
has length (= the maximum number of levels) m. Our construction has rate 1−2

√
(w − 1)χmk ·

`−1/2 +O`(`
−1), where w is the arity of the branching program and k is the security parameter.

7 The usual definition of branching programs assumes that the output is binary; in a setting where we are mainly
interested in the rate (as a function of |x|+ |f(x)|), it makes sense to consider very long outputs
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It follows the general paradigm of [KO97] as applied in [IP07] to branching program evaluation,
with an array of crucial optimizations that are tailored to our goal of achieving optimal rate.

In [Lip05,IP07,Lip09], one recursively applies the cryptosystem of [DJ01]. Every recursion
level i defines a length parameter si; in the aforementioned constructions the values si are strictly
increasing. We show that the optimal rate is only achieved if the parameters s1, . . . , sm are
suitably selected. We use techniques from multivariate analysis to show that these parameters
must be all equal to some value s. After that, we show that the optimal communication results
from choosing s as the unique positive root of the degree-(m + 1) polynomial fm(X,σ) :=
σXm+1 − (X + 1)m−1, where σ = (w − 1)kχ/(`m) for some w (in the case of usual branching
programs, w = 2). Finding the root is impossible analytically when m > 3. Instead, we use the
Newton-Puiseux algorithm [Cas00] to compute the Puiseux series

∑∞
i=0 ciσ

(i−1)/2 of the optimal
s. We then construct a simple algorithm that, given the first two partial sums of the Puiseux
series, computes an integer approximation to the optimal s in log2m steps.

The homomorphic encryption scheme of [IP07] is often dismissed because of its bad
communication-efficiency, caused by the fact that the output length of its evaluation algo-
rithm depends on the length of the branching program. Therefore, it is rather surprising that a
simple modification like ours allows to achieve optimal rate. The latter becomes clear only after
extensive analysis of the parameters as explained above.

Another important aspect of LHE schemes is the server’s computation. While this is not a
focus of the current work, we remark that the new LHE scheme fares better than [IP07,Lip09]
also in this aspect. The reason behind this is that instead of encrypting at least `-bit strings, we
encrypt in suitably small segments. Since encryption takes superquadratic time, we therefore
save significantly in computation.

Applications. In a CPIR protocol [KO97] a client receives one `-bit block out of n possibilities
that form a database maintained by a server. As the first application, we use our results to
optimize the communication rate of (n, 1)-CPIR. Based on our new leveled LBP-homomorphic
encryption scheme, we show how to construct an (n, 1)-CPIR protocol with communication
`+1.72

√
k` log2 n+O(1) and optimal rate 1−1.72 log2 n·

√
k/`+O(`−1).8 Using our lower bound

argument (see below) we also establish that any efficient PIR (i.e., one with polylogarithmic
communication complexity in n) that is in the black-box additive PKE model and satisfies that
the client sends Ω(log n/ log log n) ciphertexts overall (true for all protocols that fit the model
[KO97,Lip05,Lip09]) has communication at least ` + c · Ω(log n/ log logn) ·

√
k`. We note that

CPIR protocols using the φ-hiding assumption [CMS99,GR05] are highly unlikely to achieve
rate close to 1, see [CMS99, Sect. 2.3] for a discussion. Thus, with standard number theoretic
assumptions (our scheme is based on RSA) the results we present are the best possible for the
total communication of CPIR up to log log-factors.

We also present concrete parameter choices for the new CPIR protocol, demonstrating that
in a practical relevant case (say in an application where a client wants to privately retrieve a 3.8
Gigabyte movie from the server’s database of 216 movies) one can get rate 0.99. We emphasize
that in practice, the resulting rate 0.99 is obviously of greater value than a theoretical estimate
of type 1− o(1); it shows the great practical value of the new LBP-homomorphic PKE scheme.

Charpentier et al [CFFC11] observed that oblivious transfer could be used as a building block
for asymmetric fingerprinting [Pfi96] directly, in which a client downloads a file (usually with
large size, e.g., a movie, thus communication rate is a key factor of efficiency) from a server so

8 One may argue that in the case of (n, 1)-CPIR, it is more important to optimize the server’s computational
complexity (that is linear in all existing protocols but [Lip09]). Interestingly enough, for large `, the new
protocol achieves better concrete computational complexity than the protocols from [Lip05,Lip09]. This is
since the latter protocols require exponentiations with ≈ `-bit strings (each taking at least Θ(`2+o(1)) bit-
operations), while in the new protocol, one has to only perform exponentiations with ≈

√
k`-bit strings.
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that it is fingerprinted in a private fashion. In this way, the server obtains undeniable proof of the
implication of a client in a piracy incident. All previous works, e.g.,[Pfi96,PS96,PW97] treated
the file transfer generically as an instance of secure two party computation. Unfortunately, even
with “communication efficient” secure two-party computation [NN01,DFH12,DZ13,IKM+13]
the complexity of the resulting protocol is prohibitively high.

As the CPIR application can be easily adapted to OT, our rate optimal homomorphic
encryption opens the door to practical asymmetric fingerprinting schemes, and in principle it
could be applied to construct an asymmetric fingerprinting scheme with rate close to 1.

Lower Bounds. We prove a lower bound for the communication length of all leveled LBP-
homomorphic PKE schemes that perform the program evaluation via the utilization of an
underlying additively homomorphic PKE scheme in a black-box way. Our communication lower
bound for the case of LBP-homomorphic PKE gives us a ceiling for the best possible rate
that can be achieved in the context of private-information-retrieval which is 1 − Ω( logn

log logn) ·√
k/`+Θ(`−1). This demonstrates the optimality of our construction within logarithmic factors.

We achieve this result by introducing a model for arguing about lower bounds in the context
of secure two-party computation that we call the black-box additive PKE model and may
be of independent interest. All previous related constructions [KO97,Lip05,IP07,Lip09] can be
described within our model. We show two lower bounds that are complementary: the first
one establishes the importance of the term

√
k/` in the ceiling of the rate while the second

demonstrates the lower bound dependency of the bound in the number of levels m. The first
bound is shown directly with an information theoretic argument that takes into account the
need to encode the correct output stream. The second bound is more involved and relies on
an intermediate lower bound that examines the communication complexity in a hybrid model
where the two parties communicate via a multivariate polynomial evaluation oracle. Using this
intermediate result we determine a lower bound that relates the selection parameter domain
size n and the total number of levels.

Paper Organization. In section 2 we present preliminaries including notations and the def-
inition of branching programs. In section 3 we present our main construction for the LBP-
homomorphic encryption scheme. It is described in a black-box fashion over an additively homo-
morphic PKE with suitable efficiency and length flexibility properties. The scheme is described
leaving a number of parameters free which we in turn optimize in section 4; the final theorem
about the efficiency of our construction is given in this section together with some concrete
parameters from our implementation. In section 5, as an application of the new encryption
scheme, we present a near optimal rate CPIR protocol. Finally, in section 6 we describe our
lower bound results.

Due to the lack of space, many technical details are given in the appendix.

2 Preliminaries

Notation. We use aggressively the Landau notation like Θ(·). Since we are often interested in
the growth of a function in several variables, we write the relevant variable as a subscript, like
in o`(` log n). Let k be the polynomial security parameter, i.e., we assume that adversaries work
in probabilistic polynomial-time w.r.t. k. The current recommendation is to take k ≥ 3072. If
not specified, all logarithms take basis 2; we denote the natural logarithm of x by lnx. For
a predicate P (x), let [P (x)] = 1 if P (x) is true, and = 0, otherwise. We occasionally use the
notation [n] for the integer set {1, . . . , n}.
(Large Output) Branching Programs. A w-ary branching program (if w = 2, it is more
commonly known as a binary decision diagram or BDD, [Weg00]) is a fanout-w directed acyclic



Near Optimal Rate Homomorphic Encryption for Branching Programs 5

X4

X3

X2

X1

f0 f1

X1

f2 f3

X2

X1

f4 f5

X1

f6 f7

X3

X2

X1

f8 f9

X1

f10 f11

X2

X1

f12 f13

X1

f14 f15

X4

1 X3

X2

1 X1

1 0

0

Fig. 1. The complete binary decision tree that returns fx (left), and a branching program that returns 1 iff x ≤ 10
(right). In both cases, len(P ) = 4

graph (V,E), where the non-terminal (that is, non-sink) nodes are labeled by variables from
some variable set {X1, . . . , Xχ}, the sinks are labeled by `-bit strings and the w outgoing edges
of every internal node are labeled by values from 0 to w − 1. Usually, it is assumed that a
branching program has 1-bit sink labels, then it can be assumed to have two terminal nodes. A
branching program with longer sink labels is thus sometimes called multi-terminal. See Fig. 1.

A branching program with 1 source computes a function f : {0, 1}χ → {0, 1}`. Every assign-
ment of the variables selects one path from the source to a sink as follows. The path starts from
the source. If the current path does not end at a sink, test the variable at the endpoint of the
path. Select one of the outgoing edges depending on the value of this variable, and append this
edge and its endpoint to the path. (For the sake of concreteness, we assume that the leftmost
edge is chosen iff the variable is 0.) If the path ends at a sink, return the label of this sink as
the value of the source. The branching program’s value is then equal to the source value.

For a branching program P , let len(P ) be its length (that is, the length of its longest path),
size(P ) be its size (that is, the number of non-terminal nodes). Let BP(f) be the minimal size
of any branching program computing f . It is known that any Boolean function f : {0, 1}χ →
{0, 1} has BP(f) ≤ (1 + o(1))2χ/χ [BHR95, Thm. 1]. A Boolean function f has a polynomial-
size branching program iff f belongs to L/poly [Cob66]. If f has non-Boolean output, f :
{0, . . . , w − 1}χ → {0, 1}`, then it can be computed in parallel by ` branching programs that
compute its individual bits. P is a decision tree if the underlying graph is a tree. P is leveled if
its set of nodes can be divided into disjoint sets Vd such that every edge from a node in set Vd
ends in a node in set Vd−1. We assume that the source is the only member of the set Vm. Let
size(P, d) be the number of nodes P has on level d, thus size(P,m) = 1.

Definition 1. The class LBP contains all functions f : {0, . . . , w − 1}χ → {0, 1}` for which
we have a large-output branching program with size that is polynomial on both parameters χ, n
with n = |f({0, . . . , w − 1}χ)|.

Throughout the paper, Pf is a fixed leveled w-ary branching program that implements
f : {0, 1}χ → {0, 1}`. For any node v, let len(v) be its length, i.e., len(v) = len(Pf )− d̄, where d̄
is the distance from the source to v. Thus v ∈ Vlen(v), and the source has length len(Pf ). (E.g.,
on Fig. 1 (left), all sinks have length 0 and the source has length 4.) If v is a non-sink node,
let child(v, i) for i ∈ [0, w − 1] be its ith leftmost child, and Xind(v) be the label of v. Note that
len(child(v, i)) = len(v)− 1. Assume that the nodes of Pf are ordered from 1 to size(Pf ) so that
if there exists an edge u→ v then v < u. We assume that Pf has n sinks. Thus, nodes v ≤ n are
the sinks and v = size(Pf ) is the source of Pf . Recall that the description of Pf also contains
the values fv of the sinks of Pf .

Public-Key Cryptosystem. A public-key cryptosystem Π consists of three algorithms, a
probabilistic polynomial-time key generating algorithm (pk, sk) ←r Gen(1k), a probabilistic
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polynomial-time encryption algorithm c ← Encpk(x; r), and a deterministic polynomial-time
decryption algorithm x ← Decsk(c). It is required that if (pk, sk) ←r Gen(1k), then for any x
and r from corresponding domains, Decsk(Encpk(x; r)) = x. The rate of a cryptosystem is the
length ` of a plaintext divided by the length of its ciphertext. The rate can be a function of `. A
cryptosystem is CPA-secure if for any x0 and x1 (possibly chosen by the adversary) of the same
length, given an encryption EncsN (xβ; r) for randomly chosen β ∈ {0, 1} and r, no probabilistic
polynomial-time adversary can guess β with probability 1/2 + ε, where ε is non-negligible in k.

Damg̊ard-Jurik Cryptosystem. Assume ` is the length of the plaintexts in bits. The
Damg̊ard-Jurik cryptosystem [DJ01] allows to encrypt plaintexts for arbitrary ` ≥ 1, so that
the ciphertext length is not more than `+ 2k. The cryptosystem is defined as follows. To gen-
erate the public and secret keys, one lets N = pq to be a k-bit RSA modulus for two randomly
generated large k/2-bit primes p and q. The value N is the public key pk, and the factorization
(p, q) of N is a part (together with some additional information that makes decrypting more
efficient) of the secret key sk. To encrypt an `-bit string x, one chooses a length parameter s
such that ` = sk (or s = d`/ke if k - `), chooses a randomizer r ←r Z∗N , and then outputs
c ← (1 + N)xrN

s
mod N s+1. Thus the plaintext belongs to ZNs while the ciphertext belongs

to ZNs+1 , i.e., has the bitlength ≤ dlog2N
s+1e ≤ (s + 1)k bits. Due to the choice of s, the

bitlength of the plaintext is at least (s− 1)k. Decryption can be done efficiently, see [DJ01].

The rate of Damg̊ard-Jurik is |x|/|c| ≥ (s − 1)/(s + 1). If ` → ∞, then ` = |x| ≈ sk, and
the rate is approximately 1− 1/s. Since EncsN (x0; r0) · EncsN (x1; r1) = EncsN (x0 + x1; r0r1), the
Damg̊ard-Jurik cryptosystem is additively homomorphic. If c is a publicly known value, then
EncsN (x; r)c = EncsN (cx; rc). Recall that arithmetic in the first (resp., second) parameter of Enc
is done modulo N s (resp., N).

The CPA-security of the Damg̊ard-Jurik cryptosystem is based on the Decisional Composite
Residuosity (DCR) assumption of Paillier [Pai99].

Computationally-Private Information Retrieval (CPIR). In an (w, 1)-CPIR protocol
for `-bit strings, the server has a database of w elements, f = (f0, . . . , fw−1), each fi being `
bits long, and the client has an input x ∈ {0, . . . , w − 1}. The client needs to obtain fx, while
no efficient (i.e., probabilistic polynomial-time) server should obtain any information about
x. In a two-message CPIR protocol, the client generates a secret/public key pair (sk, pk) ←
KGCPIR(1k), and sends to the server pk and a query c = Quepk(w, `, x; r) that depends on the
security parameter k, the size of the database w, the length of the database elements `, the input
x, and some random coins r. The server replies with ĉ ← Reppk(f , c; r̂) that depends on the
input f , the query c, and another randomizer r̂. The client can recover fx by using algorithm
Anssk(w, `, ĉ), given access to ĉ, w, `, and the secret key sk.

The rate rate(Γ ) of a (two-message) CPIR protocol Γ is the number of “useful bits” (that
is, `, the database element length) divided by the total communication |Que()|+ |Rep()| of the
protocol. We do not include pk to the communication, since the same pk can — and will — be
used in many CPIR protocols.

The formal (CPA-)security notion is similar to the one of cryptosystems, see, e.g., [Lip05].

Lipmaa’s Basic (w, 1)-CPIR. In Lipmaa’s (w, 1)-CPIR protocol [Lip05,Lip09], the client first
generates secret and public key (sk, pk), with pk = N , for the Damg̊ard-Jurik cryptosystem. She
then sends pk together with a vector of w − 1 ciphertexts

c = (c1, . . . , cw−1) = Quepk(w, `, x; r)← (EncsN ([i = x]; ri))
w−1
i=1

to the server, where [i = x] ∈ {0, 1} is equal to 1 iff i = x, s = d`/ke, ri ←r Z∗N , and
r = (r1, . . . , rw−1). Note that |ci| = (s+1)k and thus |c| = (w−1)(s+1)k. Let f = (f0, . . . , fw−1)
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be the server’s database. The server answers, for random r̂ ←r Z∗N , with

ĉ← Reppk(f , c; r̂) :=
w−1∏
i=1

cfi−f0i · EncsN (f0; r̂) = EncsN (fx;
w−1∏
i=1

rfi−f0i · r̂) .

Since r̂ is random, then ĉ is a random encryption of fx.
The client obtains fx by decrypting ĉ, fx ← Anssk(w, `, ĉ) := Decssk(ĉ). Clearly, the server’s

answer is a random encryption of fx. Since the server only sees encrypted messages, the CPA-
security of (w, 1)-Lipmaa’s CPIR protocol immediately follows from the CPA-security of the
Damg̊ard-Jurik cryptosystem, and thus, from the DCR assumption.

Here, |Que()| = (w − 1)(s+ 1)k and |Rep()| = (s+ 1)k, where s = d`/ke, and thus the rate
is rate(Γ ) = (sk)/((w− 1)(s+ 1)k) = s/((w− 1)(s+ 1)) = 1/(w− 1)− k/((w− 1)`) +O`(`

−2),
since s ≈ `/k.

Due to the construction of the Damg̊ard-Jurik cryptosystem, x and fx must be encrypted
by using the same length parameter s: if x was encrypted by using a parameter z < s, then the
server’s answer would encrypt fx mod N z and thus the server would not recover the whole value
fx. More discussion on this issue is provided in [Lip09]. There it was also demonstrated that
(i) There exists a function Compress that takes Encs+1

N (x; r) as an input and outputs EncsN (x
mod N s; r∗), where s ≥ 1, and r∗ is a randomizer that depends on N , r and s. (ii) On the
other hand, if there exists a function Expand that takes EncsN (x; r∗) as an input and outputs
Encs+1

N (x; r), then the Lipmaa’s (2, 1)-CPIR protocol has rate 1− o(1). Namely, in this case the
client’s message is just Enc1N (x) (2k bits) independently of the value of `. However, the existence
of this function was deemed to be extremely unlikely in [Lip09].

3 Optimal-Rate Leveled LBP-Homomorphic Encryption

We introduce leveled homomorphic encryption for LBP, following the terminology of Gen-
try [Gen09a]. However, the definition will be somewhat different. According to [Gen09a,
Def. 2.1.5], a family of homomorphic encryption schemes {Π(m) : m ∈ Z+} is leveled fully
homomorphic if, for all m ∈ Z+, they all use the same decryption circuit, Π(m) compactly
evaluates all circuits of depth at most m (that use some specified set of gates), and the compu-
tational complexity of Π(m)’s algorithms is polynomial in k, m, and (in the case of the evaluation
algorithm) the size of the circuit. In practice, this means that each Π(m) can have a different
private/public key pair (sk(m), pk(m)). This is since the public moduli, used when encrypting,
(and thus also the public key) depend on m.

The new (slightly stronger) definition only requires the creation of a single key pair (sk, pk)
usable for any m. Instead, it is Alice who picks the value m while encrypting the messages. The
concrete value m gives an upper bound on the length of the large-output branching program
that Bob can evaluate on these ciphertexts. Optimal rate is achieved if m is equal to the actual
length of the evaluated large-output branching program. For this reason, in the definition we
will concentrate on the case of level m branching programs. Since the rate in our case will be
defined as the total length of Alice’s and Bob’s messages, it is is natural that Alice — who sends
her message first — has to choose the parameter m, based on her knowledge of Bob’s input, to
optimize the rate. Similar problem exists in leveled FHE.

Definition 2. A (single-key) leveled LBP-homomorphic encryption (LHE) scheme is a four-
tuple of efficient algorithms (KG,Enc,Eval,Dec), such that (i) the randomized key generation
algorithm KG(1k) creates a single secret key and public key pair (sk, pk), (ii) given a message
x, the branching program length m, and a randomizer r, the randomized encryption algorithm
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Encmpk(x; r) returns a ciphertext c, (iii) given a leveled branching program Pf of length m, a fresh
ciphertext c (equal to Encmpk(x; r) for some plaintext x and randomizer r) and a randomizer r̂,
the randomized evaluation algorithm Evalpk(Pf , c; r̂) returns an evaluated ciphertext ĉ of Pf (x),
(iv) given an evaluated ciphertext ĉ and the branching program length m, the deterministic
decryption algorithm Decmsk(ĉ) returns a plaintext x.

It is required that for any valid key pair (sk, pk), message x, randomizers r and r̂, and a
polynomial-size branching program Pf of length m, Decmsk(Evalpk(Pf ,Enc

m
pk(x; r); r̂)) = x. Fi-

nally, it must be the case that the computational complexity of these four algorithms is poly-
nomial in k, m, and (in the case of Eval) the size of the branching program. We often omit the
randomizer r (or r̂) in the descrption of algorithms; in this case it is understood that it is chosen
uniformly at random.

A leveled LHE scheme must satisfy two security requirements, CPA-security and branching
program privacy (similar to circuit-privacy, [Gen09b,Gen09a]). The first one is defined similarly
to the case of arbitrary public-key cryptosystems, though one has to take into account the
presence of Eval, see [Gen09b,Gen09a] for a formal definition. However, to achieve optimal rate
we allow the outputs of Encm and Eval can come from different distributions; we just require that
the output of Eval does not reveal any unnecessary information about the evaluated branching
program except its length. That is, (perfect) branching program privacy guarantees that for any
(sk, pk), any m, any valid ciphertext c produced by Encmpk, and any two equal-length branching
programs P0 and P1 such that P0(Dec

m
sk(c)) = P1(Dec

m
sk(c)), it holds that Evalpk(P0, c) and

Evalpk(P1, c) have the same distribution.
We require that the LHE scheme Π be communication-efficient in the sense that its rate

rate(Π) :=
|x|+ |Pf (x)|

|Encmpk(x; r)|+ |Evalpk(Pf ,Encmpk(x; r); r̂)|
is as large as possible. Informally, Π is optimal-rate, if the rate is 1 − o`(1) as a function of `.
The rate takes into account the value |Enc|, since it is possible to choose parameters so that
|Eval| is very small while |Enc| is very large. It is also a natural measurement of the rate in
many applications like (n, 1)-CPIR. Similarly, the communication complexity of a leveled LHE
scheme is equal to |Enc|+ |Eval|.
Construction. Next, we propose a leveled LHE scheme that enables one to securely compute
the value of any function f : {0, . . . , w − 1}χ → {0, 1}`, f ∈ LBP, with the communication
complexity that is approximately ` + 2

√
(w − 1)χmk` (+ smaller terms), and the rate that is

1−2
√

(w − 1)χmk/` (+ smaller terms). Here, m is the length of a polynomial-size w-ary leveled
branching program Pf that implements f . Since in the intended applications, ` � χmk, the
rate will quickly approach 1 when ` increases.

We utilize a two-message (w, 1)-CPIR protocol (see Sect. 2) with short reply |Rep()|. More
precisely, we chose Lipmaa’s (w, 1)-CPIR Γ = (KGCPIR,Que,Rep,Ans) (see Sect. 2).9 We recall
that in the case of this CPIR, |Que()| = (w−1)(s+1)k and |Rep()| = (s+1)k, where s = d`/ke.
Furthermore, it is possible to derive Quepk(w, `

′, x; ·) from Quepk(w, `, x; r) for any `′ ≤ ` without
knowing the secret key [Lip09] (see Sect. 2).

We assume that all parties knowm = len(Pf ). For every level d ∈ [m], let sd be a level-specific
length parameter. Optimal parameters sd, for d ∈ [m], will be fixed in Sect. 4. Every node v has
a label Lv of bitlength |Lv| = tlen(v)slen(v)k for some values ti defined later. Let smax

i := max{sd :

9 In fact, we considered a much wider class of (w, 1)-CPIR protocols, proposed in [Lip09], that have a better
rate than Γ . However, it came out that the optimal case corresponds to Γ . Briefly, the reason is that in the
current paper we need Γ to have an extremely short Rep(), while the length of Que() is not so essential. To
not make this paper even more longer, we have omitted further discussion.
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some level d node is labeled by Xi} Sometimes, but not always, it is reasonable to assume that
the encrypter knows the values smax

i . If he does not, we can assume that smax
i := max{sd}. In

the optimal case, see Sect. 4, all values sd are equal to each other, so it does not matter whether
the encrypter knows the values smax

i . However, we first have to establish the optimality.

On input x, the encrypter writes x =
∑
xiw
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Fig. 2. Local computation of Lv

with xi < w, and then for each xi provides ci ←
Quepk(w, s

max
i ·k, xi; ·) by using a new randomness.

The vector of those queries is the LHE encryption
of x. Note that xi corresponds to an assignment
to the formal variable Xi.

Evalpk(Pf , c; r̂) inputs a w-ary leveled branch-
ing program Pf and the queries ci corresponding
to assignments to all Xi. Recall that the choice of
Pf fixes Lv for all sinks v ≤ n. Eval then recur-
sively computes Lv for all non-sink nodes whose
children already have assigned labels Lchild(v,i).
Eval returns the value Lsize(Pf ) of the source.

Up to now, the construction does not differ-
ent from those in [IP07,Lip09]. The crux of the
new construction is in how exactly Lv is evalu-
ated. Namely, at every non-sink node v, Eval does
the following. (See Fig. 2.) Let d = len(v); since
v is a non-sink node, {1, . . . ,m}. Recall that Lv

has bit-length tdsdk and Lchild(v,i) has bit-length
td−1(sd−1 + 1)k. For the evaluation to succeed, we
set recursively

t0s0k = ` , and tdsdk = td−1(sd−1 + 1)k for d ∈ [1,m] . (1)

Eval writes Lchild(v,i) = (Lchild(v,i),1, . . . ,Lchild(v,i),td) and Lv = (Lv,1, . . . ,Lv,td), where
|Lchild(v,i),z| = sd and due to the properties of the underlying (w, 1)-CPIR protocol |Lv,z| =
|Reppk()| = sd + 1. (Later, when v will play the role of a child of some other node v∗, Lv will
be divided into td+1 parts, see Fig. 2.) For each z, Eval then computes Lv,z by applying the
Reppk(·) algorithm on (Lchild(v,i),z)

w−1
i=0 and cind(v), see Fig. 3. After that, Lv is set equal to the

concatenation of the replies of td parallel CPIR protocols, where the zth (w, 1)-CPIR protocol is
applied to client’s input xind(v) and the database (Lchild(v,i),z)

w−1
i=0 . Intuitively, Lv is a “garbled”

version of Lchild(v,xind(v)).

This means that at the end of the protocol, Lsize(Pf ) is equal to the m-times recursive
(and parallel) application of Rep to fx. From this, the decrypter can obtain fx from Lsize(Pf ) by
recursively applying Anssk to it. In our case, Lsize(Pf ) (and the intermediate values) is interpreted
as a concatenation of td bitstrings, and Anssk is applied to each piece separately. The answers
are concatenated again, and the result is given as an input to Anssk of the next level. The
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Key generation KG(1k): generate a key pair (sk, pk) via KGCPIR(1k).
Encryption Encmpk(x; ·): For i← 1 to χ, let ci ← Quepk(w, s

max
i ·k, xi; ri) for random ri. Return c← (c1, . . . , cχ).

Evaluation Evalpk(Pf , c; r̂) for w-ary branching program Pf where f : {0, . . . , w − 1}χ → {0, 1}`:

for v ← n+ 1 to size(Pf ) do
d← len(v);
Parse cind(v) as cind(v) = Quepk(w, si · k, xi; ·);
for z ← 1 to td do

Lv,z ← Reppk(Lchild(v,0),z, . . . ,Lchild(v,w−1),z; cind(v); r̂v,z) for random r̂v,z;

end
Lv ← (Lv,1, . . . ,Lv,td);

end
return ĉ← Lsize(Pf );

Decryption Decmsk (ĉ):

Parse ĉ← (ĉ1, . . . , ĉtd);
for z ← 1 to td do let xz ← Anssk(w, sm · k, ĉz) ;
Write x = (x1, . . . , xtd);
if d = 0 then return x ;

else return Decm−1
sk (x) ;

Fig. 3. The new leveled LHE scheme based on a (w, 1)-CPIR protocol (KGCPIR,Que,Rep,Ans).

algorithms KG(1k), Encmpk(x; r), Evalpk(Pf , c; r̂), and Decmsk(ĉ) are formally described by Fig. 3.
The required constraints are satisfied by Lipmaa’s (w, 1)-CPIR, see Sect. 2.

Theorem 1. Let Γ = (KG,Que,Rep,Ans) be a (w, 1)-CPIR protocol that has the Compress
function, with plaintext size ` = sk, |Que(w, `, . . . )| = (w − 1)(s + 1)k and |Rep()| = (s + 1)k,
where k is the security parameter. Let f : {0, . . . , w−1}χ → {0, 1}` be a function in LBP. Let Pf
be a polynomial-size leveled w-ary branching program that implements f , and let m = len(Pf ).
Write s = (s1, . . . , sm).

Let Π = (KG,Enc,Eval,Dec) be the leveled LHE scheme from Fig. 3 parameterized by w ∈
N>0. Π is perfectly branching program private. If Γ is CPA-secure, then Π is CPA-secure. The
computation of Evalpk is dominated by

∑m
d=1 td · size(Pf , d) ·TRep(sd, w), where TRep(sd, w) is the

computational complexity of Reppk with given parameters. The communication |Enc|+ |Eval| of
Π is equal to

com(χ,w,m, s, k, `) = (w − 1)k

(
χ∑
i=1

smax
i + χ

)
+ ` ·

m−1∏
d=0

(
1 +

1

sd

)
. (2)

Proof. Correctness and Security. The correctness of the construction is obvious. The
branching program privacy is clear, since the decrypter only sees an a number of (m− 1)-times
application of Rep to an output of Que, and it is guaranteed by the definition of privacy that
the input to the query does not depend on the branching program.

Next, if an adversary is able to break the CPA-security of the leveled LHE scheme, then via
a standard hybrid argument she is also able to break the CPA-security of the underlying CPIR
protocol.

Complexity. The computational complexity is obvious. For the communication complexity,
clearly, |Encmpk(x; r)| =

∑χ
i=1(w − 1)(smax

i + 1)k = (w − 1)(
∑χ

i=1 s
max
i + χ)k bits. For d > 0,

td =
sd−1 + 1

sd
td−1 =

d−1∏
i=0

si + 1

si+1
· t0 =

d−1∏
i=0

(si + 1) ·
d∏
i=1

1

si
· `

s0k
=

`

(sd + 1)k
·
d∏
i=0

(
1 +

1

si

)
.
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Thus, |Evalpk(Pf , c; r̂)| = tmsmk = `/((sm + 1)k) ·
∏m
i=0 (1 + 1/si) · smk = ` ·

∏m−1
i=0 (1 + 1/si).

This gives the claimed communication complexity. ut

To guarantee branching program privacy in the case of a malicious encrypter, the encrypter
must accompany his ciphertexts with standard zero knowledge proofs that they individually
encrypt a Boolean value, and that their sum encrypts 1. This is out of the scope of the current
paper. We remark that one can implement every language from NC1 by using a width-5 branch-
ing program [Bar86]. Since then one only has to keep a small constant number of branching
program nodes in memory, by using the new leveled LHE scheme, one can implement languages
from NC1 space-efficiently. We omit further discussion.

4 Finding Rate-Optimal Parameters

Next, we find the optimal parameters that result in the best possible rate for the leveled LHE
scheme from Sect. 3. More precisely, our goal is to find optimal length parameters sd, as a
function of `. As we will see, this optimization problem has quite an unexpected solution, we
now briefly summarize our strategy. First, we show by using standard methods of multivariate
analysis that the communication is minimized when the length parameters sd used at every
level are all equal, s1 = · · · = sm =: s. Second, we show that optimal s is defined as the unique
positive root of a certain degree-(m+ 1) polynomial. Third, since there is no general algebraic
solution to this polynomial (except for m < 4), we find a Puiseux series for the unique positive
root s (and also for the communication and rate, given optimal s). Fourth, we describe an
efficient logm-time algorithm to find an integer approximation for the optimal value s. As we
will show, this results in rate that is very close to 1 in practically relevant scenarios.
Rewording the Optimization Problem. In App. A, we show that ∂com/∂s1 = · · · =
∂com/∂sm = 0. Since all si are positive, then the global minimum is reached if s1 = . . . =
sm =: s for some s. (See App. A for a precise proof.) In particular, this means that the optimal
communication complexity does not depend on the fact whether the encrypter knows the values
smax
i . Since all sd-s are equal, we denote

com(χ,w,m, s, k, `) := com(χ,w,m, s, . . . , s, k, `) = (w − 1)χ(s+ 1)k +

(
1 +

1

s

)m
· ` . (3)

Now, ∂com/∂s = (w − 1)χk −m(s+ 1)m−1/sm+1 · `. Denoting

σ :=
(w − 1)χk

m`
, (4)

the requirement ∂com/∂s = 0 is equivalent to the requirement that (s, σ) is a root of

fm(x, y) := yxm+1 − (x+ 1)m−1 . (5)

According to the Descartes’ rule of signs, fm has exactly one positive real root for each m > 0.
Thus, this unique positive real root s also minimizes the function com.
Computing Puiseux Series of s. Since by the Abel-Ruffini theorem there is no general
algebraic solution to polynomial equations of degree five or higher, for m > 3 it is impossible
to give explicit algebraic formula of the root of (5). We tackle this problem as follows.

Recall that the Puiseux series [Cas00] of a function g(x) is of type g(x) =
∑∞

i=0 aix
i/γ ,

where γ is an integer. We use the Newton-Puiseux algorithm [Cas00] to find the Puiseux series
for the unique positive root s of fm. By the previous discussion, this will also be the Puiseux
series for the value of s that minimizes com.
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First, it is known [Cas00] that the Puiseux series exists, i.e., s =
∑∞

i=0 aiσ
i/n for some

coefficients ai and integer n. We find this series by assuming that s = c0σ
γ0 + c1σ

γ0+γ1 +
c2σ

γ0+γ1+γ2 + . . . , and then finding ci and γi one by one. The exponents γi are defined as certain
slopes of the Newton polygon [Cas00] for fm(s, σ) = 0. After a while we form a hypothesis about
the general formula for ci and prove it. See Appendix B for a more detailed description of the
Newton-Puiseux algorithm and for the proofs of the following theorems.

Theorem 2. Let σ be as in Eq. (4). The Puiseux series of the unique positive root s of fm is

s =
∞∑
i=0

ciσ
(i−1)/2 = σ−1/2 +

m− 1

2
− 1

8
(m2 − 1)

√
σ +O(σ) , (6)

where ci = (−1)i+1 (m−1)
2ii!

((i−1)(m+1))!!
((i−1)(m−1))!! .

Denote by s(i) :=
∑i−1

i=0 ciσ
(i−1)/2 the sum of the first i elements of this Puiseux series. In

practice, it suffices to know the values s(1) = σ−1/2 and s(2) = σ−1/2 + (m−1)/2 (see Sect. 4.1).

Knowing the Puiseux series of s we may substitute it into the communication function com of
Eq. (3), deriving thus the Puiseux series for the communication. The following theorem follows.

Theorem 3. Let f : {0, . . . , w−1}χ → {0, 1}` be computable by a polynomial-size w-ary branch-
ing program Pf of length m. The leveled LHE scheme of Sect. 3 for f has communication

`+ 2
√

(w − 1)χmk`+
w − 1

2
χ(m+ 1)k +O(`−1/2)

and rate

1− 2

√
(w − 1)χmk

`
+
w − 1

2
· χ(7m− 1)k

`
+O(`−3/2) .

See App. D for a more detailed statement (with a more precise series expression) and a proof.

4.1 Efficient Algorithm for Finding Integer Approximation of Root

Next, we propose a simple binary search algorithm that finds the best integer approximation to
the unique positive root s of Eq. (5) in ≈ log2m steps. Clearly, in our application, an integer
approximation is sufficient. Let σ be as defined in Eq. (4). We first show that for s(1) = σ−1/2

and s(2) = σ−1/2 + (m − 1)/2 as defined in Thm. 2, fm(s(1), σ) is negative and fm(s(2), σ) is
positive. (This result is quite technical, and its proof is given in App. C.) Since 0 < s(1) < s(2),
we know that the only positive root s of fm(x, σ) is in the interval (s(1), s(2)) of length (m−1)/2.
We can compute the integer approximation to s (that is sufficient for our purposes) by using
binary search in this interval, see Alg. 1. The proof of the following lemma is given in App. C.

Lemma 1. fm(s(1), σ) < 0 and fm(s(2), σ) ≥ 0. Moreover, f1(s(2), σ) = 0 and fm(s(2), σ) > 0
for m > 1.

Theorem 4. Alg. 1 finds the best integer approximation of s in ≈ log2((m − 1)/2) ≈ log2m
steps. Its computational complexity is dominated by ≈ log2m evaluations of fm.
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sL ← bs(1)c; sH ← ds(2)e;
while sH > sL + 1 do

sM ← b(sL + sH)/2c;
if fm(sM , σ) > 0 then sH ← sM ;
else sL ← sM ;

end
if com(χ,w,m, sL, k, `) < com(χ,w,m, sH , k, `) then return s← sL ;
else return s← sH ;

Algorithm 1: Finding integer approximation to root s by using binary search

Proof. The algorithm finds the unique unit interval [s∗, s∗ + 1] in the original interval that
contains the root. It does so by using binary search. The number of the steps is clearly (approx-
imately) logarithmic in the length of the interval, (m− 1)/2. ut

5 Near Optimal Rate (n, 1)-CPIR

Given our homomorphic encryption the of a near optimal rate (n, 1)-CPIR is straightforward.
Following [Lip09], in an (n, 1)-CPIR protocol, we let the client first generate a new Damg̊ard-
Jurik public and secret key pair, and then send to the server the public key together with
encryptions of every individual bit of the index x. The server represents her database f as
a compact branching program Pf that computes the function f where f(x) := fx, and then
evaluates securely the client’s query on top of it. The client obtains the encrypted source value,
and then decrypts it. When using the new leveled LHE scheme, the computational and com-
munication complexity is as per Thm. 1. Thus, the resulting CPIR protocol has both optimal
rate (when using the parameters derived in Sect. 4), and (given the database is sufficiently
redundant) sublinear-in-n computational complexity. On the other hand, if the database is not
redundant, then the server just represents it as an w-ary tree of length m.

In most of the applications, w = 2, which is also often (but not always) the optimal case.
The following corollary exemplifies this.

Corollary 1. Assume that the DCR assumption [Pai99] is true. There exists a CPA-secure
(n, 1)-CPIR protocol with communication `+ 1.72 · log2 n ·

√
k`+ 2(log25 n+ log5 n)k+O(`−1/2)

and rate 1− 1.72 · log2 n ·
√
k/`+ 2(7 log25 n− log5 n) · k` +O(`−3/2).

Proof. Follows from preceeding discussion and Thm. 3 by setting m = χ = logw n, and consider-
ing the full w-ary decision tree. Thus, the (n, 1)-CPIR protocol has communication complexity

` + 2
√
w−1

log2 w
log2 n ·

√
k` + O(1). Since w is an integer, the second coefficient in this series is

minimized when w = 5. ut

We provide an example with concrete parameters below. Consider the setting of (n, 1)-
CPIR, where each database element is a movie, and a paying client wishes to obtain one movie
without the server knowing which movie she wants to see. Assume that k = 3072, ` = 106k
(about 380 Megabytes), m = χ = 16, and w = 2. (Thus n = 65536, which allows to select
between more movies than any of the current commercial online stores offers.) Then Alg. 1 starts
with interval (sL, sH), where sL = 1000 (communication of 3170723518 bits) and sH = 1008
(3170720770 bits). After 3 steps, the interval is (sL, sH), where sL = 1007 (3170720767 bits) and
sH = 1008 (3170720770 bits), and thus the algorithm outputs sH = 1007 as the desired integer
approximation of the optimal length parameter s. This results in communication 3170720767.
The achieved rate is 0.968865. If ` = 107k (i.e., approximately 3.8 Gigabytes, which is a realistic
size of a high definition movie), then the achieved rate is already 0.989969.
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6 Communication complexity lower bounds in restricted models

In order to study the optimality of our constructions, we introduce two abstract models that
capture the power of leveled homomorphic schemes that are constructed in a black-box fashion
from an additive homomorphic public-key encryption (PKE). We provide lower-bounds on the
communication complexity of private-information-retrieval in these models. We note that PIR
be seen as an instance of large-output branching program evaluation and our results can be
generalized to yield lower bounds for homomorphically evaluating branching programs.

We first derive a useful lemma in a restricted model where two-party protocols are imple-
mented non-interactively via only access to a multivariate polynomial evaluation functionality.
An important corollary of this is that when we use multivariate polynomial evaluation over
degree 1 polynomials the best communication complexity we can obtain is Ω(

√
n) where n is

the cardinality of the client input domain.
The usefulness of the result will come by a further observation (see below) that additive

homomorphic encryption that operates without “layering” i.e., encoding ciphertexts within
plaintexts and rencrypting, can achieve at best a degree 1 multivariate polynomial evaluation.

In particular, the client and the receiver are communicating via a multivariate polynomial
evaluation oracle MP(v,Q1, . . . , Qt), operating over a finite field F, where v ∈ Fr is some encod-
ing of the user’s input x ∈ {0, 1}`·n and Qd ∈ F[y1, . . . , yr] and returns to the user a vector in
Ft whose d-th coordinate equals ud = Qd(v). If the maximum degree of each Qd is m then we
write the oracle as MPm(·).

The length of the oracle communication for a protocol B in this model is measured in terms
of the size of the input provided by the client to the MP(·) oracle and the size of the response
of the oracle to the client. In the appendix E.2 we prove a slightly more general version of the
following lemma.

Lemma 2. Let m ∈ N. Consider a two-round protocol B in the MPm(·) model over a field F
that realizes (n, 1)-CPIR protocol for `-bit strings. Assume the communication complexity of B
is such that the client transmits r values to MP(·) and receives t values from it. It holds that(
r+m
m

)
· t ≥ ` · n/ log |F|.

If we count also the field size in the above description we have that the total communication
of the protocol is (t + r) encodings of values in F. In the case that m = 1 the communication
will be minimized provided that we choose t, r ≈

√
`n/ log |F|. In the general case, if m � r

we have (r + 1)m · t ≥ `n/ log |F|, the communication to the oracle will be minimized when we

choose r = (mn`/ log |F|)
1

m+1 − 1 resulting in a total communication of Ω((mn`)
1

m+1 ).
We recall that our LHE scheme is built on top of a (w, 1)-CPIR protocol implemented over

an additive homomorphic public-key encryption (PKE).
We next introduce the black-box PKE model for an additive homomorphic PKE scheme. In

this model, we consider two-party two-round protocols B that realize a functionality F (·, ·) as
follows. If the client has input x and the server input (f , s) the user receives F (x, (f , s)) = sf(x).
Specifically, in an (n, 1)-CPIR protocol, X = [n] and F (x, 〈s1, . . . , sn〉) = sx, with f being the
identity function. In our model, the protocol is parameterized by m levels. Each level d utilizes
a corresponding additive-homomorphic PKE oracle that encrypts in an associated group Gd.
The encrypted messages may be homomorphically added via oracle queries and then passed to
the next level d+ 1 to be processed further. Finally, the client receives an element from Gm.

Specifically, a black-box 2-round protocol B is comprised of three algorithms Π = (C1, S, C2)
with the following characteristics.10 B is parameterized by m that corresponds to the “levels”

10 In the context of LHE, recall that C1 represents Encm(·), S is Eval(·) and C2 is Dec(·).
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of the encryptions that it utilizes. With each level we associate an additive group. The d-th
group (Gd,+) requires bd bits for the representation of its elements and the underlying PKE is
suitable for encrypting elements of the groups Gd in a way that addition can be homomorphically
achieved between encrypted elements. The exact choice of G1, . . . , Gm is independent of our
arguments and we make no further assumption about these groups beyond the fact that the
basic operation can be efficiently implemented. Note that the groups are not necessarily distinct.

The first algorithm of B denoted by C1 has input x and access to a set of oracles Encd(·) for
d = 1, . . . ,m that operate as follows: Encd(·) receives as input a plaintext m0 so that m ∈ Gd;
it returns a ciphertext ψ encrypting m0. We say that ψ is a d-th level encryption of m0.

C1 using oracle access to {Encd(·)}d produces a sequence of ciphertexts ψ1, . . . , ψt (that may
belong to different levels). The algorithm S takes as input s as well as a sequence of ciphertexts
〈ψ1, . . . , ψt〉 (presumably the output of C1). S has access to the oracle Encd(·) and an oracle
Addd(·) that takes as input a pair of ciphertexts (ψ1, ψ2) and provided that ψ1, ψ2 are d-level
encodings encrypting the elements m1,m2 ∈ Gd, it returns a ciphertext ψ that encrypts the
element m1 + m2 ∈ Gd. S terminates with a sequence of ciphertexts ψ1, . . . , ψt′ . Finally, C2

operates on input x, ψ′1, . . . , ψ
′
t′ and returns an output z. Algorithm C2 has oracle access to

Encd(·),Decd(·). The oracle Decd(·) receives as input ψ and if ψ is a valid encryption of some
m0 ∈ Gd it returns m0.

Note that we assume perfect correctness from the underlying encryption, i.e., whenever ψ
is an oracle answer to a query m0 by Encd(·), submitting ψ to Dec(·) will return the value m0.

Definition 3. A protocol B realizes the functionality F (·, ·) in the black-box additive PKE model
if it holds that for all x, s the output z of the C2 algorithm in the interaction as defined above
satisfies z = F (x, s) for all correct instantiations of the Encd(·),Decd(·),Addd(·) oracles.

An important feature of our approach is that the protocol B in the black-box PKE is com-
pletely agnostic in the implementation of the underlying PKE scheme. Thus by manipulating
the PKE oracle one may deconstruct protocol B to simpler subprotocols for which we can an-
alyze their communication complexity using the multivariate polynomial argument that was
presented above. Specifically, for canonical protocols that satisfy certain simple requirements
(see the appendixE for a full description) we prove the following.

Theorem 5. Let Bf be any canonical two-party protocol in the black-box additive PKE model
that realizes F with F (x, (f , s)) = sf(x) for f : X → [n] and s ∈ ({0, 1}`)n. Suppose that the

total communication complexity of Bf with respect to n is On(logλ n), for some positive integer
λ; then its total communication complexity is at least

`+Ω

(
log n

log logn

)
·
√
`k +Ω

(
log n

log log n

)
· k .

Based on this we easily obtain the ceiling on the best possible communication rate for CPIR
in the black-box additive PKE model which equals 1−Ω(log n/ log logn) ·

√
k/`+Θ`(`

−1).
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A Derivation of Global Minimum

Here we give some details and explanations to Section 4.

Assuming that the rest of the parameters are fixed, the multivariate communication func-
tion com of Eq. (2) is minimized (or maximized) in s = (s1, . . . , sm), when the gradient
∇com(χ,w,m, s, k, `) is 0, i.e., ∂com/∂s1 = · · · = ∂com/∂sm = 0, and the Hessian matrix

H(m, s) :=


∂2com
∂s1∂s1

∂2com
∂s1∂s2

. . . ∂2com
∂s1∂sm

∂2com
∂s2∂s1

∂2com
∂s2∂s2

. . . ∂2com
∂s2∂sm

...
...

. . .
...

∂2com
∂sm∂s1

∂2com
∂sm∂s2

. . . ∂2com
∂sm∂sm


is positive definite. By the Sylvester’s criterion a matrix M is positive definite iff the determi-
nants associated with all upper-left submatrices of M are positive, [Gil91].

If sj is such that sj 6= smax
i for any i, then the value of sj is inconsequential for the

communication complexity, and thus we do not have to optimize it. Thus, assume that
ζj = |{i : sj = smax

i }| ≥ 1. Then

∂com

∂sj
=(w − 1)ζjk −

`

s2j
·
∏m
i=1:i 6=j(si + 1)∏m

i=1:i 6=j si
= (w − 1)ζjk −

`

(sj + 1)sj
·
∏m
i=1(si + 1)∏m

i=1 si
= 0

and thus,
(w − 1)ζjk

`
·

∏m
i=1 si∏m

i=1(si + 1)
=

1

(sj + 1)sj
.

for every j. In particular, this means that for every i 6= j, si(si + 1) = sj(sj + 1). Thus
either si = sj or si = −1 − sj . But since si and sj both have to be positive, we get that
s1 = · · · = sm =: s for some s.

In the general case

∂2com

∂s2i
=

2`
∏
κ6=i(sκ + 1)

s2i
∏
κ sκ

and

∂2com

∂si∂sj
=
`
∏
κ6=i,κ 6=j(sκ + 1)

sisj
∏
κ sκ

for i 6= j .

Note that those values do not depend on m.
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Let s? = (s?, . . . , s?) be a solution of Eq. (2). All upper-left submatrices of H(m, s) are
circulant matrices with determinants of form∣∣∣∣∣∣∣∣∣∣∣

a b b
... b

b a b
... b

· · · · · · · · · . . . · · ·

b b b
... a

∣∣∣∣∣∣∣∣∣∣∣
= b(a− b)κ

(
1

b
+

κ

a− b

)
,

where κ ∈ {0, . . . ,m− 1},

a =
∂2com(χ,w,m, s?, k, `)

∂s21
= . . . =

∂2com(χ,w,m, s?, k, `)

∂s2m
=

2`(s? + 1)κ−1

(s?)κ+2
> 0

and

b =
∂2com(χ,w,m, s?, k, `)

∂si∂sj
=
`(s? + 1)κ−2

(s?)κ+2
> 0 for all i, j ∈ {0, . . . , κ− 1},

and a− b > 0. Thus, the Hessian matrices H(m, s?) are positive definite for all m > 1.
Any local minimum of a convex function is also a global minimum. A continuous, twice

differentiable function of several variables is convex on a convex set if and only if its Hessian
matrix is positive semidefinite on the interior of the convex set. Since a positive definite matrix
is also positive semidefinite, com(χ,w,m, s, k, `) is a convex function on a convex domain s > 0
and s? = (s?, . . . , s?) is indeed a global minimum.

B Proof of Thm. 2

Proof. First, rewrite Eq.(5) as

fm(s, σ) :=
m+1∑
i,j=0

bijs
iσj = 0. (7)

The solution s(σ) of Eq. (7) will be constructed recursively as a Puiseux series in σ. Computing
a power series expansion for s(σ) can be seen as solving a polynomial equation in one variable
over the field of Puiseux series. Since the field of formal Puiseux series is algebraically closed
(see Puiseux’s Theorem from [Wal13]), a root can always be found.

The root of function fm(s, σ) is of the form

s(σ) = c0σ
γ0 + c1σ

γ0+γ1 + c2σ
γ0+γ1+γ2 + . . . ,

with ci 6= 0, γi ∈ Q, γi > 0 for all i, or, otherwise, it can be written as

s(σ) = σγ0(c0 + s1) , where s1 = c1σ
γ1 + c2σ

γ1+γ2 + c3σ
γ1+γ2+γ3 . . . .

s(σ) = σγ0(c0 + σγ1s2) , where s2 = c1 + c2σ
γ2 + c3σ

γ2+γ3 . . . ,

s(σ) = σγ0(c0 + σγ1(c1 + σγ2s3)) , where s3 = c2 + c3σ
γ3 + . . . ,

and so on. According to the Newton-Puiseux algorithm [Cas00], the values of γi are defined

as a certain slopes of Newton polygons of f
(i)
m (s, σ), ci are defined from letting terms of lowest

order in equation f
(i)
m (s, σ) = 0 (f

(0)
m (s, σ) := fm(s, σ)) be equal to zero. Newton polygon is the

smallest convex polygon in the affine plane over Q, which contains all the points Pi = (i, j),
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where (i, j) are the pairs of indices (i, j) of fm(s, σ) =
∑
bijs

iσj . Those faces of the Newton
polygon, s.t. all the Pi’s lie on or above the corresponding line, have possible values for γ0 as
their negative slopes. A detailed proof of the fact, that the Newton’s Polygon Method can be
performed on any polynomial f and that it actually yields Puiseux series is given in [Wal13].

Now we start from determining γ0 and c0. Since, fm(s, σ) has a non-zero bij iff

(i, j) = (i, 0) for i ∈ [0,m− 1], or

(i, j) = (m+ 1, 1),

the Newton polygon method gives us that the lower convex hull of the non-zero points (i, j)
has one non-horizontal slope, from (m − 1, 0) to (m + 1, 1). This slope can be written as y =
1
2x−

m−1
2 = −γ0x+ β0, where γ0 = −1

2 and β0 = −m−1
2 . Thus,

s(σ) = σ−1/2(c0 + s1).

To find c0 we substitute σ−1/2(c0 + s1) for s in fm(s, σ), getting

fm(s, σ) =fm

(
σ−1/2(c0 + s1), σ

)
= σ

(
σ−1/2(c0 + s1)

)m+1
−
(
σ−1/2(c0 + s1) + 1

)m−1
=σ−(m−1)/2

m+1∑
i=0

(
m+ 1

i

)
cm+1−i
0 si1 −

m−1∑
i=0

(
m− 1

i

)
σ−i/2

i∑
j=0

(
i

j

)
ci−j0 sj1

=σ−(m−1)/2

m+1∑
i=0

(
m+ 1

i

)
cm+1−i
0 si1 −

m−1∑
j=0

(
m− 1

j

)
cm−1−j0 sj1


−
m−2∑
i=0

(
m− 1

i

)
σ−i/2

i∑
j=0

(
i

j

)
ci−j0 sj1 .

The terms of lowest order must cancel. We equate to zero the coefficient of σ−(m−1)/2 getting
cm+1
0 −cm−10 = 0, or c20 = 1, or c0 ∈ {−1, 0, 1}. Since we are interested only in positive non-trivial

solutions, we skip c0 ∈ {−1, 0}, and obtain c0 = 1. Thus,

s(σ) = σ−1/2(1 + c1σ
γ1 + c2σ

γ1+γ2 + . . . ) .

Substituting c0 = 1 into fm(σ−1/2(c0 + s1), σ) and multiplying the result with σ−β0 =
σ(m−1)/2, we’ll get a new polynomial

f (1)m (s1, σ) = σ(m−1)/2fm(σ−1/2(1 + s1), σ).
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from which next γ2 and c2 will be defined. To construct Newton polygon for f
(1)
m (s1, σ), we

rewrite it as

f (1)m (s1, σ) :=

m+1∑
i=0

(
m+ 1

i

)
si1 −

m−1∑
i=0

(
m− 1

i

)
σ(m−1−i)/2(s1 + 1)i

:=

(
sm+1
1 + (m+ 1)sm1 +

m−1∑
i=0

(
m+ 1

i

)
si1

)
−(

(s1 + 1)m−1 +
m−2∑
i=0

(
m− 1

i

)
σ(m−1−i)/2(s1 + 1)i

)

=sm+1
1 + (m+ 1)sm1 +

m−1∑
i=1

((
m+ 1

i

)
−
(
m− 1

i

))
si1−

m−2∑
i=0

(
m− 1

i

)
σ(m−1−i)/2

i∑
j=0

(
i

j

)
sj1 .

Thus, the polynomial f
(1)
m (s1, σ) =

∑
bijs

i
1σ

j has a non-zero coefficient bij iff

(i, j) = (x, 0) for x ∈ [1,m+ 1], or

(i, j) =
(
x, m−1−y2

)
for x ∈ [0, y] and y ∈ [0,m− 2].

i

j

0 1 2 3 4 5 6 7

0

0.5

1

1.5

2

2.5

Fig. 4. Newton polygon for f∗m, where m = 6

As seen from Fig. 4, the Newton polygon of f
(1)
m (s1, σ) consists of a single segment with only

two vertices, one on each axis. That segment has equation y = −γ1x + β1 = −1
2x + 1

2 . Such
situation allows to compute the rest ci by letting lowest powers of σ cancel. By the Newton-
Puiseux algorithm [Cas00], from now on the powers of σ are going to jump by the denominator
of γ1; in other words γ1 = γ2 = γ3 = · · · = 1/2.

Now, we can calculate the rest of the ci directly from the function obtained from substitution

of s1 in f
(1)
m (s1, σ) where

s1 = c1σ
1/2 + c2σ

2/2 + c3σ
3/2 + · · · =

∞∑
i=1

ciσ
i/2

and equating to zero all terms which contain σ of degree n
2 , for all n ≥ 1. For that we will

consider the equality

f (1)m (s1, σ) = σ
m−1

2 fm(σ−1/2(s1 + 1), σ) = (s1 + 1)m+1 − (s1 + 1 + σ1/2)m−1 .
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Now, s1 + 1 =
∑∞

i=0 ciσ
i/2 and s1 + 1 + σ1/2 =

∑∞
i=0 c

′
iσ
i/2, where c′i = ci for i 6= 1, and

c′1 = c1 + 1.
If n is a natural number and i and a0 are invertible, then( ∞∑
k=0

akX
k

)n
=

∞∑
k=0

bkX
k, where b0 = an0 , and bi =

1

ia0
·

i∑
k=1

(kn− i+ k)akbi−k, i ≥ 1.

Thus,

f∗m(s1, σ) =
∞∑
i=0

(
δi − δ′i

)
σi/2,

where δ0 = δ′0 = 1,

δi =
1

i

i∑
k=1

(k(m+ 1)− i+ k) ckδi−k, and δ′i =
1

i

i∑
k=1

(k(m− 1)− i+ k) c′kδ
′
i−k , (8)

for i > 0, since

(s1 + 1)m+1 =

∞∑
i=0

δiσ
i/2, (s1 + σ1/2 + 1)m−1 =

∞∑
i=0

δ′iσ
i/2.

Collecting terms with σt/2, t ≥ 1 in f∗m(s1, σ), we get equations for calculating the rest of ct+1.
More precisely, we first collect terms that correspond t = 1, and then derive a recursive formula
for the case t > 2. Via this recursive formula, we compute ci for small i, and then guess the
general value of ci.

Consider first terms containing σ1/2: δ1 = δ′1. According to Eq. (8),

δ1 − δ′1 = (m+ 1)c1 − (m− 1)(c1 + 1) = 0 ,

and thus

c1 =
m− 1

2
and δ1 = (m+ 1)c1 =

(m− 1)(m+ 1)

2
.

We assume recursively that δj = δ′j for all j < i. Then, assuming i ≥ 2,

0 =i(δi − δ′i) =

i∑
k=1

(
k(m+ 1)− i+ k

)
ckδi−k −

i∑
k=1

(
k(m− 1)− i+ k

)
c′kδ
′
i−k

=
(
(m+ 1)− i+ 1

)
c1δi−1 +

i∑
k=2

(
k(m+ 1)− i+ k

)
ckδi−k

(
(m− 1)− i+ 1

)
c′1δ
′
i−1−

−
i∑

k=2

(
k(m− 1)− i+ k

)
c′kδ
′
i−k

=(m+ 2− i)c1δi−1 − (m− i)(c1 + 1)δi−1 + 2

i∑
k=2

kckδi−k

=2c1δi−1 − (m− i)δi−1 + 2
i∑

k=2

kckδi−k

=2ici + 2
i−1∑
k=1

kckδi−k − (m− i)δi−1 .
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Thus,

ci = −1

i

(
(i− 1)δi−1

2
+

i−1∑
k=2

kckδi−k

)
. (9)

From Eq. (9) we can compute ci, given that we have already computed cj and δj (using Eq. (8))
for j ≤ i.

For example, for i = 2 we get

c2 =
1

2
· (1− 2)δ1

2
= −δ1

4
= −(m− 1)(m+ 1)

22 · 2!
,

and

δ2 =
1

2

2∑
k=1

(
k(m+ 1)− 2 + k

)
ckδ2−k =

(m− 1)(m+ 1)(m2 − 2m− 1)

22 · 2!
.

Further, for i = 3,

c3 =
1

3
·

(
(1− 3)δ2

2
−

2∑
k=2

kckδ3−k

)
=

(m− 1)2m(2m+ 2)

23 · 3!
,

and

δ3 =
1

3
·

3∑
k=1

(
k(m+ 1)− 3 + k

)
ckδ3−k =

(m− 1)(m+ 1)(m2 − 3m− 2)(m2 − 3m)

23 · 3!
,

and so on.
The process can be continued to calculate more terms. However, the already calculated terms

give us a good guess about the nature of both ci and δi.
Thus,

ci = (−1)i+1 (m− 1)

2ii!

((i− 1)(m+ 1))!!

((i− 1)(m− 1))!!
, (10)

Moreover,

δi =
(m− 1)(m+ 1)

2i · i!
·
i−1∏
j=0

(m2 − i(m+ 1) + 1 + 2j).

Verifying that these two equations satisfy the recursions Eq. (8) and Eq. (9) is rather tedious,
and since it plays no importance in practice, we will omit it.

C Proof of Lem. 1

Proof. The case m = 1 is trivial. Now, assume that m ≥ 2.

fm(s(1), σ) =kχ(w − 1)σ−(m+1)/2 − `m
m−1∑
k=0

(
m− 1

k

)
σ−(m−1−k)/2

=
(`m)(m+1)/2

(kχ(w − 1))(m−1)/2
− `m

(
m− 1

0

)
σ−(m−1−0)/2 − `m

m−1∑
k=1

(
m− 1

k

)
σ−(m−1−k)/2

=− `m
m−1∑
k=1

(
m− 1

k

)
σ−(m−1−k)/2 < 0 .
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On the other hand,

fm(s(2), σ) =kχ(w − 1)

(
σ−1/2 +

m− 1

2

)m+1

− `m
(
σ−1/2 +

m+ 1

2

)m−1
,

with

kχ(w − 1)

(
σ−1/2 +

m− 1

2

)m+1

=kχ(w − 1)
m+1∑
i=0

(
m+ 1

i

)
σ−i/2

(
m− 1

2

)m+1−i

≥kχ(w − 1)

m+1∑
i=2

(
m+ 1

i

)
σ−i/2

(
m− 1

2

)m+1−i

=kχ(w − 1)

m−1∑
i=0

(
m+ 1

i+ 2

)
σ−(i+2)/2

(
m− 1

2

)m−1−i
=`m

m−1∑
i=0

(
m+ 1

i+ 2

)
σ−i/2

(
m− 1

2

)m−1−i
,

and

`m

(
σ−1/2 +

m+ 1

2

)m−1
= `m

m−1∑
i=0

(
m− 1

i

)
σ−i/2

(
m+ 1

2

)m−1−i
.

Now,

fm(s(2), σ) ≥`m
m−1∑
i=0

(
m+ 1

i+ 2

)
σ−1/2

(
m− 1

2

)m−1−i
− `m

m−1∑
i=0

(
m− 1

i

)
σ−i/2

(
m+ 1

2

)m−1−i
=`m

m−1∑
i=0

(
m− 1

i

)
σ−i/2 ·

(
m+ 1

2

)m−1−i
(Ami − 1) ≥ 0 ,

where

Ami =

(
m+1
i+2

)(
m−1
i

) (m− 1

m+ 1

)m−1−i
=

m(m+ 1)

(i+ 1)(i+ 2)

(
m− 1

m+ 1

)m−1−i
≥ 1

for all 0 ≤ i ≤ m− 1.

We prove that Ami ≥ 1 for i ∈ [0,m − 1] by induction on m ≥ i + 1 for every fixed i. For
the induction base case m = i+ 1, note that Am,m−1 = 1. For the inductive step, assume that
Ami ≥ 1 for some m ≥ i+ 1. Then

Am+1,i =
(m+ 1)(m+ 2)

(i+ 1)(i+ 2)
·
(

m

m+ 2

)m−i
=

m(m+ 1)

(i+ 1)(i+ 2)
·
(

m

m+ 2

)m−1−i
(∗)
≥ m(m+ 1)

(i+ 1)(i+ 2)
·
(
m− 1

m+ 1

)m−1−i
= Ami ≥ 1 ,

since for every i ≥ 0, g(m) =
(
m−1
m+1

)m−1−i
is an increasing function in m for m ≥ i + 1, or

equivalently, for i ≤ m− 1. (We note that in (*), equality holds only when i = m− 1.) ut
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D Proof of Thm. 3

Proof. Recall that the communication function is

com(χ,w,m, s, k, `) = (w − 1)kχ(s+ 1) + `

(
1 +

1

s

)m
,

where

s =
∞∑
i=0

ciσ
i−1
2 ,

ci are defined as in Theorem 2.

We find s−1 =
∑∞

j=0 c
′
jσ

j+1
2 from the condition ss−1 = 1, obtaining

c′i = (−1)i
(m− 1)

2i · i!
((i+ 1)m+ (i− 3))!!

((i+ 1)(m− 1))!!
.

In particular,

c′0 = 1, c′1 = −m− 1

2
, c′2 =

(m− 1)(3m− 1)

22 · 2!
, c′3 = −(m− 1)2m(2m− 1)

22 · 3!

and so on. Then 1 + s−1 =
∑∞

i=0 diσ
i/2, where d0 = 1, dk = c′k−1 for k ≥ 1. Raising power series

1 + s−1 to m-th power, we obtain( ∞∑
i=0

diσ
i/2

)m
=
∞∑
i=0

uiσ
i/2, where u0 = 1, up =

1

p

p∑
t=1

(tm− p+ t)dtup−t.

In particular, u1 = m, u2 = 0, and so on. Then

com(χ,w,m, s, k, `) = (w − 1)kχ

(
1 + σ−1/2 + c1 +

∞∑
i=1

ci+1σ
i/2

)
+ `

1 +

∞∑
j=1

ujσ
j/2


= `+ 2

√
(w − 1)χmk`+

1

2
χk(m+ 1)(w − 1)

+
1√
`

((w − 1)χk)3/2c2√
m

+
1

`

((w − 1)χk)2c3
m

+
∞∑
i=3

Ciσ
i/2,

where Ct are defined as Ct = (w − 1)kχct+1 + `ut, t ≥ 3. Thus

com(χ,w,m, s, k, `) = `+ 2
√

(w − 1)χmk`+
1

2
χk(m+ 1)(w − 1) +O(`−1/2).

Rate is equal to ` com−1(χ,w,m, s, k, `). Let com−1(χ,w,m, s, k, `) =
∑∞

i=0 ai `
2−i
2 , then

from com(χ,w,m, s, k, `) · com−1(χ,w,m, s, k, `) = 1 we get a0 = . . . = a3 = 0, a4 = 1,

a5 = −2
√

(w − 1)χmk, a6 =
1

2
(7m− 1)(w − 1)χmk and so on, thus

`com−1(χ,w,m, s, k, `) =`

(
1

`
−

2
√

(w − 1)χmk

`
√
`

+
χk(7m− 1)(w − 1)

2`2
+O(`−5/2)

)

=1−
2
√

(w − 1)χmk√
`

+
χk(7m− 1)(w − 1)

2`
+O(`−3/2).
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E Communication complexity lower bounds in the black-box additive PKE
model

We introduce the black-box PKE model for an additive homomorphic public-key encryption
(PKE) scheme 〈KG,Enc,Dec〉. The PKE scheme is assumed to operate over at least one additive
group that is a subset of its plaintext space. In terms of ciphertext length for the PKE we assume
that the ciphertext size that corresponds to a b-bit plaintext is a(b). Note that a(b) also depends
on k, the security parameter of the scheme. The objective of this model is to provide the lower
bound arguments from which the communication rate of any leveled homomorphic scheme
is restricted if it is constructed in black-box fashion from an underlying black-box additive
homomorphic PKE. However, our results are general and we state them for arbitrary 2-round
two-party computation protocols.

Specifically, a black-box 2-round protocol B is comprised of three algorithms Π = (C1, S, C2)
with the following characteristics.11 B is parameterized by m that corresponds to the “levels”
of the encryptions that it utilizes. With each level we associate an additive group. The d-th
group (Gd,+) requires bd bits for the representation of its elements and the underlying PKE is
suitable for encrypting elements of the groups Gd in a way that addition can be homomorphically
achieved between encrypted elements. The exact choice of G1, . . . , Gm is independent of our
arguments and we make no further assumption about these groups beyond the fact that the
basic operation can be efficiently implemented. Note that the groups are not necessarily distinct.

The first algorithm of B denoted by C1 has input x and access to a set of oracles Encd(·) for
d = 1, . . . ,m that operate as follows: Encd(·) receives as input a plaintext m0 so that m ∈ Gd;
it returns a ciphertext ψ encrypting m0. We say that ψ is a d-th level encryption of m0.

C1 using oracle access to {Encd(·)}d produces a sequence of ciphertexts ψ1, . . . , ψt (that may
belong to different levels). The algorithm S takes as input s as well as a sequence of ciphertexts
〈ψ1, . . . , ψt〉 (presumably the output of C1). S has access to the oracle Encd(·) and an oracle
Addd(·) that takes as input a pair of ciphertexts (ψ1, ψ2) and provided that ψ1, ψ2 are d-level
encodings encrypting the elements m1,m2 ∈ Gd, it returns a ciphertext ψ that encrypts the
element m1 + m2 ∈ Gd. S terminates with a sequence of ciphertexts ψ1, . . . , ψt′ . Finally, C2

operates on input x, ψ′1, . . . , ψ
′
t′ and returns an output z. Algorithm C2 has oracle access to

Encd(·),Decd(·). The oracle Decd(·) receives as input ψ and if ψ is a valid encryption of some
m0 ∈ Gd it returns m0.

Note that we assume perfect correctness from the underlying encryption, i.e., whenever ψ
is an oracle answer to a query m0 by Encd(·), submitting ψ to Dec(·) will return the value m0.

Definition 4. A protocol B realizes the functionality F (·, ·) in the black-box additive PKE model
if it holds that for all x, s the output z of the C2 algorithm in the interaction as defined above
satisfies z = F (x, s) for all correct instantiations of the Encd(·),Decd(·),Addd(·) oracles.

For instance in a (n, 1)-CPIR protocol, s ∈ {0, 1}`·n, x ∈ [n] and F (x, 〈s1, . . . , sn〉) = sx. More
generally, we consider the setting where the server input is a pair (f , s) such that f : X → [n] is
a surjection and s ∈ {0, 1}`·n, the client input is a value x ∈ X and F (x, (f , s)) = sf(x) (the case
of CPIR is a special case by setting X = [n] and f the identity function).

Now suppose that we have a specific additive homomorphic encryption scheme PKE that
can be used to implement the oracles Encd(·),Decd(·). It can be easily observed that the total

communication of the protocol by BPKE is equal to len(pk) +
∑t

i=1 bl(i) +
∑t′

i=1 bl′(i) where l(i) is
the level of ciphertext ψi in the output of C1 and l′(i) is the level of ciphertext ψ′i in the output
of S; len(pk) is the length of the public-key.

11 In the context of LHE, recall that C1 represents Encm(·), S is Eval(·) and C2 is Dec(·).
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The protocol B will be called a canonical protocol of depth m provided the following hold
true:

– Client Encoding Requirement. The server will have available at least one encryption depend-
ing solely on client data for each level, i.e., at least one ciphertext with plaintext related to
client input x in each of G1, . . . , Gm. Nevertheless, not all such ciphertexts will have to be
produced directly and communicated by C1. Specifically, C1 using x produces some arbitrary
encipherment of x from which all necessary ciphertexts of total length L can be generated
by the server in some predetermined fashion.

– Server Data Flow Requirement. The way the server S utilizes its oracles obeys to the follow-
ing rules: any input provided to the oracles Enc1(·),Add1(·) may arbitrarily depend on (f , s)
and constant values. In a similar vein, any input provided to the oracles Encd(·),Addd(·) for
d > 1 may depend on (d − 1)-level encryptions, f and constant values. Finally, the output
of S consists solely of m-level encodings.

Some remarks are in place about the above abstraction and its relation to actual two-party
protocols based on additive homomorphic encryption. The cost of accessing the oracles for
both parties is assumed a single computational step. Moreover, we make no assumption about
the underlying PKE beyond perfect correctness. We note that this assumption is made for
convenience and our lower bound can be easily adjusted for the case that correctness is assumed
to hold with overwhelming probability. Regarding the client encoding and server data flow
requirement there seems to be nothing to be gained by violating these requirements. Specifically,
in case the client does not provide an encoding for a certain level this means that the server’s
computation cannot interact with the client’s private input at that level in any way except
through re-encoding encodings of lower levels into that encoding level - a redundant operation.

E.1 First communication lower bound in the black-box additive PKE model

We establish a communication lower bound for a canonical protocol of depth m in the black-
box additive PKE model. The following simple observation is at the core of the lower bound
argument.

Lemma 3. Assume an additive homomorphic PKE with ciphertext length a(b) ≥ b+ k where k
is the security parameter and a canonical black-box construction B of depth m that realizes F .
Then, the protocol BPKE realizes F with communication complexity at least

` ·
m∏
d=1

(1 +
k

bd
) +mk +

m∑
d=1

bd

where bd is the length needed to encode level-d plaintexts.

Proof. In order to ensure correctness observe that ` output bits need to be transferred to the
receiver. This follows from the fact that F (x, ·) is a surjection over {0, 1}` for any client input
x.

At level 1, these bits will be encoded somehow and will require at least `
b1
a(b1) bits. Continu-

ing iteratively it is easy to see that the initial ` plaintext bits will require at least `
∏m
d=1 a(bd)/bd

bits in order to be encoded at the m-level. Now given that a(w) ≥ w + k it follows that

`
m∏
d=1

a(bd)/bd ≥ `
m∏
d=1

(1 +
k

bd
)
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At the same time the receiver needs to transmit a ciphertext at each level; this means that
it will need to send a total of ciphertext bits equal to

m∑
d=1

a(bd) ≥ mk +
m∑
d=1

bd

Combining the above we obtain the proof of the statement. ut

Next we prove the following:

Theorem 6. Assume an additive homomorphic PKE with ciphertext length a(b) ≥ b+ k where
k is the security parameter and a canonical black-box construction B of depth m that realizes F .
Then, the protocol BPKE has communication complexity at least `+ 2m

√
`k +mk where k is the

security parameter of the PKE.

Proof. For the first case, set m = 1 in the lower bound of lemma 3. We obtain the `(1 + k/w) +
k+w = `+ k+ `k/w+w. For fixed integers `, k this function minimizes on the point w =

√
k`

from which the result follows.

For the general case recall that we need to minimize the expression

T := ` ·
m∏
d=1

(1 +
k

bd
) +mk +

m∑
d=1

bd

for bi ≥ 1. Setting the partial derivatives of each bd to zero we obtain that for each d ∈ [m]

b2d = k` ·
∏
d6=j

(1 +
k

bj
).

Multiplying by (1 + k/bd) we obtain

b2d + kbd = k` ·
∏
j

(1 +
k

bj
).

It follows that b2d + kbd is constant. In particular, for any i, j ∈ [m],

b2i − b2j + kbi − kbj = 0 =⇒ (bi − bj)(bi + bj + k) = 0 =⇒ bi = bj .

Observe now that

T ≥ `(1 +
k

b
)m +mk +mb ≥ `+m(b+

k`

b
) +mk

Using similar arguments as in the m = 1 case the result follows. ut

E.2 A communication lower bound via multivariate polynomial evaluation.

An interesting communication lower bound can be derived by looking at two-party protocols
that are implemented via multivariate polynomial evaluation. An important corollary of the
results of this section is that when we use multivariate polynomial evaluation over degree 1
polynomials (which is what additive homomorphic encryption allows) the best communication
complexity we can obtain is Ω(

√
n) where n is the cardinality of the client input domain.
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The model in this section considers two-round protocols B in an information theoretic setting
where client and receiver (C1, S, C2) have access to a multivariate polynomial evaluation oracle
MP(·): specifically, for a given finite field F the oracle operates as MP(v,Q1, . . . , Qt) where
v ∈ Fr and Qd ∈ F[x1, . . . , xr] and returns to the user a vector in Ft whose d-th coordinate
equals ud = Qd(v). If the maximum degree of each Qd is m then we write the oracle as MPm(·).

The communication complexity of the protocol B in this model is measured in terms of the
size of the input provided by the client to the MP(·) oracle and the size of the response of the
oracle to the client.

Lemma 4. Let m ∈ N. Consider a two-round protocol B in the MPm(·) model over a field F
that realizes F . Assume the communication complexity of B is such that the client transmits r
values to MP(·) and receives t values from it. It holds that

(
r+m
m

)
· t ≥ ` · |X|/ log |F|.

Proof. We fix a sequence of coins and we analyze the behavior of B deterministically over this
coin selection. First we observe that C1 determines a bijection f : X → {v1, . . . , vn} with n = |X|
that maps the input of the client to a specific vector over Fr; r is some arbitrary parameter
r ≥ 1 of the protocol corresponding to the input the client C1 provides to the MPm(·) oracle
and F is the underlying finite field.

The client protocol C2 receives from the oracle a response in Ft and computes the appropriate
value in {0, 1}`. C2 determines a family of functions {gi}i=1,...,n with gi : Ft → {0, 1}`.

We define now a function G that has domain {0, 1}n` and maps a vector s to a subset of
matrices Fn×t so that U ∈ G(s) if and only if gi(ui) = F (xi, s) for i = 1, . . . , n where ui is the
i-th row of U .

Given the above functions, we can now describe the operation of protocol B as follows.
The client first computes the vector f(x) and sends the r encodings of the elements of F that
comprise f(x) to MP(·).

The server now will have to prepare the suitable polynomials to supply to MP(·). Given the
server input s, the server will define t polynomials Q1(·), . . . , Qt(·). We observe that in order for
correctness to be satisfied it should be that gx(〈Q1(vx), . . . Qt(vx)〉) = F (x, s) for all x ∈ X.

It follows that the server will have to find a U ∈ G(s) so that the t systems defined by the
equations 〈Q1(vi), . . . , Qt(vi)〉 = ui for i = 1, . . . , n where ui is the i-th row of U are solvable
(if no such U exists the server necessarily has to fail). We remark that the way that the server
finds the suitable U is of no importance in the argument.

Consider that due to the restriction in the MPm(·) oracle we want the polynomials Qd to
have degree m. Recall that u1, . . . , un ∈ Ft and that the vector of polynomials 〈Q1, . . . , Qt〉
should match ui when evaluated on vi for all i = 1, . . . , n. Given the restriction of the degree
we have that a necessary condition for solvability would be that the values of each ui when

projected to a single coordinate should lie on a curve degree m. Given that there are |F|(
r+m
m )

distinct polynomials over F, the set of “solvable” matrices has cardinality |F|(
r+m
m )t. We observe

next that for any server input s, the set G(s) should contain at least one solvable matrix U , thus

it should hold that |F(r+mm )t| ≥ |{0, 1}`|X||. Based on this we obtain that
(
r+m
m

)
t log |F| ≥ `|X|

from which the result follows. ut

If we count also the field size in the above description we have that the total communication
of the protocol is (t + r) encodings of values in F. In the case that m = 1 the communication
will be minimized provided that we choose t, r ≈

√
`n/ log |F|. In the general case, if m � r

we have (r + 1)m · t ≥ `n/ log |F|, the communication to the oracle will be minimized when we

choose r = (mn`/ log |F|)
1

m+1 − 1 resulting in a total communication of Ω((mn`)
1

m+1 ).
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E.3 Second communication lower bound in the black-box additive PKE model

In this section we provide a lower bound for two-party protocols in the black-box PKE model
that takes into account the size n of the database

Theorem 7. Let Bf be any canonical two-party protocol in the black-box additive PKE model
that has depth m and realizes F with F (x, (f , s)) = sf(x) for f : X → [n] and s ∈ ({0, 1}`)n.
Then, for any f , it holds that the total communication complexity of Bf is at least

1

2
(m+ 1)

(
n · k + `+m

m+ 1

) 1
m+1

.

Proof. For some f we partially fix the server input to (f , ·). In the resulting protocol Bf the server
provides only s ∈ ({0, 1}`)n (recall the client provides x ∈ X so that he obtains sf(x)). Further-
more, since we are interested in the worst-case communication complexity of the protocol, we
fix any source of randomness that the client or the server may be using.

Using B observe we can easily derive a depth-1 protocol for f. We execute (C1, S, C2) up
to after the server completes the last call to an Enc1(·),Add1(·) oracle, we collect all level-1
ciphertexts c1, . . . , cq and transmit them to the client. The client now continues the simulation
of the server S as well as C2 and produces the output. This is possible due to the server data
flow requirement. The correctness of this protocol, call it B1, is immediate.

Now, for any subset M ⊆ [q], consider a protocol B1[M ], that works as B1 with the difference
that the client receives only the ciphertexts in {cj : j ∈M} and the rest—in order to continue
the simulation—he generates at random. Let M∗ denote a subset of [q] of minimum size, with
the property that B1[M

∗] is always correct. Such a subset exists since B1[[q]] = B1, which is
correct. If the client communicates r1 elements in the first level and |M∗| = n1, then Lemma 4
gives

(r1 + 1)n1 ≥ n`/ log |G1|.

Furthermore, we claim that for every ciphertext in {cj : j ∈ M} there is an execution where
it is queried in Dec1 oracle. This is because otherwise such a ciphertext could also be replaced
by a random one contradicting the minimality of M∗. This implies that the protocol B2,...,m
restricted in rounds 2, . . . ,m is a protocol for obtaining one out of n1 words of length ψ1 (the
length of the ciphertexts at level 1).

Applying the above recursively and taking into account that ψd is the ciphertext length at
level d we obtain that, for each level d ∈ [m],

(rd + 1)nd ≥ nd−1ψd−1/ log |Gd|,

with n0 = n, ψ0 = l, G0 = {0, 1}`. From this and the fact that for each d ∈ [m], ψd ≥ log |Gd|+k,
we have that

2ψdrd ≥ (rd + 1)ψd ≥
nd−1
nd
· log(2k|Gd−1|). (11)
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We now bound the communication cost T as follows

T ≥
m∑
d=1

ψdrd + ψmnm

≥ (m+ 1)

(
2−mn0ψm

m∏
d=1

log(2k|Gd−1|)
) 1
m+1

(AM-GM inequality and (11))

≥ (m+ 1)

(
2−mn log

(
2k

m∑
d=0

|Gd|
)) 1

m+1

(n0 = n and ψm ≥ log |Gm|+ k)

≥ 1

2
· (m+ 1)

(
n log

(
2k+m|G0|

) 1
m+1

) 1
m+1

(AM-GM inequality inside the log)

≥ 1

2
· (m+ 1)

(
n · m+ k + `

m+ 1

) 1
m+1

.

ut

We have obtained a bound that if focused on the relationship of the number of elements n
in the database and the number of levels m that a canonical protocol employs. Recall also the
bound in Theorem 6, that is focused on the legth on each database entry `. Combining these
two we can state the following bound as their corollary.

Corollary 2 (Lower-bound for Private-Information-Retrieval). Let Bf be any canonical
two-party protocol in the black-box additive PKE model that realizes F with F (x, (f , s)) = sf(x)
for f : X → [n] and s ∈ ({0, 1}`)n. Suppose that the total communication complexity of Bf with
respect to n is On(logλ n), for some positive integer λ; then its total communication complexity
is at least

`+
√
`k ·Ω

(
log n

log log n

)
+ k ·Ω

(
log n

log log n

)
.

Proof. By Theorem 7 we have n
1

m+1 = On(logλ n). It follows (by taking logarithms) that m =
Ω
( logn
log logn

)
. The bound then is a consequence of Theorem 6. ut
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