
Faster ECC over F2521−1

Robert Granger1 and Michael Scott2

1 Laboratory for Cryptologic Algorithms
School of Computer and Communication Sciences

École Polytechnique Fédérale de Lausanne, CH-1015, Switzerland
robbiegranger@gmail.com

2 Certivox Labs
mike.scott@certivox.com

Abstract. In this paper we present a new multiplication algorithm for residues modulo the Mersenne
prime 2521−1. Using this approach, on an Intel Haswell Core i7-4770, constant-time variable-base scalar
multiplication on NIST’s (and SECG’s) curve P-521 requires 989, 000 cycles, while on the recently pro-
posed Edwards curve E-521 it requires just 779, 000 cycles. As a comparison, on the same architecture
openSSL’s ECDH speed test for curve P-521 requires 1, 319, 000 cycles. Furthermore, our code was writ-
ten entirely in C with no non-compiler optimisations and so is robust across different platforms. The
basic observation behind these speedups is that the form of the modulus allows one to multiply residues
with as few word-by-word multiplications as is needed for squaring, while incurring very little overhead
from extra additions, in contrast to the usual Karatsuba methods.

Keywords: elliptic curve cryptography, performance, P-521, E-521, Edwards curves, generalised re-
punit primes, Crandall numbers, Karatsuba

1 Introduction

Nearly all research on elliptic curve cryptography (ECC) focuses on improving efficiency, the bedrock
of which is efficient field arithmetic. Amongst prime fields the multiply-then-reduce paradigm sug-
gests that arithmetic modulo the Mersenne primes Mk = 2k − 1 should be optimal, since modular
reduction can be effected by a single modular addition, as is well known. Within this paradigm,
research on fast modular multiplication has naturally tended to focus on reducing the cost of the
reduction step. This rationale led Solinas in 1999 to introduce Generalised Mersenne Numbers
(GMNs), five of which feature in the NIST (FIPS 186-2) [17] and SECG [18] standards for use
in ECC, ranging in size from 192 to 521 bits, all with fast modular reduction. Solinas’ reduction
method regards both the output of an integer by integer residue multiplication and the modulus as
polynomials in a base t = 2w, with w the word size of the underlying architecture. Reducing the
former polynomial modulo the latter then gives an algebraic modular reduction that requires only
a few modular additions and/or subtractions and possibly a few final subtractions of the modulus.

However, more recent approaches to modular multiplication at bitlengths relevant to ECC do
not adhere to the multiply-then-reduce paradigm. In particular, Chung and Hasan [10] proposed
a slight modification of Solinas’ method, viewing it as a two stage process, with residues also
regarded as polynomials in base t. For generic residue coefficients, the product of two residues
modulo the modulus polynomial is precomputed. Then in the first stage these coefficient expressions
are evaluated on the input coefficients; in the second stage the resulting coefficients are renormalised
by expanding them in base t and performing the required carries. This small shift in perspective
somewhat interleaves the multiplication and reduction steps, and allows one to use a smaller base
than before. Using a smaller base is useful since it firstly allows more primes to be represented, and
secondly it means that the coefficient evaluations need not overflow beyond double precision on the
underlying architecture. The latter property has been applied numerous times [2,3,6,9,11,12,16,19]
and is now standard.

Another example of when it is advantageous to allow the form of the modulus to influence
how one multiplies residues is for the Mersenne numbers Mk, for k → ∞. In particular, modular



multiplication can be carried out using a cyclic convolution effected by an irrational-base discrete
weighted transform (IBDWT) [16, §6], whereas for integer multiplication a linear convolution is
required, as each multiplicand must be padded with k zeros before a cyclic convolution of length 2k
can be performed. Hence multiplication modulo a Mersenne number is asymptotically approximately
twice as fast as integer multiplication.

Unfortunately, Fast Fourier Transform techniques are not effective at ECC bitlengths and hence
can not be applied toM521. However, using a more natural alternative generalisation of the Mersenne
numbers than Solinas proposed – already known in the literature as Generalised Repunit Primes
(GRPs) – Granger and Moss described a modular multiplication algorithm that is surprisingly fast,
being about three times faster than Montgomery multiplication for primes of around 600 bits, on a
2.2GHz Intel Core 2 Duo [19]. GRPs are those of the form

∑p−1
i=0 ti for prime p and integer t > 1.

Although they have many attractive features, the only example in the standards is M521 with t = 2,
but in this case t is too small to take advantage of these features.

In this paper we show that one can use an analogue of the multiplication technique of [19]
to speed up multiplication modulo M521. For demonstration purposes this operation – as well as
constant-time variable-base scalar multiplication – has been implemented in C on a 3.4GHz In-
tel Haswell Core i7-4770, which has yielded interesting speedups. In particular, on NIST’s (and
SECG’s) curve P-521 this requires 989, 000 cycles, while on the recently proposed Edwards curve
E-521 it requires just 779, 000 cycles. As a comparison, on the same architecture openSSL’s ECDH
speed test for curve P-521 requires 1, 319, 000 cycles. We note that the Edwards curve E-521 is a
particularly attractive target for implementors; according to the safecurves website [5] this curve
has been proposed independently three times, by Bernstein-Lange, Hamburg, and Aranha et al. [1].
It addresses all of the recent concerns regarding the security of NIST curves (as well as others),
having been generated in a deterministic pseudorandom manner while being twist-secure, complete
and permitting point representations which are indistinguishable from uniform random strings [4].

Although not described as such, the technique of [19] which forms the basis of our multiplication
speedup can be viewed as a ‘twisted’ version of Karatsuba’s trick [20], albeit one in which the form
of the modulus lends itself very favourably. Its effectiveness therefore runs counter to conventional
wisdom which posits that Karatsuba-like techniques are not efficient at bitlengths relevant to ECC
(at least on 64-bit architectures), due to the high number of extra additions required. A recent
proposal by Bernstein, Chuengsatiansup and Lange also uses a variation of Karatsuba for fast mul-
tiplication modulo 2414 − 17 [3], with efficiencies being extracted at a much lower level than we use
in the present paper; indeed two Karatsuba levels are used, as well as a clever method to reduce
inputs to the required multiplications, rather than outputs (cf. [3, Section 4.6]). Their implemen-
tation on the 32-bit ARM Cortex-A8 also exploits vectorisation to great effect. While not directly
comparable to Bernstein’s et al.’s implementation, one advantage of our implementation is that it
is written entirely in C with no non-compiler optimisations; it therefore has robust performance
characteristics across a range of 64 bit platforms. Having said that, we naturally expect that further
optimisations are possible, both on the demonstration and similar architectures, and especially on
ARM processors, due to their higher multiplication-to-addition cost ratio. We therefore encourage
others to explore these possibilities; our software is freely downloadable.

To a lesser extent, our same basic observation may be applied to so-called Crandall numbers, i.e.,
those of the form 2k−c for c usually much smaller than the word size of the underlying architecture,
and we provide two examples of how this may be done.

The sequel is organised as follows. In Section 2 we explain our basic observation, while in Section
3 we show how it may be applied to M521, giving squaring and inversion routines as well. In Section
4 we provide details of the target curves and our implementation results, while in Section 5 we
describe how our basic observation may be applied to Crandall numbers. We conclude in Section 6.



2 The basic observation

The best way to describe our basic observation is via an example. For an integer t let the modulus
be t9 − 1 and let the base t expansion of residues x and y be

∑8
i=0 xit

i and
∑8

i=0 yit
i respectively.

For convenience, we also denote x by x = [x0, . . . , x8] and y by y = [y0, . . . , y8].
The multiplication of x and y mod t9−1 is just their cyclic convolution; in particular, if z ≡ xy

(mod t9 − 1) then z = [z0, . . . , z8] =

[x0y0 + x1y8 + x2y7 + x3y6 + x4y5 + x5y4 + x6y3 + x7y2 + x8y1,

x0y1 + x1y0 + x2y8 + x3y7 + x4y6 + x5y5 + x6y4 + x7y3 + x8y2,

x0y2 + x1y1 + x2y0 + x3y8 + x4y7 + x5y6 + x6y5 + x7y4 + x8y3,

x0y3 + x1y2 + x2y1 + x3y0 + x4y8 + x5y7 + x6y6 + x7y5 + x8y4,

x0y4 + x1y3 + x2y2 + x3y1 + x4y0 + x5y8 + x6y7 + x7y6 + x8y5,

x0y5 + x1y4 + x2y3 + x3y2 + x4y1 + x5y0 + x6y8 + x7y7 + x8y6,

x0y6 + x1y5 + x2y4 + x3y3 + x4y2 + x5y1 + x6y0 + x7y8 + x8y7,

x0y7 + x1y6 + x2y5 + x3y4 + x4y3 + x5y2 + x6y1 + x7y0 + x8y8,

x0y8 + x1y7 + x2y6 + x3y5 + x4y4 + x5y3 + x6y2 + x7y1 + x8y0].

(2.1)

The coefficients in this expression are about twice the size of t; we assume that t is selected in
such a way that there is no overflow beyond double the initial precision of the coefficients. The
arithmetic cost of a direct evaluation of each coefficient is then nine coefficient multiplications and
eight double length additions, which we count as (and denote by) 9M +16A. This gives a total cost
of 81M + 144A.

For bitlengths relevant to ECC it is not beneficial to use asymptotically efficient FFT-based
(cyclic) convolutions, as suggested in [14] and as are used for the Lucas-Lehmer primality test for
Mersenne numbers, see [15,16]. However, one can exploit some of the symmetry of (2.1) as follows.
Let s =

∑8
i=0 xiyi. Then z may also be expressed as

[s− (x1 − x8)(y1 − y8)− (x2 − x7)(y2 − y7)− (x3 − x6)(y3 − y6)− (x4 − x5)(y4 − y5),

s− (x1 − x0)(y1 − y0)− (x2 − x8)(y2 − y8)− (x3 − x7)(y3 − y7)− (x4 − x6)(y4 − y6),

s− (x5 − x6)(y5 − y6)− (x2 − x0)(y2 − y0)− (x3 − x8)(y3 − y8)− (x4 − x7)(y4 − y7),

s− (x5 − x7)(y5 − y7)− (x2 − x1)(y2 − y1)− (x3 − x0)(y3 − y0)− (x4 − x8)(y4 − y8),

s− (x5 − x8)(y5 − y8)− (x6 − x7)(y6 − y7)− (x3 − x1)(y3 − y1)− (x4 − x0)(y4 − y0),

s− (x5 − x0)(y5 − y0)− (x6 − x8)(y6 − y8)− (x3 − x2)(y3 − y2)− (x4 − x1)(y4 − y1),

s− (x5 − x1)(y5 − y1)− (x6 − x0)(y6 − y0)− (x7 − x8)(y7 − y8)− (x4 − x2)(y4 − y2),

s− (x5 − x2)(y5 − y2)− (x6 − x1)(y6 − y1)− (x7 − x0)(y7 − y0)− (x4 − x3)(y4 − y3),

s− (x5 − x3)(y5 − y3)− (x6 − x2)(y6 − y2)− (x7 − x1)(y7 − y1)− (x8 − x0)(y8 − y0)].

(2.2)

The cost of computing s is 9M+16A. The subsequent cost of each coefficient evaluation is 4M+16A,
since each term costs two single length additions and one double length addition, and there are four
terms. Hence the total cost is now 45M+160A, giving a saving of 36M at the cost of 16A. This new
expression for z is of course very reminiscent of Karatsuba’s method [20]. Indeed, it only (repeatedly)
uses the identity xiyj + xjyi = xiyi + xjyj − (xi − xj)(yi − yj), which is a slight twist of the more
common version xiyj + xjyi = (xi + xj)(yi + yj) − xiyi − xjyj . Using the ‘twisted’ version means
that precisely the same s term appears in each coefficient, thus saving several additions.

In general, for the modulus tn−1, evaluating the cyclic convolution using the schoolbook method
costs n2M + 2n(n − 1)A, whereas using our basic observation it costs 1

2n(n + 1)M + 2(n2 − 1)A.
This is the same number of multiplications required for squaring with the schoolbook method; this
is because the same symmetry is being exploited, however for squaring one can simply express



xixj + xjxi as 2xixj . One thus saves nearly half the number of multiplications while incurring
very little overhead from extra additions. Hence even at small bitlengths for which the schoolbook
method for integer multiplication is faster than Karatsuba techniques, one expects this method to
give a speedup for multiplication modulo tn − 1.

Note that if one instead uses the modulus p =
∑n−1

i=0 ti then s need not even be computed, since
the first term of the i-th coefficient contributes sti, which altogether gives s

∑n−1
i=0 ti ≡ 0 (mod p).

This was the rationale behind the proposal of Granger and Moss to use GRPs for ECC [19].

3 Application to M521 = 2521 − 1

In this section we show how our basic observation may be applied to the Mersenne prime M521 =
2521 − 1. For the interested reader, we point out that Crandall and Pomerance used this prime to
demonstrate Crandall’s asymptotically fast algorithm for multiplication modulo Mersenne numbers
which uses an IBDWT [13, Alg. 9.5.19]. This algorithm provides a method to obtain integer coef-
ficients when mimicking an irrational-base expansion of residues and of course exploits the cyclic
convolution far more cleverly than we do here, but it is not efficient for such small bitlengths.

In order to use the basic observation, first observe that one should not set t = 2 and n = 521, as
this would involve far too much redundancy and too many multiplications. On a 64-bit architecture
residues mod p require ⌈521/64⌉ = 9 words, so what one would like to do is set n = 9 and use
the irrational base t = 2521/9 while using integer coefficients only, either à la Crandall or à la
Bernstein’s method for performing arithmetic modulo 2255 − 19 [2], which uses the irrational base
225.5. It turns out that for our prime of interest, the analogue of Bernstein’s method is nothing but
operand scaling [21,22]. Since this is easier to explain, we do so here.

Observe that 521 ≡ 8 (mod 9). Hence one can work modulo 2p = t9 − 2 instead of p, with
t = 258. This representation was used by Langley in OpenSSL 1.0.0e in September 2011, which
greatly improved efficiency relative to the base 264 approach3. The multiplication formulae are now
slightly different; if z ≡ xy (mod t9 − 2) then z = [z0, . . . , z8] =

[x0y0+2x1y8+2x2y7+2x3y6+2x4y5+2x5y4+2x6y3+2x7y2+2x8y1,

x0y1+ x1y0+2x2y8+2x3y7+2x4y6+2x5y5+2x6y4+2x7y3+2x8y2,

x0y2+ x1y1+ x2y0+2x3y8+2x4y7+2x5y6+2x6y5+2x7y4+2x8y3,

x0y3+ x1y2+ x2y1+ x3y0+2x4y8+2x5y7+2x6y6+2x7y5+2x8y4,

x0y4+ x1y3+ x2y2+ x3y1+ x4y0+2x5y8+2x6y7+2x7y6+2x8y5, (3.1)

x0y5+ x1y4+ x2y3+ x3y2+ x4y1+ x5y0+2x6y8+2x7y7+2x8y6,

x0y6+ x1y5+ x2y4+ x3y3+ x4y2+ x5y1+ x6y0+2x7y8+2x8y7,

x0y7+ x1y6+ x2y5+ x3y4+ x4y3+ x5y2+ x6y1+ x7y0+2x8y8,

x0y8+ x1y7+ x2y6+ x3y5+ x4y4+ x5y3+ x6y2+ x7y1+ x8y0].

There are several possible approaches to applying the basic observation to (3.1), all of which
incur a slight overhead relative to (2.2) due to the presence of the factors of 2. For the target
architecture, the most efficient one we found is presented in Algorithm 1, which computes and
reduces each component of z sequentially. We first detail how we represent residues.

Residue representation: It is a simple matter to represent a mod p residue x in the form x =
[x0, . . . , x8] by taking the base t = 258 expansion. Since we wish to allow negative coefficients, we use
signed integers. Due to our choice of reduction method, we stipulate that the first component x0 in
our reduced format is in [−259, 259 − 1] while the remaining components are in [0, 258 − 1], although
these bounds are not enforced except for the output coordinates of point addition and doubling.

3 We independently implemented our multiplication for curve P-521 using this representation in the summer of 2011,
but have decided to publish only now due to the recent interest in alternative elliptic curves over M521.



Multiplication and squaring: Algorithms 1 and 2 detail pseudocode for our multiplication and
squaring routines respectively. Observe that in both algorithms the wrap-around from z8 to z0 is
computed twice. This is to ensure that there is at most one bit of overflow beyond 58 bits for z0.
One could instead rotate the order in which terms are computed so that the term that is computed
twice is (ti >> 58) rather than 2(ti >> 58), which would save one shift operation. However, we
chose to keep the components z1, . . . , z8 ≥ 0 with only z0 possibly being negative, since this allows
one to check whether a given residue is zero or one without mapping back to the integer residue
representation.

Algorithm 1: MUL

INPUT: x = [x0, . . . , x8],y = [y0, . . . , y8] ∈ [−259, 259 − 1]× [0, 258 − 1]8

OUTPUT: z ∈ [−259, 259 − 1]× [0, 258 − 1]8 where z ≡ x · y (mod t9 − 2)

1. t0 ← x0y0 + x1y1 + x2y2 + x3y3 + x4y4
2. t5 ← x5y5, t6 ← x6y6, t7 ← x7y7, t8 ← x8y8
3. t1 ← t5 + t6 + t7 + t8
4. t2 ← t0 + t1 − (x0 − x8)(y0 − y8)− (x1 − x7)(y1 − y7)

−(x2 − x6)(y2 − y6)− (x3 − x5)(y3 − y5)
5. t0 ← t0 + 4t1
6. t1 ← t2 mod t
7. t3 ← t0 − (x4 − 2x5)(y4 − 2y5)− (x3 − 2x6)(y3 − 2y6)

−(x2 − 2x7)(y2 − 2y7)− (x1 − 2x8)(y1 − 2y8) + 2(t2 >> 58)
8. z0 ← t3 mod t
9. t0 ← t0 − 2t5
10. t2 ← t0 − (x0 − x1)(y0 − y1)− (x4 − 2x6)(y4 − 2y6)

−(x2 − 2x8)(y2 − 2y8)− (x3 − 2x7)(y3 − 2y7) + (t3 >> 58)
11. z1 ← t2 mod t
12. t0 ← t0 − t5
13. t3 ← t0 − (x0 − x2)(y0 − y2)− (x5 − 2x6)(y5 − 2y6)

−(x3 − 2x8)(y3 − 2y8)− (x4 − 2x7)(y4 − 2y7) + (t2 >> 58)
14. z2 ← t3 mod t
15. t0 ← t0 − 2t6
16. t2 ← t0 − (x0 − x3)(y0 − y3)− (x1 − x2)(y1 − y2)

−(x4 − 2x8)(y4 − 2y8)− (x5 − 2x7)(y5 − 2y7) + (t3 >> 58)
17. z3 ← t2 mod t
18. t0 ← t0 − t6
19. t3 ← t0 − (x0 − x4)(y0 − y4)− (x1 − x3)(y1 − y3)

−(x5 − 2x8)(y5 − 2y8)− (x6 − 2x7)(y6 − 2y7) + (t2 >> 58)
20. z4 ← t3 mod t
21. t0 ← t0 − 2t7
22. t2 ← t0 − (x0 − x5)(y0 − y5)− (x1 − x4)(y1 − y4)

−(x2 − x3)(y2 − y3)− (x6 − 2x8)(y6 − 2y8) + (t3 >> 58)
23. z5 ← t2 mod t
24. t0 ← t0 − t7
25. t3 ← t0 − (x0 − x6)(y0 − y6)− (x1 − x5)(y1 − y5)

−(x2 − x4)(y2 − y4)− (x7 − 2x8)(y7 − 2y8) + (t2 >> 58)
26. z6 ← t3 mod t
27. t0 ← t0 − 2t8
28. t2 ← t0 − (x0 − x7)(y0 − y7)− (x1 − x6)(y1 − y6)

−(x2 − x5)(y2 − y5)− (x3 − x4)(y3 − y4) + (t3 >> 58)
29. z7 ← t2 mod t
30. t3 ← t1 + (t2 >> 58)
31. z8 ← t3 mod t
32. z0 ← z0 + 2(t3 >> 58)
33. Return z



Algorithm 2: SQR

INPUT: x = [x0, . . . , x8] ∈ [−259, 259 − 1]× [0, 258 − 1]8

OUTPUT: z ∈ [−259, 259 − 1]× [0, 258 − 1]8 where z ≡ x2 (mod t9 − 2)

1. t1 = 2(x0x8 + x1x7 + x2x6 + x3x5) + x2
4

2. t0 = t1 mod t
3. t2 = 4(x1x8 + x2x7 + x3x6 + x4x5) + x2

0 + 2(t1 >> 58)
4. z0 = t2 mod t
5. t1 = 4(x2x8 + x3x7 + x4x6) + 2(x0x1 + x2

5) + (t2 >> 58)
6. z1 = t1 mod t
7. t2 = 4(x3x8 + x4x7 + x5x6) + 2x0x2 + x2

1 + (t1 >> 58)
8. z2 = t2 mod t
9. t1 = 4(x4x8 + x5x7) + 2(x0x3 + x1x2 + x2

6) + (t2 >> 58)
10. z3 = t1 mod t
11. t2 = 4(x5x8 + x6x7) + 2(x0x4 + x1x3) + x2

2 + (t1 >> 58)
12. z4 = t2 mod t
13. t1 = 4x6x8 + 2(x0x5 + x1x4 + x2x3 + x2

7) + (t2 >> 58)
14. z5 = t1 mod t
15. t2 = 4x7x8 + 2(x0x6 + x1x5 + x2x4) + x2

3 + (t1 >> 58)
16. z6 = t2 mod t
17. t1 = 2(x0x7 + x1x6 + x2x5 + x3x4 + x2

8) + (t2 >> 58)
18. z7 = t1 mod t
19. t2 = t0 + (t1 >> 58)
20. z8 = t2 mod t
21. z0 = z0 + 2(t2 >> 58)
22. Return z

Addition, subtraction, inversion and multiplication by small constants: Addition and
subtraction are performed component-wise and need not be reduced if the result is used as input to a
multiplication or squaring. Constant-time inversion is performed by powering by M521−2 = 2521−3.
Let x be the element to be inverted and denote x2

n−1 by αn, so α1 = x. Then the inverse of x can
be computed at a cost of 520S + 13M , as follows:

α2 ← α2
1 · α1

α3 ← α2
2 · α1

α6 ← α23

3 · α3

α7 ← α2
6 · α1

α8 ← α2
7 · α1

α16 ← α28

8 · α8

α32 ← α216

16 · α16

α64 ← α232

32 · α32

α128 ← α264

64 · α64

α256 ← α2128

128 · α128

α512 ← α2256

256 · α256

α519 ← α27

512 · α7

x2
521−3 ← α22

519 · α1

This inversion technique is an analogue of the one used by Bernstein for curve25519 [2]; it may be
possible to reduce the number of multiplications slightly, however this would only have a marginal



impact on the efficiency. One could alternatively use Bos’ technique [7], but since inversion is required
only once during a point multiplication we did not explore this option on the present architecture.

Multiplication by small constants (such as by d for Edwards curves, see Section 4.2) are computed
per component and are reduced in-place. We also employ a short coefficient reduction (SCR) routine
which takes as input a residue x = [x0, . . . , x8] ∈ [−263, 263 − 1]× [−262, 262 − 1]8 and outputs one
in reduced form. For both multiplication by small constants and SCR, the wrap-around from z8 to
z0 is computed twice, as with multiplication and squaring.

4 Curves and implementation results

In this section we detail our target curves and implementation results for constant-time variable-base
scalar multiplication.

4.1 NIST curve P-521

The Weierstrass form NIST curve P-521 as standardised in [17, 18] has the form y2 = x3 − 3x+ b,
with

b = 1093849038073734274511112390766805569936207598951683748994586394495953116150735

016013708737573759623248592132296706313309438452531591012912142327488478985984,

and group order

rP = 6864797660130609714981900799081393217269435300143305409394463459185543183397655

394245057746333217197532963996371363321113864768612440380340372808892707005449.

Using Jacobian projective coordinates, for P1 = (X1, Y1, Z1) the point 2P1 = (X3, Y3, Z3) is com-
puted as follows:

R0 = Z2
1 , R1 = Y 2

1 , R2 = X1 ·R1, R3 = 3(X1 +R0)(X1 −R0),

X3 = R2
3 − 8R2, Z3 = (Y1 + Z1)

2 −R0 −R1, Y3 = R3 · (4R2 −X3)− 8R2
1.

For a point P2 = (X2, Y2, 1) written in affine form which is not equal to P1, let P3 = (X3, Y3, Z3) =
P1 + P2. Then P3 is computed as follows:

R0 = Z2
1 , R1 = X2 ·R0, R2 = Y2 · Z1 ·R0, R3 = R1 −X1, R4 = R2

3

R5 = 4R4, R6 = R3 ·R5, R7 = 2(R2 − Y1), R8 = X1 ·R5

X3 = R2
7 −R6 − 2R8, Y3 = R7(R8 −X3)− 2Y1R6, Z3 = (Z1 +R3)

2 −R0 −R4.

For efficiency we fused several of the required arithmetic operations. As these are standard techniques
we do not detail them here, but they may be found in our freely downloadable software.

In order to achieve constant-time variable-base point multiplication, we used Algorithm 1 of [8]
with fixed windows of width 6. Note that since the cost of inversion is about 365M (as may be
deduced from Table 1 and the formula I = 520S + 13M), one should not convert all the precom-
puted points to affine coordinates as this only saves 5M per addition, which does not outweigh
the cost of doing so. One method of precomputation which uses Chudnovsky coordinates is de-
tailed in Algorithm 4 of [8]; we instead use Jacobian projective coordinates as above. For a scalar
in [0, . . . , 2521 − 1], in terms of multiplications and squarings only, the cost for a constant-time
variable-base scalar multiplication is: 344M + 160S for precomputation, plus 2523M + 3045S for
the windowing plus 16M + 521S for the final map to affine coordinates, giving a total cost of
2883M + 3726S.



4.2 Edwards curve E-521

The Edwards curve E-521 is defined by x2 + y2 = 1− 376014x2y2 and has group order 4rE where

rE = 1716199415032652428745475199770348304317358825035826352348615864796385795849413

675475876651663657849636693659065234142604319282948702542317993421293670108523.

Point addition, doubling and constant-time point multiplication proceed using exactly the same
coordinate systems and formulae described in [3] for curve41417, the only differences being that
we use fixed windows of width 6 rather than 5 and multipliers of bitlength 519 rather than 414. We
therefore do not reproduce these here and refer the reader to Section 3 and Appendix A of [3] for
the relevant details.

For a scalar in [0, . . . , 2519 − 1], the cost for a constant-time variable-base scalar multiplication
is: 183M +63S for precomputation, plus 2322M +2064S for the windowing plus 16M +521S again
for the final map to affine coordinates, giving a total cost of 2522M + 2648S.

4.3 Timings

We implemented multiplication and squaring as per Algorithms 1 and 2, as well as constant-time
variable-base scalar multiplication for curves P-521 and E-5214, as per Sections 4.1 and 4.2. Our
results are detailed in Table 1.

openSSL P-521 E-521 M S

1, 319, 000 989, 000 779, 000 155 105

Table 1. Cycle counts for openSSL version 1.0.2-beta2, P-521 and E-521 variable-base scalar multiplication on a
3.4GHz Intel Haswell Core i7-4770 and compiled with gcc 4.7 on Ubuntu 12.04. The counts are given to the nearest
thousand and were obtained by taking the minimum over 103 data points, where each data point was the average of
104 point multiplications. Cycle counts for multiplication and squaring modulo M521 are also included and were the
minimum of 106 such operations.

Regarding comparisons with previous benchmarks, there are two obvious candidates. For curve
P-521, one can test Langley’s openSSL implementation (which first featured in version 1.0.0e) using
the command openssl speed ecdh. On the same architecture, version 1.0.2-beta2 reports 2578.1
operations per second, which implies a count of approximately 1, 319, 000 cycles per scalar mul-
tiplication. We timed the actual M,S,DBL and ADD functions using several different compilers
and options, and found the code to be rather fragile, in that nearly all of them reported a two-fold
or more slow down relative to our cycle counts of 155, 105, 1175 and 1728 for the above operations
respectively. However, using gcc 4.7 we obtained cycle counts of 173, 112, 1312 and 2010 respectively.
For a scalar multiplication this implies that our code requires about 88% to 90% of the time required
by Langley’s in the worst case and less than 50% in the best case.

For E-521, the closest benchmark in the literature is due to Bos et al. [8], which reports a cycle
count of 1,552,000 for a constant-time variable-base scalar multiplication on the twisted Edwards
curve E/Fp : −x2 + y2 = 1 + dx2y2 with −1/(d + 1) = 550440, on a 3.4GHz Intel Core i7-2600
Sandy Bridge processor (albeit with Intel’s Turbo Boost and Hyper-threading disabled). This curve
form allows a saving of 1M per point addition relative to ordinary Edwards curves, but one can
not map E-521 to this form since −1 is not a square modulo M521. Our implementation is therefore
nearly twice as fast as this one. Apart from the exploitation of our basic observation, much of this
difference in performance can be explained by the use of base 258 arithmetic, rather than the base
264 used by Bos et al.

4 For our code see indigo.ie/~mscott/ed521.cpp and indigo.ie/~mscott/ws521.cpp resp.



Lastly, we note that based on the multiplication and squaring cycle counts in Table 1, the
operation counts given in Sections 4.1 and 4.2 for constant-time scalar multiplication on P-521 and
E-521 account for about 84.7% and 85.9% of the total cycles respectively. Hence the operation
counts give a fair indicator of the relative performance of the two curves.

5 Application to Crandall numbers

Let the modulus be tn − c and let residues x and y be represented in base t as
∑n−1

i=0 xit
i and∑n−1

i=0 yit
i respectively. The multiplication of x and y modulo tn − c is z =

∑n−1
i=0 zit

i where

zi =

n−1∑
j=0

d(i, j)x⟨i−j⟩ y⟨j⟩,

where the subscripts of the coefficients of x⟨i−j⟩ and y⟨j⟩ are taken modulo n and

d(i, j) =

{
1 if ⟨i− j⟩+ ⟨j⟩ < n

c otherwise.
(5.1)

In particular, by symmetry (or by (5.1)) the terms x⟨i−j⟩ y⟨j⟩ and x⟨j⟩ y⟨i−j⟩ occurring in the expres-
sion for zi both have the same d(i, j). If d(i, j) = 1 then the expression x⟨i−j⟩ y⟨j⟩ + x⟨j⟩ y⟨i−j⟩ may
be rewritten just as before as

x⟨i−j⟩ y⟨i−j⟩ + x⟨j⟩ y⟨j⟩ − (x⟨i−j⟩ − x⟨j⟩) (y⟨i−j⟩ − y⟨j⟩).

Similarly, the expression c (x⟨i−j⟩ y⟨j⟩ + x⟨j⟩ y⟨i−j⟩) may of course be rewritten as

c (x⟨i−j⟩ y⟨i−j⟩ + x⟨j⟩ y⟨j⟩ − (x⟨i−j⟩ − x⟨j⟩) (y⟨i−j⟩ − y⟨j⟩)),

or even as

x⟨i−j⟩ y⟨i−j⟩ + c2 x⟨j⟩ y⟨j⟩ − (x⟨i−j⟩ − c x⟨j⟩) (y⟨i−j⟩ − c y⟨j⟩),

as was used in Algorithm 1 for M521. Therefore, by precomputing the terms xiyi for i = 0, . . . , n−1,
the paired terms in the expression for each zi may be computed as the products above, which
again nearly halves the total number of coefficient multiplications required, at the expense of a few
additions and multiplications by c.

5.1 Two examples

In order to use the above observations, it will often be necessary to first multiply a given Crandall
number p = 2k−c by 2i so that k+ i is a multiple of a suitable n, such that all coefficient arithmetic
does not overflow beyond double precision. In this case the base t = 2(k+i)/n is a power of two
and coefficient renormalisation – which ensures I/O stabilty – can be effected via simple operations
(including shifts) only. This will be clear from the following two examples.

5.2 Application to p = 2221 − 3

This prime was proposed in [1]. For use on a 64-bit architecture we choose t = 256 and use the
scaled modulus 8p = t4 − 24. The multiplication algorithm is as follows.



Algorithm 3: MUL2213

INPUT: x = [x0, . . . , x3],y = [y0, . . . , y3] ∈ [−257, 257 − 1]× [0, 256 − 1]3

OUTPUT: z ∈ [−257, 257 − 1]× [0, 256 − 1]3 where z ≡ x · y (mod t4 − 24)

1. a0 ← x0y0, a1 ← x1y1, a2 ← x2y2, a3 ← x3y3, b2 ← a3 + a2, b1 ← b2 + a1, b0 ← b1 + a0

2. t0 ← b0 − (x0 − x3)(y0 − y3)− (x1 − x2)(y1 − y2)
3. z3 ← t0 mod t
4. t1 ← a0 + 24(b1 − (x1 − x3)(y1 − y3) + (t0 >> 56))
5. z0 ← t1 mod t
6. a0 ← a0 + a1

7. t0 ← a0 − (x0 − x1)(y0 − y1) + 24(b3 − (x2 − x3)(y2 − y3)) + (t1 >> 56)
8. z1 ← t0 mod t
9. t1 ← a0 + a2 + 24a3 − (x0 − x2)(y0 − y2) + (t0 >> 56)
10. z2 ← t1 mod t
11. t0 ← z3 + (t1 >> 56)
12. z3 ← t0 mod t
13. z0 ← z0 + 24(t0 >> 56)
14. Return z

Note that as with Algorithm 1 we compute the wrap around from the highest coefficient to the
lowest twice, in order to maintain I/O stability for the chosen reduced format for residues.

5.3 Application to p = 2255 − 19

This prime was proposed in [2] and later developed with base t = 251 arithmetic [6], which we use
here. We hence use the modulus p = t5 − 19. The multiplication algorithm is as follows.

Algorithm 4: MUL25519

INPUT: x = [x0, . . . , x4],y = [y0, . . . , y4] ∈ [−252, 252 − 1]× [0, 251 − 1]4

OUTPUT: z ∈ [−252, 252 − 1]× [0, 251 − 1]4 where z ≡ x · y (mod t5 − 19)

1. a0 ← x0y0, a1 ← x1y1, a2 ← x2y2, a3 ← x3y3, a4 ← x4y4
b3 ← a4 + a3, b2 ← a3 + a2, b1 ← b2 + a1, b0 ← b1 + a0

2. t0 ← b0 − (x0 − x4)(y0 − y4)− (x1 − x3)(y1 − y3)
3. z4 ← t0 mod t
4. t1 ← a0 + 19(b1 − (x1 − x4)(y1 − y4)− (x2 − x3)(y2 − y3) + (t0 >> 51))
5. z0 ← t1 mod t
6. a0 ← a0 + a1

7. t0 ← a0 − (x0 − x1)(y0 − y1) + 19(b2 − (x2 − x4)(y2 − y4)) + (t1 >> 51)
8. z1 ← t0 mod t
9. a0 ← a0 + a2

10. t1 ← a0 − (x0 − x2)(y0 − y2) + 19(b3 − (x3 − x4)(y3 − y4)) + (t0 >> 51)
11. z2 ← t1 mod t
12. t0 ← a0 + a3 − (x0 − x3)(y0 − y3)− (x1 − x2)(y1 − x2) + 19a4 + (t1 >> 51)
13. z3 ← t0 mod t
14. t1 ← z4 + (t0 >> 51)
15. z4 ← t1 mod t
16. z0 ← z0 + 19(t1 >> 51)
17. Return z

Note that the multiplications by 24 in Algorithm 3 and by 19 in Algorithm 4 are generally on
double precision integers, so are sometimes more costly than the usual evaluation of coefficients in
which one can sometimes achieve a saving by first multiplying one the inputs to a multiplication by c.
Since there are also more additions required than for Algorithm 1’s analogue of the basic observation,
these formulae may only be interesting when optimised, or when implemented on ARM processors,
for instance. As our focus is primarily on M521, P-521 and E-521, we leave such options as open
research.



6 Conclusion

We have proposed a very simple way to improve multiplication efficiency over the prime field F2521−1,
which requires as few word-by-word multiplications as is needed for squaring, while incurring very
little overhead from extra additions. With optimised code our timings may be reduced even further,
with potentially interesting results on ARM processors, for which the multiplication-to-addition cost
ratio is higher than on the Haswell and for which there are numerous similar methods to represent
and multiply residues using 32 bit words. It remains to be seen whether the same basic observation
improves the efficiency of multiplication modulo Crandall numbers as well.

Acknowledgements

We thank Dan Bernstein for answering our questions regarding his irrational base modular multi-
plication method.

References

1. Diego F. Aranha, Paulo S. L. M. Barreto, Geovandro C. C. F. Pereira, and Jefferson Ricardini. A note on
high-security general-purpose elliptic curves, 2013. http://eprint.iacr.org/2013/647.

2. Daniel J. Bernstein. Curve25519: New diffie-hellman speed records. In Public Key Cryptography - PKC 2006, 9th
International Conference on Theory and Practice of Public-Key Cryptography, New York, NY, USA, April 24-26,
2006, Proceedings, pages 207–228, 2006.

3. Daniel J. Bernstein, Chitchanok Chuengsatiansup, and Tanja Lange. Curve41417: Karatsuba revisited. Cryptology
ePrint Archive, Report 2014/526, 2014. http://eprint.iacr.org/.

4. Daniel J. Bernstein, Mike Hamburg, Anna Krasnova, and Tanja Lange. Elligator: elliptic-curve points indistin-
guishable from uniform random strings. In 2013 ACM SIGSAC Conference on Computer and Communications
Security, CCS’13, Berlin, Germany, November 4-8, 2013, pages 967–980, 2013.

5. Daniel J. Bernstein and Tanja Lange. Safecurves: choosing safe curves for elliptic-curve cryptography. http:

//safecurves.cr.yp.to, accessed 11 September 2014.
6. DanielJ. Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, and Bo-Yin Yang. High-speed high-security signa-

tures. Journal of Cryptographic Engineering, 2(2):77–89, 2012.
7. Joppe W. Bos. Constant time modular inversion. Journal of Cryptographic Engineering, pages 1–7, 2014.
8. Joppe W. Bos, Craig Costello, Patrick Longa, and Michael Naehrig. Selecting elliptic curves for cryptography: An

efficiency and security analysis. Cryptology ePrint Archive, Report 2014/130, 2014. http://eprint.iacr.org/.
9. Joppe W. Bos, Thorsten Kleinjung, Arjen K. Lenstra, and Peter L. Montgomery. Efficient simd arithmetic modulo

a mersenne number. In Proceedings of the 2011 IEEE 20th Symposium on Computer Arithmetic, ARITH ’11,
pages 213–221, Washington, DC, USA, 2011. IEEE Computer Society.

10. Jaewook Chung and Anwar Hasan. More generalized mersenne numbers. In Mitsuru Matsui and RobertJ.
Zuccherato, editors, Selected Areas in Cryptography, volume 3006 of Lecture Notes in Computer Science, pages
335–347. Springer Berlin Heidelberg, 2004.

11. Jaewook Chung and M. Anwar Hasan. Montgomery reduction algorithm for modular multiplication using low-
weight polynomial form integers. In ARITH 18, pages 230–239, 2007.

12. Jaewook Chung and M.A Hasan. Low-weight polynomial form integers for efficient modular multiplication.
Computers, IEEE Transactions on, 56(1):44–57, Jan 2007.

13. R. Crandall and C.B. Pomerance. Prime Numbers: A Computational Perspective. Lecture notes in statistics.
Springer, 2006.

14. R.E. Crandall. Method and apparatus for public key exchange in a cryptographic system, October 27 1992. US
Patent 5,159,632.

15. R.E. Crandall. Topics in Advanced Scientific Computation. Electronic Library of Science. Springer-Telos, 1996.
16. Richard Crandall and Barry Fagin. Discrete weighted transforms and large-integer arithmetic. Math. Comput.,

62(205):305–324, 1994.
17. US Department of Commerce/N.I.S.T. 2000. Federal Information Processing Standards Publication 186-2. Fips

186-2. digital signature standard.
18. Standards for Efficient Cryptography Group. Recommended elliptic curve domain parameters, 2000. Available

from www.secg.org/collateral/sec2.pdf.
19. Robert Granger and Andrew Moss. Generalised Mersenne numbers revisited. Math. Comp., 82(284):2389–2420,

2013.
20. A. Karatsuba and Y. Ofman. Multiplication of Multidigit Numbers on Automata. Soviet Physics Doklady,

7:595–596, January 1963.



21. E. Öztürk, B. Sunar, and E. Sava. Low-power elliptic curve cryptography using scaled modular arithmetic. In
Marc Joye and Jean-Jacques Quisquater, editors, Cryptographic Hardware and Embedded Systems - CHES 2004,
volume 3156 of Lecture Notes in Computer Science, pages 92–106. Springer Berlin Heidelberg, 2004.

22. Colin D. Walter. Faster modular multiplication by operand scaling. In Proceedings of the 11th Annual International
Cryptology Conference on Advances in Cryptology, CRYPTO ’91, pages 313–323, London, UK, UK, 1992. Springer-
Verlag.


