
Power Analysis Attack on Hardware
Implementation of MAC-Keccak on FPGAs

Pei Luo∗, Yunsi Fei∗, Xin Fang∗, A. Adam Ding†, Miriam Leeser∗, and David R. Kaeli∗

silenceluo@coe.neu.edu, yfei@ece.neu.edu, fang.xi@husky.neu.edu, A.ding@neu.edu, mel@ece.neu.edu, kaeli@ece.neu.edu
∗Electrical & Computer Engineering Department, Northeastern University, Boston, MA 02115 USA

†Department of Mathematics, Northeastern University, Boston, MA 02115 USA

Abstract—Keccak is the hash function selected by NIST as the
new SHA-3 standard. Keccak is built on Sponge construction
and it provides a new MAC function called MAC-Keccak. These
new algorithms have raised questions with regards to side-
channel leakage and analysis attacks of MAC-Keccak. So far
there exists prior work on attacks of software implementations of
MAC-Keccak, but there has been no comprehensive side-channel
vulnerability assessment of its hardware implementation. In this
paper we describe an attack on the θ step of the first round of
MAC-Keccak implemented on an FPGA. We construct several
different side-channel leakage models and implement attacks
based on them. Our work shows that an unmasked hardware
implementation of SHA-3 is vulnerable to power-based side-
channel attacks.

I. INTRODUCTION

Keccak was selected as the winner of the NIST hash
function competition in 2012 to become the SHA-3 standard
[1]. Keccak uses the Sponge construction [2] in which message
blocks are XORed into the state bits and then invertibly
permuted [3]. Sponge construction is completely different
from the previous hash standards and thus opens up new
questions and challenges in side-channel analysis (SCA).

A message authentication code (MAC) is a short piece of
information generated by hash functions to provide integrity
and authenticity assurances on the message. MAC is important
in crypto systems because it facilitates integrity checking and
proof of origin. Sponge construction allows Keccak to securely
create a MAC by hashing the concatenation of the key and the
message (P = K||M) in a cryptographic mode, called MAC-
Keccak [2], [3], [4]. This MAC construction is different from
previous MAC methods and has attracted much attention.

Keccak has been implemented in software or a library for
various general-purpose processors, embedded processors, and
DSPs. In addition, there have also been hardware implemen-
tations of Keccak, which can accelerate hash computations
in security-sensitive applications. As an example, a virtual
network server typically uses a hash function both to verify
the identity of its clients and the integrity of the messages sent
by the clients. Hardware implementations of hash functions
are preferred for their high throughput. High-speed integrated
circuits (ICs) and FPGAs-based hash modules are widely used
in cryptographic systems, Trusted Platform Modules (TPM),
and crypto processors. However, the side-channel security
resiliency of hardware implementations of MAC-Keccak has
not been evaluated quantitatively.

In [5], six SHA-3 candidates (including Keccak) were
analyzed for side-channel leakage for the first time. In the
paper, the authors analyzed the feasibility of attacking MAC-
Keccak at the θ step in the first round and proposed the
basic steps for the attack. They presented a general side-
channel attack feasibility analysis for all six candidates, though
no detailed leakage models or attack methods are given for
Keccak.

In [6] and [7], the side-channel vulnerability of MAC-
Keccak was analyzed and it was found that side-channel
resistance of MAC-Keccak depends on the length of the key
used. The optimal key-length was also analyzed. The work
demonstrates a practical side-channel analysis attack against
MAC-Keccak implemented on a 32-bit Microblaze processor.
They focused on a software implementation, but did not de-
scribe how to carry out attacks on hardware implementations.

In additions to the bare algorithm of MAC of Keccak, the
designers of Keccak also suggested methods to protect Keccak
implementations from power analysis attacks [8], [9]. Random
masking is an effective countermeasure. They showed that
two shares are required in software implementations and three
shares are required in hardware implementations.

Compared to the software implementations of MAC-Keccak
[6], [7], we anticipate much lower side-channel leakage of
hardware implementations of MAC-Keccak with their highly
parallel implementations (versus the temporally spread-out
software implementations). Thus, side-channel attacks on a
hardware implementation of MAC-Keccak would be much
more challenging to implement. Up until now, there has not
been much prior work along this direction - side-channel
analysis of hardware MAC-Keccak remains an open problem.
Without a good understanding of the sources and amount of
side-channel leakage of MAC-Keccak, any protection against
side-channel attacks cannot be evaluated accurately either. To
address these issues and facilitate secure MAC-Keccak design
and implementation, in this paper we propose several side-
channel leakage models of hardware MAC-Keccak and launch
practical power analysis attacks on the implementation. To
the best of our knowledge, this is the first work which de-
velops concrete side-channel leakage models, power analysis
attack methods and attack results on a hardware MAC-Keccak
implementation. In light of the popular usage of Keccak as
the new hash standard, our work should make a significant
contribution for side-channel security analysis of SHA-3. We

further discuss the factors that affect side-channel leakage
of MAC-Keccak and suggest countermeasures to improve its
system security.

The rest of the paper is organized as follows. In Section II,
we introduce the MAC-Keccak algorithm, the several power
leakage models we adopt for attacking it, and correlation
analysis results that verify the proposed leakage models. In
Section III, we implement correlation power analysis (CPA)
based on the models we introduce in Section II to break MAC-
Keccak. In Section IV, we discuss the effect of Keccak key-
length on SCA and suggest countermeasures against power
analysis attacks. In Section V, we conclude the paper.

II. KECCAK AND THE SIDE-CHANNEL LEAKAGE MODELS

A. Keccak Hash Function and MAC-Keccak

Keccak is a hash function family based on the Sponge
construction, as shown in Fig. 1 [3], [2], [4]. Keccak has two
phases: 1) absorbing and 2) squeezing. In the absorbing phase,
the message is broken into blocks (each block size is r bits,
where r is the bit rate), which are absorbed iteratively by the
permutation function f . Each f function works on a state at
a fixed length b = r + c, where the bit rate r determines
the implementation speed, while the capacity c determines the
security length. In the squeezing phase, outputs are squeezed
also by f functions and the length of the output is configurable
(a multiple of r bits).

f f f f f f
r

c

0P 1P 2P 3P 0z 1z 2z

Fig. 1: The Sponge construction

When using hash functions in MAC, there exists the com-
monly used HMAC construction which accepts a message M
and a key K, and generates the corresponding digest [7] :

HMAC(M,K) = H((K⊕opad)||H((K⊕ipad)||M)). (1)

For Keccak, another MAC construction, MAC-Keccak [2],
[3], [4] is recommended by the Keccak designers as:

MAC(M,K) = H(K||M). (2)

The default Keccak mode is Keccak-1600, with r = 1024
and c = 576. All of the 1600-bit states are organized in a
3-D array, as shown in Fig. 2. Each bit is addressed with
three coordinates, written as S(x, y, z), x, y ∈ {0, 1, ..., 4},
z ∈ {0, 1, ..., 63}. 2-D entities, plane and sheet, and 1-D enti-
ties, lane and column, are also defined in Keccak and shown
in Fig. 2. A plane PY contains all state bits S(x, y, z) for
which y = Y ; similarly, a slice SLZ = {S(x, y, z), z = Z};
a sheet SHX = {S(x, y, z), x = X}. A lane LX,Y contains
all state bits S(x, y, z) for which x = X and y = Y ; similarly,

a column CX,Z = {S(x, y, z), x = X, z = Z}; a row
RowY,Z = {S(x, y, z), y = Y, z = Z}.

0 1 2 3 4 5 6

 …

 63

4

3

2

1

0

y

z

0 1 2 3 4 x

Fig. 2: Terminology used in Keccak

The f permutation functions of Keccak-1600 consist of 24
rounds of operations, where each round has five sequential
steps:

Ri+1 = ι ◦ χ ◦ π ◦ ρ ◦ θ(Ri), i ∈ {0, 1, · · · , 23} (3)

in which R0 is the initial input.
Details of each step are described below:
− θ is a linear operation which involves 11 input bits and

outputs a single bit. Each output state bit is the XOR between
itself and two intermediate bits produced by its two neighbor
columns. The operation is given as follows:

S′(x, y, z) = S(x, y, z)⊕ (⊕4
i=0S(x− 1, i, z))

⊕ (⊕4
i=0S(x+ 1, i, z − 1)). (4)

The two intermediate bits are the parity of the two columns,
⊕4

i=0S(x− 1, i, z) and ⊕4
i=0S(x+ 1, i, z − 1), respectively.

− ρ and π are permutations over the bits of the state.
− χ is a non-linear step that contains mixed binary oper-

ations. Every bit of the output state is the result of an XOR
between itself and the AND result of one neighboring bit and
the NOT of another neighboring bit along the x-axis:

S′(x, y, z) = S(x, y, z)⊕ (S(x+ 1, y, z) · S(x+ 2, y, z)). (5)

− ι is a binary XOR with a round constant.
θ is the first step in each round and thus the θ operation

in the first round of MAC-Keccak involves the secret key and
the known message (K||M) directly. Intermediate variables
that are dependent on K may result in side-channel leakage.
Therefore we focus on θ in the first round for power analysis.
Details of ρ, π, χ and ι can be found in [1], [2], [3], [4].

B. The θ Operation

For the standard VHDL implementation Version 3.1 pro-
vided online by keccak.noekeon.org [10], each round takes
one clock cycle and the five steps (θ, ρ, π, χ and ι) are all
implemented in combinational circuits. In this paper, we attack
the θ step of the first round.

As described in [6], θ operation is computed over two
successive steps. In the first step, θ1 calculates the parity of
each column and compresses a 1600-bit state into a 320-bit

plane called the θplane:

θplane(x, z) = ⊕4
y=0S(x, y, z)

x ∈ {0, 1, ..., 4}, z ∈ {0, 1, ..., 63}. (6)

θ1 can be viewed as 320 independent operations, each of
which XORs the five bits in a column to generate one bit of
parity.

In the second step, θ2 computes the XOR between every bit
of the state and two neighboring parity bits of the θplane, and
outputs θout.

θout(x, y, z) = S(x, y, z)⊕ θplane(x− 1, z)

⊕ θplane(x+ 1, z − 1)

x, y ∈ {0, 1, ..., 4}, z ∈ {0, 1, ..., 63}. (7)

C. Side-channel Leakage Models

In the hardware implementation of MAC-Keccak, all the
five steps in each round are executed in one clock cycle,
and the intermediate variables used for attacks on the soft-
ware implementations may not be correlated with the power
traces. Thus we cannot use the leakage models for software
implementations [6], [7] directly for hardware systems. For
the standard hardware implementation of MAC-Keccak [10],
we will describe the four side-channel leakage models in this
section.

The structure of the standard Keccak hardware implemen-
tation [10] is shown in Fig. 3, where one state register holds
both the input and output of a round operation. In the round
operations, the first round loads the message P in using a
multiplexer, and other rounds take the state register output
as input to the following five-step operation. Note here that
after performing padding, M includes both the message bits
and appended padding bits. For the simplified setting in this
paper, we set the length of K||M as 1024 bits, thus there is
only one message block. We still use P to denote the input
to the first round for convenience. θ can be split further into
θ1 and θ2, and the other four steps are considered together
in a combinational module. We denote the latency of the θ1
operation as t1 and the latency of the θ2 operation as t2.

For the standard hardware implementation, we describe the
operations and discuss important time points in the first cycle:
• The state register reg is cleared before each MAC-Keccak

operation, thus O(θ1) and O(θ2) are initialized at 0. At
time 0, the message and key after padding (P) is loaded
into the output of MUX (we ignore the delay of the MUX
here).

• At t2, O(θ2) changes from 0 to P , because its input from
O(MUX) already changed to P while the other input
(θ1’s output) remained 0.

• At t1, O(θ1) changes from 0 to θplane.
• At t1 + t2, O(θ2) changes from P to θout as a response

to the input O(θ1)’s changing from 0 to θplane.
In general, for hardware implementations (either FPGA or

ASIC), the power model of an intermediate variable is the
Hamming Distance (HD) model, i.e., the power consumption

   
2 2t

1600

MUX

1600

01

P=K||M

Round 1 3t

1 1t

1600

320

1600

1600

2t

Fig. 3: Structure of Keccak hardware implementation

of this intermediate state and the operation driving the state
is linearly dependent on the HD between the value before the
operation and the value after the operation. We then have the
following 2 side-channel leakage models:

1) Model I: At t1, the intermediate variable O(θ1) changes
from 0 to θplane, and thus the HD is HW (θplane).
There should exist a time point on the power trace that
has a good correlation between its power value and
HW (θplane).

2) Model II: At t1 + t2, the intermediate variable O(θ2)
changes from P to θout, and the HD is HD(P, θout).
Similarly, there should exist a time point on the power
trace that has a good correlation between its power value
and HD(P, θout).

To verify the above side-channel leakage models, we im-
plemented the official VHDL description of Keccak [10], [11]
on an Sasebo-GII [12] board which contains a Xilinx Virtex-5
FPGA. We use the Xilinx ISE 14.6 for implementation with
all of the default settings for synthesis, mapping and routing.
From the post-mapping results, we find that there are 320 look-
up-tables (LUTs) for the θ1 module, and just 320 LUTs for
the top plane in the θ2 module instead of 1, 600 LUTs for all
the θout bits. This is because the synthesis tool optimized the
implementation and combines other parts of θ with following
operations (ρ, π, χ and ι). Thus we anticipate that the leakage
for Model II will be weaker than expected.

Then we collect power traces from our MAC-Keccak imple-
mentation running at 12 MHz using an Agilent MSOX4104A
oscilloscop. We use 700, 000 traces to find correlations based
on Models I and II. We show one power trace and Pearson
correlation [13], [14] results in Fig. 4. Fig. 4(a) shows one

0 500 1000 1500 2000 2500 3000
−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

Time points

V
o
lt
a
g
e
 (
V
)

(a) Power trace of Keccak

0 500 1000 1500 2000 2500 3000
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

Time points

C
o
rr
e
la
ti
o
n

(b) correlation(HW(θ
plane

), power)

0 500 1000 1500 2000 2500 3000
−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

Time points

C
o
rr
e
la
ti
o
n

(c) correlation(HD(P, θ
out
), power)

0 500 1000 1500 2000 2500 3000
−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

Time points

C
o
rr
e
la
ti
o
n

(d) correlation(HW(θ
out
), power)

Model I

Model III

Model IV

Model II

Fig. 4: Power trace and the correlations

example power trace of MAC-Keccak, where the first trough
corresponds to the loading of message M into the padding
module and then P to the θ module. From Fig. 4(b)(c), we
can see that the side-channel power leakage for Model I and
Model II are both noticeable (with the highest correlation
reaching -0.09 and -0.03 respectively) in the first cycle (shown
by two dashed lines). Meanwhile, we notice an even stronger
correlation between the HD(P, θout) and the power at the
beginning of the second round (with the highest correlation
reaching -0.2, as shown in Fig. 4(c)). This point may be the
moment the contents of the state register change from 0 to
R1.

We anticipate some leakage signals in the second round as
well. Similar to the first cycle, we identifies the operations and
associated time points in the second cycle.
• At the beginning of the clock cycle, the state register

stores the first round result, and the contents of the state
register change from 0 to R1.

• At t3 (the latency of multiplexer), the multiplexer selects
the result R1 and passes it on to the output, therefore
O(MUX) changes from P (for the first round opera-
tions) to R1.

However, R1 is the result of the 5-step operation which
includes the θ step and others (ρ, π, χ, ι). The key-dependence
of R1 should be random, according to the hash function design
principle. We try to seek leakage signals related to θout (rather
than R1) that contain the key information during the second
round.

Surprisingly, Fig. 4(c)(d) show that there are actually time
points on the power traces strongly correlated with HW (θout)

and HD(P, θout). We hypothesize that due to the inherent
algorithmic correlation between θout, R1 and P , we have two
more power leakage models for the second cycle:

1) Model III: The state register output changes from 0 to
R1. There exists a time point in the second clock cycle
that is correlated with HW (θout) (actually HW (R1)).

2) Model IV: The output of multiplexer changes from P to
R1. There exists a time point in the second clock cycle
that is correlated with HD(P, θout) (actually HW (R1)).

To verify the previous hypothesis about correlations, we
randomly generated 200, 000 messages and ran Keccak on
them. The correlation results are as follows: correlation(HD(P,R1), HD(P, θout)) = 0.175

correlation(HW (R1), HD(P, θout)) = 0.344
correlation(HW (R1), HW (θout)) = 0.542

. (8)

We find that the correlation between HW (R1) and
HW (θout) is higher, which also explains why Model III has a
stronger leakage (with correlation reaching −0.29) than Model
IV (with correlation reaching −0.22). Models II, III and IV all
involve θout and extract the same key information. Therefore,
we choose to use Model III, which has the highest correlation
(attack effectiveness) for our attacks.

Here even if the state register is initialized to the first
round input P , the leakages of θout still exist because of the
algorithm properties. Our attack is not restricted to the case
of state register initialized to 0 only.

III. SIDE-CHANNEL ATTACKS ON MAC-KECCAK

In this section, we show how to launch CPA on MAC-
Keccak to recover the key bits. Keccak allows the use of a
variable-length key. We start with a key length of 320 bits
(i.e., the key fills the bottom plane in the input state, and
the message length is 1024 − 320 = 704 bits). The Sponge
function (shown in Fig. 1) contains only one f function. We
will discuss the effect of key length on attacks in Section IV.

A. CPA based on Model III

Next, we show how to extract the relationship between every
two lanes of the key plane, based on power Model III.

For Model III, P = K||M where the unknown part is the
key K (320 bits), and the known part is the message M (704
bits). According to (7), the Hamming weight for a single bit
in model III is:

HW (θout(x, y, z)) = HW (S(x, y, z)⊕ θplane(x− 1, z)

⊕ θplane(x+ 1, z − 1)) = HW (S(x, y, z)⊕
(⊕4

y=0S(x− 1, y, z))⊕ (⊕4
y=0S(x+ 1, y, z − 1))). (9)

Equation (9) shows that the operation is on two neighboring
columns of the bit, which include 8 bits of the known M and
2 bits of the unknown K. This side-channel power leakage
will give information related to the XOR of these 2 unknown
key bits, S(x− 1, 0, z)⊕ S(x+ 1, 0, z − 1), to the attacker.

To increase the leakage signal strength of CPA, instead of
using 1 bit in a column for the select function, we use 4 bits
(y = 1, 2, 3, 4) instead. To make a balance between the leakage
signal and the attack complexity, each time we can attack
multiple bits (l, 0 < l ≤ 64) in each key lane. The larger the l,
the stronger the leakage signal, but also the higher complexity
due to enumeration of the key bits. The multi-bit Hamming
weight model (III) becomes:

Σi+l−1
z=i Σ4

y=1HW (θout(x, y, z))

i ∈ {0, 1, ..., 63}, l ∈ {1, 2, ..., 64} (10)

and we can recover S(x− 1, 0, Z)⊕ S(x+ 1, 0, Z − 1), x ∈
{0, 1, · · · , 4}, Z = [i : i+ l − 1].

We choose l = 8 along the key lane, and run CPA based
on Model III to recover the relationship between the two key
bytes. One CPA attack instance and the empirical success rate
results are shown in Fig. 5.

Fig. 5(a) shows the correlation analysis result for key
guesses based on Model III using 100, 000 traces. It shows that
the correct key candidate has the highest correlation, reaching
0.055. The correlation trace for MAC-Keccak is very different
from those for previous crypto algorithms such as AES or
DES. This is because CPA performed on block ciphers such as
AES attacks SBox, which is a non-linear operation and a small
difference on the key guesses results in a big difference in the
select function value. For MAC-Keccak, θ is a linear operation
and one bit key change has a limited affect on the Hamming
weight of the output value. Fig. 5(b) gives the CPA success
rates (SRs) based on Model III, which include four modes:
the correct key is ranked top one according to the correlation

0 50 100 150 200 250
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

K(0,0:7) ⊕ K(2, 63:6)

C
or

re
la

tio
n

(a) A correlation instance of Model III using 100,000 traces.

0 0.5 1 1.5 2 2.5 3

x 10
4

0

0.2

0.4

0.6

0.8

1

Number of traces

S
uc

ce
ss

 r
at

e

(b) Success rate of Model III

SR top1
SR top2
SR top4
SR top8

32

Fig. 5: Success rate curves based on model III

result, ranked in the top 2, top 4 and top 8, respectively.
Fig. 5(b) shows that the success rate increases when we use a
less accurate ranking. The success rates all approach to 100%,
and require 10, 000 traces for ranking in top 8, 20, 000 traces
for ranking in top 2, and about 30, 000 traces for top 1.

Using this method, we can recover K(x − 1, Z) ⊕K(x +
1, Z − 1), in which K(x, Z)(x ∈ {0, 1, .., 4}, Z = [0 : 63]) is
one lane of the key plane. Thus, if we know one key lane, we
can recover all 320 key bits in the key plane. This attack model
can efficiently decrease the complexity of key guessing from
2320 to 264 for Keccak-1600. Although 264 is a complexity
attackable by enumeration with today’s computational power,
in the next part, we show how to recover one lane of key bits
in CPA to avoid key enumeration with the complexity of 264,
and thus totally recover the key bits.

B. Recover key bits of one lane based on Model I

In leakage Model I, the correlation is between power and
HW (θplane), and θ1 does not involve operations between two
key lanes. According to (6), each bit of the θplane is decided
by 4 bits of M and 1 bit of K in one column. Thus, we can
use this model to recover the key bits in one key lane directly.

For a single key bit, the SNR may be very low for (6),
and more than one key bit should be attacked concurrently to
increase the signal-to-noise ratio (SNR). To strike a balance
between SNR and complexity, we attack 8 bits for each key
lane at once. For the first 8 bits in lane x, the Hamming weight
is:

HW (θplane(x, 0 : 7)) = Σ7
z=0(⊕4

y=0S(x, y, z)). (11)

The CPA model is:

correlation(Σ7
z=0(⊕4

y=0S(x, y, z)), power). (12)

The key byte guess with the highest correlation is the right
key byte. The success rates of CPA, based on the above attack
model, are shown in Fig. 6.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of traces

S
u

cc
e

ss
 r

a
te

Success rate of Model I

SR top1

SR top2

SR top4

SR top8

Fig. 6: Success rate based on model I

From Fig. 6 we can see that when using about 500, 000
traces, we can recover one byte of one key lane with SR around
90% while there are 8 bytes in each lane. The success rates
are much lower for Model I than for Model III due to the
weaker correlation. Using this method, we can recover all 64
bits in one lane. Combined with the SCA method in Section
III-A, we can recover the other key lanes to get the whole key
plane.

In summary, we use more than one side-channel leakage
model (two complementary models) to recover all the key
bits for a simplified MAC-Keccak (1600) setting. In the above
scenarios, we attack 8 bits at one time and the results showed
that we can recover the relationship between two lanes with
only 30, 000 traces and recover one key byte with SR of around
90% using 500, 000 traces.

IV. FURTHER DISCUSSION ABOUT THE KEY-LENGTH AND
COUNTERMEASURES

In this section, we extend the results found in the previous
experiments and analyze SCA with different key lengths. Then
we discuss countermeasures against this kind of power analysis
attacks.

A. Different Parameters for MAC-Keccak

Note that the official hardware implementation [10] has
different parameters (rate and capacity) from FIPS 202 [1],
which was only published recently in April 2014. These
parameter differences will not affect the SCA of MAC-Keccak
because the power leakage models and attack methods remain
the same.

B. Key Length

In our FPGA implementation of MAC-Keccak, we assumed
that the key length is 320 bits, which is just the size of one
plane such that there will be no operation between key bits

in the same column. Previous work [6] discussed the effect
of key length on SCA. Here, we will summarize the effect of
key length on SCA under our leakage and attack models.

• key-length ≤ plane-size × 0.8: In this situation, the
key bits take no more than 4 lanes in the key plane. For
Keccak-1600, it means key-length < 256, and there is
interaction between key lanes and known message lanes
in the bottom plane. One leakage model (Model III or
IV) is enough to recover all the key bits.

• plane-size × 0.8 < key-length ≤ plane-size: In this
situation, only one lane is mixed with key bits and
message bits in the first plane. The leakage models (I
and III) have to be combined to recover the key bits. We
used 320 bits as the key length to describe our attacks in
previous sections.

• key-length > plane-size: In this situation, the key bits
occupy more than the first plane. Models I, II, III, and
IV will involve more than two key bits for a single bit
θ operation. Thus the attack complexity increases rapidly
as described in [7]. We will investigate concrete attacks
in this scenario in future work.

C. Extend the Attack Methods

In this paper, we attack the θ step because it is the first step
of the round operations and it involves the key bits directly.
Its linearity allows us to break up the keys into blocks of any
chosen size, to balance the effect of SNR and computational
complexity. Attacks can also be launched on other steps, such
as the non-linear χ step, as described in [6]. For nonlinear
operations, how to choose the select function and intermediate
variables that carry meaningful key information would be a
challenge. In addition, the leakage models and correlations
would all be different from the θ step, as shown in Fig. 5.

In this work, we apply the usual CPA by choosing the key
candidates with the highest correlations as the correct key,
shown in Fig. 5. The linearity of θ leads to a structure in the
correlation patterns in Fig. 5(a). We can use this pattern to
improve the CPA attack by selecting multiple crest points in
the correlation trace and use the peak points to speculate the
correct key. This is because all the crest points should have
very small difference from the true key (e.g., 1 bit difference).
These crest points can give information about the right key to
avoid key enumeration when the number of traces are limited.
We will investigate this in future work.

D. Countermeasures

General protection schemes for hardware cryptographic
systems include power-balanced circuit [15], [16], masking
[9], and randomization [17], [18]. In this section, we discuss
countermeasures for Keccak, specifically based on the previ-
ously described leakage and attack models. General protection
methods, such as power balanced circuits, are omitted here.

As described in Section IV-B, MAC-Keccak with
key-length ≤ plane-size is insecure and the attack difficulty
increases rapidly with the key length. Thus the first and easiest

countermeasure against SCA is to increase the key-length
above a plane size.

The second countermeasure is using masking to increase the
attack complexity, as described in [8], [9], [19]. This makes
the power consumption not only depend on the key bits and
plaintext, but also the random numbers generated inside the
FPGA and IC devices. Results in [9] and [13] show that the
number of traces required for SCA in a masked system is much
larger than for a unprotected implementation. Thus masking
should be implemented on both the linear and nonlinear parts
to hide the secret information from attackers.

Another concern for the hardware implementation is the
initial state of the state register. The leakage models proposed
in Section II are based on the official hardware implementation
[10] which has the state register initialized to 0. The state
register changes from 0 to R1 still leaks key information as
shown in Section II. To avoid such leakage, the state register
can be initialized to a random number which is unknown to the
attackers, and thus the attack difficulty will be much higher.
All the random number generations will incur hardware and
execution time overhead though.

V. CONCLUSION

In this paper, we explore multiple side-channel leakage
models of MAC-Keccak and implement CPA based on these
models. Results show that MAC-Keccak has strong side-
channel leakages and these leakages can be used by attackers
to extract the secret key. We discuss factors which affect side-
channel leakage and countermeasures against SCA. For future
work, we will investigate additional and more efficient attacks
on general MAC-Keccak implementations (with different key
lengths, bit rates and capacities). We will also design secure
MAC-Keccak with effective countermeasures, and assess their
security thoroughly.

All power traces used in this paper are publicly available at
http://tescase.coe.neu.edu.

ACKNOWLEDGMENT

This work is supported in part by NSF under grants SaTC-
1314655 and MRI-1337854.

REFERENCES

[1] N. F. Pub, “DRAFT FIPS PUB 202: SHA-3 standard:
Permutation-based hash and extendable-output func-
tions,” Federal Information Processing Standards Pub-
lication, 2014.

[2] G. Bertoni, J. Daemen, M. Peeters, and G. Assche,
“Cryptographic sponge functions,” Submission to NIST
(Round 3), 2011.

[3] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche,
“Keccak sponge function family main document,” Sub-
mission to NIST (Round 2), 2009.

[4] G. Bertoni, J. Daemen, M. Peeters, and G. Assche,
“The Keccak reference,” Submission to NIST (Round 3),
January, 2011.

[5] M. Zohner, M. Kasper, M. Stottinger, and S. A. Huss,
“Side channel analysis of the SHA-3 finalists,” in Design,
Automation & Test in Europe Conference & Exhibition
(DATE), 2012, pp. 1012–1017.

[6] M. M. Taha and P. Schaumont, “Differential power anal-
ysis of MAC-Keccak at any key-length.” in International
Workshop on Security, 2013, pp. 68–82.

[7] M. Taha and P. Schaumont, “Side-channel analysis of
MAC-Keccak,” in IEEE Int. Symposium on Hardware-
Oriented Security and Trust (HOST), 2013, pp. 125–130.

[8] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche,
“Building power analysis resistant implementations of
Keccak,” in Second SHA-3 candidate conference. Cite-
seer, 2010.

[9] G. Bertoni, J. Daemen, N. Debande, T.-H. Le, M. Peeters,
and G. Van Assche, “Power analysis of hardware imple-
mentations protected with secret sharing,” in IEEE/ACM
International Symposium on Microarchitecture Work-
shops (MICROW), 2012, pp. 9–16.

[10] Keccak Hardware implementation in VHDL Version 3.1,
2014 (accessed May 14, 2014). [Online]. Available:
http://keccak.noekeon.org/KeccakVHDL-3.1.zip

[11] “SHA-3 FPGA implementation,”
http://satoh.cs.uec.ac.jp/SAKURA/research/SHA-3.html.

[12] “Evaluation environment for side-channel attacks,”
http://www.risec.aist.go.jp/project/sasebo/.

[13] A. Ding, L. Zhang, Y. Fei, and P. Luo, “A statistical
model for higher order DPA on masked devices,” in
Cryptographic Hardware and Embedded Systems CHES
2014, 2014, vol. 8731, pp. 147–169.

[14] Y. Fei, Q. Luo, and A. A. Ding, “A statistical model
for DPA with novel algorithmic confusion analysis,” in
Cryptographic Hardware and Embedded Systems–CHES
2012, pp. 233–250.

[15] K. Tiri and I. Verbauwhede, “A logic level design
methodology for a secure DPA resistant ASIC or FPGA
implementation,” in Proceedings of the conference on
Design, automation & test in Europe, 2004, p. 10246.

[16] S. Guilley, P. Hoogvorst, Y. Mathieu, R. Pacalet, and
J. Provost, “CMOS structures suitable for secured hard-
ware,” in Proceedings of the conference on Design,
Automation and Test in Europe, 2004, p. 21414.

[17] M.-L. Akkar and C. Giraud, “An implementation of DES
and AES, secure against some attacks,” in Cryptographic
Hardware and Embedded Systems (CHES), 2001, pp.
309–318.

[18] P. Luo, A. Y.-L. Lin, Z. Wang, and M. Karpovsky, “Hard-
ware implementation of secure Shamirs secret sharing
scheme,” in IEEE International Symposium on High-
Assurance Systems Engineering, 2014, pp. 193–200.

[19] B. Bilgin, J. Daemen, V. Nikov, S. Nikova, V. Rij-
men, and G. Van Assche, “Efficient and first-order DPA
resistant implementations of Keccak,” in Smart Card
Research and Advanced Applications, 2014, pp. 187–
199.

