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Abstract

In standard models of secure computation, point-to-point channels between parties are as-
sumed to be authenticated by some pre-existing means. In other cases, even stronger pre-existing
setup—e.g., a public-key infrastructure (PKI)—is assumed. These assumptions are too strong
for open, peer-to-peer networks, where parties do not necessarily have any prior relationships
and can come and go as they please. Nevertheless, these assumptions are made due to the
prevailing belief that nothing “interesting” can be achieved without them.

Taking inspiration from Bitcoin, we show that precise bounds on computational power can
be used in place of pre-existing setup to achieve weaker (but nontrivial) notions of security.
Specifically, under the assumption that each party can solve cryptographic puzzles only at a
bounded rate (and the existence of digital signatures), we show that without prior setup and
with no bound on the number of corruptions, a group of parties can agree on a PKI with which
they can then realize pseudonymous notions of authenticated communication, broadcast, and
secure computation. Roughly, “pseudonymous” here means that inputs/outputs are bound to
pseudonyms rather than parties’ true identities.
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1 Introduction

The majority of the distributed-computing literature assumes a model in which parties have well-
known identities and, moreover, there exists authenticated, point-to-point channels between each
pair of parties. Such authentication is established either through some physical property of the un-
derlying network, or using pre-existing setup assumptions such as a public key infrastructure (PKI)
or pairwise shared keys. It is widely believed that without pre-existing identities and authenticated
channels, the scope of meaningful tasks that can be achieved is limited (see, e.g., [5, 28]); further-
more, without a full PKI (e.g., with only pairwise shared keys), protocols can only tolerate a small
constant fraction of faulty parties. [29]

The recent phenomenal success of Bitcoin [27] and other decentralized cryptocurrencies, how-
ever, has stirred vibrant interest in a new distributed-computing model where parties do not have
well-known identities or pre-existing trust. Bitcoin offers empirical evidence that interesting secu-
rity properties can be achieved in such networks, assuming computational resource bounds.

In this paper, we initiate a theoretical treatment of Bitcoin-like networks, to understand what
is feasible in such distributed systems. We show that, indeed, a wide class of tasks can be realized
without setup, but based instead on the assumption that an adversary has bounded computational
resources. In more detail, we show feasibility of the following:

Consensus on a set of public keys. Our fundamental idea is to first bootstrap a (pseudonymous)
PKI, and then realize (pseudonymous) secure computation using this PKI. To establish the PKI,
we devise a protocol for Interactive Set Agreement (ISC) among the parties. Every honest party
inputs their public key into this ISC protocol, and at the end of the protocol, all honest parties
agree on a set (“agreement”). We prove that every honest party’s public key will be included in this
set (“validity”); and moreover, an adversary cannot introduce more public keys disproportionate
to the amount of computational resource it possesses (“boundedness”).

To design this consensus protocol, we face a few challenges. First, an adversary can try to
introduce many fake identities (“Sybils”); intuitively, we defeat this by requiring the adversary to
solve computational puzzles. Second, we assume a network model where honest parties’ messages
are guaranteed to be delivered to all parties within a bounded delay; however, an adversary may
specify a message to be delivered to only a subset of the honest parties. In this way, the adversary
can try to cause honest parties to reach inconsistent decisions. Intuitively, we defeat the second
type of attack through techniques reminiscent of the Dolev-Strong authenticated Byzantine agree-
ment [12]. By combining these ideas in non-trivial manners, we craft novel protocols that utilize
either a sequential puzzle (that cannot be parallelized) or a parallelizable puzzle, and ensure security
against an arbitrary number of corrupted parties.

Pseudonymous secure multi-party computation (MPC). Once we instantiate a PKI through
our interactive set agreement protocol, we hope to leverage it to establish authenticated channels,
and then in turn, implement broadcast. Based on these, we hope to realize general secure multi-
party computation using known techniques [18, 6].

However, a challenge arises in formalizing secure computation in this setting. Our ISC pro-
tocol ensures that each party can establish a public key (i.e., pseudonym) and must stick to this
pseudonym throughout, but does not bind a party’s pseudonym to its true identity. However,
standard notions of secure computation require a priori knowledge of parties’ true identities—
specifically, to define the functionality to be computed, the ideal world typically refers to each
party’s input by their true identities. To address this discrepancy, we formalize a new model of
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secure computation called pseudonymous secure computation. We then show that our ISC pro-
tocol allows us to securely realize a pseudonymous PKI, from which we can implement broadcast
primitives and secure computation for general functionalities with pseudonymous security.

Scope. We stress that our work is not intended to model the actual Bitcoin protocol, and we
readily admit that in our initial attempt to provide a formal and clean treatment we have made
some simplifying assumptions. For example, we assume that the network guarantees (bounded-
delay) delivery of messages to every party and that the number of parties is fixed (and known) at
the outset. Relaxing these assumptions is left for future work. Regardless, our results show that
distributed-computation models based on assumptions about computational resources rather than
authenticated identities are powerful, and can lead to a broad class of applications.

Related work. Cryptographic puzzles (also called proofs of work) have been analyzed and
proposed for a variety of other purposes, including timed-release encryption [30], spam preven-
tion [4, 13, 23], DoS resistance [20, 21], and defense against Sybil attacks [7]. Aspnes et al. [3]
studied Byzantine agreement without a PKI in a model where computational puzzles can be solved
at some bounded rate. That work also assumes pre-existing authenticated channels between honest
parties. Moreover, their feasibility results do not extend to an unbounded number of corruptions.
The success of Bitcoin [27] has renewed interest in the use of proof-of-work puzzles for coordinating
peer-to-peer networks. For example, both [26] and [17] present formal models in which the core
Bitcoin protocol can be shown to achieve relaxed notions of consensus, again under the assumption
that a majority of the network is honest.

Okun [28] studied distributed-computing problems in several variant models of anonymous
networks. The weakest model considered there, the “port-unaware” model, is most similar to ours.
However, our model is weaker still: in the port-unaware model, each corrupt process can send at
most one message to a correct process in each round, whereas in our model the adversary can
deliver an arbitrary number messages to honest parties. Okun’s positive result crucially relies on
this message bound, and is thus inapplicable in our model. Similarly our communication model is
related to (but weaker than) the models considered in [10, 11].

Our positive result for pseudnoymous secure computation are most closely related to the prior
work of Barak et al. [5], who show that a weak form of secure computation can be realized without
authenticated channels. Roughly speaking, secure computation in their setting means that an
adversary can partition the honest parties into disjoint sets and then run the protocol with each of
those subsets, in each case substituting inputs of its choice for the inputs of the other honest parties.
The guarantees we provide are stronger, albeit under a stronger assumption. Specifically, our notion
of pseudonymous secure computation ensures that all honest parties’ inputs are incorporated into
a single computation; moreover, it ensures unanimous abort and, in the case of an honest majority,
guaranteed output delivery. We also show how to achieve pseudonymous broadcast even with an
unbounded number of corruptions.

Secure computation without a PKI, but when 1/3 or more of the parties can be corrupted, is
also studied in [15, 16, 19]. Some of these works also achieve secure computation with unanimous
abort, but none realize broadcast (with guaranteed output delivery) in the sense we do here. More
importantly, all these works assume pre-existing authenticated channels between parties.

Concurrent and independent work. Concurrently with our work, Andrychowicz and Dziem-
bowski [2] show related results in a model that is similar to ours; however, we identify several
differences. At a technical level, our models are incomparable: we assume the adversary can not
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pre-compute puzzle solutions (in practice, this would be achieved using a random beacon); they do
not make this assumption, but instead assume a bound on the number of messages an adversary can
send in each round. They consider only parallelizable puzzles, whereas we consider both sequential
and parallelizable puzzles. The round complexity of their ISC protocol is effectively O(κ2f), where
κ is a security parameter, which is incomparable to the round complexity of our protocol that uses
parallelizable puzzles. Finally, they do not formalize pseudonymous secure computation.

2 Our Model

Our basic underlying model is derived from a standard setting for secure computation (namely
the stand-alone model from Canetti [8]). However, our model fundamentally differs in that we do
not assume authenticated channels between the parties. In addition, we work in a hybrid world
where the parties can access a functionality that models their ability to solve a bounded number
of computational puzzles per round—here, assumed for simplicity to be one. We provide further
details in what follows.

Network model. Our underlying model consists of n parties in a fully connected, synchronous
network. Since we do not assume authenticated channels, however, some aspects of the model bear
explanation. The fact that there are no authenticated channels means that when a party receives
a message, it cannot tell from which other party that message originated, or whether a message
it receives in one round is from the same party as some other message it received in a different
round. The only thing we assume is that any message sent by an honest party in some round is
received by all other parties (including the sender himself) at the end of that round. Honest parties
cannot send a message to some specific receiver, since we do not wish to assume that parties have
any prior knowledge of each others’ identities. The fact that an honest party’s message is diffused
throughout the entire network is reminiscent of flooding protocols as well as how Bitcoin works.

We consider an adversary who corrupts some parties and can cause them to behave arbitrarily.
The adversary can also inject messages into the network, meaning (in particular) that an honest
party may receive more than n− 1 messages in any given round. In contrast to honest parties, we
allow the adversary to send a message to any desired subset of the honest parties. We assume a
rushing adversary who receives the messages from the honest parties in the current round before
deciding on its own messages for that round. The only limitation we place on the adversary is that
it may not drop or modify honest parties’ messages. Thus, to recap, if an honest party sends a
message in some round, then each honest party receives that message (along with whatever other
messages the adversary chooses to send to that party) at the end of that round.

The sequential puzzle functionality, Fpuz. We wish to model the existence of computational
puzzles that are cheap to verify but expensive (i.e., time-consuming) to solve and, in particular, can
only be solved at some bounded rate. Each puzzle is also tied to a specific value which is presented
along with a solution in order to enable verification. Puzzle solutions are assumed to be uniform
random strings for simplicity, though we only need them to be unpredictable.

We model the above requirements by working in a hybrid world where there is a reactive
functionality Fpuz which all parties can access twice per round. Let λ denote a (statistical) security
parameter. The functionality maintains a set T (initially empty) of puzzle/solution pairs (x, h),
with x ∈ {0, 1}∗ and h ∈ {0, 1}λ; if (x, h) ∈ T at some moment in time then we say that h is a
solution for x. The functionality in each round behaves as follows:
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1. Receive from each party Pi an input (solve, x(i)). For i = 1, . . . , n, check if a pair (x(i), h(i))
has been stored in T , and if so return h(i) to Pi; otherwise, choose uniform h(i) ∈ {0, 1}λ,
return h(i) to Pi, and store (x(i), h(i)) in T .

2. Receive from each party Pi an arbitrary-length vector (check, (x
(i)
1 , h

(i)
1 ), . . .). Return to each

party Pi the vector of values (b
(i)
1 , . . .) where b

(i)
j = 1 iff (x

(i)
j , h

(i)
j ) ∈ T .

Parties may send messages to each other in between these two calls to the functionality. As in [8],
we assume synchrony in the hybrid world. This means that if a corrupted party does not provide
input to Fpuz by the end of the next “clock tick,” the functionality still returns output to those
parties who did provide input.

We stress that this functionality requires all parties to submit their solve requests before
receiving any of the puzzle solutions. Thus, while an adversary who corrupts f parties can solve f
puzzles per round, the puzzle values cannot depend on each other.

Full details of this execution model are deferred to the Appendix.

2.1 Discussion

Instantiation of sequential puzzles. As described above, an essential characteristic of the
puzzles modeled by Fpuz is that they cannot be solved any faster by the adversary than by a single
honest process, even though the adversary can corrupt many parties and therefore solve more
puzzle instances in total. This captures puzzles that require an inherently sequential computation
to solve. Most cryptographic puzzles (e.g., [4] and [9]) do not satisfy this property. If the cost
of verification did not matter, then we could obtain a trivial sequential puzzle through iterated
hashing as sol := H[d](puz), which takes exactly d sequential steps to solve. Otherwise, if a trusted
party can be relied on to generate puzzle instances, then [30] suffices; but this is undesirable
in our setting. Recently, Mahmoody et al. [24] construct puzzles in the bounded random-oracle
model that come closest to realizing Fpuz; however, there still remains an approximation gap: in
fact, an adversary may gain some constant factor of parallel speed-up with better-than-negligible
probability (something not possible with Fpuz), and verifying a solution requires nonzero work (in
contrast to Fpuz, where verification is free). We leave for future work the problem of expanding
our model to account for this gap; here we choose to introduce Fpuz rather than working directly
in a random-oracle model in order abstract the properties we need, and thus simplify the protocol
description (and analysis).

Other notions of puzzles. The sequential puzzles modeled by Fpuz are one form of proof-of-work
puzzle; however, several other notions have been discussed in the literature. Here we discuss a two
alternatives and how they relate to our model.

In Appendix D, we present an ideal functionality intended to model parallelizable proof-of-work
puzzles. Here, a puzzle requires some number N of computational steps to solve; however, these
steps can be performed in parallel, implying that an adversary controlling f processors can solve
puzzles at a f -times faster rate. (Alternatively, this can be viewed as an adversary whose processors
run faster than honest processors by a factor of f .) A good example of puzzles that match this
abstraction are those developed by Coelho [9].

The cryptographic puzzles used in Bitcoin are not only parallelizable, but can in fact be solved
by any number of concurrent processes without communication. The probability with which a given
process produces a puzzle solution is proportional to its computational power; hence, regardless of
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the distribution of computing resources, puzzle solutions are found according to a Poisson process.
Miller et al. [26] point out that this property is essential to the operation of Bitcoin, since it
guarantees that independent participants do not duplicate much work; in [25], it is argued that
this process is integral to Bitcoin’s incentive structure, since it ensures that even weak participants
have a proportional chance of finding the next puzzle solution and thereby earning a reward.

Further remarks on our simplifying assumptions. We have aimed for the simplest (reason-
able) model of cryptographic puzzles that captures the features of interest. Yet our model (and
results) can be easily adapted or generalized. The assumption that the communication rate is equal
to the puzzle-solving rate (i.e., that exactly one puzzle can be solved by each party in each commu-
nication round) is without much loss of generality, since the puzzle difficulty can be adjusted so this
is the case. Alternately, as long as the number of puzzles that can be solved per round is bounded,
our protocols can be easily modified so that they continue to provide the claimed guarantees.

Seemingly more worrisome is the assumption that each corrupted party has the same compu-
tational abilities as the honest parties, and so solves puzzles at the same rate. This, too, is not an
essential feature, if we simply view n as the total available “units of computational power” in the
network, rather than as the total number of parties. (In deed, in our model there is little distinction
between a party and a processor.) In that case f would represent not the total number of corrupted
entities, but the portion of computational power controlled by the attacker.

As discussed earlier, make puzzle verification “free” in our model to prevent denial-of-service
attacks in which the adversary overwhelms an honest party with (incorrect) puzzle solutions. An
alternate way to deal with such attacks would be to change our network model and assume some
fixed bound on the number of messages the adversary can send to honest parties.

3 Interactive Set Consistency in the Fpuz-Hybrid Model

We first define Interactive Set Consistency (ISC).

Definition 1. A protocol for n parties, in which each party Pi begins with an input value vi,
realizes Interactive Set Consistency in the presence of f corrupted parties if the following holds with
all but negligible probability (in an associated security parameter) in the presence of any adversary
controlling up to f parties:

Boundedness Each honest party Pi outputs a (multi)set Vi containing at most n values.

Agreement Each honest party Pi outputs the same (multi)set V.

Validity For each honest party Pi, it holds that vi ∈ Vi.

ISC is related to Interactive Consistency (IC) [29], with the difference being that the latter has
a stronger validity requirement: all honest parties agree on a vector ~V (rather than a multiset),
with ~V [i] = vi for each honest party Pi. ISC can be viewed as a pseudonymous version of IC.

We now describe a protocol for realizing ISC in the Fpuz-hybrid model. First we introduce some
useful terminology.

Definition 2. A signed message is a tuple (pk, σ,msg) where σ is a valid signature on msg with
respect to public key pk.

If s = (pk, σ,msg) is a signed message, then we define msg(s) = msg and pk(s) = pk.
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Definition 3. A puzzle graph is a tuple (sol, pk, children), where sol ∈ {0, 1}λ is a puzzle solution,
pk ∈ {0, 1}∗ is an identity string, and children is a (possibly empty) set of puzzle graphs. A puzzle
graph g = (sol, pk, children) is recursively defined to be valid if sol is a solution for the puzzle
pk ‖ {sol(c) | c ∈ children} (where the latter are ordered lexicographically), and either children = ∅
or else every graph in children is valid.

If h = (sol, pk, children) is a puzzle graph, then we define pk(h) = pk.

Definition 4. We define that puzzle graph h is at depth ` > 0 in puzzle graph g according
to the following inductive rules:

• A puzzle graph g is at depth 1 in itself.

• A puzzle graph h is at depth (`+ 1) in g if for some c ∈ children(g), h is at depth ` in c.

Definition 5. A puzzle graph g is height-` iff ` is the greatest integer such that g contains a
depth-` subgraph.

The following lemma will be key to our protocol, as it guarantees that a puzzle graph with
sufficient height must contain a subgraph generated during the first round:

Lemma 1. If a party receives a puzzle graph g in round r, then the height of that graph is at most
r. Furthermore, any depth-r subgraph in g must contain a solution output by the Fpuz functionality
in round 1.

Proof. A puzzle graph contains a solution sol that must have been output by the functionality Fpuz
in some round; if the graph has children, then each of those children must contain a puzzle solution
output by Fpuz in an earlier round. From this observation, the lemma follows by induction. A
height-1 graph received in round 1 must contain a single node with no children, computed in that
round. A height-(r + 1) graph received in round r + 1 must contain a child obtained during round
r at the latest.

Intuition behind our protocol. Our protocol is inspired by the Dolev-Strong protocol for broad-
cast (which works by assuming a pre-established PKI) but we integrate computational resources
in a nontrivial manner. In each round r, a party accepts a value if it has received a collection of
r signatures on that value; the party then adds its own signature to the collection and relays it
to all other parties. However, since in our setting we do not have a PKI and parties do not know
each others’ public keys, we must add an additional constraint (using the Fpuz functionality) that
prevents the adversary from utilizing more than one public key per corrupted party. Our constraint
is based on the observation in Lemma 1, that a depth-r subgraph of a puzzle graph received in
round r must have been solved in round 1. Thus in our protocol, a correct party only considers
a public key “valid” if it comes along with a puzzle graph containing that public key at sufficient
depth.

Our protocol is defined in Figure 1. Note that the protocol only uses f + 1 communication
rounds, though we include a final “computation round” for convenience in the description. We now
prove that the protocol realizes ISC.

Lemma 2. For every honest party Pi, it holds that pki ∈ acceptedj for every honest Pj.

Proof. It is immediate that pki ∈ acceptedi. For j 6= i, it follows from the protocol description that
Pj adds pki to acceptedj in round 2.
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An ISC Protocol the Fpuz-Hybrid Model

Initially, each party Pi generates a keypair (ski, pk
′
i) for a digital signature scheme. We set pki =

pk′i‖vi, where vi is the input of Pi, and refer to pki as the identity of party Pi.

The subroutine solve(pk, children) returns the puzzle graph g = (sol, pk, children), where sol is the
solution returned from querying the Fpuz functionality with (solve, pk ‖ {sol(c) | c ∈ children})
(where the latter are in lexicographic order).

We define Signi(msg) to return (pki, σ,msg), where σ is a signature on msg computed using ski.

• Round 1. In the first round, each party Pi computes the puzzle graph gi,1 = solve(pki, ∅).
It then sends gi,1 and Signi(pki) to all parties, and sets acceptedi = {pki}.

• Round 2 through f + 2. For r = 2, . . . , f + 2, party Pi does:

1. Set Gnew = ∅, Snew = ∅.
2. Let G be the set of valid puzzle graphs received in the previous round.

3. Let S be the set of valid signed messages (pk, σ,msg) received in the previous round for
which pk ∈ acceptedi. (S includes only one signed message per (pk,msg) pair; duplicates
are discarded.)

4. For each g ∈ G, and for each puzzle graph h that is depth r − 1 in g, let Sh = {s ∈ S |
msg(s) = pk(h)}. If pk(h) /∈ acceptedi and |Sh| ≥ r − 1, then:

(a) add pk(h) to acceptedi,

(b) add g to Gnew,

(c) set Snew = Snew ∪ Sh ∪ {Signi(pk(h))}.
5. If r ≤ f + 1, send gi,r = solve(pki, Gnew) and Snew to all parties.

Output the set Vi = {vj | pk′j‖vj ∈ acceptedi}.

Figure 1: Our ISC protocol for the Fpuz-hybrid model.

We say that an honest party Pi accepts pk in round r if Pi adds pk to acceptedi at the end of
round r. We say it accepts pk by round r if it accepts pk in round r′ ≤ r.

Lemma 3. If an honest party accepts pk in round r ≤ f + 1, then every honest party accepts pk
by round r + 1.

Proof. The proof is by induction on r ≥ 1. For the base case, when r = 1, observe that each honest
party Pi only accepts its own key pki and, as noted in the proof of Lemma 2, every other honest
party accepts pki in round 2.

Suppose the lemma holds at round r−1 ≥ 1, and say honest party Pi accepts pk in round r. We
know that Pi must have received (in round r − 1) at least r−1 signed messages s′ with msg(s′) = pk
and pk(s′) accepted by Pi by round r − 1. These r−1 signed messages must be signed using distinct
public keys; furthermore, none of those public keys can be equal to pki because Pi only signs pk
after it accepts it. Applying the inductive hypothesis, every other honest party must have accepted
those r − 1 public keys by round r; from the proof of Lemma 2, we know that every honest party
has also accepted pki by round r. Since Pi sends all the signed messages it has received, plus its
own signature on pk, in round r, it follows that in round r every other honest party Pj receives at
least r signed messages s with msg(s) = pk and pk(s) ∈ acceptedj .

Next, observe that if Pi accepts pk in round r, then it must have received a puzzle graph g
containing a depth-(r − 1) subgraph h such that pk(h) = pk. By solving an additional puzzle, Pi
obtains a puzzle graph gi,r in which h is at depth r and sends gi,r to all other parties in round r.
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It follows from both the above that every other honest party will accept pk by round r+ 1.

Lemma 4. Each honest party accepts at most n distinct keys.

Proof. If an honest party accepts pk in some round r ≥ 2, then it must have received a height-(r−1)
puzzle graph g in the previous round. By Lemma 1, any height-(r − 1) ground received in round
r − 1 must contain a puzzle solved during round 1; since at most n such puzzles in total can be
computed in a round, at most n distinct keys can be accepted.

Theorem 1. For any f < n there is a polynomial-time ISC protocol with f + 1 rounds of commu-
nication, secure against f corrupted parties.

Proof. Validity follows from Lemma 2, and boundedness follows from Lemma 4. To prove agree-
ment, we must show that if an honest party Pi accepts pk in round f + 2, then every honest party
accepts pk by round f + 2. So, say Pi accepts pk in round f + 2. Then Pi must have received f + 1
signatures on pk from previously-accepted keys (not including its own). Observe that among these
f + 1 previously-accepted keys, at least 1 must belong to some honest party Pj : by Lemma 2, the
keys of all n− f correct parties are accepted by Pi in round 1, and by Lemma 4 at most n keys in
total are accepted among all the correct parties. Since a correct party only signs pk after accepting
it, Pj must have accepted pk in round f or earlier. Therefore, by Lemma 3, if Pj accepts pk in
round f , then every correct party accepts pk in round f + 1 or earlier.

Message Complexity. In the worst case, each party publishes n2 signed messages, n for each
accepted key. Since no more than n(f + 1) puzzle solutions are solved in total, any puzzle graph
can be represented using only O(λnf) bits (i.e., the graphs should be represented in a way that
avoids duplicating shared children). Therefore since each party accepts at most n keys, it publishes
at most O(λn2f) message bits. As a further optimization, each party may keep track of which
subgraphs it has already published (e.g., after accepting a key in an earlier round) and avoid
publishing duplicates. This reduces the worst case message cost to O(λnf) bits per party.

3.1 A Lower Bound on the Round Complexity

Our ISC protocol is round-optimal for deterministic1 protocols:

Theorem 2. Say n − f ≥ 2. (Otherwise, ISC is trivial.) Any deterministic ISC protocol in the
Fpuz-hybrid model that tolerates f faults must have at least f + 1 rounds of communication.

A proof of the above is given in Appendix C. The proof is inspired by the lower bound on the
round complexity of broadcast with a PKI [12, 1], but requires several modifications.

1Technically, our protocol is not deterministic because of the initial key-generation step. Our proof can be extended
to apply to deterministic protocols given access to an ideal functionality corresponding to a digital signature scheme.
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4 Pseudonymous MPC from Sequential Puzzles

In the previous section, we showed a protocol for ISC in the Fpuz-hybrid model. This protocol
allows the participating parties to agree on a set of public keys, with honest parties’ public keys
guaranteed to be included; thus, this effectively bootstraps a (pseudonymous) PKI.

In this section, we show that ISC can be used to achieve (pseudonymous) secure computation
of general functionalities. We first show that the standard Dolev-Strong algorithm [12] can be run
following ISC in order to implement a pseudonymous version of secure broadcast ; this, in turn,
can be used as part of standard protocols for secure multi-party computation (e.g., the GMW
protocol) [18]) to implement pseudonymous secure computation. In general, any other multi-party
computation protocol (such as BGW [6], for example) could be used in place of BGW; the fairness
and resilience properties would carry over from such protocol, since our ISC protocol provides the
best possible resilience (f < n) and fairness condition (guaranteed termination).

4.1 Definition of Pseudonymous Security

We motivate the need to define a relaxed, pseudonymous notion of security by pointing out that the
standard notion of security [8] cannot be achieved in a setting where the underlying network does
not offer authenticated communication. Intuitively, the issue is that there is nothing distinguishing
the parties from each other; thus, it is not even clear which of the n parties should play the role
of P1, which the role of P2, etc. As a consequence, we must either restrict attention to functions
that treat each of their n inputs symmetrically, or else we must allow the attacker to arbitrarily
choose the order in which the parties’ n inputs are entered into the computation. We choose the
second approach, which is in fact more general than the first.

The relaxed notion of pseudonymous secure computation that we consider may still be useful in
many circumstances. First, many functions of interest (such as majority, average, etc.) are invariant
under permutations of the input values, and are therefore unaffected by the relaxation. Also, in
many scenarios the ordering of the inputs may be irrelevant; for example, in a game of online poker
against anonymous opponents, each party might only be concerned with having the game played
honestly and correctly.

The formal definition. To define pseudonymous secure computation, we define an appropriate
ideal world which is a relaxation of the one normally considered when defining secure computation.
(We have already defined our real world in Section 2, and as usual [8] we will define a real-world
protocol to be secure if the actions of any adversary attacking the protocol can be simulated by
an adversary in the ideal world.) The main relaxation is that in pseudonymous MPC we allow the
adversary to choose an arbitrary permutation on the inputs.

Let f : ({0, 1}∗)n → ({0, 1}∗)n be a function to evaluate. Each party Pi holds input xi ∈ {0, 1}λ,
where λ is the security parameter. The ideal-world adversary S is an interactive Turing machine
that controls a set C ⊂ {1, . . . , n} of corrupted parties, and we denote the set of uncorrupted parties
by I = [n]\C. The adversary S receives the inputs of the corrupted parties, as well as an auxiliary
input z. Execution in the ideal world proceeds as follows:

• Input substitution: Each honest party Pi ∈ I sends its input xi to the trusted party
evaluating f . The adversary S sends arbitrary inputs xi on behalf of each corrupted party Pi ∈
C. Let ~x = (x1, . . . , xn) denote the input values sent by the n parties. 2

2We assume parties have identifiers in the ideal world, but these identifiers are only used as a formalism to allow
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• Permutation: S chooses a permutation π on {1, . . . , n}.
• Computation: Let ~x′ be the vector obtained by applying the permutation π to the entries

of ~x; i.e., x′π(i) = xi. The trusted party computes (y1, . . . , yn) = f(x′1, . . . , x
′
n), and returns

yπ(i) to party Pi.

• Output: Each honest Pi outputs the value given to it by the trusted party. In addition, S
outputs an arbitrary function of its view.

4.2 Protocol for Pseudonymous Multi-party Computation

The GMW protocol for multi-party computation makes use of two communication primitives: pri-
vate authenticated channels, and broadcast. We will need to emulate (the pseudonymous version
of) these in the Fpuz-hybrid model. The basic idea is for each party to generate a public encryp-
tion/signing keypair, and then run the ISC protocol so that all the parties agree on a set of public
keys. This effectivey amounts to bootstrapping a pseudonymous PKI that includes a pseudonym
for each honest party and at most f pseudonyms for the adversary. Thereafter, standard encryption
and signing techniques can be used to realize (pseudonymous) authenticated and private channels
between the parties; the Dolev-Strong algorithm can be used to give pseudonymous broadcast.

In more detail, the protocol for evaluating a function f proceeds as follows:

1. First, each party Pi generates a signing and encryption keypair pki, ski. Next, each party
executes the ISC protocol 1, using pki as its input value. At the end of the protocol, each party
obtains a set of public keys which it can order lexicographically to give a vector (pk′1, . . . , pk

′
n).

We remark that this effectively defines a permutation of the parties, and that each party can
determine its permuted index.

2. Next, each party Pi executes the GMW protocol [18]. Note that the GMW protocol uses both
broadcasts and private messages. When the protocol calls for a broadcast, the Dolev-Strong

algorithm is executed using ~pk
′

as the PKI. When the protocol calls for a private message,
the signing and encryption keys are used as described above.

In Appendix B we prove the following theorem:

Theorem 3 (Pseudonymously Secure SFE). In the Fpuz-hybrid model, we achieve SFE for general
functions while ensuring pseudonymous security against a non-adaptive adversary. Specifically,
input completeness and guaranteed termination can be achieved with honest majority, i.e., f < n/2.
In the presence of an arbitrary number of corruptions, we ensure security with unanimous abort.

5 Conclusion

This work is inspired by peer-to-peer networks like Bitcoin, and makes an initial attempt to under-
stand what meaningful security properties can be achieved in such distributed networks. Contrary
to the widely held belief that nothing interesting can be achieved in networks without authenticated
channels or a PKI, we show that by placing a strict bound on each party’s computational resources
it is possible set up a (pseudonymous) PKI and achieve (pseudonymous) notions of broadcast and
secure computation. Although our work does not directly apply to the actual Bitcoin protocol, our
results show that distributed-computation models resembling Bitcoin can lead to rich applications
with non-trivial security guarantees.

S to address the corrupted parties; the identifiers have no inherent meaning.
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A Formal Specification of our Model

A formal specification of our Fpuz-hybrid execution model is given by Figures 2 and 3.

Functionality Fpuz

1. Receive from each party Pi an input (solve, x(i)). (Note that only a single value is allowed.)
For i = 1, . . . , n, first check if a pair (x(i), h(i)) has been stored in T , and if so return h(i)

to Pi; otherwise, choose uniform h(i) ∈ {0, 1}λ, return h(i) to Pi, and store (x(i), h(i)) in T .

2. Receive from each party Pi an arbitrary-length vector (check, (x
(i)
1 , h

(i)
1 ), . . .). Return to

each party Pi the vector of values (b
(i)
1 , . . .) where b

(i)
j = 1 iff (x

(i)
j , h

(i)
j ) ∈ T .

Figure 2: The Fpuz functionality

Real-world (Fpuz-hybrid) Execution with adversary A

1. (a) Each party Pi starts with the security parameter λ, input xi, and random input ri.

(b) The adversary A starts with λ, random input r0, input z that includes a set C ⊂ [n]
of corrupted parties and their inputs {xi|i ∈ C}, and additional auxiliary input.

2. Initialize a round counter, l := 0.

3. As long as there exists an uncorrupted party that did not halt, repeat:

(a) Each uncorrupted party Pi, i /∈ C, performs a compute phase during which it may
interact with an instance of Fpuz using its oracle tape, subject to the constraint that
it may make at most one oracle query of the form (solve, x) in this round. Note that
the responses to these queries are not delivered until every query for this round has
been made.

(b) Each uncorrupted party Pi, i /∈ C, generates {mi,l}, where each mi,l ∈ {0, 1}∗ is a
(possibly empty) message intended to be published during this round.

(c) The adversary A learns {mi,l|i ∈ [n]}, and generates {m†j,l|j /∈ C}, a set of messages to
be delivered just to Pj . During this phase, the adversary may make up to |C| oracle
queries of the form (solve, x).

(d) Each uncorrupted party Pi, i /∈ C, receives the messages sort(m†i,l ∪ {mj,l|j /∈ C}).
(e) l := l + 1.

4. Each uncorrupted party Pi, i /∈ C, as well as A, generates an output. The output of the
corrupted parties is set to ⊥.

Figure 3: A summary of the nonadaptive Fpuz-hybrid computation.
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B Proof of our Psedonymously Secure Multi-party Computation
Protocol

We restate and prove the following theorem from Section 4.2:

Theorem 3 (Pseudonymously Secure SFE). In the Fpuz-hybrid model, we achieve SFE for general
functions while ensuring pseudonymous security against a non-adaptive adversary. Specifically,
input completeness and guaranteed termination can be achieved with honest majority, i.e., f < n/2.
In the presence of an arbitrary number of corruptions, we ensure security with unanimous abort.

Proof. First we prove that the protocol described above satisfies the case for honest majority. Since
the underlying GMW protocol is executed intact, the existing simulator for this protocol, S ′, can
be reused, with the permuted player indices substituted for the correct indices. The main thing
for us to show is that the real-world execution of the ISC protocol in the first phase can indeed be
simulated.

Our simulator S first generates keypairs pki and ski for each simulated party. The view of
the real-world adversary consists of the messages sent by the honest parties in each round; this
communication pattern can be simulated perfectly. According to the agreement property of the ISC
definition, if a corrupted party does not complete the protocol, its public key may be replaced with
⊥; in any case, all uncorrupted parties arrive at a consistent vector ~pk with high probability. Since
the ISC protocol sorts this vector in lexicographical order, the simulator S instructs the trusted
party T to use this permutation.

After completing the ISC phase, our simulator S executes the GMW simulator S ′ in a sandbox,
placing each party Pi with the corresponding permuted index. Note that since S ′ is intended for
a model with broadcast and private channels, we must be able to simulate the protocols used
to implement these channels. It is trivial to simulate the broadcast protocol since the simulator
already knows the signing keys; the private channel can be trivially simulated by encrypting random
strings.

Finally in the case without honest majority (i.e., n > f > bn/2c) the GMW [18] protocol
guarantees privacy but not fairness.

C Lower Bound on Round Complexity in the Fpuz Model

Dolev and Strong first showed that assuming authentication, any deterministic Byzantine agreement
protocol tolerating f faults (where n > f + 1) must have at least f + 1 messaging rounds [12].

Our lower bound proof is inspired a simple bivalency-based proof of this theorem [1]. We
basically must show that having the additional puzzle functionality does not change this lower
bound, even though this additional functionality can be used to further restrict behavior of the
adversary, since the adversary can only solve a limited number of computational puzzles per round.

For the purpose of our lower bound, we limit our concern only to compliant protocols (as
defined below) that are effectively deterministic. We must carefully explain what this means in our
setting, since the Fpuz functionality itself is randomized and our positive results make use of digital
signature algorithms.

Definition 6. A compliant protocol in the Fpuz-hybrid model must ignore the security parameter
and treat the public/private keys, digital signatures, and puzzle solutions as opaque strings. Protocols
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may transmit opaque strings along communication channels and include them as input to oracle
queries and digital signature algorithms, but cannot otherwise inspect or modify their bits.

This definition in particular rules out protocols that use the signature algorithm or interaction
with Fpuz in order to perform coin flips.

Theorem 2. Say n − f ≥ 2. (Otherwise, ISC is trivial.) Any deterministic ISC protocol in the
Fpuz-hybrid model that tolerates f faults must have at least f + 1 rounds of communication.

Proof. For the purpose of proving our lower bound, we limit ourselves to constructing adversaries
that are also compliant in the same sense, and in fact only need to crash processes (rather than
induce Byzantine behavior). Furthermore, our adversaries crash at most one process per round.

We will state a lemma that given these constraints, the same reasoning used in deterministic
models applies equally to compliant protocols in our model with high probability. 3 First we define
some notation useful for describing executions in our model.

A partial run is a finite sequence of system configurations (including the input values to each
process and the internal state of each process and the adversary) that transition according to
our model. The last element in an r-round partial run is the system configuration at the end
of r rounds. Note that since our execution model is randomized (due to coin flips taken by the
puzzle functionality and digital signature scheme), given an initial configuration our model defines
a probability distribution over r-round partial runs.

We define an equivalence relation among partial runs in our model. Two partial runs are
equivalent if they are equal up to a bijective transformation of keys, signatures, and puzzle solutions.
A partial run s can be represented as a pair (state, {oi}), where {oi, } is the sequence of every
occurrence of an opaque string in a configuration and state is the sequence of system configurations
with each occurrence of an opaque string taken out (and replaced with a symbol opaque). Another
partial run s′ is equivalent to s if s′ = (state, {F (oi)}) for some bijective function F : {0, 1}∗ →
{0, 1}∗. This implies that two partial runs are equivalent if their initial conditions are the same,
any decisions made by correct processes are the same, any processes that have crashed did so at
the same time, and the content of the internal states of each process and messages delivered differ
only in the representation of the opaque strings associated with signatures and puzzles.

Lemma 5. Consider a compliant protocol and compliant adversary (as per Definition 6). Then
for each round r, there exists a single equivalence class of r-round partial runs (which we call the
canonical partial run) such that with high probability, a partial run sampled from the distribution
of r-round partial runs belongs to this equivalence class.

Proof. As the protocols make only a (polynomially) bounded number of queries (to Fpuz or to
digital signature routines), with high probability the processes do not generate colliding keys or
puzzle solution strings, nor does any process “guess” a puzzle solution it has not received from Fpuz
or the communication channel.

3Note that an alternative to invoking the above lemma would be to redefine digital signatures and our puzzle
functionality to inherently use opaque “tags” rather than concrete bit-strings - indeed this is the approach taken
in [12]. We have chosen our approach because it allows us to use a simple and concrete representation of the model
for presenting our positive results.
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Hereafter, we are only concerned with the canonical partial runs (rather than partial runs that
involve some unlikely string collision), and therefore the term partial run should be taken to mean
the class of canonical partial runs.

Let sr be an r-round partial run. We say that sr+1 is a one-round extension of sr if there exists
some adversary A such that sr and sr+1 are respectively the canonical r-round and r + 1-round
partial runs given A. A partial run s is an extension of sr if it is a partial run obtained by extending
sr one round at a time and in which all processes have decided.

Having established a basis for applying deterministic reasoning to our model, the lower bound
proof can be carried out with simple modifications to the bivalency proof in [1]. We describe these
necessary modifications and then refer the reader to the text of [1] for the remainder of the proof.

The lower bound of [12, 1] applies to binary consensus, a somewhat different problem than ISC
in which processes must decide on a single bit). We can imagine that each process decides on 2λ

bits, one for each possible input value (at most n of these may be set to 1). The proof in [1] relies
on a notion of valences, which we now define in our setting. A partial run sr is v-valent (for some
value v) if in all extensions of sr, the correct processes decide on a set S where v ∈ S, and v-valent
if in all extensions v /∈ S. When v is clear from context, we abbreviate v-valent with 1-valent and
v-valent in order to more closely match the notation in [1]. A partial run is univalent (with respect
to v) if it is either v-valent or v-valent, and bivalent if it is neither v-valent nor v-valent.

The proof in [1] involves constructing pairs of executions that are indistinguishable to some of
the processes in the network. We next prove a lemma that guarantees that these constructions
remain indistinguishable, even in our setting where the processes may additionally interact with
Fpuz.

Lemma 6. For r < f , let sr be an r-round partial run in which at most r processes have crashed.
Consider the following two one-round extensions of sr: sr+1, in which one process crashes before
delivering its message to some process p, and s′r+1 in which the same process crashes after delivering
its message to p. Let s′ and s denote the runs extending s′r+1 and sr+1 respectively in which p crashes
at the beginning of the next round (before sending any messages). (Note that in the special case
r+1 = f , the processes terminate so the crash is unnecessary.) Let p′ (distinct from p) be a correct
process. Process p′ cannot distinguish between runs s and s′ (i.e., its behavior in both runs is the
same).

Proof. In the case of an ordinary message passing network, this is immediate, since p is the only
process that observes any difference in round r + 1 and p crashes before it can communicate to
any other process. However in our setting we must prove this holds in spite of the additional Fpuz
functionality, since in round r + 1, process p may affect Fpuz by solving a puzzle before crashing.
Without loss of generality, assume that in run s, p solves a puzzle puz and in s′ solves a puzzle
puz′. However, note that a) Fpuz records a puzzle solution sol randomly sampled from a space of
size 2λ, b) the recorded solution is returned only to process p, which crashes before it can transmit
any information about it to another process, and c) the other processes may only observe the
difference through interaction with Fpuz by calling sending (check, puz, sol) or (check, puz′, sol)
(i.e., by correctly guessing the puzzle solution). As the processes only make a polynomial number
of queries, this occurs with negligible probability.

Now that we have defined the notions of (canonical) partial runs and valences in our setting
and established conditions under which indistinguishability holds despite the additional Fpuz, our
theorem follows from the proof in [1] verbatim.
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D ISC in the Parallelizable Proof-of-Work Model

While in our main result we have considered inherently sequentially puzzles (i.e., puzzles that take
the adversary an entire round to solve, even with all f corrupted processes working together in
parallel), we are also interested in modeling puzzles that the adversary can solve faster using its
parallel resources. Equivalently, we may be interested in modeling an adversary that can compute
sequentially f times faster than a corrupt process.

We can model this via a modified functionality Fparpuz, which differs from Fpuz in that it
allows the adversary to make multiple rounds of interaction with the functionality within a single
communication round.

• Receive from each uncorrupted party Pi an input (solve, x(i)). (Note that only a single value
is allowed.) For i = 1, . . . , n, first check if a pair (x(i), h(i)) has been stored in T , and if
so return h(i) to Pi; otherwise, choose uniform h(i) ∈ {0, 1}λ, return h(i) to Pi, and store
(x(i), h(i)) in T .

• For up to f iterations, a single corrupted party Pi may request (solve, xi), and the input is
processed immediately as above.

• Receive from each party Pi an arbitrary-length vector (check, (x
(i)
1 , h

(i)
1 ), . . .). Return to each

party Pi the vector of values (b
(i)
1 , . . .) where b

(i)
j = 1 iff (x

(i)
j , h

(i)
j ) ∈ T .

As before, we allow parties to call Fparpuz with a check instruction any (polynomial) number
of times. Each of the honest parties is allowed to call Fparpuz with a solve instruction only once
per communication round; moreover, all of the solve instructions for a round must be sent before
any honest party receives its puzzle solution. However, the corrupted parties can call Fparpuz, one
after another in sequence, up to a total of f times within an overall communication round.

Protocol intuition for the Fparpuz-hybrid model. Our protocol proceeds in two overall phases.
In the first phase, called the “mining” phase, each correct process constructs a chain of O(f2) puzzle
solutions associated with that process’s public key. In the second phase, the “communication”
phase, the processes publish their puzzle chains and propagate the puzzle chains they receive from
others. To ensure agreement, each process also signs and relays signatures according to the Dolev-
Strong algorithm. Signatures corresponding to public keys without associated puzzle chains are
ignored. The communication phase ends after f + 1 rounds.

Intuitively, the protocol works because every correct process is able to create a valid puzzle
chain for its own key, yet the corrupt processes are only able to create at most f puzzle chains
before the protocol terminates.

Definition 7. A length-` puzzle chain is defined inductively as follows:

• A puzzle graph g is a length-1 puzzle chain if children(g) = ∅.
• A puzzle graph g is a length-(`+ 1) puzzle chain if children(g) = {s}, pk(s) = pk(g), and s is

a length-` puzzle chain.

The protocol is defined in Figure 4.

Lemma 7. For every correct process Pi, its identity pki is accepted by every other correct process
in round 2.
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An O(f2)-Round ISC Protocol using Parallelizable Puzzles

Initially, each process Pi generates a signing keypair (ski, pki) according to some digital signature
scheme, where pki is the concatenation of the underlying public key and the ith input value. Hereafter
we refer to pki as the identity of process Pi. The subroutines solve and signi are the same as in 1.

• Mining Phase. In the first round, each process Pi constructs a puzzle graph

gi,1 := solve(pki, ∅)

where pki denotes the sender’s identity, and the message includes an empty history. In each
of the following rounds, up to round rmine = f(f + 1) + 1, each process extends its chain by
one puzzle solution

gi,r := solve(pki, {gi,r−1}).

The mining phase ends after rmine rounds. We abbreviate gi,rmine
by gi.

• Communication Phase. Initially, in round 1 of the communication phase, each process Pi

1. sets accepted := {pki},
2. publishes gi,

3. and publishes signi(pki).

Thereafter, in each round 2 ≤ r ≤ f + 2, process Pi

1. Receives a set of signed messages S, such that ∀s ∈ S, pk(s) ∈ accepted and s has a
distinct pk and m (i.e., ∀s′ ∈ S\{s}, (pk(s),msg(s)) 6= (pk(s′),msg(s′))). Invalid or
redundant signatures are discarded.

2. Receives a set of length-rmine graphs G such that ∀g ∈ G, pk(g) /∈ accepted, and each g
has a distinct id (i.e., ∀g′ ∈ G\{g}, pk(g) 6= pk(g′)). Redundant or invalid puzzle chains
are discarded.

3. For each g ∈ G, let Sg := {s ∈ S|id(s) = id(g)}. If |Sg| ≥ r, then Pi:

(a) sets accepted := accepted ∪ {pk(g)},
(b) publishes g,

(c) and publishes Sg ∪ {signi(pk(g))}.
At the end of round f + 2 (of the communication phase), process Pi outputs the set accepted.

Figure 4: Our ISC protocol for the Fparpuz-hybrid model.

Proof. This follows immediately from the protocol definition. In round 1 of the communication
phase, each correct process Pi broadcasts its own puzzle chain and signature on pki, and every
other process receives these messages and accepts pki in the next round.

Lemma 8. If a correct process Pi accepts a key pk in round r < f + 2 (of the communication
phase), then every correct process accepts pk in round r + 1 or earlier.

Proof. The proof is by induction on the round number r ≥ 1. For the base case, when r = 1
observe that each correct process Pi only accepts its own key pki, and by Lemma 7 every other
correct process accepts pki in round 2.

Suppose the lemma holds at round r, and suppose a correct process Pi accepts pk in round r.
First, note that in round r + 1, every other correct process receives at least r signatures over

pk from distinct previously-accepted keys (see the proof of Lemma 3).
Second, observe that Pi publishes a length-rmine chain g for pk in round r, and therefore every

other correct party receives g in round r+ 1. Thus, every correct process accepts pk in round r+ 1,
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completing the proof by induction.

Lemma 9. Among the correct processes, at most n distinct keys are ever accepted.

Proof. Each accepted key requires a length-rmine chain, and each node in the chain must be as-
sociated with a consistent key. Each uncorrupted process only solves puzzles associated with its
own key. Since the corrupted processes can solve (in total) at most f puzzles per round, they
can solve at most f(rmine + f + 1) puzzles before the protocol terminates. Therefore, at most
bf(rmine + f + 1)/rminec = f + bf · (f + 1)/rminec = f length-rmine chains can be computed by
corrupt processes. Therefore, length-rmine chains are found corresponding to at most n distinct
keys.

Theorem 4. There exists a polynomial-time ISC protocol with O(f2) rounds of communication,
secure against f < n number of corrupted parties.

Proof. The proof of this theorem is identical to that of Theorem 1, substituting Lemmas 7,8, and
9 for Lemmas 2,3, and 4.

E Future Work

There are many directions for future research. In our work we have made several simplifying
assumptions, and relaxing any of them is an important next step. For example, we have assumed
that there is a fixed number n of parties that is public knowledge at the outset of the protocol.
Is anything achievable if n is unknown? Alternately, what can be said in a partially synchronous
network where the maximum communication delay is unknown? In a different direction, it would
be interesting to explore a model in which parties were not malicious or honest, but are instead only
rational. Here, we could assign some “cost” to solving puzzles rather than assuming a strict upper
bound on how many puzzles a party could solve per round. This is the direction taken in other
work analyzing Bitcoin [14, 22]. It would be useful to reconcile this with approaches to modeling
rationality in secure multi-party computation.
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