
Pseudonymous Broadcast and Secure

Computation from Cryptographic Puzzles

Jonathan Katz ∗† Andrew Miller∗ Elaine Shi‡§

Abstract

In standard models of distributed computation, point-to-point chan-
nels between parties are assumed to be authenticated by some pre-
existing means. In other cases, even stronger pre-existing setup—e.g.,
a public-key infrastructure (PKI)—is assumed. These assumptions are
too strong for open, peer-to-peer networks, where parties do not neces-
sarily have any prior relationships and can come and go as they please.
Nevertheless, these assumptions are made due to the prevailing belief
that nothing “interesting” can be achieved without them.

Taking inspiration from Bitcoin, we show that precise bounds on
computational power can be used in place of pre-existing setup to
achieve weaker (but nontrivial) notions of security. Specifically, un-
der the assumption that each party can solve cryptographic puzzles
only at a bounded rate (and the existence of digital signatures), we
show that without prior setup and with no bound on the number of
corruptions, a group of parties can agree on a PKI with which they
can then realize pseudonymous notions of authenticated communica-
tion, broadcast, and secure computation. Roughly, “pseudonymous”
here means that parties are identified by pseudoynms rather than by
their true identities.

Keywords: computational puzzles, distributed systems, consensus, secure
multi-party computation

∗Dept. of Computer Science, University of Maryland. {jkatz,amiller}@cs.umd.edu.
†Work supported by NSF awards #0964541, #1111599, and #1223623.
‡Cornell University. runting@gmail.com
§Work supported by NSF award #1314857, a Sloan Research Fellowship, and a Google

Faculty Research Award.

1 Introduction

Standard models of distributed computing assume authenticated point-to-
point channels between parties, where authentication may be provided via
some physical property of the underlying network or using keys shared by
the parties in advance. When security against a large fraction of corruptions
is desired, even stronger pre-existing setup—e.g., a broadcast channel or a
public-key infrastructure (PKI) with which broadcast can be implemented—
is often assumed.

Such setup may not exist in many interesting scenarios, especially open,
peer-to-peer networks in which parties do not necessarily have any prior re-
lationships, and can come and go as they please. Nevertheless, such setup
is often assumed due to the prevailing belief that nothing “interesting” can
be achieved without them (see, e.g., [5, 32]), and in fact there are known
impossibility results to this effect. For example, in the setting of multi-party
computation, Barak et al. [5] show limits on what can be achieved if authen-
ticated channels are not available. Even when authenticated channels are
available, there are well-known bounds [25, 33] on the fraction of corrupted
parties that can be tolerated without some form of setup such as a PKI [13].

The recent phenomenal success of Bitcoin [31] and other decentralized
cryptocurrencies, however, has stirred vibrant interest in a new distributed-
computing model where parties do not have known identities or pre-existing
setup. Bitcoin offers evidence that interesting security properties can be
achieved under such conditions. In this paper, we carry out a theoretical
study of Bitcoin-like networks and show that, indeed, a wide class of tasks
can be realized without setup, but based instead on cryptographic puzzles
and precise bounds on an attacker’s computational resources.

1.1 Results and Contributions

We make the following contributions.

Interactive set consistency and pseudonymous PKI. We consider
a network that provides guaranteed delivery, but no authentication. We
also assume the existence of cryptographic puzzles that can be solved at
some bounded rate (but for which verification is easy), plus secure digital
signatures. We show that these assumptions can be leveraged to allow a
set of n parties to establish a “pseudonymous PKI” in the presence of an
arbitrary number of corrupted parties. This means that all honest parties
agree on a set of public keys (agreement) that contains each honest party’s
public key (validity) and at most n public keys overall (boundedness). We

2

obtain a pseudonymous PKI rather than a true PKI because there is no
binding between public keys and (external) identities.

In designing a protocol achieving the above, we face several challenges.
Because there is no authentication, and no bound on the number of messages
the attacker can send, the adversary can try to introduce fake identities
(“Sybils”) to overwhelm the honest parties. Intuitively, we defeat this by
using computational puzzles to throttle the number of identities that can be
claimed. Since the attacker can send different messages to different honest
parties, the attacker can try to cause honest parties to reach inconsistent
decisions. We defeat this sort of attack using techniques reminiscent of
the Dolev-Strong protocol for authenticated Byzantine agreement [13]. We
combine these ideas in a nontrivial way to construct our final protocol.

With a pseudonymous PKI in place, we can use protocols that rely on a
(standard) PKI to achieve pseudonymous versions of various goals. For ex-
ample, we can obtain pseudonymous authenticated communication by hav-
ing parties sign the messages they send.1 More interestingly, we can use
the Dolev-Strong protocol [13] to realize pseudonymous broadcast. Coupled
with our protocol for establishing a pseudonymous PKI in the first place,
this shows that pseudonymous broadcast can be achieved without authen-
ticated channels or prior setup in the presence of an unbounded number of
corruptions, in contrast to known impossibility results for (standard) broad-
cast [25, 33].

Pseudonymous secure computation. Finally, we consider the more gen-
eral task of secure multiparty computation. In a Bitcoin-like model where
parties do not have well-known identities a priori, traditional notions of
secure computation are not attainable. We are the first ones to formally
define pseudonymous notion of secure computation in which, roughly speak-
ing, inputs and outputs are bound to pseudonyms rather than parties’ true
identities. Pseudonymous secure computation can be realized in our model
by using existing protocols (e.g., [20, 6]) and substituting pseudonymous
authentication and broadcast for their standard counterparts.

Scope of our work. We stress that our work is not intended to model Bit-
coin itself, but rather, to attain a basic theoretical feasibility understanding

1The typical notion of authenticated communication guarantees that Alice can be as-
sured that some message she receives is from Bob, and not some other party. Pseudony-
mous authenticated communication, in contrast, allows Alice to be assured that the mes-
sage she receives is from someone who calls himself “Bob,” and moreover that this is the
same entity (or at least is controlled by the same entity) who sent her a message previously
using that pseudonym. However, this party may not be named Bob in any absolute sense.

3

about Bitcoin-like distributed systems. Such systems (whose security prop-
erties rely on computational resource allocation) have been to some extent
overlooked by the traditional distributed systems and cryptography litera-
ture.

We readily admit that in our initial attempt to provide a clean, formal
treatment we have made several simplifying assumptions. For example, we
assume that the network guarantees (bounded-delay) delivery of messages to
every party and that the number of parties is fixed. Based on these simplify-
ing assumptions, we are able to rigorously formalize intuitions attained from
Bitcoin-like cryptocurrencies, i.e., distributed-computation models based on
assumptions about computational resources rather than authenticated iden-
tities can lead to non-trivial security guarantees. Our work poses numerous
exciting directions for future research, including how to relax our assump-
tions to be more realistic, and how to design more efficient protocols.

1.2 Related Work

Cryptographic puzzles (also called proofs of work) have been analyzed and
proposed for a variety of other purposes, including timed-release cryptogra-
phy [34, 7], spam prevention [4, 15, 26], DoS resistance [22, 23], and defense
against Sybil attacks [8]. Many proof-of-work puzzles (e.g., [10, 27, 4]) re-
semble variations of Merkle’s hash trees, which are typically used for message
authentication [28, 14]. In both applications, a pseudorandom function is
used to determine a subset of branches that must be revealed; thus these
constructions can often be used simultaneously as a puzzle and a signature.

Aspnes et al. [3] studied Byzantine agreement without a PKI in a model
where computational puzzles can be solved at some bounded rate. That
work assumes authenticated channels between honest parties; moreover,
their feasibility results do not extend to an unbounded number of corrup-
tions. Miller and LaViola, Jr. [30] and Garay et al. [19] present formal
models in which the core Bitcoin protocol can be shown to achieve relaxed
notions of consensus based on proof-of-work puzzles, but again under the
assumption that a majority of the network is honest.

Okun [32] studied distributed-computing problems in several models
of anonymous networks. The weakest model considered there, the “port-
unaware” model, is most similar to ours. However, our model is weaker
still: in the port-unaware model, each corrupt process can send at most one
message to a correct process in each round, whereas in our model the ad-
versary can deliver an arbitrary number messages to honest parties. Okun’s
positive results crucially rely on this message bound, and are thus inappli-

4

cable in our model. Similarly our communication model is related to (but
weaker than) the models considered in [11, 12].

Our positive result for pseudnoymous secure computation are most closely
related to the prior work of Barak et al. [5], who show that a weak form of se-
cure computation can be realized without authenticated channels. Roughly
speaking, secure computation in their setting means that an adversary can
partition the honest parties into disjoint sets and then run the protocol
with each of those subsets, in each case substituting inputs of its choice
for the inputs of the other honest parties. We provide stronger security
guarantees, albeit under a stronger assumption regarding the existence of
cryptographic puzzles. Specifically, our notion of pseudonymous secure com-
putation ensures that all honest parties’ inputs are incorporated into a single
computation; moreover, it ensures unanimous abort and, in the case of an
honest majority, guaranteed output delivery. We also show how to achieve
pseudonymous broadcast even with an unbounded number of corruptions.

Broadcast and secure computation without a PKI, but when 1/3 or more
of the parties can be corrupted, is also studied in [17, 18, 21]. Some of these
works achieve secure computation with unanimous abort, but none realize
broadcast (with guaranteed output delivery) in the sense we do here. More
importantly, all these works assume pre-existing authenticated channels.

Concurrent and independent work. Concurrently with our work, Andrychow-
icz and Dziembowski [2] show related results in a model that is similar to
ours; however, we identify several differences. At a technical level, our mod-
els are incomparable. We assume the adversary cannot pre-compute puzzle
solutions (in practice, this would be achieved using a random beacon to en-
sure that puzzles are now known until the protocol starts); they do not make
this assumption, but instead assume a bound on the number of messages an
adversary can send in each round. They consider puzzles for which finding
solutions can be parallelized (called parallelizable puzzles in our work); we
consider parallelizable puzzles as well as sequential puzzles for which parallel
speedup is impossible. The round complexity of their protocol for establish-
ing a pseudonymous PKI is O(κ2 ·f), where κ is a security parameter and f
a bound on the number of corruptions, which is incomparable to the round
complexity of our protocol based on parallelizable puzzles. Finally, they do
not consider the notion of pseudonymous secure computation.

Garay et al. [19] analyze the security of the Bitcoin backbone proto-
col, and prove useful properties which they refer to as “common prefix”
and “chain quality”. Their model and result are incomparable to ours; in
particular, the Bitcoin protocol they study utilizes only parallelizable puz-

5

zles, whereas we construct protocols using either parallelizable or sequen-
tially hard puzzles, and in either case obtain better fault tolerance. They
also do not make an effort to formalize secure computation in this model
(which requires defining pseudonymity); nor do they show the feasibility of
pseudonymous secure computation in a Bitcoin-like model.

2 Our Model

Our basic underlying model is derived from a standard setting for secure
computation (namely the stand-alone model from Canetti [9]). However,
our model fundamentally differs in that we do not assume authenticated
channels between the parties. In addition, we work in a hybrid world where
the parties can access a functionality that models their ability to solve a
bounded number of computational puzzles per round—here, assumed for
simplicity to be one. We provide further details in what follows.

Network model. Our underlying model consists of n parties in a fully
connected, synchronous network. Since we do not assume authenticated
channels, however, some aspects of the model bear explanation. The fact
that there are no authenticated channels means that when a party receives
a message, it cannot tell from which other party that message originated, or
whether a message it receives in one round is from the same party as some
other message it received in a different round. The only thing we assume is
that any message sent by an honest party in some round is received by all
other parties (including the sender itself) at the end of that round. Honest
parties cannot send a message to any specific receiver, since we do not wish
to assume that parties have any prior knowledge of each others’ identities.
The fact that an honest party’s message is diffused throughout the entire
network is reminiscent of flooding protocols as well as how Bitcoin works.

We consider an adversary who corrupts some parties and can cause them
to behave arbitrarily. The adversary can also inject messages into the net-
work, meaning (in particular) that it can cause an honest party to receive
more than n−1 messages in a given round. In contrast to honest parties, we
allow the adversary to send a message to any desired subset of the honest
parties. We assume a rushing adversary who receives the messages from the
honest parties in the current round before deciding on its own messages for
that round. The only limitation we place on the adversary is that it may
not drop or modify honest parties’ messages. Thus, to recap, if an honest
party sends a message in some round, then each honest party receives that
message (along with whatever other messages the adversary chooses to send

6

to that party) at the end of that round.

The sequential puzzle functionality, Fpuz. We consider two types of
cryptographic puzzles in this work. In the main body of the paper we focus
on so-called sequential puzzles. In the appendix, we also consider what
we call parallelizable puzzles. We refer to Section 2.1 and Appendix B for
further discussion regarding the latter.

We wish to model the existence of computational puzzles that are cheap
to verify but expensive (i.e., time-consuming) to solve and, in particular,
can only be solved at some bounded rate. Each puzzle is tied to a specific
value which must be presented along with a solution in order to enable
verification. Puzzle solutions are assumed to be uniform random strings for
simplicity, though we only need them to be unpredictable. We model this
by working in a hybrid world where there is a reactive functionality Fpuz
that all parties can access twice per round. The first call to Fpuz models the
assumption that puzzles can be solved only at a bounded rate (namely, once
per round, per party). The second call represents the (idealized) assumption
that verification is “free.”

Formally, let λ be a (statistical) security parameter. Fpuz maintains a
set T (initially empty) of puzzle/solution pairs (x, h), with x ∈ {0, 1}∗ and
h ∈ {0, 1}λ; if (x, h) ∈ T at some moment in time then we say that h is a
solution for x. The functionality Fpuz does as follows in each round:

1. Receive from each party Pi an input (solve, x(i)). For i = 1, . . . , n,
check if a pair (x(i), h(i)) has been stored in T , and if so return h(i)

to Pi; otherwise, choose uniform h(i) ∈ {0, 1}λ, return h(i) to Pi, and
store (x(i), h(i)) in T .

2. Receive from each party Pi an arbitrary-length vector (check, (x
(i)
1 , h

(i)
1), . . .).

Return to each party Pi the vector of values (b
(i)
1 , . . .) where b

(i)
j = 1

iff (x
(i)
j , h

(i)
j) ∈ T .

Parties may send messages to each other in between these two calls to the
functionality. As in [9], we assume synchrony in the hybrid world. This
means that if a corrupted party does not provide input to Fpuz by the end
of the next “clock tick,” the functionality still returns output to those parties
who did provide input.

We stress that this functionality requires all parties to submit their solve
requests at the same time. Thus, while an adversary who corrupts f parties
can solve f puzzles per round, the puzzle values cannot depend on each
other.

7

2.1 Discussion

We briefly discuss several aspects of our formal model.

Remarks on our model. We have aimed for the simplest (reasonable)
model of cryptographic puzzles that captures their features of interest. Yet
our model (and results) can be easily adapted or generalized. The assump-
tion that the communication rate is equal to the puzzle-solving rate (i.e.,
that exactly one puzzle can be solved by each party in each communica-
tion round) is without much loss of generality, since the puzzle difficulty
can be adjusted so this is the case. Alternately, as long as the number of
puzzles that can be solved per round is bounded, our protocols can be easily
modified so they continue to provide the claimed guarantees.

Seemingly more worrisome is the assumption that all parties have the
same computational ability, and so solve puzzles at the same rate. This, too,
is not an essential feature if we simply view n as the total available “units
of computational power” in the network, rather than as the total number of
parties.

We make puzzle verification “free” in our model (i.e., we allow verifica-
tion of an unbounded number of puzzles in each round) to prevent denial-
of-service attacks in which the adversary overwhelms an honest party with
(incorrect) puzzle solutions. An alternate way to deal with such attacks
would be to change our network model and assume some fixed bound on the
number of messages the adversary can send to honest parties.

Instantiation. An essential characteristic of the puzzles modeled by Fpuz
is that they cannot be solved any faster by the adversary than by a single
honest process, even though the adversary can corrupt many parties and
therefore solve more puzzles in total. This captures puzzles that require
an inherently sequential computation to solve. A simple instantiation of a
puzzle having this property is given by setting h := Ht(x), where H is a
hash function modeled as a random oracle and t is a parameter determining
the difficulty of the puzzle. In practice, however, this puzzle is useless since
verifying a solution takes as long as finding a solution. If a trusted party
can be relied on to generate puzzle instances, then the puzzles considered
by Rivest et al. [34] could be used; however, we do not wish to assume that
such a trusted party is available.

Some cryptographic puzzles (e.g., [4, 10]) do not satisfy this property.
Recently, Mahmoody et al. [27] construct puzzles in the bounded-rate

random-oracle model that come closest to realizing Fpuz; however, there
still remains an approximation gap: in fact, an adversary may gain some

8

constant factor of parallel speed-up with better-than-negligible probability
(something not possible with Fpuz), and verifying a solution requires nonzero
work (in contrast to Fpuz, where verification is free). In this work we use
the Fpuz model (rather than directly using a bounded-rate random-oracle)
in order to abstract the properties we need and thus simplify the protocol
description (and analysis). We leave for future work the problem of ex-
panding our protocol to account for this gap; even in the worst-case, our
Fparpuz-based protocol applies.

Other notions of puzzles. The sequential puzzles modeled by Fpuz are
one form of proof-of-work puzzle; however, several other notions have been
discussed in the literature. Here we discuss a two alternatives and how they
relate to our model.

In Appendix B, we present an ideal functionality intended to model
parallelizable proof-of-work puzzles. Here, a puzzle requires some number
N of computational steps to solve; however, these steps can be performed
in parallel, implying that an adversary controlling f processors can solve
puzzles at a f -times faster rate. (Alternatively, this can be viewed as an
adversary whose processors run faster than honest processors by a factor
of f .) A good example of puzzles that match this abstraction are those
developed by Coelho [10].

The cryptographic puzzles used in Bitcoin are not only parallelizable, but
can in fact be solved by any number of concurrent processes without com-
munication. The probability with which a given process produces a puzzle
solution is proportional to its computational power; hence, regardless of the
distribution of computing resources, puzzle solutions are found according to
a Poisson process. Miller et al. [30] point out that this property is essential
to the operation of Bitcoin, since it guarantees that independent participants
do not duplicate much work; in [29], it is argued that this process is integral
to Bitcoin’s incentive structure, since it ensures that even weak participants
have a proportional chance of finding the next puzzle solution and thereby
earning a reward.

3 Interactive Set Consistency in the Fpuz-Hybrid
Model

We first define Interactive Set Consistency (ISC).

Definition 1. A protocol for n parties, in which each party Pi begins with
an input value vi, realizes Interactive Set Consistency in the presence of f

9

corrupted parties if the following holds with all but negligible probability (in an
associated security parameter) in the presence of any adversary controlling
up to f parties:

Boundedness Each honest party Pi outputs a (multi)set Vi containing at
most n values.

Agreement Each honest party Pi outputs the same (multi)set V.

Validity For each honest party Pi, it holds that vi ∈ Vi.

ISC is related to Interactive Consistency (IC) [33], with the difference
being that the latter has a stronger validity requirement: all honest parties
agree on a vector ~V (rather than a multiset), with ~V [i] = vi for each honest
party Pi. ISC can be viewed as a pseudonymous version of IC.

We now describe a protocol for realizing ISC in the Fpuz-hybrid model.
First we introduce some useful terminology.

Definition 2. A signed message is a tuple (pk, σ,msg) where σ is a valid
signature on msg with respect to public key pk.

If s = (pk, σ,msg) is a signed message, then we define msg(s) = msg and
pk(s) = pk.

Definition 3. A puzzle graph is a tuple (sol, pk, children), where sol ∈
{0, 1}λ is a puzzle solution, pk ∈ {0, 1}∗ is an identity string, and children is
a (possibly empty) set of puzzle graphs. A puzzle graph g = (sol, pk, children)
is recursively defined to be valid if sol is a solution for the puzzle pk ‖ {sol(c) |
c ∈ children} (where the latter are ordered lexicographically), and either
children = ∅ or else every graph in children is valid.

If h = (sol, pk, children) is a puzzle graph, then we define pk(h) = pk.

Definition 4. We define that puzzle graph h is at depth ` > 0 in
puzzle graph g according to the following inductive rules:

• A puzzle graph g is at depth 1 in itself.

• A puzzle graph h is at depth (`+ 1) in g if for some c ∈ children(g), h
is at depth ` in c.

Definition 5. A puzzle graph g is height-` iff ` is the greatest integer such
that g contains a depth-` subgraph.

The following lemma will be key to our protocol, as it guarantees that
a puzzle graph with sufficient height must contain a subgraph generated
during the first round:

10

Lemma 1. If a party receives a puzzle graph g in round r, then the height
of that graph is at most r. Furthermore, any depth-r subgraph in g must
contain a solution output by the Fpuz functionality in round 1.

Proof. A puzzle graph contains a solution sol that must have been output
by the functionality Fpuz in some round; if the graph has children, then each
of those children must contain a puzzle solution output by Fpuz in an earlier
round. From this observation, the lemma follows by induction. A height-
1 graph received in round 1 must contain a single node with no children,
computed in that round. A height-(r + 1) graph received in round r + 1
must contain a child obtained during round r at the latest.

Intuition behind our protocol. Our protocol is inspired by the Dolev-
Strong protocol for broadcast (which works by assuming a pre-established
PKI) but we integrate computational resources in a nontrivial manner. In
each round r, a party accepts a value if it has received a collection of r
signatures on that value; the party then adds its own signature to the col-
lection and relays it to all other parties. However, since in our setting we do
not have a PKI and parties do not know each others’ public keys, we must
add an additional constraint (using the Fpuz functionality) that prevents the
adversary from utilizing more than one public key per corrupted party. Our
constraint is based on the observation in Lemma 1, that a depth-r subgraph
of a puzzle graph received in round r must have been solved in round 1.
Thus in our protocol, a correct party only considers a public key “valid” if
it comes along with a puzzle graph containing that public key at sufficient
depth.

Our protocol is defined in Figure 1. Note that the protocol only uses f+1
communication rounds, though we include a final “computation round” for
convenience in the description. We now prove that the protocol realizes ISC.

Lemma 2. For every honest party Pi, after round 2 it holds that pki ∈
acceptedj for every honest Pj.

Proof. In the first round, each correct party Pi broadcasts its own depth-1
puzzle graph, and in the next round each correct party Pj accepts any key
with a depth-1 puzzle graph.

We say that an honest party Pi accepts pk in round r if Pi adds pk to
acceptedi at the end of round r. We say it accepts pk by round r if it accepts
pk in round r′ ≤ r.

Lemma 3. If an honest party accepts pk in round r ≤ f + 1, then every
honest party accepts pk by round r + 1.

11

An ISC Protocol for the Fpuz-Hybrid Model

Initially, each party Pi generates a keypair (ski, pk
′
i) for a digital signature

scheme. We set pki = pk′i‖vi, where vi is the input of Pi, and refer to pki
as the identity of party Pi.

The subroutine solve(pk, children) returns the puzzle graph g =
(sol, pk, children), where sol is the solution returned from querying the Fpuz

functionality with (solve, pk ‖ {sol(c) | c ∈ children}) (where the latter are
in lexicographic order).

We define Signi(msg) to return (pki, σ,msg), where σ is a signature on msg
computed using ski.

• Round 1. In the first round, each party Pi computes the puzzle
graph gi,1 = solve(pki, ∅). It then sends gi,1 to all parties (including
to itself), and sets acceptedi = {}.

• Round 2 through f + 2. For r = 2, . . . , f + 2, party Pi does:

1. Set Gnew = ∅, Snew = ∅.
2. Let G be the set of valid puzzle graphs received in the previous

round.

3. Let S be the set of valid signed messages (pk, σ,msg) received
in the previous round for which pk ∈ acceptedi. (S includes
only one signed message per (pk,msg) pair; duplicates are dis-
carded.)

4. For each g ∈ G, and for each puzzle graph h that is depth r−1
in g, let Sh = {s ∈ S | msg(s) = pk(h)}. If pk(h) /∈ acceptedi
and |Sh| ≥ r − 2, then:

(a) add pk(h) to acceptedi,

(b) add g to Gnew,

(c) set Snew = Snew ∪ Sh ∪ {Signi(pk(h))}.
5. If r ≤ f + 1, send gi,r = solve(pki, Gnew) and Snew to all

parties.

Output the set Vi = {vj | pk′j‖vj ∈ acceptedi}.

Figure 1: Our ISC protocol for the Fpuz-hybrid model.

Proof. The proof is by induction on r ≥ 2. For the base case, when r = 2,
observe that by Lemma 2, each honest party Pi accepts the key of every
other honest party in round 2.

Suppose the lemma holds at round r− 1 (where r− 1 ≥ 2) and suppose
honest party Pi accepts pk in round r. We know that Pi must have received
(in round r − 1) at least r−2 signed messages s′ with msg(s′) = pk and pk(s′)
accepted by Pi by round r − 1. These r − 2 messages must be signed using

12

distinct public keys; furthermore, none of those public keys can be equal
to pki because Pi only signs pk after accepting it. Applying the inductive
hypothesis, every other honest party must have accepted those r− 2 public
keys by round r. From Lemma 2, we also know that every honest party has
already accepted pki in round 2. Since Pi sends all the signed messages it has
received, plus its own signature on pk, it follows that in round r every other
honest party Pj receives at least r − 1 signed messages s with msg(s) = pk
and pk(s) ∈ acceptedj .

Next, observe that if Pi accepts pk in round r, then it must have received
a puzzle graph g containing a depth-(r−1) subgraph h such that pk(h) = pk.
By solving an additional puzzle, Pi obtains a puzzle graph gi,r in which h is
at depth r and sends gi,r to all other parties in round r.

It follows from both the above that every other honest party will ac-
cept pk by round r + 1.

Lemma 4. Each honest party accepts at most n distinct keys.

Proof. If an honest party accepts pk in some round r ≥ 2, then it must have
received a height-(r−1) puzzle graph g in the previous round. By Lemma 1,
any height-(r−1) graph received in round r−1 must contain a puzzle solved
during round 1; since at most n such puzzles in total can be computed in a
round, at most n distinct keys can be accepted.

Theorem 1. Assuming secure digital signatures, for any 1 ≤ f < n there
is a polynomial-time ISC protocol in the Fpuz model with f + 1 rounds of
communication, secure against f corrupted parties.

Proof. Validity follows from Lemma 2, and boundedness follows from Lemma 4.
To prove agreement, we must show that if an honest party Pi accepts pk in
round f +2, then every honest party accepts pk by that same round (f +2).
So, say Pi accepts pk in round f+2. Then Pi must have received f signatures
on pk from distinct previously-accepted keys. Observe that among these f
previously-accepted keys, at least 1 must belong to some honest party Pj :
by Lemma 2, at least n− f keys from correct parties are accepted by Pi in
round 2, and by Lemma 4 at most n keys in total are accepted among all
the correct parties. Since a correct party only signs pk after accepting it, Pj
must have accepted pk in round f + 1 or earlier. Therefore, by Lemma 3,
every correct party accepts pk in round f + 2 or earlier.

Message Complexity. In the worst case, each party publishes n2 signed
messages, n for each accepted key. Since no more than n(f + 1) puzzle

13

solutions are solved in total, any puzzle graph can be represented using only
O(λnf) bits (i.e., the graphs should be represented in a way that avoids
duplicating shared children). Therefore since each party accepts at most n
keys, it publishes at most O(λn2f) message bits. As a further optimization,
each party may keep track of which subgraphs it has already published (e.g.,
after accepting a key in an earlier round) and avoid publishing duplicates.
This reduces the worst case message cost to O(λnf) bits per party.

3.1 A Lower Bound on the Round Complexity

Our ISC protocol is round-optimal for deterministic2 protocols:

Theorem 2. Say n− f ≥ 2. (Otherwise, ISC is trivial.) Any deterministic
ISC protocol in the Fpuz-hybrid model that tolerates f faults must have at
least f + 1 rounds of communication.

A proof of the above is given in Appendix A. The proof is inspired by
the lower bound on the round complexity of broadcast with a PKI [13, 1],
but requires several modifications.

4 Pseudonymous MPC from Sequential Puzzles

In the previous section, we showed a protocol for ISC in the Fpuz-hybrid
model. This protocol allows the participating parties to agree on a set of
public keys, with honest parties’ public keys guaranteed to be included; thus,
this effectively bootstraps a (pseudonymous) PKI.

In this section, we show that ISC can be used to achieve (pseudony-
mous) secure computation of general functionalities. We first show that the
standard Dolev-Strong algorithm [13] can be run following ISC in order to
implement a pseudonymous version of secure broadcast ; this, in turn, can be
used as part of standard protocols for secure multi-party computation (e.g.,
the GMW protocol) [20]) to implement pseudonymous secure computation.
In general, any other multi-party computation protocol (such as BGW [6],
for example) could be used in place of BGW; the fairness and resilience
properties would carry over from such protocol, since our ISC protocol pro-
vides the best possible resilience (f < n) and fairness condition (guaranteed
termination).

2Technically, our protocol is not deterministic because of the initial key-generation
step. Our proof can be extended to apply to deterministic protocols given access to an
ideal functionality corresponding to a digital signature scheme.

14

4.1 Definition of Pseudonymous Security

We motivate the need to define a relaxed, pseudonymous notion of security
by pointing out that the standard notion of security [9] cannot be achieved
in a setting where the underlying network does not offer authenticated com-
munication. Intuitively, the issue is that there is nothing distinguishing the
parties from each other; thus, it is not even clear which of the n parties
should play the role of P1, which the role of P2, etc. As a consequence, we
must either restrict attention to functions that treat each of their n inputs
symmetrically, or else we must allow the attacker to arbitrarily choose the
order in which the parties’ n inputs are entered into the computation. We
choose the second approach, which is in fact more general than the first.

The relaxed notion of pseudonymous secure computation that we con-
sider may still be useful in many circumstances. First, many functions of
interest (such as majority, average, etc.) are invariant under permutations
of the input values, and are therefore unaffected by the relaxation. Also, in
many scenarios the ordering of the inputs may be irrelevant; for example,
in a game of online poker against anonymous opponents, each party might
only be concerned with having the game played honestly and correctly.

The formal definition. To define pseudonymous secure computation, we
define an appropriate ideal world which is a relaxation of the one normally
considered when defining secure computation. (We have already defined
our real world in Section 2, and as usual [9] we will define a real-world
protocol to be secure if the actions of any adversary attacking the protocol
can be simulated by an adversary in the ideal world.) The main relaxation
is that in pseudonymous MPC we allow the adversary to choose an arbitrary
permutation on the inputs.

Our execution model is formally defined in Figure 2, but we describe
the main points below: Let f : ({0, 1}∗)n → ({0, 1}∗)n be a function to
evaluate. Each party Pi holds input xi ∈ {0, 1}λ, where λ is the security
parameter. The ideal-world adversary S is an interactive Turing machine
that controls a set C ⊂ {1, . . . , n} of corrupted parties, and we denote the
set of uncorrupted parties by I = [n] \ C. The adversary S receives the
inputs of the corrupted parties, as well as an auxiliary input z. Execution
in the ideal world proceeds as follows:

• Input substitution: Each honest party Pi ∈ I sends its input xi to
the trusted party evaluating f . The adversary S sends arbitrary in-
puts xi on behalf of each corrupted party Pi ∈ C. Let ~x = (x1, . . . , xn)

15

denote the input values sent by the n parties.3

• Permutation: S chooses a permutation π on {1, . . . , n}.
• Computation: Let ~x′ be the vector obtained by applying the per-

mutation π to the entries of ~x; i.e., x′π(i) = xi. The trusted party

computes (y1, . . . , yn) = f(x′1, . . . , x
′
n), and returns yπ(i) to party Pi.

• Output: Each honest Pi outputs the value given to it by the trusted
party. In addition, S outputs an arbitrary function of its view.

4.2 Protocol for Pseudonymous Multi-party Computation

The GMW protocol for multi-party computation makes use of two com-
munication primitives: private authenticated channels, and broadcast. We
will need to emulate (the pseudonymous version of) these in the Fpuz-hybrid
model. The basic idea is for each party to generate a public encryption/sign-
ing keypair, and then run the ISC protocol so that all the parties agree on
a set of public keys. This effectivey amounts to bootstrapping a pseudony-
mous PKI that includes a pseudonym for each honest party and at most f
pseudonyms for the adversary. Thereafter, standard encryption and signing
techniques can be used to realize (pseudonymous) authenticated and pri-
vate channels between the parties; the Dolev-Strong algorithm can be used
to give pseudonymous broadcast.

In more detail, the protocol for evaluating a function f proceeds as
follows:

1. First, each party Pi generates a signing and encryption keypair pki, ski.
Next, each party executes the ISC protocol 1, using pki as its input
value. At the end of the protocol, each party obtains a set of public
keys which it can order lexicographically to give a vector (pk′1, . . . , pk

′
n).

We remark that this effectively defines a permutation of the parties,
and that each party can determine its permuted index.

2. Next, each party Pi executes the GMW protocol [20]. Note that the
GMW protocol uses both broadcasts and private messages. When the
protocol calls for a broadcast, the Dolev-Strong algorithm is executed

using ~pk
′

as the PKI. When the protocol calls for a private message,
the signing and encryption keys are used as described above.

3We assume parties have identifiers in the ideal world, but these identifiers are only
used as a formalism to allow S to address the corrupted parties; the identifiers have no
inherent meaning.

16

Theorem 3 (Pseudonymously Secure SFE). In the Fpuz-hybrid model, we
achieve SFE for general functions while ensuring pseudonymous security
against a non-adaptive adversary. Specifically, input completeness and guar-
anteed termination can be achieved with honest majority, i.e., f < n/2. In
the presence of an arbitrary number of corruptions, we ensure security with
unanimous abort.

Proof. First we prove that the protocol described above satisfies the case for
honest majority. Since the underlying GMW protocol is executed intact, the
existing simulator for this protocol, S ′, can be reused, with the permuted
player indices substituted for the correct indices. The main thing for us to
show is that the real-world execution of the ISC protocol in the first phase
can indeed be simulated.

Our simulator S first generates keypairs pki and ski for each simulated
party. The view of the real-world adversary consists of the messages sent by
the honest parties in each round; this communication pattern can be simu-
lated perfectly. According to the agreement property of the ISC definition,
if a corrupted party does not complete the protocol, its public key may be
replaced with ⊥; in any case, all uncorrupted parties arrive at a consistent
vector ~pk with high probability. Since the ISC protocol sorts this vector in
lexicographical order, the simulator S instructs the trusted party T to use
this permutation.

After completing the ISC phase, our simulator S executes the GMW
simulator S ′ in a sandbox, placing each party Pi with the corresponding
permuted index. Note that since S ′ is intended for a model with broadcast
and private channels, we must be able to simulate the protocols used to
implement these channels. It is trivial to simulate the broadcast protocol
since the simulator already knows the signing keys; the private channel can
be trivially simulated by encrypting random strings.

Finally in the case without honest majority (i.e., n > f > bn/2c) the
GMW [20] protocol guarantees privacy but not fairness.

5 Conclusion and Future Work

This work is inspired by peer-to-peer networks like Bitcoin, and makes an
initial attempt to understand what meaningful security properties can be
achieved in such distributed networks. Contrary to the widely held belief
that nothing interesting can be achieved in networks without authenticated
channels or a PKI, we show that by placing a strict bound on each party’s
computational resources it is possible set up a (pseudonymous) PKI and

17

achieve (pseudonymous) notions of broadcast and secure computation. Al-
though our work does not directly apply to the actual Bitcoin protocol, our
results show that distributed-computation models resembling Bitcoin can
lead to rich applications with non-trivial security guarantees.

In our work we have made several simplifying assumptions, and relaxing
any of them is an important next step. For example, we have assumed that
there is a fixed number n of parties that is public knowledge at the outset
of the protocol. Is anything achievable if n is unknown? Alternately, what
can be said in a partially synchronous network where the maximum commu-
nication delay is unknown? In a different direction, it would be interesting
to explore a model in which parties were not malicious or honest, but are
instead only rational. Here, we could assign some “cost” to solving puzzles
rather than assuming a strict upper bound on how many puzzles a party
could solve per round. This is the direction taken in other work analyzing
Bitcoin [16, 24]. It would be useful to reconcile this with approaches to
modeling rationality in secure multi-party computation.

References

[1] Marcos Kawazoe Aguilera and Sam Toueg. A simple bivalency proof
that t-resilient consensus requires t+ 1 rounds. Information Processing
Letters, 71(3):155–158, 1999.

[2] Marcin Andrychowicz and Stefan Dziembowski. Distributed cryptog-
raphy based on proofs of work. Cryptology ePrint Archive, Report
2014/796, 2014.

[3] James Aspnes, Collin Jackson, and Arvind Krishnamurthy. Expos-
ing computationally-challenged Byzantine impostors. Technical report,
Computer Science Dept., Yale University, 2005.

[4] Adam Back. Hashcash—a denial of service counter-measure. http:

//www.hashcash.org/papers/hashcash.pdf, 2002.

[5] Boaz Barak, Ran Canetti, Yehuda Lindell, Rafael Pass, and Tal Ra-
bin. Secure computation without authentication. In Advances in
Cryptology—CRYPTO 2005, pages 361–377. Springer, 2005.

[6] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness
theorems for non-cryptographic fault-tolerant distributed computation.
In 20th Annual ACM Symposium on Theory of computing, pages 1–10.
ACM, 1988.

18

[7] Dan Boneh and Moni Naor. Timed commitments. In Advances
in Cryptology—Crypto 2000, volume 1880 of LNCS, pages 236–254.
Springer, 2000.

[8] Nikita Borisov. Computational puzzles as sybil defenses. In Sixth IEEE
International Conference on Peer-to-Peer Computing, pages 171–176.
IEEE, 2006.

[9] Ran Canetti. Security and composition of multiparty cryptographic
protocols. Journal of Cryptology, 13(1):143–202, 2000.

[10] Fabien Coelho. An (almost) constant-effort solution-verification proof-
of-work protocol based on merkle trees. In Progress in Cryptology–
AFRICACRYPT 2008, pages 80–93. Springer, 2008.

[11] Jeffrey Considine, Matthias Fitzi, Matthew Franklin, Leonid A Levin,
Ueli Maurer, and David Metcalf. Byzantine agreement given partial
broadcast. Journal of Cryptology, 18(3):191–217, 2005.

[12] Carole Delporte-Gallet, Hugues Fauconnier, Rachid Guerraoui, Anne-
Marie Kermarrec, Eric Ruppert, et al. Byzantine agreement with
homonyms. In Proceedings of the 30th annual ACM SIGACT-SIGOPS
symposium on Principles of distributed computing, pages 21–30. ACM,
2011.

[13] Danny Dolev and H. Raymond Strong. Authenticated algorithms for
Byzantine agreement. SIAM Journal on Computing, 12(4):656–666,
1983.

[14] Shlomi Dolev, Nova Fandina, and Ximing Li. Nested merkles puz-
zles against sampling attacks. In Mirosaw Kutyowski and Moti Yung,
editors, Information Security and Cryptology, volume 7763 of Lecture
Notes in Computer Science, pages 157–174. Springer Berlin Heidelberg,
2013.

[15] Cynthia Dwork and Moni Naor. Pricing via processing or combat-
ting junk mail. In Advances in Cryptology—Crypto ’92, volume 740 of
LNCS, pages 139–147. Springer, 1993.

[16] Ittay Eyal and Emin Gün Sirer. Majority is not enough: Bitcoin mining
is vulnerable. In Financial Cryptography and Data Security, 2014.

19

[17] Matthias Fitzi, Nicolas Gisin, Ueli M. Maurer, and Oliver von Rotz. Un-
conditional Byzantine agreement and multi-party computation secure
against dishonest minorities from scratch. In Advances in Cryptology—
Eurocrypt 2002, volume 2332 of LNCS, pages 482–501. Springer, 2002.

[18] Matthias Fitzi, Daniel Gottesman, Martin Hirt, Thomas Holenstein,
and Adam Smith. Detectable Byzantine agreement secure against
faulty majorities. In 21st Annual ACM Symposium on Principles of
Distributed Computing (PODC), pages 118–126. ACM Press, 2002.

[19] Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. The Bitcoin
backbone protocol: Analysis and applications. Eurocrypt 2015, to ap-
pear.

[20] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental
game, or a completeness theorem for protocols with honest majority. In
19th Annual ACM Symposium on Theory of Computing (STOC), pages
218–229. ACM Press, 1987.

[21] Shafi Goldwasser and Yehuda Lindell. Secure multi-party computation
without agreement. Journal of Cryptology, 18(3):247–287, 2005.

[22] Bogdan Groza and Bogdan Warinschi. Cryptographic puzzles and DoS
resilience, revisited. Designs, Codes and Cryptography, 2013.

[23] Ari Juels and John G. Brainard. Client puzzles: A cryptographic coun-
termeasure against connection depletion attacks. In NDSS, volume 99,
pages 151–165, 1999.

[24] Joshua A Kroll, Ian C Davey, and Edward W Felten. The economics of
bitcoin mining or, bitcoin in the presence of adversaries. In Workshop
on Economics in Information Security (WEIS), 2013.

[25] Leslie Lamport, Robert Shostak, and Marshall Pease. The Byzantine
generals problem. ACM Trans. Programming Languages and Systems
(TOPLAS), 4(3):382–401, 1982.

[26] Ben Laurie and Richard Clayton. Proof-of-work proves not to work. In
Workshop on Economics and Information Security, 2004.

[27] Mohammad Mahmoody, Tal Moran, and Salil Vadhan. Publicly veri-
fiable proofs of sequential work. In Proceedings of the 4th conference
on Innovations in Theoretical Computer Science, pages 373–388. ACM,
2013.

20

[28] Ralph C Merkle. Secure communications over insecure channels. Com-
munications of the ACM, 21(4):294–299, 1978.

[29] A Miller, A Juels, E Shi, B Parno, and J Katz. Permacoin: Repurpos-
ing bitcoin work for long-term data preservation. IEEE Security and
Privacy, 2014.

[30] Andrew Miller and Joseph LaViola, Jr. Anonymous byzantine con-
sensus from moderately-hard puzzles: A model for Bitcoin. Technical
Report CS-TR-14-01, University of Central Florida, 2014. Availale at
http://tr.eecs.ucf.edu/78.

[31] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system.
http://bitcoin.org/bitcoin.pdf, 2008.

[32] Michael Okun. Distributed Computing Among Unacquainted Processors
in the Presence of Byzantine Failures. PhD thesis, Hebrew University
of Jerusalem, 2005.

[33] Marshall Pease, Robert Shostak, and Leslie Lamport. Reaching agree-
ment in the presence of faults. J. ACM, 27(2):228–234, 1980.

[34] Ronald Rivest, Adi Shamir, and David Wagner. Time-lock puzzles
and timed-release crypto. Technical report, Massachusetts Institute of
Technology, 1996.

A Lower Bound on Round Complexity in the Fpuz
Model

Dolev and Strong first showed that assuming authentication, any determin-
istic Byzantine agreement protocol tolerating f faults (where n > f + 1)
must have at least f + 1 messaging rounds [13].

Our lower bound proof is inspired a simple bivalency-based proof of this
theorem [1]. We basically must show that having the additional puzzle
functionality does not change this lower bound, even though this additional
functionality can be used to further restrict behavior of the adversary, since
the adversary can only solve a limited number of computational puzzles per
round.

For the purpose of our lower bound, we limit our concern only to compli-
ant protocols (as defined below) that are effectively deterministic. We must
carefully explain what this means in our setting, since the Fpuz functionality

21

itself is randomized and our positive results make use of digital signature
algorithms.

Definition 6. A compliant protocol in the Fpuz-hybrid model must ignore
the security parameter and treat the public/private keys, digital signatures,
and puzzle solutions as opaque strings. Protocols may transmit opaque strings
along communication channels and include them as input to oracle queries
and digital signature algorithms, but cannot otherwise inspect or modify their
bits.

This definition in particular rules out protocols that use the signature
algorithm or interaction with Fpuz in order to perform coin flips.

Theorem 2. Say n− f ≥ 2. (Otherwise, ISC is trivial.) Any deterministic
ISC protocol in the Fpuz-hybrid model that tolerates f faults must have at
least f + 1 rounds of communication.

Proof. For the purpose of proving our lower bound, we limit ourselves to
constructing adversaries that are also compliant in the same sense, and in
fact only need to crash processes (rather than induce Byzantine behavior).
Furthermore, our adversaries crash at most one process per round.

We will state a lemma that given these constraints, the same reasoning
used in deterministic models applies equally to compliant protocols in our
model with high probability. 4 First we define some notation useful for
describing executions in our model.

A partial run is a finite sequence of system configurations (including the
input values to each process and the internal state of each process and the
adversary) that transition according to our model. The last element in an
r-round partial run is the system configuration at the end of r rounds. Note
that since our execution model is randomized (due to coin flips taken by
the puzzle functionality and digital signature scheme), given an initial con-
figuration our model defines a probability distribution over r-round partial
runs.

We define an equivalence relation among partial runs in our model. Two
partial runs are equivalent if they are equal up to a bijective transformation
of keys, signatures, and puzzle solutions. A partial run s can be represented
as a pair (state, {oi}), where {oi, } is the sequence of every occurrence of

4Note that an alternative to invoking the above lemma would be to redefine digital
signatures and our puzzle functionality to inherently use opaque “tags” rather than con-
crete bit-strings - indeed this is the approach taken in [13]. We have chosen our approach
because it allows us to use a simple and concrete representation of the model for presenting
our positive results.

22

an opaque string in a configuration and state is the sequence of system
configurations with each occurrence of an opaque string taken out (and
replaced with a symbol opaque). Another partial run s′ is equivalent to s
if s′ = (state, {F (oi)}) for some bijective function F : {0, 1}∗ → {0, 1}∗.
This implies that two partial runs are equivalent if their initial conditions
are the same, any decisions made by correct processes are the same, any
processes that have crashed did so at the same time, and the content of
the internal states of each process and messages delivered differ only in the
representation of the opaque strings associated with signatures and puzzles.

Lemma 5. Consider a compliant protocol and compliant adversary (as per
Definition 6). Then for each round r, there exists a single equivalence class
of r-round partial runs (which we call the canonical partial run) such that
with high probability, a partial run sampled from the distribution of r-round
partial runs belongs to this equivalence class.

Proof. As the protocols make only a (polynomially) bounded number of
queries (to Fpuz or to digital signature routines), with high probability the
processes do not generate colliding keys or puzzle solution strings, nor does
any process “guess” a puzzle solution it has not received from Fpuz or the
communication channel.

Hereafter, we are only concerned with the canonical partial runs (rather
than partial runs that involve some unlikely string collision), and therefore
the term partial run should be taken to mean the class of canonical partial
runs.

Let sr be an r-round partial run. We say that sr+1 is a one-round
extension of sr if there exists some adversary A such that sr and sr+1 are
respectively the canonical r-round and r + 1-round partial runs given A. A
partial run s is an extension of sr if it is a partial run obtained by extending
sr one round at a time and in which all processes have decided.

Having established a basis for applying deterministic reasoning to our
model, the lower bound proof can be carried out with simple modifications
to the bivalency proof in [1]. We describe these necessary modifications and
then refer the reader to the text of [1] for the remainder of the proof.

The lower bound of [13, 1] applies to binary consensus, a somewhat
different problem than ISC in which processes must decide on a single bit).
We can imagine that each process decides on 2λ bits, one for each possible
input value (at most n of these may be set to 1). The proof in [1] relies on
a notion of valences, which we now define in our setting. A partial run sr
is v-valent (for some value v) if in all extensions of sr, the correct processes

23

decide on a set S where v ∈ S, and v-valent if in all extensions v /∈ S. When
v is clear from context, we abbreviate v-valent with 1-valent and v-valent in
order to more closely match the notation in [1]. A partial run is univalent
(with respect to v) if it is either v-valent or v-valent, and bivalent if it is
neither v-valent nor v-valent.

The proof in [1] involves constructing pairs of executions that are in-
distinguishable to some of the processes in the network. We next prove a
lemma that guarantees that these constructions remain indistinguishable,
even in our setting where the processes may additionally interact with Fpuz.

Lemma 6. For r < f , let sr be an r-round partial run in which at most
r processes have crashed. Consider the following two one-round extensions
of sr: sr+1, in which one process crashes before delivering its message to
some process p, and s′r+1 in which the same process crashes after delivering
its message to p. Let s′ and s denote the runs extending s′r+1 and sr+1

respectively in which p crashes at the beginning of the next round (before
sending any messages). (Note that in the special case r+1 = f , the processes
terminate so the crash is unnecessary.) Let p′ (distinct from p) be a correct
process. Process p′ cannot distinguish between runs s and s′ (i.e., its behavior
in both runs is the same).

Proof. In the case of an ordinary message passing network, this is immediate,
since p is the only process that observes any difference in round r + 1 and
p crashes before it can communicate to any other process. However in our
setting we must prove this holds in spite of the additional Fpuz functionality,
since in round r + 1, process p may affect Fpuz by solving a puzzle before
crashing. Without loss of generality, assume that in run s, p solves a puzzle
puz and in s′ solves a puzzle puz′. However, note that a) Fpuz records a
puzzle solution sol randomly sampled from a space of size 2λ, b) the recorded
solution is returned only to process p, which crashes before it can transmit
any information about it to another process, and c) the other processes may
only observe the difference through interaction with Fpuz by calling sending
(check, puz, sol) or (check, puz′, sol) (i.e., by correctly guessing the puzzle
solution). As the processes only make a polynomial number of queries, this
occurs with negligible probability.

Now that we have defined the notions of (canonical) partial runs and va-
lences in our setting and established conditions under which indistinguisha-
bility holds despite the additional Fpuz, our theorem follows from the proof
in [1] verbatim.

24

B ISC in the Parallelizable Proof-of-Work Model

While in our main result we have considered inherently sequentially puzzles
(i.e., puzzles that take the adversary an entire round to solve, even with all
f corrupted processes working together in parallel), we are also interested
in modeling puzzles that the adversary can solve faster using its parallel
resources. Equivalently, we may be interested in modeling an adversary
that can compute sequentially f times faster than a corrupt process.

We can model this via a modified functionality Fparpuz, which differs
from Fpuz in that it allows the adversary to make multiple rounds of inter-
action with the functionality within a single communication round.

• Receive from each uncorrupted party Pi an input (solve, x(i)). (Note
that only a single value is allowed.) For i = 1, . . . , n, first check if
a pair (x(i), h(i)) has been stored in T , and if so return h(i) to Pi;
otherwise, choose uniform h(i) ∈ {0, 1}λ, return h(i) to Pi, and store
(x(i), h(i)) in T .

• For up to f iterations, a single corrupted party Pi may request (solve, xi),
and the input is processed immediately as above.

• Receive from each party Pi an arbitrary-length vector (check, (x
(i)
1 , h

(i)
1), . . .).

Return to each party Pi the vector of values (b
(i)
1 , . . .) where b

(i)
j = 1

iff (x
(i)
j , h

(i)
j) ∈ T .

As before, we allow parties to call Fparpuz with a check instruction any
(polynomial) number of times. Each of the honest parties is allowed to
call Fparpuz with a solve instruction only once per communication round;
moreover, all of the solve instructions for a round must be sent before any
honest party receives its puzzle solution. However, the corrupted parties can
call Fparpuz, one after another in sequence, up to a total of f times within
an overall communication round.

Protocol intuition for the Fparpuz-hybrid model. Our protocol pro-
ceeds in two overall phases. In the first phase, called the “mining” phase,
each correct process constructs a chain of O(f2) puzzle solutions associated
with that process’s public key. In the second phase, the “communication”
phase, the processes publish their puzzle chains and propagate the puzzle
chains they receive from others. To ensure agreement, each process also
signs and relays signatures according to the Dolev-Strong algorithm. Sig-
natures corresponding to public keys without associated puzzle chains are
ignored. The communication phase ends after f + 1 rounds.

25

Intuitively, the protocol works because every correct process is able to
create a valid puzzle chain for its own key, yet the corrupt processes are only
able to create at most f puzzle chains before the protocol terminates.

Definition 7. A length-` puzzle chain is defined inductively as follows:

• A puzzle graph g is a length-1 puzzle chain if children(g) = ∅.
• A puzzle graph g is a length-(` + 1) puzzle chain if children(g) = {s},
pk(s) = pk(g), and s is a length-` puzzle chain.

The protocol is defined in Figure 3.

Lemma 7. For every correct process Pi, its identity pki is accepted by every
other correct process in round 2.

Proof. This follows immediately from the protocol definition. In round 1 of
the communication phase, each correct process Pi broadcasts its own puzzle
chain and signature on pki, and every other process receives these messages
and accepts pki in the next round.

Lemma 8. If a correct process Pi accepts a key pk in round r < f + 2 (of
the communication phase), then every correct process accepts pk in round
r + 1 or earlier.

Proof. The proof is by induction on the round number r ≥ 1. For the base
case, when r = 1 observe that each correct process Pi only accepts its own
key pki, and by Lemma 7 every other correct process accepts pki in round
2.

Suppose the lemma holds at round r, and suppose a correct process Pi
accepts pk in round r.

First, note that in round r + 1, every other correct process receives at
least r signatures over pk from distinct previously-accepted keys (see the
proof of Lemma 3).

Second, observe that Pi publishes a length-rmine chain g for pk in round
r, and therefore every other correct party receives g in round r + 1. Thus,
every correct process accepts pk in round r + 1, completing the proof by
induction.

Lemma 9. Among the correct processes, at most n distinct keys are ever
accepted.

26

Proof. Each accepted key requires a length-rmine chain, and each node in the
chain must be associated with a consistent key. Each uncorrupted process
only solves puzzles associated with its own key. Since the corrupted processes
can solve (in total) at most f puzzles per round, they can solve at most
f(rmine + f + 1) puzzles before the protocol terminates. Therefore, at most
bf(rmine + f + 1)/rminec = f + bf · (f + 1)/rminec = f length-rmine chains
can be computed by corrupt processes. Therefore, length-rmine chains are
found corresponding to at most n distinct keys.

Theorem 4. There exists a polynomial-time ISC protocol with O(f2) rounds
of communication, secure against f < n number of corrupted parties.

Proof. The proof of this theorem is identical to that of Theorem 1, substi-
tuting Lemmas 7,8, and 9 for Lemmas 2,3, and 4.

27

Real-world (Fpuz-hybrid) Execution with adversary A

1. (a) Each party Pi starts with the security parameter λ, input xi,
and random input ri.

(b) The adversary A starts with λ, random input r0, input z that
includes a set C ⊂ [n] of corrupted parties and their inputs
{xi|i ∈ C}, and additional auxiliary input.

2. Initialize a round counter, l := 0.

3. As long as there exists an uncorrupted party that did not halt, repeat:

(a) Each uncorrupted party Pi, i /∈ C, performs a compute phase
during which it may interact with an instance of Fpuz using its
oracle tape, subject to the constraint that it may make at most
one oracle query of the form (solve, x) in this round. Note
that the responses to these queries are not delivered until every
query for this round has been made.

(b) Each uncorrupted party Pi, i /∈ C, generates {mi,l}, where each
mi,l ∈ {0, 1}∗ is a (possibly empty) message intended to be
published during this round.

(c) The adversary A learns {mi,l|i ∈ [n]}, and generates {m†j,l|j /∈
C}, a set of messages to be delivered just to Pj . During this
phase, the adversary may make up to |C| oracle queries of the
form (solve, x).

(d) Each uncorrupted party Pi, i /∈ C, receives the messages

sort(m†i,l ∪ {mj,l|j /∈ C}).
(e) l := l + 1.

4. Each uncorrupted party Pi, i /∈ C, as well as A, generates an output.
The output of the corrupted parties is set to ⊥.

Figure 2: A summary of the nonadaptive Fpuz-hybrid computation.

28

An O(f2)-Round ISC Protocol using Parallelizable Puzzles

Initially, each process Pi generates a signing keypair (ski, pki) according
to some digital signature scheme, where pki is the concatenation of the
underlying public key and the ith input value. Hereafter we refer to pki as
the identity of process Pi. The subroutines solve and signi are the same
as in 1.

• Mining Phase. In the first round, each process Pi constructs a
puzzle graph

gi,1 := solve(pki, ∅)

where pki denotes the sender’s identity, and the message includes
an empty history. In each of the following rounds, up to round
rmine = f(f + 1) + 1, each process extends its chain by one puzzle
solution

gi,r := solve(pki, {gi,r−1}).

The mining phase ends after rmine rounds. We abbreviate gi,rmine

by gi.

• Communication Phase. Initially, in round 1 of the communication
phase, each process Pi

1. sets accepted := {pki},
2. publishes gi,

3. and publishes signi(pki).

Thereafter, in each round 2 ≤ r ≤ f + 2, process Pi

1. Receives a set of signed messages S, such that ∀s ∈ S,
pk(s) ∈ accepted and s has a distinct pk and m (i.e., ∀s′ ∈
S\{s}, (pk(s),msg(s)) 6= (pk(s′),msg(s′))). Invalid or redun-
dant signatures are discarded.

2. Receives a set of length-rmine graphs G such that ∀g ∈ G,
pk(g) /∈ accepted, and each g has a distinct id (i.e., ∀g′ ∈
G\{g}, pk(g) 6= pk(g′)). Redundant or invalid puzzle chains
are discarded.

3. For each g ∈ G, let Sg := {s ∈ S|id(s) = id(g)}. If |Sg| ≥ r,
then Pi:

(a) sets accepted := accepted ∪ {pk(g)},
(b) publishes g,

(c) and publishes Sg ∪ {signi(pk(g))}.
At the end of round f + 2 (of the communication phase), process Pi

outputs the set accepted.

Figure 3: Our ISC protocol for the Fparpuz-hybrid model.

29

