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Abstract. A differential attack tries to capture the round keys corre-
sponding to the S-boxes activated by a differential. In this work, we
show that for a fixed output difference of an S-box, it may not be pos-
sible to distinguish the guessed keys that have a specific difference. We
introduce these differences as differential factors. Existence of differential
factors can reduce the time complexity of differential attacks and as an
example we show that the 10, 11, and 12-round differential-linear attacks
of Dunkelman et al. on Serpent can actually be performed with time
complexities reduced by a factor of 4, 4, and 8, respectively.
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1 Introduction

Confusion layer of cryptographic algorithms mostly consists of substitution boxes
(S-boxes) and in order to provide better security against known attacks, S-boxes
are selected depending on their cryptographic properties: Low non-linear and dif-
ferential uniformity [30] provide resistance against linear and differential crypt-
analysis, respectively; high algebraic degree and branch number provides resis-
tance against algebraic [14] and cube [16] attacks; lack of undisturbed bits [36]
provides resistance against truncated [20], impossible [2], and improbable [11]
differential cryptanalysis. Moreover, recently it was shown in [9] that additive
shares can be used in threshold implementations to provide resistance against
side-channel attacks like differential power analysis [21] and the number of shares
affects the performance.

In this work, we show that a fixed S-box output difference µ may remain in-
variant when the possible input pairs are XORed with some λ. We define such λ
as a differential factor for the output difference µ and we show that such a prop-
erty of an S-box can significantly reduce the attacked key space in a differential
attack which results in an attack with reduced time complexity. Our analysis
of S-boxes that are used in cryptographic algorithms show that differential fac-
tors are observed mostly in small S-boxes. We observed that 73% of all possible
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search Council of Turkey (TÜBİTAK) under the grant 112E101 titled ”Improbable
Differential Cryptanalysis of Block Ciphers”.



bijective 3 × 3 S-boxes contain differential factors. Moreover, 4 × 4 S-boxes of
DES [28], GOST [38], LBLOCK [40], LED [18], LUFFA [12], NOEKEON [15],
Piccolo [35], Present [11], RECTANGLE [41], SARMAL [39], SERPENT [1],
spongent [10] and Twofish [33] contain differential factors.

Lightweight cryptography has become very vital with the emerging needs
in sensitive applications like RFID (Radio-frequency identification) systems and
sensor networks. For these types of special purposes, there is a strong demand
in designing secure lightweight cryptographic modules. Since most of such light-
weight algorithms have a hardware oriented design, they use small S-boxes. Thus,
differential factors pose a threat to lightweight block ciphers. We indicate the
importance of this new S-box criteria on cryptanalysis by reducing the time
complexities of the 10, 11, and 12-round differential-linear attacks of Dunkel-
man et al. on Serpent by a factor of 4, 4, and 8, respectively. By changing
the differential, we further modify these attacks to marginally reduce the data
complexity. We compare our improved attacks on Serpent with the previous
ones in Table 1.

2 S-box Evaluation

S-boxes are commonly used as non-linear components for symmetric cryptosys-
tems and hash functions. Properties of S-boxes provide resistance against many
cryptanalytic techniques.

Differential Uniformity

Definition 1. For a mapping S : Fn
2 → Fm

2 , and all ∆i ∈ Fn
2 and ∆o ∈ Fm

2 , let
t be the number of elements x that satisfy S(x⊕∆i) = S(x)⊕∆o. Then t/|2n| is
the differential probability of the characteristic S(∆i → ∆o). The table that lists
all t values for every i, o ∈ X is called the Difference Distribution Table (DDT).

The maximum value in a DDT, excluding the zero difference case, is called
differential uniformity. S-box designers aim to minimize differential uniformity
since differential cryptanalysis [8] uses characteristics with high differential prob-
ability.

Non-linear Uniformity

Definition 2. For a mapping S : Fn
2 → Fm

2 , and all a ∈ Fn
2 and b ∈ Fm

2 , let the
numbers Lf (a, b) be defined as

Lf (a, b) := |#{x ∈ Fn
2 |a · x = b · S(x)} − 2n−1|

where a · b denotes the parity of the bit-wise product of a and b. Then S is called
non-linearly l-uniform if Lf (a, b) ≤ l for all a and b with b 6= 0.

S-box designers aim to minimize the non-linear uniformity l since linear crypt-
analysis [26] uses linear approximations with high bias.



Table 1: Summary of attacks on Serpent. Note that it is claimed in [27] that
the multidimensional linear attacks of [29] may not work as claimed depending
on the linear hull effect. If the claims are correct, then our use of differential
factors in the attacks of [17] becomes the best attacks for this cipher.
En - Encryptions, MA - Memory Accesses, B - bytes, CP - Chosen Plaintexts,
KP - Known Plaintexts.

#Rounds Attack Type Key Size Data Time Memory Advantage Success Reference

6 Meet-in-the-middle 256 512 KP 2247 En 2246 B - - [22]
6 Differential All 283 CP 290 En 240 B - - [22]
6 Differential All 271 CP 2103 En 275 B - - [22]
6 Differential 192, 256 241 CP 2163 En 245 B 124 - [22]
7 Differential 256 2122 CP 2248 En 2126 B 128 - [22]
7 Improbable All 2116.85 CP 2117.57 En 2113 B 112 99.9% [37]
7 Differential All 284 CP 285 MA 256 B - - [4]
10 Rectangle 192, 256 2126.3 CP 2173.8 MA 2131.8 B 80 - [6]
10 Boomerang 192, 256 2126.3 AC 2173.8 MA 289 B 80 - [6]
10 Differential-Linear All 2101.2 CP 2115.2 En 240 B 40 84% [17]
10 Differential-Linear All 2101.2 CP 2113.2 En 240 B 38 84% Sect. 4.4
10 Differential-Linear All 2100.55 CP 2116.55 En 240 B 42 84% Appx. B
11 Linear 256 2118 KP 2214 MA 285 B 140 78.5% [3]
11 Multidimensional Linear a All 2116 KP 2107.5 En 2108 B 48 78.5% [29]
11 Multidimensional Linear b All 2118 KP 2109.5 En 2104 B 44 78.5% [29]
11 Nonlinear 192, 256 2120.36 KP 2139.63 MA 2133.17 B 118 78.5% [27]
11 Filtered Nonlinear 192, 256 2114.55 KP 2155.76 MA 2146.59 B 132 78.5% [27]
11 Differential-Linear 192, 256 2121.8 CP 2135.7 MA 276 B 48 84% [17]
11 Differential-Linear 192, 256 2121.8 CP 2133.7 MA 276 B 46 84% Sect. 4.4
11 Differential-Linear 192, 256 2121.15 CP 2137.05 MA 276 B 50 84% Appx. B
12 Multidimensional Linear c 256 2116 KP 2237.5 En 2125 B 174 78.5% [29]
12 Differential-Linear 256 2123.5 CP 2249.4 En 2128.5 B 160 84% [17]
12 Differential-Linear 256 2123.5 CP 2246.4 En 2128.5 B 157 84% Sect. 4.4

a In [27], it is claimed that the correct data complexity of this attack is 2125.81 KP
and the time complexity is 2101.44 En +2114.13 MA.

b In [27], it is claimed that the correct data complexity of this attack is 2127.78 KP
and the time complexity is 297.41 En +2110.10 MA.

c In [27], it is claimed that the correct data complexity of this attack is ≥ 2125.81 KP
and the time complexity is 2229.44 En +2242.13 MA.

Branch Number

Definition 3. [32] The branch number of an n× n S-box is

BN = min
a,b6=a

(wt(a⊕ b) + wt(S(a)⊕ S(b))),

where a, b ∈ X and wt(a) is the Hamming weight of the bit vector a.

For a bijective S-box, the branch number is at least 2 and this property of
S-boxes is closely related to algebraic [14] and cube attacks [16].

Number of Shares S-boxes are also studied for their security against side-
channel attacks. Side-channel attacks are based on the information leakage dur-



ing the computation of the hardware implementation of a cryptographic algo-
rithm. For instance, differential power analysis (DPA) [21] exploits the corre-
lation between the instantaneous power consumption of a device and the in-
termediate results of a cryptographic algorithm. One countermeasure against
side-channel attacks is threshold implementation in which a variable is split into
additive shares. Bilgin et al. analyzed the number of shares of S-boxes by catego-
rizing all 3×3 and 4×4 S-boxes using affine equivalence classes and investigated
the cost of this kind of protection in [9].

Undisturbed Bits Recently in [36], undisturbed bits are introduced as prob-
ability 1 truncated differentials for S-boxes. A 13-round improbable differential
attack on Present that uses undisturbed bits is provided in [36] and it was
shown that the attack reduces to 7 rounds when the S-box is replaced with a
similar one that lacks undisturbed bits. Moreover, it is shown that every bijec-
tive 3 × 3 S-box contains undisturbed bits and a list of ciphers were provided
in [36] whose 4× 4 S-boxes contain undisturbed bits. S-boxes with undisturbed
bits should be avoided to increase security against truncated, impossible, and
improbable differential cryptanalysis.

3 Differential Factors

A differential attack on block ciphers tries to capture the round keys correspond-
ing to the S-boxes activated by a differential. However, output difference of the
S-box operation may be invariant when the round key is XORed with some
specific value. Such a case would prevent the attacker from fully capturing the
round key. This observation is similar to the linear factors of block ciphers but
here we are focusing on the S-box instead of some rounds of the cipher and we
focus on key differences.

Definition 4 ([13]). A block cipher is said to have a linear factor if, for all
plaintexts and keys, there is a fixed non-empty set of key bits whose simultaneous
complementation leaves the XOR sum of a fixed non-empty set of ciphertext bits
unchanged.

In order to have a similar property for S-boxes in the concept of differential
cryptanalysis, we define the differential factors as follows:

Definition 5. Let S be a function from Fn
2 to Fm

2 . For all x, y ∈ Fn
2 that satisfy

S(x) ⊕ S(y) = µ, if we also have S(x ⊕ λ) ⊕ S(y ⊕ λ) = µ, then we say that
the S-box has a differential factor λ for the output difference µ. (i.e. µ remains
invariant for λ).

When undisturbed bits are introduced in [36], the undisturbed bits of S-boxes
and their inverses are considered together because in substitution permutation
networks (SPNs), the inverse of an S-box is used for decryption. For instance,
a 6-round impossible differential for Present is obtained in [36] by using both



undisturbed bits of its S-box and the inverse of it. In the following theorem,
we prove that the number of differential factors of an S-box is the same with
the number of differential factors of its inverse. Moreover, it also provides the
differential factors of the inverse S-box when we know the differential factors of
the S-box. Hence, there is no need to check the differential factors of the inverse
of S-boxes.

Theorem 1. If a bijective S-box S has a differential factor λ for an output
difference µ, then S−1 has a differential factor µ for the output difference λ.

Proof. Let us assume that S has a differential factor λ for an output difference
µ. If S−1(c1) ⊕ S−1(c2) = λ for some c1 and c2, then we need to show that
S−1(c1 ⊕ µ)⊕ S−1(c2 ⊕ µ) = λ.

Let c1⊕µ = S(p1) for some p1, then we have S(S−1(c1)⊕λ)⊕S(p1⊕λ) = µ
since λ is a differential factor of S for µ. Thus, we have

S−1(c1 ⊕ µ)⊕ S−1(c2 ⊕ µ) = S−1(S(p1))⊕ S−1(S(S−1(c1)⊕ λ)⊕ µ)
= p1 ⊕ S−1(S(p1 ⊕ λ))
= p1 ⊕ p1 ⊕ λ
= λ

ut

Theorem 2. If λ1 and λ2 are differential factors for an output difference µ,
then λ1 ⊕ λ2 is also a differential factor for the output difference µ. i.e. All
differential factors λi for µ form a vector space.

Proof. We are going to use the following change of variables: x′ = x ⊕ λ1 and
y′ = y⊕ λ1. For all (x, y) pairs satisfying S(x)⊕ S(y) = µ, we have S(x⊕ λ1)⊕
S(y ⊕ λ1) = µ and S(x⊕ λ2)⊕ S(y ⊕ λ2) = µ. Thus, we have

S(x⊕ λ1 ⊕ λ2)⊕ S(y ⊕ λ1 ⊕ λ2) = S(x′ ⊕ λ2)⊕ S(y′ ⊕ λ2) = µ

ut

In this section we used two variables x and y since they are directly linked
to the input pairs in differential cryptanalysis. However, same definition and
theorems can be given using a single variable for bijective S-boxes and we provide
them in Appendix A.

3.1 Differential Factors and Cryptanalysis

We start by recalling the definition of advantage.

Definition 6 ([34]). If an attack on an m-bit key gets the correct value ranked
among the top r out of 2m possible candidates, we say the attack obtained an
(m− log(r))-bit advantage over exhaustive search.



Theorem 3. In a block cipher let an S-box S contain a differential factor λ for
an output difference µ and the partial round key k is XORed with the input of S.
If an input pair provides the output difference µ under a partial subkey k, then
the same output difference is observed under the partial subkey k⊕λ. Therefore,
during a differential attack involving the guess of a partial subkey corresponding
to the output difference µ, the advantage of the cryptanalyst is reduced by 1 bit
and the time complexity of this key guess step is halved.

Proof. In a differential attack for any key k, k and k ⊕ λ would get the same
number of hits since λ is a differential factor. Hence the attacker cannot dis-
tinguish half of the guessed keys with the other half. Therefore during the key
guessing step, the attacker does not need to guess half of the keys. Thus, the
time complexity of this step is halved. ut

Corollary 1. During a differential attack involving the guess of a partial subkey
corresponding to the output difference µ of an S-box that has a vector space of
differential factors of dimension r for µ, the advantage of the cryptanalyst is
reduced by r bits and the time complexity of the key guess step is reduced by a
factor of 2r.

Proof. Follows directly from Theorem 2 and Theorem 3. ut

3.2 Relating Differential Factors to Other Properties of S-boxes

Since we are considering non-zero µ and λ, a 3 × 3 S-box can contain at most
7 · 7 = 49 differential factors. In such a case, an S-box provides no security at
all. In [36], it was shown that every bijective 3 × 3 S-box contains undisturbed
bits. However, this is not the case for differential factors. Among the 8! = 40320
different bijective 3× 3 S-boxes, we observed that 10752 of them do not contain
any differential factor. Moreover, 18816 of them contain 9, 9408 of them contain
25, and 1344 of them contain 49 differential factors.

We further observed that the 3× 3 S-boxes that do not have any differential
factor also have 6 undisturbed bits, which is the smallest number of undisturbed
bits a 3× 3 S-box can have. Thus, for the case of 3× 3 S-boxes, it is enough to
check differential factors.

In our literature search we found 102 unique 4 × 4 S-boxes that are used in
block ciphers and hash functions and observed that 40 of them have 74 differ-
ential factors in total, without counting the differential factors of their inverses.
These are the S-boxes of DES, GOST, LBLOCK, LED, LUFFA, NOEKEON,
Piccolo, Present, RECTANGLE, SARMAL, Serpent, spongent and Twofish
and they are provided in Table 2.

During our analysis, we observed that the existence of differential factors for
an S-box is closely related to the number of nonzero entries in the columns of
the DDT table. For instance, for a differentially 4-uniform 4× 4 S-box, which is
the best case for S-boxes of this size, we observed the following phenomenon:



Conjecture 1. A differential 4-uniform 4× 4 S-box S has a differential factor for
the output difference µ if and only if the µ-th column of the DDT table of S
consists of only zeros and fours.

The only 8×8 S-boxes we found with differential factors are the two S-boxes
of the initial version of the Crypton cipher [24]. They contain 15 differential
factors each and they are provided in Table 2. These S-boxes are replaced in the
revised version of the Crypton cipher [25] and the new S-boxes do not contain
any differential factors.

4 Improved Differential-Linear Attacks on SERPENT

4.1 SERPENT

Serpent was designed by Anderson, Biham and Knudsen in 1998. It was sub-
mitted to the AES contest and came second after Rijndael. It has a block size
of 128 bits and accepts any key size of length 0 to 256 bits. It is a 32-round
SPN, where each round consists of key mixing, a layer of S-boxes and a linear
transformation.

The 128-bit input value before round i is denoted by B̂i, i ∈ {0, . . . , 31}. Each
B̂i is composed of four 32-bit words X0, X1, X2, X3 where X0 is the leftmost
word.

Three round operations are specified as follows:

1. Key Mixing: At each round Ri, a 128-bit subkey Ki is XORed with the
current intermediate data B̂i.

2. S-boxes: At each round, Ri uses a single S-box Sj , where i ≡ j (mod 8) and
i ∈ {0, . . . , 31}, 32 times in parallel. In this paper, we use the bitsliced version
of Serpent. For example, in the first round the first copy of S0 takes the
least significant bits from X0, X1, X2, X3 and returns the output to the same
bits. Thus, we obtain 32 4-bit slices referred as bi’s, where i ∈ {0, . . . , 31}
and b0 is the right most slice.

3. Linear Transformation: The four 32-bit words X0, X1, X2, X3 are linearly
mixed by the following linear operations:

X0 := X0 ≪ 13
X2 := X2 ≪ 3
X1 := X1 ⊕X0 ⊕X2

X3 := X3 ⊕X2 ⊕ (X0 � 3)
X1 := X1 ≪ 1
X3 := X3 ≪ 7
X0 := X0 ⊕X1 ⊕X3

X2 := X2 ⊕X3 ⊕ (X1 � 7)
X0 := X0 ≪ 5
X2 := X2 ≪ 22

B̂i+1 := X0, X1, X2, X3

where ≪ denotes the left rotation operation and � denotes the left shift
operation.



Table 2: Differential Factors of Cryptographic Algorithms

S-box λ µ
Crypton S0, S1 10x 10x
Crypton S0, S1 20x 20x
Crypton S0, S1 30x 30x
Crypton S0, S1 40x 40x
Crypton S0, S1 50x 50x
Crypton S0, S1 60x 60x
Crypton S0, S1 70x 70x
Crypton S0, S1 80x 80x
Crypton S0, S1 90x 90x
Crypton S0, S1 A0x A0x
Crypton S0, S1 B0x B0x
Crypton S0, S1 C0x C0x
Crypton S0, S1 D0x D0x
Crypton S0, S1 E0x E0x
Crypton S0, S1 F0x F0x
DES1 Row3 Fx 2x
DES1 Row3 Fx 8x
DES1 Row3 Fx Ax

DES2 Row1 6x Ax

DES2 Row2 2x 7x
DES2 Row2 4x 7x
DES2 Row2 6x 7x
DES2 Row3 1x Ax

DES2 Row3 6x Ax

DES2 Row3 7x Ax

DES3 Row3 2x 6x
DES3 Row3 8x 6x
DES3 Row3 Ax 6x
DES3 Row4 3x 1x
DES3 Row4 3x 6x
DES3 Row4 3x 7x
DES3 Row4 3x 8x
DES3 Row4 3x 9x
DES3 Row4 1x Ex

DES3 Row4 2x Ex

DES3 Row4 3x Ex

DES3 Row4 3x Fx

DES5 Row4 2x Fx

DES6 Row1 9x Dx

DES6 Row2 Bx 4x
DES6 Row4 6x 6x
DES7 Row2 4x Dx

DES7 Row2 9x Dx

DES7 Row2 Dx Dx

DES7 Row4 4x 3x

S-box λ µ
DES7 Row4 1x Cx

DES7 Row4 4x Cx

DES7 Row4 5x Cx

DES7 Row4 4x Fx

DES8 Row2 6x 7x
DES8 Row2 Bx 8x
GOST S1 5x 3x
GOST S4 Dx 5x
GOST S6 9x Bx

GOST S8 7x 5x
GOST S8 Ex 6x
LBLOCK S0, S8 Bx 1x
LBLOCK S0, S8 3x 4x
LBLOCK S1, S6, S7, S9 Bx 2x
LBLOCK S1, S6, S7, S9 3x 4x
LBLOCK S2 3x 1x
LBLOCK S2 Bx 2x
LBLOCK S3 Bx 1x
LBLOCK S3 3x 8x
LBLOCK S4, S5 Bx 1x
LBLOCK S4, S5 3x 2x
LUFFA 4x 1x
LUFFA 2x 2x
NOEKEON 1x 1x
NOEKEON Bx Bx

Piccolo 1x 2x
Piccolo 2x 5x
Present, LED 1x 5x
Present, LED Fx Fx

RECTANGLE 2x 4x
RECTANGLE Ex Cx

SARMAL S2 Fx 4x
SARMAL S2 Ax 9x
Serpent S0 4x 4x
Serpent S0 Dx Fx

Serpent S1 4x 4x
Serpent S1 Fx Ex

Serpent S2 2x 1x
Serpent S2 4x Dx

Serpent S6 6x 2x
Serpent S6 Fx Fx

spongent Fx 9x
spongent 1x Fx

Twofish q0 t1 6x 9x
Twofish q1 t2 5x Bx



32-round Serpent cipher may be described by the following equations:

B̂0 := P B̂i+1 := Ri(B̂i), i ∈ {0, . . . , 31} C := B̂32

where

Ri(X) = LT (Ŝi(X ⊕Ki)), i ∈ {0, . . . , 30}
R31(X) = Ŝ31(X ⊕K31)⊕K32

and Ŝi is the application of the S-box S(i (mod 8)) 32 times in parallel, and LT
is the linear transformation.

The key scheduling algorithm of Serpent takes a 256-bit key as an input. If
the key is shorter, then it is padded by a single bit of 1 and the remaining part
is padded by bits of 0 up to 256 bits. By using an affine recurrence, the 256-bit
key is used to construct 132 prekeys having length of 32 bits. The S-boxes are
used to produce 32-bit keywords from prekeys. The round keys are obtained by
combining these keywords.

4.2 Differential-Linear Cryptanalysis

In 1994, Langford and Hellman combined differential cryptanalysis with lin-
ear cryptanalysis and introduced differential-linear cryptanalysis [23]. They sug-
gested using a truncated differential with probability 1 and concatenating a linear
approximation with bias q (i.e. probability 1/2 + q) where the output difference
of the differential should contain zero differences in the places where input bits
masked in the linear approximation. This way one can construct differential-
linear distinguishers and the data complexity of the distinguisher is O(q−4) cho-
sen plaintexts. The exact number depends on the success probability and the
number of possible subkeys.

Moreover, Biham, Dunkelman and Keller showed that it is possible to con-
struct a differential-linear distinguisher where the differential holds with proba-
bility p < 1 and introduced enhanced differential-linear cryptanalysis [5]. They
also showed that the attack is still applicable if the XOR of the masked bits
of the differential is 1. In the enhanced method, the data complexity becomes
O(p−2q−4) chosen plaintexts.

4.3 Differential-Linear Attacks on SERPENT

In [7] a differential-linear attack on 11-round Serpent-192 and Serpent-256 is
presented. The attack combines the 3-round differential

∆ : 00000000000000000000000040050000→ 0??00?000?000000000?00?0??0??0?0

that has a probability of p = 2−7 with the 6-round linear approximation

Λ : 20060040000001001000000000000000→ 00001000000000005000010000100001

of [3] that has bias q = 2−27.



The first attack on 10-round Serpent-128 is also presented in [7] which is
obtained by removing the last round of this linear approximation. The data and
time complexities of these attacks are reduced in [17] by using the following
improvements:

1. Better analysis of the bias of the differential-linear approximation,
2. Better analysis of the success probability,
3. Changing the output mask.

Moreover in [17], these reduced complexities are used to extend the 11-round
attack and obtain the first 12-round attack on Serpent-256. In the following
section we further improve these differential-linear attacks by using the differen-
tial factors of Serpent’s S-boxes S0 and S1.

4.4 Improved Differential-Linear Attacks using Differential Factors

The differential-linear attacks of [7, 17] start at round 1 and the 3-round differ-
ential activates 5 S-boxes in this round. Two of the output differences of these
activated S-boxes are 4x and Ex which have differential factors as shown in Table
2. The authors guess every possible 20 subkey bits corresponding to these five
S-boxes but the attacker can only obtain 18-bit advantage for this subkey due to
Theorem 3 and there is no need to try half of the subkeys corresponding to these
two S-boxes having differential factors. Thus, the advantage of the differential-
linear attacks on 10, 11, and 12 rounds of Serpent are actually 38, 46, and 158
bits instead of 40, 48, and 160 bits, respectively. And again by Theorem 3, the
same attacks can be performed with time complexities reduced by a factor of 4.

Moreover, the 12-round attack of [17] adds one more round to the top of the
differential which affects every S-box at round 0 except the S-boxes 2, 3, 19, and
23 and guesses the 112 bits of the subkey corresponding to these active S-boxes.
However, by using the undisturbed bits of Serpent, we observed that the output
difference of the S-box 8 is exactly 4x. Since µ = 4x also has a differential factor
for S0, the attacker’s advantage reduces to 157 bits and the time complexity of
the attack further reduces by a factor of 2. Table 3 summarizes this 12-round
attack and highlights the differential factors and the undisturbed bits that are
used to reduce the time complexity.

We also observed that by replacing the 3-round differential with a more
probable one, we can perform these attacks with less data complexity and capture
four more subkey bits with a time complexity increased by a factor of 23.35. These
modified attacks are provided in Appendix B.

5 Conclusion

In this paper, we introduced a new S-box evaluation criteria that we call differ-
ential factors. Differential factors are mostly observed in small S-boxes like 3×3
and 4 × 4 which are preferred in hardware oriented lightweight block ciphers.



Table 3: 12-round differential-linear attack of [17]. Output differences µ that
contain differential factors, which are 4x and Ex for S1 and 4x for S0, are shown
in bold. Undisturbed bits are shown in italic.

Input

X0: ???? ???? 0??? 0??? ???? ???? ???? 00??
X1: ???? ???? 0??? 0??? ???? ???? ???? 00??
X2: ???? ???? 0??? 0??? ???? ???1 ???? 00??
X3: ???? ???? 0??? 0??? ???? ???? ???? 00??

S0

X0: ??0? 00?0 0000 0?00 00?0 0000 00?? 00??
X1: ??0? ???? 00?0 0??? 0??? ???0 0?00 0000
X2: 000? 00?? 0??0 0?00 ??00 ?001 0?00 0000
X3: ?0?? ?0?? 00?? 0??? ??0? 0??0 ?001 0000

LT

X0: ?000 0000 0000 0??0 0?00 ?000 0000 0000
X1: ?000 0000 0000 0??0 0?00 ?000 0000 0000
X2: ?000 0000 0000 0??0 0?00 ?000 0000 0000
X3: ?000 0000 0000 01?0 0?00 1000 0000 0000

S1

X0: 0000 0000 0000 0100 0000 0000 0000 0000
X1: 1000 0000 0000 0010 0100 0000 0000 0000
X2: 0000 0000 0000 0000 0100 1000 0000 0000
X3: 0000 0000 0000 0010 0100 0000 0000 0000

LT

X0: 0000 0000 0000 0000 0000 0000 0001 0000
X1: 0000 0000 0000 0000 0000 0000 0000 0000
X2: 0000 0000 0000 0000 0000 0000 1001 0000
X3: 0000 0000 0000 0000 0000 0000 0000 0000

9-Round Differential-Linear Characteristic ∆ ◦ Λ
Last Round

We show that differential factors may reduce the attacked key space in differen-
tial cryptanalysis and its variants which results in an attack with reduced time
complexity. As an example, we show that the differential factors of Serpent’s
S-boxes are overlooked in Dunkelman et al.’s differential-linear attacks on Ser-
pent and the attacked round keys cannot be fully recovered in these attacks.
We reduce the time complexities of these attacks by using the differential factors
and provide the best differential-linear attacks on this cipher.
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A Equivalent Definitions with only One Variable

When defining differential factors in Section 3, we used two variables x and y
since they are directly linked to the input pairs in differential cryptanalysis. One
can observe that the same definition and theorems of Section 3 for bijective
S-boxes can be given by using a single variable. We provide them as follows.

Definition 7. S has a differential factor λ for the output difference µ if

S−1(S(x)⊕ µ)⊕ λ = S−1(S(x⊕ λ)⊕ µ)

for all x.

Proposition 1. Definition 5 is equivalent to Definition 7.

Proof. Since S(x) ⊕ S(y) = µ, we have y = S−1(S(x) ⊕ µ). Similarly, y ⊕ λ =
S−1(S(x⊕ λ)⊕ µ) since S(x⊕ λ)⊕ S(y⊕ λ) = µ. XORing both equations gives
λ = S−1(S(x)⊕ µ)⊕ S−1(S(x⊕ λ)⊕ µ) and we are done. ut

Definition 8. S has a differential factor λ for the output difference µ if

S(S−1(x)⊕ λ)⊕ µ = S(S−1(x⊕ µ)⊕ λ)

for all x.

Proposition 2. Definition 5 is equivalent to Definition 8.

Proof. Let y = S(x). Then the Definition 7 becomes

S−1(y ⊕ µ)⊕ λ = S−1(S(S−1(y)⊕ λ)⊕ µ)

for all y. Applying the S operation on both sides of the equation gives

S(S−1(y ⊕ µ)⊕ λ) = S(S−1(y)⊕ λ)⊕ µ

for all y and we are done. ut

Thus, Propositions 1 and 2 prove the Theorem 1.

Proposition 3. If λ1 and λ2 are differential factors for an output difference
µ, then λ1 ⊕ λ2 is also differential factor for the output difference µ. i.e. All
differential factors λi for µ forms a vector space.



Proof. We have

S−1(S(x)⊕ µ)⊕ λ1 = S−1(S(x⊕ λ1)⊕ µ)

for all x, by Definition 7. And we have

S−1(S(x⊕ λ1)⊕ µ)⊕ λ2 = S−1(S(x⊕ λ1 + λ2)⊕ µ)

since λ2 is a differential factor. Thus, we get

S−1(S(x)⊕ µ)⊕ λ2 ⊕ λ2 = S−1(S(x⊕ λ1 ⊕ λ2)⊕ µ)

for all x and we are done. ut

B 3-Round Differentials with Higher Probability

The rounds of the 3-round differential used in the differential-linear attacks of
[7, 17] have probabilities 2−5, 2−1, and 1 but the authors observed experimen-
tally that this differential has probability 2−7 instead of 2−6. We observed that
there are 3-round differentials of Serpent with probability 2−5 that can be
combined with the same linear approximations. The rounds of these differential
have probabilities 2−5, 1, and 1 and for this reason, the theoretical and practi-
cal probabilities of these differentials are the same. However, these differentials
activate six S-boxes at the first round of the attack instead of five. So replacing
the original differential with one of them results in capturing four more subkey
bits but time complexity of the attacks also increases by a factor of 24.

Since the data complexity of a differential-linear attack is of O(p−2q−4) and
replacing the differential result in p = 2−5 instead of 2−7, one would expect the
modified attacks to have data and time complexities reduced by a factor of 24.
However, experiment results show that the gain in the modified attacks is at
most a factor of (2−0.32)2. This is because the transition between the original
differential and the linear approximation is far better than expected. For in-
stance, when the original 3-round differential is combined with a 1-round linear
approximation of bias 2−5, Dunkelman et al. experimentally verified that the 4-
round differential-linear path has bias 2−13.75, instead of 2 · 2−7 · (2−5)2 = 2−16.
We performed similar experiments on five different 3-round differentials with
probability 2−5 using 234 pairs and the results are summarized in Table 4.

We replace the original differential with the second one from Table 4 and
obtain new 10, and 11 round differential-linear attacks. This change provides a
4-round bias of 2−13,43 instead of 2−13.75. Thus the data and time complexity
gain in the modified attack is a factor of (2−0.32)2. This differential activates
six S-boxes instead of five so we capture four more subkey bits and the time
complexity is multiplied by 24. We summarize this modified attack in Table 5.
Note that there are two differential factors for this differential, too. Since the
rest of our modified attacks are almost identical to the attacks of [17], we refer
the interested reader to [17].



Table 4: 4-Round biases for 3-round differentials with probability 2−5 and 1-
round linear approximation with bias 2−5.

Input Difference #Active Standard
# X0 X1 X2 X3 (in Hexadecimal) S-boxes Bias Deviation
1 40000000 00000000 40000002 00000000 6 2−13,49 2−18.03

2 00000000 40000000 40000002 00000000 6 2−13,43 2−18.11

3 00000000 40000000 00000002 40000000 6 2−13,56 2−18.07

4 00000000 40000000 40000002 00000002 6 2−13,43 2−18.19

5 00000002 00000000 00000012 00000000 6 2−14,65 2−18.00

Table 5: 11-Round differential-linear attack with a 3-round differential of prob-
ability 2−5. Output differences µ = 4x and µ = Ex that contain differential
factors for S1 are shown in bold. Undisturbed bits are shown in italic.

Input

X0: 0??0 0000 0000 00?0 0000 ?00? 00?0 0000
X1: 0??0 0000 0000 00?0 0000 ?00? 00?0 0000
X2: 0??0 0000 0000 00?0 0000 ?00? 00?0 0000
X3: 0??0 0000 0000 0010 0000 ?00? 0010 0000

S1

X0: 0000 0000 0000 0010 0000 0000 0000 0000
X1: 0110 0000 0000 0000 0000 1001 0000 0000
X2: 0000 0000 0000 0000 0000 0001 0010 0000
X3: 0000 0000 0000 0000 0000 1001 0000 0000

LT

X0: 0000 0000 0000 0000 0000 0000 0000 0000

←−
−−
−−
−−
−−
−−

p = 2−5

X1: 0100 0000 0000 0000 0000 0000 0000 0000
X2: 0100 0000 0000 0000 0000 0000 0000 0010
X3: 0000 0000 0000 0000 0000 0000 0000 0000

S2

X0: 0000 0000 0000 0000 0000 0000 0000 0000
X1: 0000 0000 0000 0000 0000 0000 0000 0010
X2: 0100 0000 0000 0000 0000 0000 0000 0000
X3: 0000 0000 0000 0000 0000 0000 0000 0010

LT

X0: 0000 0000 0000 0000 0000 0000 0000 0000
X1: 0000 0000 0000 0000 0000 0000 0000 0000
X2: 0000 0000 1000 0000 0000 0000 0000 0000
X3: 0000 0000 0000 0000 0000 0000 0000 0000

S3

X0: 0000 0000 ?000 0000 0000 0000 0000 0000
X1: 0000 0000 ?000 0000 0000 0000 0000 0000
X2: 0000 0000 ?000 0000 0000 0000 0000 0000
X3: 0000 0000 ?000 0000 0000 0000 0000 0000

LT

X0: 00?0 0000 0000 ?000 0000 0??0 0?00 ?00?
X1: 0000 ?00? 0000 0000 0000 0000 00?0 0000
X2: 0000 0000 ?0?? 000? 0000 0000 000? 0?00
X3: 0?00 0000 0000 0000 0?00 0000 0000 00?0

S4

X0: 0??0 ?00? ?0?? ?00? 0?00 0??0 0??? ????
X1: 0??0 ?00? ?0?? ?00? 0?00 0??0 0??? ????
X2: 0??0 ?00? ?0?? ?00? 0?00 0??0 0??? ????
X3: 0??0 ?00? ?0?? ?00? 0?00 0??0 0??? ????

6-Round Linear Approximation Λ
Last Round


