
A Unified Approach to Idealized Model Separations
via Indistinguishability Obfuscation

Matthew D. Green∗ Jonathan Katz† Alex J. Malozemoff† Hong-Sheng Zhou‡

Abstract
It is well known that the random oracle model is not sound in the sense that there exist

cryptographic systems that are secure in the random oracle model but when instantiated by any
family of hash functions become insecure. However, all known separation results require the
attacker to send an appropriately crafted message to the challenger in order to break security.
Thus, this leaves open the possibility that some cryptographic schemes, such as bit-encryption,
are still sound in the random oracle model.

In this work we refute this possibility, assuming the existence of indistinguishability obfus-
cation. We do so in the following way. First, we present a random oracle separation for bit-
encryption; namely, we show that there exists a bit-encryption protocol secure in the random
oracle model but completely insecure when the random oracle is instantiated by any concrete
function. Second, we show how to adapt this separation to work for most natural simulation-
based and game-based definitions. Our techniques can easily be adapted to other idealized
models, and thus we present a unified approach to showing separations for most protocols of
interest in most idealized models.

1 Introduction

A common technique in cryptography is the use of idealized models, where one assumes oracle access
to some (ideal) process. Idealized models provide powerful mechanisms for constructing elegant
and simple protocols while still being able to provide some provable guarantees. Some common
examples of such models are the random oracle model [6], the generic group model [33], and more
recently, the generic graded encoding model [2, 10], among others.

Over the past several years, there has been significant interest in understanding the implications
of using these models when developing cryptographic protocols. Indeed, it is well-known that such
models do not match “reality” in the sense that there exist secure schemes in generic models
which are not secure when concretely instantiated. The first work to present such a result was
that of Canetti, Goldreich, and Halevi [14], who showed such a separation for the random oracle
model. Following this result, Dent showed a similar separation for the generic group model [19].
Likewise, a separation for the generic graded encoding model has been demonstrated by Brakerski
and Rothblum [10], who construct virtual black-box obfuscation in the generic graded encoding
model even though it is known that virtual black-box obfuscation is impossible in the standard
model [3].
∗Dept. of Computer Science, Johns Hopkins University. Email: mgreen@cs.jhu.edu
†Dept. of Computer Science, University of Maryland. Email: {jkatz,amaloz}@cs.umd.edu
‡Dept. of Computer Science, Virginia Commonwealth University. Email: hszhou@vcu.edu

1

However, each of the above separation results employs different techniques and only covers a
small subset of cryptographic schemes. For example, the random oracle separation presented by
Canetti et al. [14] does not apply to CPA-secure bit-encryption [20]. Thus, the existing results
have left open the possibility that certain protocol classes (such as bit-encryption) are not subject
to the counterexamples described in prior work. We note that this omission may have practical
implications due to the renewed interest in fully-homomorphic bit-encryption systems secure in the
random oracle model [17, 24]. More fundamentally, it leaves us with critical gaps in our theoretical
understanding of the security of cryptosystems analyzed in idealized models. Might these exceptions
provide a “loophole” through which certain protocols could be safely instantiated?

Our results. In this work, we refute this notion, assuming the existence of indistinguishability
obfuscation. Specifically, we show that if there exists a secure indistinguishability obfuscator (in the
standard model), then for a large class of cryptographic tasks there exists a variant of said protocol
which is secure in a given idealized model but completely insecure when concretely instantiated.

The core of our technique is using indistinguishability obfuscation to obfuscate a circuit which
hides some secret information needed to break security. Finding the proper input to reveal this
secret information in the idealized model is hard, whereas as soon as the idealized model is instan-
tiated by some concrete function, it is easy to construct a proper input.

Our specific results are as follows:

1. A counterexample for bit-encryption in the random oracle model. Our first result is to show
a separation for bit-encryption in the random oracle model (Section 3). In presenting our
counterexample we solve a longstanding open problem raised by Dent [19]. Simultaneously
we demonstrate the generality of our technique by observing that the same result cannot be
derived using the original Canetti et al. [14] or Maurer et al. [31] approaches, since these do
not work for bit-encryption.
Specifically, our result shows that if an indistinguishability obfuscation scheme exists in the
standard model, then for any length `, there exists an IND-CPA secure bit-encryption scheme
that is provably secure when a hash function h is instantiated using a random oracle, but
becomes insecure when h is instantiated using any concrete function which can be represented
in ≤ ` bits. To achieve this result we employ the obfuscation of a universal circuit, and
show how an adversary with knowledge of the description of h can win the IND-CPA game
with non-negligible probability. As in previous counterexamples, the proposed scheme breaks
catastrophically when instantiated using a concrete function by revealing the secret key for
the scheme.

2. A generic approach to constructing idealized model separations for cryptographic tasks. Next,
we generalize our initial result to show random oracle model separations for most natural
protocols secure under simulation-based or game-based definitions (Section 4). These results
can be easily adapted to apply to other idealized models, including the generic group model
(see Appendix A), the random permutation model, etc. Thus, we present a unified approach
to constructing separations for most cryptographic tasks of interest in most idealized models
of interest.

These results deepen our understanding of how to define “secure” protocols and help us to
understand the implications of these idealized models. They also provide additional justification

2

for the ongoing effort to develop new and instantiable assumptions/models in which we may analyze
these protocols (e.g., the UCE framework [5]).

1.1 Related Work

The random oracle model was first introduced formally by Bellare and Rogaway [6]; this was also the
first work to put forward the notion of an “idealized model” as a way to simplify both cryptographic
constructions and proofs. However, soon after Canetti et al. [14] demonstrated that the random
oracle model is not sound in the sense that there exist schemes secure in the random oracle model
but completely insecure when instantiated in the standard model. This separation spawned a large
body of work showing separations for both new classes of protocols [4, 15, 21, 25, 29, 30, 32] as well
as other idealized models [19]. However, for the most part, each result uses different techniques,
and thus it is not immediately clear whether separations exist for all classes of protocols as well as
all idealized models.

In a separate line of work, since the breakthrough result of Garg et al. [22] demonstrating a
candidate indistinguishability obfuscator, many researchers have studied the implications of in-
distinguishability obfuscation as well as other obfuscation definitions. Two groups of researchers
concurrently looked at the problem of differing-inputs obfuscation [1, 9]; however, Garg et al. [23]
showed that the existence of a differing-inputs obfuscator is “implausible” in the sense that there
exists a reasonable assumption which, if true, means that differing-inputs obfuscators cannot exist.
Likewise, assuming indistinguishability obfuscation exists, Bitansky et al. [7, 8] showed both that
auxiliary-input extractable functions cannot exist and that virtual-black-box obfuscation cannot
exist for a certain class of functions. Finally, Brzuska et al. [11] showed that using indistinguisha-
bility obfuscation, several definitions within the UCE framework [5] (a framework which is designed
to replace the random oracle model in many settings) cannot be instantiated.

Finally, a recent line of work constructs schemes which use both indistinguishability obfuscation
and the random oracle model [26, 27, 18]. Our results serve as a warning sign that combining
these two approaches may lead to insecure schemes when the random oracle is instantiated in the
standard model.

Comparison with the work of Brzuska et al. [12]. Concurrently and independently, Brzuska,
Farshim, and Mittelbach [12] use a similar technique to ours to show that some cryptographic
transformations based on random oracles are uninstantiable in the standard model. Their under-
lying technique is very similar to ours at a high level, in that they obfuscate a universal circuit
taking as input the description of a hash function; the technical details, however, differ. Besides
the similarity in the underlying technique, both works are in some sense orthogonal, as Brzuska
et al. [12] show separations for cryptographic transformations whereas we show separations for
cryptographic constructions.

2 Preliminaries

We let n denote the security parameter. For a function f , we let 〈f〉 denote the (binary) description
of f . We use the notation x←$S to denote that x is chosen uniformly at random from the set
S. As our main results show separations in the random oracle model (although our results can be
extended to other idealized models), we review this idealized model and how to instatiate it in the
standard model using function ensembles [14].

3

Random oracle model. Let `out : N → N be a length function. The random oracle model is
defined by a (stateful) function O : {0, 1}∗ → {0, 1}`out(n) available to all parties which works as
follows: O maintains an internal table T which stores inputs and their associated outputs. If x ∈ T ,
let T (x) denote the associated output. On input x, If x ∈ T , then O outputs T (x); otherwise, O
chooses y←$ {0, 1}`out(n), adds (x, y) to T , and outputs y.

Function ensembles. We use the notion of function ensembles introduced by Canetti et al. [14],
and we reproduce it here mostly verbatim. The idea of a function ensemble is to capture the
intuitive notion of what it means to “instantiate” a random oracle.

Let `out : N→ N be a length function. An `out-ensemble is a sequence F = {Fn}n∈N of families
of functions Fn = {fs : {0, 1}∗ → {0, 1}`out(n)}s∈{0,1}n such that the following condition holds:

1. There exists a polynomial-time algorithm Eval such that for every s ∈ {0, 1}n and x ∈ {0, 1}∗
it holds that Eval(s, x) = fs(x).

Let `eval(n) be the length of the bitstring representation of Eval for function family Fn; we have
that `eval(n) ≤ poly(n).

Let an (`out, `eval)-ensemble be an `out-ensemble such that the bitstring representation of Eval
is ≤ `eval. In what follows, we in general do not care what the output length of the function is, as
long as it is polynomial in the security parameter. We denote this class of ensembles as (poly, `)-
ensembles; that is, the class of `′-ensembles such that `′ ∈ poly(n) and the bitstring representation
of Eval is ≤ `.

All our constructions use indistinguishability obfuscation, defined as follows.

Indistinguishability obfuscation. Let {Cλ} be the class of circuits of size at most λ. We
utilize the notion of family-indistinguishability obfuscators [3, 22], and we reproduce it here mostly
verbatim.

Definition 2.1. A uniform ppt machine iO is a family-indistinguishability obfuscator for a circuit
class {Cλ} if the following two conditions hold:

1. For all λ ∈ N, for all C ∈ Cλ, and for all inputs x, it holds that

Pr
[
C ′(x) = C(x) : C ′ ← iO(1λ, C)

]
= 1.

2. For all (not necessarily uniform) ppt adversaries Samp and A, there exists a negligible func-
tion negl such that if Pr

[
∀x,C0(x) = C1(x) : (C0, C1, σ)← Samp(1λ)

]
> 1− negl(λ) then

∣∣∣Pr[A(σ, iO(1λ, C0)) = 1 : (C0, C1, σ)← Samp(1λ)]

−Pr[A(σ, iO(1λ, C1)) = 1 : (C0, C1, σ)← Samp(1λ)]
∣∣∣ ≤ negl(λ).

In this work we are interested in the obfuscation of polynomial-size circuits, and thus we only
consider λ ≤ poly(n).

4

3 Random Oracle Separation for Bit-Encryption

As our first result, we present a random oracle separation for the case of (public-key) bit-encryption.
Note that existing techniques for showing idealized model separations work by having the adversary
send some specially-crafted message to an oracle; the oracle, given this message, leaks the secret
key and thus the adversary can easily break security. However, in the case of bit-encryption, the
only values an adversary can send are bits, and thus the above technique does not work in this
setting.

Consider the security game PubKA,Π between a challenger C and an adversary A for a public-key
bit-encryption scheme Π = (Gen,Enc,Dec):

1. C runs (pk, sk)← Gen(1n) and sends pk to A.

2. C chooses b←$ {0, 1}, computes c← Encpk(b) and sends c to A.

3. A has oracle access to Encpk, and can query it a polynomial number of times. Eventually, A
outputs a bit b′ and succeeds if b = b′.

Definition 3.1 (IND-CPA security). A public-key bit-encryption scheme Π is IND-CPA-secure if
for all ppt adversaries A there exists a negligible function negl such that Pr [PubKA,Π(n) = 1] ≤
1
2 + negl(n).
We prove the following theorem:
Theorem 3.1. Assume that there exists an IND-CPA-secure public-key bit-encryption scheme and
an indistinguishability obfuscator secure in the standard model. Then for all ` ∈ poly(n), there
exists a public-key bit-encryption scheme that is IND-CPA-secure in the random oracle model but
insecure when the random oracle is instantiated using any (poly, `)-ensemble.
Proof. Let Obf be an indistinguishability obfuscator, let Π′ = (Gen′,Enc′,Dec′) be an existing
IND-CPA-secure public-key bit-encryption scheme, and let O be a random oracle.
Intuition. Our construction, at a high level, works as follows. Taking an existing bit-encryption
scheme, we modify it by appending an obfuscated circuit to the public-key. The obfuscated circuit
is built as follows. We choose `n random values xi and compute yi ← H(xi), where H is either
a random oracle or a function ensemble, depending on whether we are operating in the ROM or
standard model.1 The circuit hardcodes the values xi and yi, along with the secret key to the
original bit-encryption scheme. On input a description of a hash function h, the circuit outputs the
secret key if and only if yi = h(xi) for all i. Note that in the random oracle model, it is unlikely
that such a hash function can be found to satisfy yi = h(xi) for all i, whereas in the standard model
this is easily satisfied (since h is public).

Note that this approach is similar to that given by Maurer et al. [31], who provide an alternate
proof of the separation result given by Canetti et al. [14]. The main difference is our use of
indistinguishability obfuscation, which allows the adversary to break security in the standard model
without needing to send messages to the challenger. This has some significant advantages, one of
which is that, because no “special” messages need to be sent to the challenger, our approach works
for bit-encryption where the encryption oracle only takes as input single bits.
Formal Analysis. Fix some value ` ∈ poly(n). The scheme Π = (Gen,Enc,Dec) is constructed as
follows. Note that all algorithms are provided oracle access to O.

1The reason we need `n values rather than, say, `, is in the case where ` is a small constant, such as 1.

5

Constants: x1, . . . , x`n, y1, . . . , y`n, sk.
Input: a description 〈h〉 of a function h.

1. For i ∈ {1, . . . , `n}, compute ŷi := h(xi).
2. If for i ∈ {1, . . . , `n} it holds that ŷi = yi, then output sk; otherwise, output ⊥.

Figure 1: Program C.

Constants: x1, . . . , x`n, y1, . . . , y`n, sk.
Input: a description 〈h〉 of a function h.

1. Output ⊥.

Figure 2: Program C ′.

• Gen: On input 1n, proceed as follows. For i ∈ {1, . . . , `n}, choose xi←$ {0, 1}n and compute
yi ← O(xi). Next, run (pk′, sk′) ← Gen′(1n), and set sk := sk′. Then, create an obfuscation
of the program C as described in Figure 1. Denote this obfuscation as Obf(C). Finally, let
pk := (pk′,Obf(C)) and output (pk, sk).

• Enc: On input pk and bit b, parse pk as (pk′,Obf(C)) and compute c← Enc′pk′(b). Output c.

• Dec: On input private key sk = sk′ and ciphertext c, compute m := Dec′sk′(c). Output m.

Lemma 3.1.1. Assume that Obf is an indistinguishability obfuscator. Then, for any choice of
` ∈ poly(n) the construction Π is an IND-CPA-secure bit-encryption scheme in the random oracle
model.

Proof. Consider the following two hybrids.

Hybrid H0: This is the IND-CPA game for scheme Π.

Hybrid H1: This hybrid is the same as H0 except that now we change program C into program
C ′ as in Figure 2.

Claim. If Obf is an indistinguishability obfuscator in the standard model, then with high probability
over the choices of the random oracle the two hybrids H0 and H1 are computationally indistin-
guishable.

Proof. The proof is by a reduction to the security of the indistinguishability obfuscator. The proof
relies on the fact that with high probability there is no “small representation” of a random oracle.
That is, the probability that there exists a description 〈h〉 ∈ {0, 1}` of a function h such that for
i ∈ {1, . . . , `n} it holds that yi = h(xi) is negligible. Thus, with high probability over the choices
of the random oracle, programs C and C ′ are equivalent, and thus we can reduce security to that
of indistinguishability obfuscation.

More formally, consider the class Func`out(n) of all functions mapping x1, . . . , x`n to `out(n)-bit
outputs; there are 2`n`out(n) such functions. Also note that there exist ≤ 2` functions capable of
being represented by ` bits. Thus, the probability that a random function from Func`out(n) can be
represented in ` bits is ≤ 2`/2`n`out(n) = negl(n).

6

Thus, with all but negligible probability over the choices of the random oracle, programs C and
C ′ are equivalent. Therefore, if there is a difference in advantage, we can create an algorithm B
that breaks the security of indistinguishability obfuscation.
B runs as the challenger in the IND-CPA game. When it is time to create the obfuscated program

it submits both programs C0 = C and C1 = C ′ to an indistinguishability obfuscation challenger.
If the challenger chooses the first then we are in H0; if it chooses the second then we are in H1.
Thus, any adversary with non-negligible advantages in the two hybrids leads to B as an attacker
on the security of the indistinguishability obfuscation scheme. �

We now show that an adversary who can successfully attack hybrid H1 can be used to construct
an adversary attacking the underlying IND-CPA scheme.

Claim. Pr [PubKA,H1(n) = 1] ≤ Pr
[
PubKB,Π′(n) = 1

]
where A is the adversary in H1 and B is

the IND-CPA adversary against the underlying encryption scheme Π′.

Proof. We construct the adversary B as follows. The adversary B internally simulates A. When B
receives pk′, it generates Obf(C ′) as in H1 and provides pk := (pk′,Obf(C ′)) to A. When B receives
a challenge ciphertext c, it forwards c to A. Finally, B outputs the bit b′ output by A.

Clearly, if A can win the H1 game with probability ε then B can win the IND-CPA game with
at least ε. �

Together, these two claims show that Pr [PubKA,Π(n) = 1] ≤ Pr
[
PubKB,Π′(n) = 1

]
where A is

the IND-CPA adversary against Π, and B is the IND-CPA adversary against the underlying encryp-
tion scheme Π′. Since the underlying Π′ is IND-CPA-secure, we have that Pr

[
PubKB,Π′(n) = 1

]
≤

1
2 + negl(n). Therefore we obtain Pr [PubKA,Π(n) = 1] ≤ 1

2 + negl(n), which completes the proof. �

Lemma 3.1.2. For all ` ∈ poly(n), there exists a public-key bit-encryption scheme secure in
the random oracle model but insecure when implemented with any efficiently computable (poly, `)-
ensemble.

Proof. Fix some ` ∈ poly(n). We modify the scheme Π described above to use (poly, `)-ensemble F
to implement the random oracle, thus obtaining the scheme Π̃ = (G̃en, Ẽnc, D̃ec):

• G̃en: On input 1n, choose s←$ {0, 1}n. Run (pk, sk)←$ Genfs(1n), and output ((pk, s), (sk, s)).

• Ẽnc: Output Encpk(b).

• D̃ec: Output Decsk(c).

Now the seed s is part of the public key, and it is known to the adversary. Thus, the adversary can
simply parse pk into (pk′,Obf(C)), and provide as input to Obf(C) the description of Eval (recall
that Eval is the algorithm such that Eval(s, x) = fs(x) for all s ∈ {0, 1}n and x ∈ {0, 1}∗), thus
learning sk. �

7

4 Extensions

Our approach used in Section 3 can be applied to more than just bit-encryption. In this section
we show how to extend our result to provide separations for protocols satisfying most “natural”
simulation- or game-based definitions. In Section 4.1, we show how to adapt our random oracle
separation for bit-encryption to work for a large class of protocols secure under simulation-based
definitions. Likewise, in Section 4.2, we adapt our bit-encryption separation to work for many
protocols secure under game-based definitions. Although the theorem statements below provide
separations in the random oracle model, the same approach can be applied to other idealized models,
given appropriate formalizations of these models. As an example, in Appendix A we demonstrate
how to adapt the below results to the generic group model.

4.1 Separations for Simulation-based Definitions

Here we focus on the universal composability (UC) framework [13]; we believe the separation
detailed below can be easily adapted to other simulation-based models. In what follows, we assume
the reader is familiar with the simulation paradigm, and in particular the UC framework.

We consider well-formed functionalities [16]. We call an ideal functionality f trivial if it can be
realized by a “strange” protocol π as described in the following:

Definition 4.1. Let f be an ideal functionality in the UC framework, and let π be a protocol where,
upon initialization, all parties broadcast their initial randomness and inputs. Then f is trivial if for
all environments E and for all adversaries A, there exists a simulator S such that

Pr[execf,S,E = execπ,A,E] = 1.

We now prove the following.

Theorem 4.1. Consider a non-trivial ideal functionality f in the UC framework, and let π be a
protocol which UC-realizes f in the F-hybrid world. Then for all choices of ` ∈ poly(n), there exists
some protocol π′ which UC-realizes f in the (F ,FRO)-hybrid world2 but is not UC-realizable when
instantiated with a (poly, `)-ensemble.

Proof. Fix some non-trivial ideal functionality f for some set of parties P = {P1, . . . , Pm}, and let
π be a t-round protocol which UC-realizes f . On protocol initialization, each party Pi is initialized
with randomness ri and given input xi. Let Mk

i,j denote the message sent from party Pi to party Pj
in round k; without loss of generality, we assume that for all parties Pi and Pj and for all rounds
1 ≤ k ≤ t, message Mk

i,j exists3.
Now fix some ` ∈ poly(n). We construct a protocol π′ as follows. Protocol π′ runs exactly

as π except for the first round of the protocol. In this round, each party Pi proceeds as follows.
For j ∈ {1, . . . , `n}, Pi chooses zj←$ {0, 1}n and computes yj ← O(zj). Then, based on input xi,
randomness ri, as well as {zj , yj}j , party Pi creates an obfuscation of the program Ci as defined
in Figure 3 and sends Obf(Ci) over the standard channel, in addition to sending message M1

i,j as
normal (i.e., this message may be sent using some hybrid functionality).

2FRO is defined in Appendix B.
3This is without loss of generality because Mk

i,j can always be the empty message.

8

Constants: z1, . . . , z`n, y1, . . . , y`n, ri, xi.
Input: a description 〈h〉 of a function h.

1. For i ∈ {1, . . . , `n}, compute ŷi := h(zi).
2. If for i ∈ {1, . . . , `n} it holds that ŷi = yi, then output ri and xi; otherwise, output ⊥.

Figure 3: Program Ci.

Lemma 4.1.1. Assume that Obf is an indistinguishability obfuscator. Then for any choice of
` ∈ poly(n) the construction π′ UC-realizes f in the (F ,FRO)-hybrid world.

Proof (Sketch). This follows directly from the fact that with high probability there is no “small
representation” of a random oracle, and the argument is very similar to that shown in Lemma 3.1.1.
We thus only give the high-level idea below.

Let A′ be an adversary attacking protocol π′; we construct a simulator S ′ as follows. The
simulator S ′ simply runs the simulator S for protocol π and outputs whatever S outputs. Intuitively,
the output of S ′ is indistinguishable from that of A′ because π′ is exactly the same as π except for
the sending of Obf(Ci) by party Pi. However, with high probability over the choices of the random
oracle (cf. Lemma 3.1.1), this obfuscation is identical to the obfuscation of the zero circuit, and
thus A′ gains no advantage from this additional information. �

Lemma 4.1.2. Assume that Obf is an indistinguishability obfuscator. Then for any choice of
` ∈ poly(n) the construction π′ is completely insecure in the F-hybrid world (i.e., when the random
oracle is instantiated by any efficiently computable (poly, `)-ensemble).

Proof (Sketch). Let A be an adversary attacking π′. The adversary A reads the messages sent by all
parties, and thus receives Obf(Ci) from all parties Pi (recall that Obf(Ci) is sent over the standard
channel). Thus, A can extract Pi’s initial randomness and input by providing the instantiation of
the random oracle as input to Obf(Ci), and can thus reproduce the internal state and inputs of all
parties.

Now suppose towards a contradiction that π′ UC-realizes f . This implies that there exists some
adversary S which when interacting with f produces a similar transcript to that produced by A;
namely, S must be able to reproduce the internal state and inputs of all honest parties given only
access to f . However, this implies that f is trivial, a contradiction. �

This completes the proof. �

It is an easy corollary to see that Theorem 4.1 can be adapted to other idealized models besides
the random oracle model, such as the generic group model, the random permutation model, etc.
Thus, assuming indistinguishability obfuscation in the standard model, we are able to show idealized
model separations for most protocols secure under simulation-based definitions.

4.2 Separations for Game-based Definitions

We first give a general framework for what we mean by a “game-based” definition. We consider only
single-stage games, where an adversary A interacts with some challenger C. A game-based definition
G is defined by a tuple (C,O1, . . . ,Ok,Ok+1, . . .Om, k, f, T), where C denotes a ppt algorithm (i.e.,
the challenger’s code), O1, . . . ,Ok denote oracles available to both A and C, Ok+1, . . . ,Om denote

9

oracles available to only C, f denotes a predicate function, and T denotes a threshold function.
Each oracle Oi outputs tuples of strings. The randomness of all the oracles are initialized by C. A
scheme/protocol Π implements G if it implements the oracles O1, . . . ,Om.

For definition G and scheme Π which implements G, let z ← AO1,...,Ok denote the output of
the adversary after interacting with C, where all the oracle calls are “routed through” C. That is,
each oracle available to A is first initialized by C, where the initialization fixes both the oracle’s
randomness and (optionally) some of the oracle’s inputs; all queries by A to oracle Oi go through
this (fixed) oracle. For example, if Oi is an encryption oracle, C fixes both the initial randomness
as well as the public key; any queries by A will thus be encrypted under the fixed public key using
the fixed initial randomness. The predicate f takes as input the initial randomness of C and the
output of A, and outputs a bit.

We define A’s success probability against scheme Π in G as

SuccA [G,Π] def= Pr
r,r1,...,rk

[
z ← AO1,...,Ok : f(r, z) = 1

]
.

That is, A’s success probability is the probability it can make the predicate f output 1, where the
probability is over the choices of C’s and the oracles’ randomness. We say that a scheme Π securely
implements G, or is secure, if it holds that SuccA [G,Π] ≤ T (n) + negl(n). A scheme Π insecurely
implements G, or is insecure, if it holds that SuccA [G,Π] ≥ T (n) + ε(n) for some non-negligible
function ε(n).

As an example, consider the definition for bit-encryption as presented in Section 3. This is
captured in our framework as follows. We define three oracles, O1 = Enc, O2 = Gen, and O3 = Dec,
corresponding to the three algorithms required for bit-encryption. Since A only has access to the
encryption oracle, we set k = 1. The challenger C is defined as in Section 3. The predicate f(r, z)
runs C(r) until C computes b, and outputs whether or not b equals z (where z is the value output
by A). The threshold function is set to T (n) = 1/2.

We call a game-based definition G trivially secure if for all secure schemes Π it holds that

SuccA [G,Π] = Pr
r,r1,...,rk

[
z ← AO1,...,Ok(r) : f(r, z) = 1

]
.

That is, a definition is trivially secure if a scheme satisfying the definition is as secure as the
setting where the adversary is given all the initial randomness to C. As an example, note that bit
encryption is not trivially secure, as if A was given the randomness r of C, it could simply run C
internally and extract the secret key sk, thus succeeding with probability 1, whereas without r we
have that A succeeds with probability 1/2 + negl(n) (assuming some underlying hard problem, of
course). However, consider a game where C chooses a random x, computes y := H(x) for some
cryptographic hash function H, and sends y to A; security holds if A cannot find an x′ 6= x such
that H(x′) = y. In this setting, whether A has x or not does not necessarily help it break security,
and thus this definition may be trivially secure for certain instantiations of H.

Note that we can easily integrate idealized models, such as the random oracle model, into this
framework by including an additional oracle which implements the desired idealized functionality
to both A and C.

Now we want to show that for all game-based definitions G, for all protocols Π which securely
implement G in the random oracle model, and for all choices of ` ∈ poly(n), there exists some
protocol Π′ secure in the random oracle model but insecure in the standard model when instantiated
with a (poly, `)-ensemble.

10

Constants: x1, . . . , x`n, y1, . . . , y`n, r.
Input: a description 〈h〉 of a function h.

1. For i ∈ {1, . . . , `n}, compute ŷi := h(xi).
2. If for i ∈ {1, . . . , `n} it holds that ŷi = yi, then output r; otherwise, output ⊥.

Figure 4: Program C.

However, it turns out that the notion of game-based definitions defined above is too strong to
prove this result. This is because we place no restrictions on the challenger C. As an example,
consider a modified bit-encryption game where the challenger acts exactly as before, except it
refuses to send any bits to A that “look like” an obfuscated circuit. This simple modification to
the challenger prevents our attack from working for particular implementations of Obf, e.g., ones
that prepend each obfuscated circuit with the string “this is an obfuscated circuit”.

We thus consider a restriction on the above framework, and in particular, a restriction on
the actions of C. Consider a challenger which, on input randomness r, runs with oracle access
to O1, . . . ,Om as before. When C queries an oracle, it receives back a tuple (s1, . . .). We call a
challenger weakened if all messages sent to A are values within the tuples output by the oracle
queries. For example, if C queries an oracle which implements key generation for some public-key
cryptosystem, it receives back the tuple (pk, sk). If the challenger is weakened, it can send pk,
sk, both or neither to A, but it cannot send f(pk) for some arbitrary function f , and likewise it
cannot send some value x not output by an oracle. Note that most game-based definitions use this
weakened challenger notion.

We call G a weak game-based definition if it is a game-based definition as defined above, except
with the requirement that C be a weakened challenger. We are now ready to prove the following
theorem.

Theorem 4.2. Consider a non-trivially secure weak game-based definition G, and let Π be a protocol
which securely implements G. Then for all choices of ` ∈ poly(n), there exists some protocol Π′
secure in the random oracle model but insecure when instantiated with a (poly, `)-ensemble.

Proof. Fix some non-trivially secure weak game-based definition G, and let Π be a protocol which
securely implements G (Π need not be in the random oracle model). Fix some ` ∈ poly(n). We
construct a protocol Π′ as follows. Protocol Π′ runs exactly as Π except for the first message sent
from C to A. Let M be this message. In protocol Π′, C proceeds as follows. Let r be the initial
randomness of C. For i ∈ {1, . . . , `n}, C chooses xi←$ {0, 1}n and computes yi ← O(xi). Then,
C creates an obfuscation Obf(C) of the program C defined in Figure 4 and sends M̂ to A, where
M̂ = (M,Obf(C)).

Lemma 4.2.1. Assume that Obf is an indistinguishability obfuscator. Then for any choice of
` ∈ poly(n) the construction Π′ securely implements G in the random oracle model.

Proof (Sketch). This follows exactly as in Lemma 4.1.1. �

Lemma 4.2.2. Assume that Obf is an indistinguishability obfuscator. Then for any choice of
` ∈ poly(n) the construction Π′ is insecure when the random oracle is instantiated by any efficiently
computable (poly, `)-ensemble.

11

Proof (Sketch). We apply the same idea as in Lemma 4.1.2. Let A be the adversary. Upon receiving
the first message from C, A can extract C’s initial randomness r and thus reproduce the internal
state of C. By our assumption that G is not trivially secure, Π′ is thus insecure. �

This completes the proof. �

Note that as in the simulation-based case, we can easily adapt Theorem 4.2 to other idealized
models and thus achieve idealized model separations for most game-based protocols, assuming
indistinguishability obfuscation in the standard model.

Acknowledgments

The authors would like to thank Brent Waters and Susan Hohenberger for helpful conversations
during the course of this work.

The work of Jonathan Katz was supported in part by NSF award #1223623. The work of Alex
J. Malozemoff was conducted with Government support through the National Defense Science and
Engineering Graduate (NDSEG) Fellowship, 32 CFG 168a, awarded by DoD, Air Force Office of
Scientific Research.

References

[1] P. Ananth, D. Boneh, S. Garg, A. Sahai, and M. Zhandry. Differing-inputs obfuscation and
applications. Cryptology ePrint Archive, Report 2013/689, 2013. http://eprint.iacr.org/
2013/689.

[2] B. Barak, S. Garg, Y. T. Kalai, O. Paneth, and A. Sahai. Protecting obfuscation against
algebraic attacks. In P. Q. Nguyen and E. Oswald, editors, Advances in Cryptology – EURO-
CRYPT 2014, volume 8441 of Lecture Notes in Computer Science, pages 221–238, Copen-
hagen, Denmark, May 11–15, 2014. Springer, Berlin, Germany. Full version available at
https://eprint.iacr.org/2013/631.

[3] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. P. Vadhan, and K. Yang. On
the (im)possibility of obfuscating programs. Journal of the ACM, 59(2), 2012. Full version
available at https://eprint.iacr.org/2001/069.

[4] M. Bellare, A. Boldyreva, and A. Palacio. An uninstantiable random-oracle-model scheme for
a hybrid-encryption problem. In C. Cachin and J. Camenisch, editors, Advances in Cryptology
– EUROCRYPT 2004, volume 3027 of Lecture Notes in Computer Science, pages 171–188,
Interlaken, Switzerland, May 2–6, 2004. Springer, Berlin, Germany. Full version available at
https://eprint.iacr.org/2003/077.

[5] M. Bellare, V. T. Hoang, and S. Keelveedhi. Instantiating random oracles via UCEs. In
R. Canetti and J. A. Garay, editors, Advances in Cryptology – CRYPTO 2013, Part II, volume
8043 of Lecture Notes in Computer Science, pages 398–415, Santa Barbara, CA, USA, Aug. 18–
22, 2013. Springer, Berlin, Germany. Full version available at https://eprint.iacr.org/
2013/424.

12

http://eprint.iacr.org/2013/689
http://eprint.iacr.org/2013/689
https://eprint.iacr.org/2013/631
https://eprint.iacr.org/2001/069
https://eprint.iacr.org/2003/077
https://eprint.iacr.org/2013/424
https://eprint.iacr.org/2013/424

[6] M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing efficient
protocols. In V. Ashby, editor, ACM CCS 93: 1st Conference on Computer and Communica-
tions Security, pages 62–73, Fairfax, Virginia, USA, Nov. 3–5, 1993. ACM Press. Full version
available at http://cseweb.ucsd.edu/˜mihir/papers/ro.html.

[7] N. Bitansky, R. Canetti, O. Paneth, and A. Rosen. Indistinguishability obfuscation vs.
auxiliary-input extractable functions: One must fall. Cryptology ePrint Archive, Report
2013/641, 2013. http://eprint.iacr.org/2013/641.

[8] N. Bitansky, R. Canetti, O. Paneth, and A. Rosen. More on the impossibility of virtual-black-
box obfuscation with auxiliary input. Cryptology ePrint Archive, Report 2013/701, 2013.
http://eprint.iacr.org/2013/701.

[9] E. Boyle, K.-M. Chung, and R. Pass. On extractability obfuscation. In Y. Lindell, editor,
TCC 2014: 11th Theory of Cryptography Conference, volume 8349 of Lecture Notes in Com-
puter Science, pages 52–73, San Diego, CA, USA, Feb. 24–26, 2014. Springer, Berlin, Germany.
Full version available at https://eprint.iacr.org/2013/650.

[10] Z. Brakerski and G. N. Rothblum. Virtual black-box obfuscation for all circuits via generic
graded encoding. In Y. Lindell, editor, TCC 2014: 11th Theory of Cryptography Conference,
volume 8349 of Lecture Notes in Computer Science, pages 1–25, San Diego, CA, USA, Feb. 24–
26, 2014. Springer, Berlin, Germany. Full version available at https://eprint.iacr.org/
2013/563.

[11] C. Brzuska, P. Farshim, and A. Mittelbach. Indistinguishability obfuscation and UCEs: The
case of computationally unpredictable sources. In J. A. Garay and R. Gennaro, editors, Ad-
vances in Cryptology – CRYPTO 2014, Part I, volume 8616 of Lecture Notes in Computer
Science, pages 188–205, Santa Barbara, CA, USA, Aug. 17–21, 2014. Springer, Berlin, Ger-
many. Full version available at https://eprint.iacr.org/2014/099.

[12] C. Brzuska, P. Farshim, and A. Mittelbach. Random oracle uninstantiability from indis-
tinguishability obfuscation. Cryptology ePrint Archive, Report 2014/867, 2014. https:
//eprint.iacr.org/2014/867.

[13] R. Canetti. Universally composable security: A new paradigm for cryptographic protocols.
In 42nd Annual Symposium on Foundations of Computer Science, pages 136–145, Las Vegas,
Nevada, USA, Oct. 14–17, 2001. IEEE Computer Society Press. Full version available at
https://eprint.iacr.org/2000/067.

[14] R. Canetti, O. Goldreich, and S. Halevi. The random oracle methodology, revisited (pre-
liminary version). In 30th Annual ACM Symposium on Theory of Computing, pages 209–
218, Dallas, Texas, USA, May 23–26, 1998. ACM Press. Full version available at https:
//eprint.iacr.org/1998/011.

[15] R. Canetti, O. Goldreich, and S. Halevi. On the random-oracle methodology as applied to
length-restricted signature schemes. In M. Naor, editor, TCC 2004: 1st Theory of Cryptography
Conference, volume 2951 of Lecture Notes in Computer Science, pages 40–57, Cambridge,
MA, USA, Feb. 19–21, 2004. Springer, Berlin, Germany. Full version available at https:
//eprint.iacr.org/2003/150.

13

http://cseweb.ucsd.edu/~mihir/papers/ro.html
http://eprint.iacr.org/2013/641
http://eprint.iacr.org/2013/701
https://eprint.iacr.org/2013/650
https://eprint.iacr.org/2013/563
https://eprint.iacr.org/2013/563
https://eprint.iacr.org/2014/099
https://eprint.iacr.org/2014/867
https://eprint.iacr.org/2014/867
https://eprint.iacr.org/2000/067
https://eprint.iacr.org/1998/011
https://eprint.iacr.org/1998/011
https://eprint.iacr.org/2003/150
https://eprint.iacr.org/2003/150

[16] R. Canetti, Y. Lindell, R. Ostrovsky, and A. Sahai. Universally composable two-party and
multi-party secure computation. In 34th Annual ACM Symposium on Theory of Computing,
pages 494–503, Montréal, Québec, Canada, May 19–21, 2002. ACM Press. Full version available
at https://eprint.iacr.org/2002/140.

[17] J.-S. Coron, D. Naccache, and M. Tibouchi. Public key compression and modulus switching for
fully homomorphic encryption over the integers. In D. Pointcheval and T. Johansson, editors,
Advances in Cryptology – EUROCRYPT 2012, volume 7237 of Lecture Notes in Computer
Science, pages 446–464, Cambridge, UK, Apr. 15–19, 2012. Springer, Berlin, Germany. Full
version available at https://eprint.iacr.org/2011/440.

[18] A. De Caro, V. Iovino, A. Jain, A. O’Neill, O. Paneth, and G. Persiano. On the achievability
of simulation-based security for functional encryption. In R. Canetti and J. A. Garay, editors,
Advances in Cryptology – CRYPTO 2013, Part II, volume 8043 of Lecture Notes in Com-
puter Science, pages 519–535, Santa Barbara, CA, USA, Aug. 18–22, 2013. Springer, Berlin,
Germany. Full version available at https://eprint.iacr.org/2013/364.

[19] A. W. Dent. Adapting the weaknesses of the random oracle model to the generic group
model. In Y. Zheng, editor, Advances in Cryptology – ASIACRYPT 2002, volume 2501 of
Lecture Notes in Computer Science, pages 100–109, Queenstown, New Zealand, Dec. 1–5, 2002.
Springer, Berlin, Germany. Full version available at https://eprint.iacr.org/2002/086.

[20] A. W. Dent. Fundamental problems in provable security and cryptography. Philosophical
Transactions of the Royal Society A, 364:3215–3230, 2006. Full version available at https:
//eprint.iacr.org/2006/278.

[21] Y. Dodis, R. Oliveira, and K. Pietrzak. On the generic insecurity of the full domain hash.
In V. Shoup, editor, Advances in Cryptology – CRYPTO 2005, volume 3621 of Lecture Notes
in Computer Science, pages 449–466, Santa Barbara, CA, USA, Aug. 14–18, 2005. Springer,
Berlin, Germany.

[22] S. Garg, C. Gentry, S. Halevi, M. Raykova, A. Sahai, and B. Waters. Candidate indistin-
guishability obfuscation and functional encryption for all circuits. In 54th Annual Symposium
on Foundations of Computer Science, pages 40–49, Berkeley, CA, USA, Oct. 26–29, 2013. IEEE
Computer Society Press. Full version available at https://eprint.iacr.org/2013/601.

[23] S. Garg, C. Gentry, S. Halevi, and D. Wichs. On the implausibility of differing-inputs obfusca-
tion and extractable witness encryption with auxiliary input. In J. A. Garay and R. Gennaro,
editors, Advances in Cryptology – CRYPTO 2014, Part I, volume 8616 of Lecture Notes in
Computer Science, pages 518–535, Santa Barbara, CA, USA, Aug. 17–21, 2014. Springer,
Berlin, Germany. Full version available at https://eprint.iacr.org/2013/860.

[24] C. Gentry. A Fully Homomorphic Encryption Scheme. PhD thesis, Stanford University, 2008.

[25] S. Goldwasser and Y. T. Kalai. On the (in)security of the Fiat-Shamir paradigm. In 44th
Annual Symposium on Foundations of Computer Science, pages 102–115, Cambridge, Mas-
sachusetts, USA, Oct. 11–14, 2003. IEEE Computer Society Press. Full version available at
https://eprint.iacr.org/2003/034.

14

https://eprint.iacr.org/2002/140
https://eprint.iacr.org/2011/440
https://eprint.iacr.org/2013/364
https://eprint.iacr.org/2002/086
https://eprint.iacr.org/2006/278
https://eprint.iacr.org/2006/278
https://eprint.iacr.org/2013/601
https://eprint.iacr.org/2013/860
https://eprint.iacr.org/2003/034

[26] D. Hofheinz, T. Jager, D. Khurana, A. Sahai, B. Waters, and M. Zhandry. How to generate
and use universal parameters. Cryptology ePrint Archive, Report 2014/507, 2014. https:
//eprint.iacr.org/2014/507.

[27] D. Hofheinz, A. Kamath, V. Koppula, and B. Waters. Adaptively secure constrained pseu-
dorandom functions. Cryptology ePrint Archive, Report 2014/720, 2014. https://eprint.
iacr.org/2014/720.

[28] D. Hofheinz and J. Müller-Quade. Universally composable commitments using random oracles.
In M. Naor, editor, TCC 2004: 1st Theory of Cryptography Conference, volume 2951 of Lecture
Notes in Computer Science, pages 58–76, Cambridge, MA, USA, Feb. 19–21, 2004. Springer,
Berlin, Germany.

[29] E. Kiltz and K. Pietrzak. On the security of padding-based encryption schemes - or - why we
cannot prove OAEP secure in the standard model. In A. Joux, editor, Advances in Cryptology
– EUROCRYPT 2009, volume 5479 of Lecture Notes in Computer Science, pages 389–406,
Cologne, Germany, Apr. 26–30, 2009. Springer, Berlin, Germany.

[30] G. Leurent and P. Q. Nguyen. How risky is the random-oracle model? In S. Halevi, editor,
Advances in Cryptology – CRYPTO 2009, volume 5677 of Lecture Notes in Computer Science,
pages 445–464, Santa Barbara, CA, USA, Aug. 16–20, 2009. Springer, Berlin, Germany. Full
version available at https://eprint.iacr.org/2008/441.

[31] U. M. Maurer, R. Renner, and C. Holenstein. Indifferentiability, impossibility results on
reductions, and applications to the random oracle methodology. In M. Naor, editor, TCC 2004:
1st Theory of Cryptography Conference, volume 2951 of Lecture Notes in Computer Science,
pages 21–39, Cambridge, MA, USA, Feb. 19–21, 2004. Springer, Berlin, Germany. Full version
available at https://eprint.iacr.org/2003/161.

[32] J. B. Nielsen. Separating random oracle proofs from complexity theoretic proofs: The non-
committing encryption case. In M. Yung, editor, Advances in Cryptology – CRYPTO 2002,
volume 2442 of Lecture Notes in Computer Science, pages 111–126, Santa Barbara, CA, USA,
Aug. 18–22, 2002. Springer, Berlin, Germany.

[33] V. Shoup. Lower bounds for discrete logarithms and related problems. In W. Fumy, editor, Ad-
vances in Cryptology – EUROCRYPT’97, volume 1233 of Lecture Notes in Computer Science,
pages 256–266, Konstanz, Germany, May 11–15, 1997. Springer, Berlin, Germany.

A Adapting Theorem 4.1 and Theorem 4.2 to the Generic Group
Model

To demonstrate how to adapt Theorem 4.1 and Theorem 4.2 to other idealized models, we provide
here an adaptation to the generic group model. We first define the generic group model and how
this model is instantiated using encoding ensembles [19] (which can be thought of as analogous to
the function ensembles used for instantiating the random oracle model).

Generic group model. Let `out : N → N be a length function with `out(n) ≥ n, and define the
set S = {0, 1}`out(n). Let p be an n-bit prime. The generic group model is defined by two oracles,

15

https://eprint.iacr.org/2014/507
https://eprint.iacr.org/2014/507
https://eprint.iacr.org/2014/720
https://eprint.iacr.org/2014/720
https://eprint.iacr.org/2008/441
https://eprint.iacr.org/2003/161

Oenc and Oadd, available to all parties, where Oenc : Zp → S such that Oenc(x) = Oenc(y) iff x = y

and Oadd : S × S × Z2 → S such that Oadd(Oenc(x),Oenc(y), b) = Oenc(x+ (−1)by).4

Encoding ensembles. Let `out : N→ N be a length function with `out(n) ≥ n. An `out-encoding-
ensemble is a sequence F = {Fn}n∈N of families of functions Fn = {fs : Zp → {0, 1}`out(n)}s∈{0,1}n

such that the following conditions hold:

1. There exists a polynomial-time algorithm Eval such that for every s ∈ {0, 1}n and x ∈ Zp it
holds that Eval(s, x) = fs(x).

2. There exists a polynomial-time algorithm Add such that Add(s, fs(x), fs(y), b) = fs(x +
(−1)by).

As in the function ensemble case, let `eval(n) be the length of the bitstring representation of Eval.
Let a (poly, `)-encoding-ensemble be a class of `′-encoding-ensembles such that `′ ∈ poly(n) (with
the restriction that `′ ≥ n) and the bitstring representation of Eval is ≤ `.

Let FGG denote the “natural” adaptation of the generic group model to the UC framework (see
Figure 6). We can now prove the following theorem.

Theorem A.1. Consider a non-trivial ideal functionality f in the UC framework, and let π be a
protocol which UC-realizes f in the F-hybrid world. Then for all choices of ` ∈ poly(n), there exists
some protocol π′ which UC-realizes f in the (F ,FGG)-hybrid world but is not UC-realizable when
instantiated with a (poly, `)-encoding-ensemble.

Proof. The proof structure follows exactly that shown in Theorem 4.1. The only difference is that
instead of each party querying the random oracle when constructing the obfuscated circuit, they
instead query Oenc. The proof follows immediately from the fact that with high probability there
is no “small representation” of Oenc, whereas when Oenc is instantiated with a concrete function,
the adversary can easily extract the hidden information to break security. �

The adaptation of Theorem 4.2 is similar, and thus we only present the theorem statement.

Theorem A.2. Consider a non-trivially secure weak game-based definition G, and let Π be a pro-
tocol which securely implements G. Then for all choices of ` ∈ poly(n), there exists some protocol Π′
secure in the generic group model but insecure when instantiated with a (poly, `)-encoding-ensemble.

B Ideal Functionalities

We define FRO in Figure 5 and FGG in Figure 6, which represent ideal functionalities implementing a
random oracle and a generic group, respectively. We note that the definition of FRO is adapted from
the work of Hofheinz and Müller-Quade [28]. It is straightforward to design ideal functionalities
for other idealized models.

4Note that we only need Oenc to prove our separations results.

16

Functionality FRO

Initialization: Security parameter 1n, length function `out : N→ N, list of parties P1, . . . , Pm, and adversary A.
1. FRO maintains a table T which stores inputs and their associated outputs; if x ∈ T , let T (x) denote the

associated output.
2. On receiving value x ∈ {0, 1}∗ from party Pi or A, FRO does the following:

If x ∈ T , output T (x) to the appropriate party.
Otherwise, choose y←$ {0, 1}`out(n), add (x, y) to T , and output y to the appropriate party.

Figure 5: Functionality FRO.

Functionality FGG

Initialization: Security parameter 1n, length function `out : N→ N, n-bit prime p, set S = {0, 1}`out(n), list of
parties P1, . . . , Pm, and adversary A.

1. FGG maintains a table T which stores inputs and their associated outputs; if x ∈ T , let T (x) denote the
associated output.

2. On receiving tuple (enc, x) from party Pi or A, FGG does the following:
If x 6∈ Zp, output ⊥ to the appropriate party.
If x ∈ T , output T (x) to the appropriate party.
Otherwise, choose y←$ S conditioned on y not appearing as an output in T , add (x, y) to T , and
output y to the appropriate party.

3. On receiving tuple (add, y, y′, b) from party Pi or A, FGG does the following:
If y 6∈ S or y′ 6∈ S or b 6∈ {0, 1}, output ⊥ to the appropriate party.
If there does not exist an x (resp., x′) such that (x, y) (resp., (x′, y′)) is in T , output ⊥ to the
appropriate party.
Otherwise, compute x′′ = x + (−1)bx′, store x′′ in T , and output the associated output y′′ to the
appropriate party.

Figure 6: Functionality FGG.

Changelog

• Version 1.1 (October 26, 2014):

Added comparison to the work of Brzuska et al. [12] in Section 1.1.
Changed text in Appendix B.
Updated Acknowledgments.

• Version 1.0 [20141022:202118] (October 20, 2014): First release.

17

https://eprint.iacr.org/2014/863/20141022:202118

	Introduction
	Related Work

	Preliminaries
	Random Oracle Separation for Bit-Encryption
	Extensions
	Separations for Simulation-based Definitions
	Separations for Game-based Definitions

	Adapting Theorem 4.1 and Theorem 4.2 to the Generic Group Model
	Ideal Functionalities

