
Self-Destruct Non-Malleability

Sandro Coretti1, Yevgeniy Dodis2, Björn Tackmann1, and Daniele Venturi3

1ETH Zürich
2New York University

3Sapienza University of Rome

October 21, 2014

Abstract

We introduce a new security notion for public-key encryption (PKE) that we dub non-malleabi-
lity under (chosen-ciphertext) self-destruct attacks (NM-SDA), which appears to be the strongest
natural PKE security notion below full-blown chosen-ciphertext (IND-CCA) security. In this no-
tion, the adversary is allowed to ask many adaptive “parallel” decryption queries (i.e., a query
consists of many ciphertexts) up to the point when the first invalid ciphertext is submitted. As
such, NM-SDA security generalizes non-malleability against chosen plaintext attacks (NM-CPA,
where only one parallel decryption query is allowed) and recently introduced indistinguishability
against (chosen-ciphertext) self-destruct attacks (IND-SDA, where each adaptive query consists
of a single ciphertext). After showing that NM-SDA is a strict strengthening of NM-CPA and
IND-SDA and allows for more applications, we establish the following two results:

• Domain Extension. For any K > 1, there is a black-box construction of a K-bit NM-SDA
PKE scheme from a single-bit NM-SDA PKE scheme. Moreover, this can be done using
only O(K + λ) calls to the underlying single-bit NM-SDA scheme, where λ is the security
parameter. To achieve our goal, we define and construct a novel type of continuous non-
malleable code (NMC), called secret-state NMC, as we show that standard continuous NMCs
are not enough for the natural “expand-then-encrypt-bit-by-bit” approach to work.

• Black-Box Construction from IND-CPA. Prior work showed that NM-CPA secure PKE
can be constructed from any IND-CPA secure PKE in a black-box way. Here we show that
the same construction actually achieves our strictly stronger notion of NM-SDA security.
(This requires a non-trivial extension of the original security proof to handle multiple parallel
decryption queries.) Hence, the notions of IND-CPA, NM-CPA, IND-SDA and NM-SDA
security are all equivalent, lying (plausibly, strictly?) below IND-CCA security. We also show
how to improve the rate of the resulting NM-SDA scheme from quadratic to linear.

1 Introduction

One of the main concerns in public-key cryptography is what security level a public-key encryption
(PKE) scheme should satisfy. The most basic security notion is that of indistinguishability under
chosen-plaintext attacks (IND-CPA) [20], where we demand that an adversary with no decryption
capabilities be unable to distinguish between the encryption of two messages. Although extremely
important and useful for a number of applications, in many cases IND-CPA security is not sufficient.
For example, consider a simple setting of an electronic auction, where the auctioneer U publishes a
public key pk, and invites several participants P1, . . . , Pq to encrypt their bids bi under pk. As was
observed in the seminal paper of Dolev et al. [14], although IND-CPA security of encryption ensures
that P1 cannot decrypt a bid of P2 under the ciphertext e2, it leaves open the possibility that P1

can construct a special ciphertext e1 which decrypts to a related bid b1 (e.g., b1 = b2 + 1). Hence, to
overcome such “malleability” problems, stronger forms of security are required.

The strongest such level of PKE security is indistinguishability under chosen-ciphertext attacks
(IND-CCA), where the adversary is given unrestricted, adaptive access to a decryption oracle (mod-
ulo not being able to ask on the “challenge ciphertext”). This notion is sufficient for most natural

1

applications of PKE, and several generic [14, 26, 28, 5, 24] and concrete [12, 13, 23, 21] constructions
of IND-CCA secure encryption schemes are known by now. Unfortunately, all these constructions
either rely on specific number-theoretic assumptions, or use much more advanced machinery (such
as non-interactive zero-knowledge proofs or identity-based encryption) than IND-CPA secure encryp-
tion. Indeed, despite numerous efforts (e.g., a partial negative result [19]), the relationship between
IND-CPA and IND-CCA security remains unresolved until now. This motivates the study of various
“middle-ground” security notions between IND-CPA and IND-CCA, which are sufficient for applica-
tions, and, yet, might be constructed from simpler basic primitives (e.g., any IND-CPA encryption).

One such influential notion is non-malleability under chosen-plaintext attacks (NM-CPA), origi-
nally introduced by Dolev et al. [14] with the goal of precisely addressing the auction example above,
by demanding that an adversary must not be able to maul ciphertexts to other ciphertexts encrypting
related plaintexts. As was later shown by Bellare and Sahai [4] and Pass et al. [27], NM-CPA is
equivalent to security against adversaries with access to a non-adaptive decryption oracle, meaning
that the adversary can only ask one “parallel” decryption query. Although NM-CPA appears much
closer to IND-CCA than IND-CPA security, a seminal result by Choi et al. [9] showed that one can
generically build NM-CPA encryption from any IND-CPA-secure scheme. Thus, NM-CPA schemes
can be potentially based on weaker assumptions than IND-CCA schemes, and yet suffice for important
applications. Still, in the auction example above, the auctioneer U must change its public key pk with
every new auction, if only NM-CPA secure encryption is used.

In a different vein, Coretti et al. [10] have recently introduced another middle-ground security no-
tion for encryption, which we term indistinguishability under (chosen-ciphertext) self-destruct attacks
(IND-SDA) in this paper.1 Here the adversary gets access to an adaptive decryption oracle, which,
however, stops decrypting after the first invalid ciphertext is submitted. Applying this notion to our
auction example, it means that the auctioneer can reuse the secret key for subsequent auctions, as
long as all the encrypted bids are valid. Unfortunately, if an invalid ciphertext is submitted, even the
results of the current auction should be discarded, as IND-SDA security is not powerful enough to
argue that the decryptions of the remaining ciphertexts are unrelated w.r.t. prior plaintexts.

Our Work. Motivated by the above, we introduce a new security notion that we dub non-malleability
under (chosen-ciphertext) self-destruct attacks (NM-SDA). This notion (see Definition 3) naturally
combines NM-CPA and IND-SDA, by allowing the adversary to ask many adaptive “parallel” de-
cryption queries (i.e., a query consists of many ciphertexts) up to the point when the first invalid
ciphertext is submitted. In such a case, the whole parallel decryption query containing an invalid
ciphertext is still answered in full, but no future decryption queries are allowed. By being stronger
(as we show below) than both NM-CPA and IND-SDA, NM-SDA security appears to be the strongest
natural security notion of PKE which is still weaker (as we give evidence below) than IND-CCA. In
particular, it seems to apply better to the auction example above: First, unlike with basic NM-CPA,
the auctioneer can reuse the same public key pk, provided no invalid ciphertexts were submitted.
Second, unlike IND-SDA, the current auction can be safely completed, even if some ciphertexts are
invalid. Compared to IND-CCA, however, the auctioneer will still have to change its public key for
subsequent auctions if some of the ciphertexts are invalid. Still, one can envision situations where par-
ties are penalized for submitting such malformed ciphertexts, in which case NM-SDA security might
be practically sufficient, potentially leading to a more efficient implementation (as compared to using
full-blown IND-CCA PKE).

Having introduced and motivated NM-SDA security, we provide a comprehensive study of this
notion, and its relationship to other PKE security notions. First, we observe that the prior notions of
NM-CPA and IND-SDA are indeed incomparable, meaning that there are (albeit contrived) schemes
that satisfy the former but not the latter notion and vice versa (cf. Theorem 20 in Appendix A).
This also implies that our notion of NM-SDA security is strictly stronger than either of the two other
notions. Next, we turn to study two fundamental questions related to NM-SDA. The first question is
that of domain extension, i.e., how to construct a multi-bit NM-SDA PKE scheme from a single-bit
NM-SDA PKE scheme (in a black-box manner). The second question is the relation between NM-SDA
and IND-CPA. We detail these below.

1The original name used in [10] is self-destruct chosen-ciphertext attacks security.

2

Domain Extension. One important issue in public-key cryptography is to investigate for which
security notions single-bit public-key encryption implies multi-bit public-key encryption. For IND-
CPA, this question is simple [20], since the parallel repetition of a single-bit scheme (i.e., encrypting
every bit of a message separately) yields an IND-CPA secure multi-bit scheme. For the other notions
considered in this paper, i.e., for NM-CPA, IND-SDA, and NM-SDA, as well as for IND-CCA, the
parallel repetition (even using independent public keys) is not a scheme that achieves the same security
level as the underlying single-bit scheme. However, Coretti et al. [10] provide a more involved single-
to-multi-bit transformation for IND-SDA security (based on non-malleable codes [16]; see below),
and Myers and Shelat [25], as well as Hohenberger et al. [22], provide (much) more complicated such
transformations for IND-CCA security. To complement these works, we answer the question of domain
extension for NM-SDA and NM-CPA in the affirmative. In particular we show the following result:

Theorem 1 (Informal). For any K > 1, there is a black-box construction of a K-bit NM-SDA (resp.
NM-CPA) PKE scheme from a single-bit NM-SDA (resp. NM-CPA) PKE scheme. Moreover, this can
be done using only O(K + λ) calls to the underlying single-bit NM-SDA (resp. NM-CPA) scheme,
where λ is the security parameter.2

The proof of Theorem 1 can be found in Section 4. Our approach follows that of [10] and combines
single-bit PKE with so-called non-malleable codes (NMCs), introduced by Dziembowski et al. [16].
Intuitively, NMCs protect encoded messages against a tampering adversary, which tampers with the
codeword by means of applying functions f from a particular function class F to it, in the sense that
the decoding results in either the original message or a completely unrelated value.

Our construction, based on the one in [10], has the following simple structure (see also Figure 4):
The plaintext m is first encoded using an appropriate non-malleable code into an encoding c, which
is in turn encrypted bit-by-bit (under independent public keys) with the single-bit NM-SDA scheme.3

The fact that NM-SDA security (or CCA security in general) guarantees that an attacker can either
leave a ciphertext intact or replace it, which results in an unrelated message, translates to the following
capability of an adversary w.r.t. decryption queries: It can either leave a particular bit of the encoding
unchanged, or fix it to 0 or to 1. Therefore, the tamper class against which the non-malleable code
must be resilient is the class Fset of functions that tamper with each bit of an encoding individually
and can either leave it unchanged or replace it by a fixed value.

The main new challenge for our construction is to deal with the parallel decryption queries. In
particular, in order for the combined scheme to be NM-SDA secure, the NMC needs to be resilient
against parallel tamper queries as well. Unfortunately, we show that no standard non-malleable code
(as originally defined by Dziembowski et al. [16] and Faust et al. [17]) can achieve this notion (see
Section 4.5). Fortunately, we observe that the NMC concept can be extended to allow the decoder
to make use of (an initially generated) secret state, which simply becomes part of the secret key in
the combined scheme. This modification of NMCs—called secret-state NMCs—allows us to achieve
resilience against parallel tampering and may be of independent interest. This reduces our question
to building a secret-state non-malleable code resilient against continuous parallel tampering attacks
from Fset. We construct such a code in Section 4.3, by combining the notion of error-correcting secret
sharing (see [16]) with the idea of a secret “trigger set” [9]. This construction forms one of the main
technical contributions of our work.

Construction from CPA. Next, we turn to the question if NM-SDA secure PKE can be built
from IND-CPA secure PKE. While this question is still wide open for building full IND-CCA security,
it is resolved in the affirmative [9] for weaker NM-CPA security. As our main result in this area, we
show that NM-SDA (and, hence, IND-SDA) security can be realized from IND-CPA security:

Theorem 2 (Informal). There exists a black-box construction of an NM-SDA-secure PKE scheme
from an IND-CPA-secure PKE scheme.

Hence, the notions of IND-CPA, NM-CPA, IND-SDA, and NM-SDA security are all equivalent,
lying (plausibly, strictly?) below IND-CCA security. See Figure 1.

2Once K = Ω(λ), one can also use hybrid encryption; thus, in practice O(λ) calls should suffice for any K.
3Technically, this scheme only achieves a slight relaxation of NM-SDA security, called replayable NM-SDA security,

but the latter can be easily transformed into the former.

3

IND-CCA

NM-SDA

NM-CPA IND-SDA

IND-CPA

Figure 1: Diagram of the main relationships between the security notions considered in this paper.
X → Y means that X implies Y ; X 9 Y indicates a separation between X and Y . Notions with the
same color are equivalent under black-box transformations; notions with different colors are not known
to be equivalent.

The proof of Theorem 2 appears in Section 5. In fact, we show that the very same construction
of Choi et al. already achieves NM-SDA security (rather than only NM-CPA security). Our proof
much follows the pattern of the original one, except for one key step in the proof, where a brand
new proof technique is required. Intuitively, we need to argue that no sensitive information about the
secret “trigger set” is leaked to the adversary, unless one of the ciphertexts is invalid. This rather
general technique (for analyzing security of so called “parallel stateless self-destruct games”) may be
interesting in its own right (e.g., it is also used in the security proof of our non-malleable code in
Section 4), and is detailed in Section 6.

Along the way, we also manage to slightly abstract the transformation of [9], and to re-phrase
it in terms of certain error-correcting secret-sharing schemes (ECSSs) satisfying a special property
(as opposed to using Reed-Solomon codes directly as an example of such a scheme). Aside from a
more modular presentation, this also allows us to instantiate the required ECSS more efficiently, and
improves the rate of the transformation of [9] from quadratic to linear (while also arguing NM-SDA,
instead of NM-CPA, security). Additionally, with our improved modularity the NM-SDA construc-
tion from IND-CPA security starts to look somewhat similar (although more complicated) to our
domain-extension construction for NM-SDA, which also uses error-correcting secret-sharing, albeit in
a somewhat more efficient way. It is an interesting open question if this “syntactic similarity” could
be formalized, perhaps leading to a better, more modular understanding of how to achieve NM-SDA
security from simpler components.

2 Preliminaries

In this section, we introduce notational conventions and basic concepts that we use throughout the
work.

Bits and symbols. Let ` ∈ N. For any multiple m = t` of `, an m-bit string x = (x[1], . . . , x[m])
= (x1, . . . , xt) can be seen as composed of its bits x[j] or its symbols xi ∈ {0, 1}`. For two m-bit strings
x and y, denote by dH(x, y) their hamming distance as the number of symbols in which they differ.

Oracle Algorithms. Oracle algorithms are algorithms that can make special oracle calls. An
algorithm A with an oracle O is denoted by A(O). Note that oracle algorithms may make calls to
other oracle algorithms (e.g., A(B(O))).

Distinguishers and Reductions. A distinguisher is an (possibly randomized) oracle algorithm
D(·) that outputs a single bit. The distinguishing advantage on two (possibly stateful) oracles S and
T is defined by

∆D(S, T) := |P[D(S) = 1]− P[D(T) = 1]|,

where the probabilities are taken over the randomness of D as well as S and T , respectively.

4

Reductions between distinguishing problems are modeled as oracle algorithms as well. Specifically,
when reducing distinguishing two oracles U and V to distinguishing S and T , one exhibits an oracle
algorithm R(·) such that R(U) behaves as S and R(V) as T ; then, ∆D(S, T) = ∆D(R(U), R(V)) =
∆D(R(·))(U, V).

Error-correcting sharing schemes. The following notion of error-correcting sharing schemes
is used in several places in this paper.

Definition 1 (Error-correcting sharing scheme). Let n ∈ N be a security parameter and F a field of
size L = 2` for some ` ∈ N. A (k, n, 2α, τ)-error-correcting sharing scheme (ECSS) over F is a pair
of algorithms (E,D), where E : Fk → Fn is randomized and D : Fn × N → Fk ∪ {⊥} is deterministic,
with the following properties:

• Error correction: It is possible to efficiently correct up to 2αn errors, i.e., for any x ∈ Fk and
any w output by E(x), if dH(c, w) ≤ t for some c ∈ Fn and t ≤ 2αn, then D(c, t) = x.4

• Secrecy: The symbols of a codeword are individually uniform over F and and τn-wise independent
(over the randomness of E).

This paper considers two particular instantiations of ECSSs:

• Reed-Solomon codes: Cheraghchi and Guruswami [8] provide an ECSS based on a construction
by Dziembowski et al. [16] and on Reed-Solomon codes with ` = log n. One can show that it
achieves the following parameters (not optimized): α = 1/8, τ = 1/8 and rate k/n ≥ 1/4.

• Algebraic geometric codes: Using algebraic geometric codes, Cramer et al. [11] provide an ECSS
with ` = O(1) and still constant error correction, secrecy, and rate (but with worse concrete
constants than Reed-Solomon codes).

One-time signatures. A digital signature scheme (DSS) is a triple of algorithms Σ = (KG , S, V),
where the key-generation algorithm KG outputs a key pair (sk, vk), the (probabilistic) signing al-
gorithm S takes a message m and a signing key sk and outputs a signature s ← Ssk(m), and the
verification algorithm takes a verification key vk, a message m, and a signature s and outputs a single
bit Vvk(m, s).

A (strong) one-time signature (OTS) scheme is a digital signature scheme that is secure as long
as an adversary only observes a single signature. More precisely, OTS security is defined using the
following game GΣ,ots played by an adversary A: Initially, the game generates a key pair (sk, vk) and
hands the verification key vk to A. Then, A can specify a single message m for which he obtains a
signature s ← Svk(m). Then, the adversary outputs a pair (m′, s′). The adversary wins the game
if (m′, s′) 6= (m, s) and Vvk(m

′, s′) = 1. The advantage of A is the probability (over all involved
randomness) that A wins the game, and is denoted by ΓA(GΣ,ots).

Definition 2. A DSS scheme Σ is (t, ε)-secure if for all adversaries A with running time at most t,
ΓA(GΣ,ots) ≤ ε.

3 Non-Malleability under Self-Destruct Attacks

A public-key encryption (PKE) scheme with message space M ⊆ {0, 1}∗ and ciphertext space C is
defined as three algorithms Π = (KG , E,D), where the key-generation algorithm KG outputs a key
pair (pk, sk), the (probabilistic) encryption algorithm E takes a message m ∈ M and a public key pk
and outputs a ciphertext e ← Epk(m), and the decryption algorithm takes a ciphertext e ∈ C and a
secret key sk and outputs a plaintext m ← Dsk(e). The output of the decryption algorithm can be
the special symbol ⊥, indicating an invalid ciphertext. A PKE scheme is correct if m = Dsk(Epk(m))
(with probability 1 over the randomness in the encryption algorithm) for all messages m and all key
pairs (pk, sk) generated by KG .

Security notions for PKE schemes in this paper are formalized using the distinguishing game GΠ,q,p
b ,

depicted in Figure 2: The distinguisher (adversary) is initially given a public key and then specifies two

4The reason for requiring error correction 2α (instead of α) is purely notational convenience.

5

Distinguishing Game GΠ,q,p
b

init
ctr← 0
(pk, sk)← KG
output pk

on (chall,m0,m1) with |m0| = |m1|
e← Epk(mb)
output e

on (dec, e(1), . . . , e(p))
ctr← ctr + 1
for j ← 1 to p

m(j) ← Dsk(e
(j))

if e(j) = e

m(j) ← test

output (m(1), . . . ,m(p))

if ∃j : m(j) = ⊥ or ctr ≥ q
self-destruct

Figure 2: Distinguishing game GΠ,q,p
b , where b ∈ {0, 1}, used to define security of a PKE scheme

Π = (KG , E,D). The numbers q, p ∈ N specify the maximum number of decryption queries and their
size, respectively. The command self-destruct results in all future decryption queries being answered
by ⊥.

messages m0 and m1. One of these, namely mb, is encrypted and the adversary is given the resulting
challenge ciphertext. During the entire game, the distinguisher has access to a decryption oracle that
allows him to make at most q decryption queries, each consisting of at most p ciphertexts. Once the
distinguisher specifies an invalid ciphertext, the decryption oracle self-destructs, i.e., no additional
decryption queries are answered.

The general case is obtained when both q and p are arbitrary (denoted by q = p = ∗), which leads
to our main definition of non-malleability under (chosen-ciphertext) self-destruct attacks (NM-SDA).

For readability, set GΠ,nm-sda
b := GΠ,∗,∗

b for b ∈ {0, 1}. Formally, NM-SDA is defined as follows:

Definition 3 (Non-malleability under self-destruct attacks). A PKE scheme Π is (t, q, p, ε)-NM-SDA-
secure if for all distinguishers D with running time at most t and making at most q decryption queries
of size at most p each,

∆D(GΠ,nm-sda
0 , GΠ,nm-sda

1) ≤ ε.

All other relevant security notions in this paper can be derived as special cases of the above
definition, by setting the parameters q and p to different values.

Chosen-plaintext security (IND-CPA). In this variant, the distinguisher is not given access

to a decryption oracle, i.e., q = p = 0. For readability, set GΠ,ind-cpa
b := GΠ,0,0

b for b ∈ {0, 1} in the
remainder of this paper. We say that Π is (t, ε)-IND-CPA-secure if it is, in fact, (t, 0, 0, ε)-NM-SDA-
secure.

Non-malleability (NM-CPA). A scheme is non-malleable under chosen-plaintext attacks [27]
(NM-CPA), if the adversary can make a single decryption query consisting of arbitrarily many cipher-
texts, i.e., q = 1 and p arbitrary (denoted by p = ∗). Similarly to above, set GΠ,nm-cpa

b := GΠ,1,∗
b for

b ∈ {0, 1}. We say that Π is (t, p, ε)-NM-CPA-secure if it is, in fact, (t, 1, p, ε)-NM-SDA-secure.5

Indistinguishability under self-destruct attacks (IND-SDA). In this variant, introduced
in [10], the decryption oracle allows arbitrarily many queries, but each of them may consist of a single

ciphertext only, i.e., q arbitrary (denoted by q = ∗) and p = 1. Once more, set GΠ,ind-sda
b := GΠ,∗,1

b .
We say that Π is (t, q, ε)-IND-SDA-secure if it is, in fact, (t, q, 1, ε)-NM-SDA-secure.

Chosen-ciphertext security (IND-CCA). The standard notion of IND-CCA security can be
obtained as a generalization of NM-SDA where q = ∗, p = 1, and the decryption oracle never self-
destructs. We do not define this notion formally, as it is not the main focus of this paper.

Asymptotic formulation. To allow for concise statements, sometimes we prefer to use an asymp-
totic formulation instead of stating concrete parameters. More precisely, we will say that a PKE scheme

5Note that the way NM-CPA is defined here is slightly stronger than the normal notion. This is due to the adversary’s
ability to ask a parallel decryption query at any time—as opposed to only after receiving the challenge ciphertext in
earlier definitions (cf., e.g., [27]).

6

Game RF

init
s← Gen

on (encode, x)
c←$ Enc(x)

on (tamper, (f (1), . . . , f (p)))
for j ← 1 to p

c′ ← f (j)(c)

x(j) ← Dec(c′, s)

output (x(1), . . . , x(p))

if ∃j : x(j) = ⊥
self-destruct

Game SF ,sim

on (encode, x)
store x

on (tamper, (f (1), . . . , f (p)))

(x(1), . . . , x(p))←$ sim((f (1), . . . , f (p)))

for all x(j) = same

x(j) ← x

output (x(1), . . . , x(p))

if ∃j : x(j) = ⊥
self-destruct

Figure 3: Distinguishing game (RF , SF,sim) used to define non-malleability of a secret-state coding
scheme (Gen,Enc,Dec). The command self-destruct has the effect that all future queries are an-
swered by ⊥.

Π is X-secure (for X ∈ {IND-CPA, NM-CPA, IND-SDA, NM-SDA}) if for all efficient adversaries the
advantage ε in the corresponding distinguishing game is negligible in the security parameter.

Non-Malleable CPA vs. Indistinguishable SDA. We provide a separation between the notions
of NM-CPA and IND-SDA security; a corresponding theorem and proof can be found in Appendix A.
Given such a separation, our notion of NM-SDA security (see Definition 3) is strictly stronger than
either of the two other notions.

4 Domain Extension

This section contains one of our main technical results. We show how single-bit NM-SDA PKE
can be combined with so-called secret-state non-malleable codes resilient against continuous parallel
tampering, which we believe is an interesting notion in its own right, to achieve multi-bit NM-SDA-
secure PKE. We construct such a code and prove its security, and, additionally, we show that no code
without secret state can achieve security against parallel tampering unconditionally.6

4.1 A New Flavor of Non-Malleable Codes

Non-malleable codes were introduced by Dziembowski et al. [16]. Intuitively, they protect encoded
messages in such a way that any tampering with the codeword causes the decoding to either output
the original message or a completely unrelated value. The original notion can be extended to include
the aforementioned secret state in the decoder as follows:

Definition 4 (Code with secret state). A (K,N)-code with secret state (CSS) is a triple of algorithms
(Gen,Enc,Dec), where the (randomized) state-generation algorithm Gen outputs a secret state s from
some set S, the (randomized) encoding algorithm Enc takes a K-bit plaintext x and outputs an N -bit
encoding c ← Enc(x), and the (deterministic) decoding algorithm Dec takes an encoding as well as
some secret state s ∈ S and outputs a plaintext x ← Dec(c, s) or the special symbol ⊥, indicating an
invalid encoding.

Tampering attacks are captured by functions f , from a certain function class F , that are applied to
an encoding. The original definition by [16] allows an attacker to apply only a single tamper function.
In order to capture continuous parallel attacks, the definition below permits the attacker to repeatedly
specify parallel tamper queries, each consisting of several tamper functions. The process ends as soon
as one of the tamper queries leads to an invalid codeword.

The non-malleability requirement is captured by considering a real and an ideal experiment. In
both experiments, an attacker is allowed to encode a message of his choice. In the real experiment,
he may tamper with an actual encoding of that message, whereas in the ideal experiment, the tamper
queries are answered by a (stateful) simulator. The simulator is allowed to output the special symbol
same, which the experiment replaces by the originally encoded message. In either experiment, if a
component of the answer vector to a parallel tamper query is the symbol ⊥, a self-destruct occurs,
i.e., all future tamper queries are answered by ⊥. The experiments are depicted in Figure 3.

6The question whether the notion is achievable by a computationally-secure code remains open for future work.

7

Definition 5 (Non-malleable code with secret state). Let q, p ∈ N and ε > 0. A CSS (Gen,Enc,Dec)
is (F , q, p, ε)-non-malleable if the following properties are satisfied:

• Correctness: For each x ∈ {0, 1}K and all s ∈ S output by Gen, Dec(Enc(x), s) = x with
probability 1 over the randomness of Enc.

• Non-Malleability: There exists a (possibly stateful) simulator sim such that for any distinguisher
D asking at most q parallel queries, each of size at most p, ∆D(RF , SF ,sim) ≤ ε.

We remark that for codes without secret-state (as the ones considered in [16]), one obtains the
standard notion of non-malleability [16] by setting q = p = 1, and continuous non-malleability [17] by
letting p = 1 and q arbitrary (i.e., q = ∗).

4.2 Combining Single-bit PKE and Non-Malleable Codes

Our construction of a multi-bit NM-SDA-secure PKE scheme Π′ from a single-bit NM-SDA-secure
scheme Π and a secret-state non-malleable (K,N)-code follows the approach of [10]: It encrypts a
K-bit message m by first computing an encoding c = (c[1], . . . , c[N]) of m and then encrypting each bit
c[i] under an independent public key of Π; it decrypts by first decrypting the individual components
and then decoding the resulting codeword using the secret state of the non-malleable code (which is
part of the secret key). The scheme is depicted in detail in Figure 4.

Intuitively, NM-SDA security (or CCA security in general) guarantees that an attacker can either
leave a message intact or replace it by an independently created one. For our construction, which
separately encrypts every bit of an encoding of the plaintext, this translates to the following capability
of an adversary w.r.t. decryption queries: It can either leave a particular bit of the encoding unchanged
or fix it to 0 or to 1. Therefore, the tamper class against which the non-malleable code must be resilient
is the class Fset ⊆ {f | f : {0, 1}N → {0, 1}N} of functions that tamper with each bit of an encoding
individually and can either leave it unchanged or replace it by a fixed value. More formally, f ∈ Fset

can be characterized by (f [1], . . . , f [N]), where f [j] : {0, 1} → {0, 1} is the action of f on the jth bit
and f [j] ∈ {zero, one, keep} with the meaning that it either sets the jth bit to 0 (zero) or to 1 (one) or
leaves it unchanged (keep).

Before stating the theorem about the security of our construction Π′, it needs to be pointed out
that it achieves only the so-called replayable variant of NM-SDA security. The notion of replayable
CCA (RCCA) security (in general) was introduced by Canetti et al. [6] to deal with the fact that
for many applications (full) CCA security is unnecessarily strict. Among other things, they provide
a MAC-based generic transformation of RCCA-secure schemes into CCA-secure ones, which we can
also apply in our setting (as we show) to obtain a fully NM-SDA-secure scheme Π′′.

Theorem 3. Let q, p ∈ N and Π be a (t+ t1bit, q, p, ε1bit)-NM-SDA-secure 1-bit PKE scheme, (T, V)
a (t + tmac, 1, qp, εmac)-MAC, and (Gen,Enc,Dec) a (Fset, q, p, εnmc)-non-malleable (K,N)-code with
secret state. Then, Π′′ is (t, q, p, ε)-NM-SDA-secure PKE scheme with

ε = 2(2(Nε1bit + εnmc) + qp · 2−` + εmac) + 2(Nε1bit + εnmc),

where t1bit and tmac are the overheads incurred by the corresponding reductions and ` is the length of
a verification key for the MAC.

In this section, we only sketch the first part of the proof, namely that Π′ is replayable NM-SDA-
secure; it is based on the corresponding proof by [10] in the setting with non-parallel decryption
queries. The full proof can be found in Appendix C.

We stress that an analogous statement as the one of the above theorem works for domain extension
of NM-CPA, i.e., for constructing a multi-bit NM-CPA scheme out of a single-bit NM-CPA scheme.
The proof is very similar to the one of Theorem 3 and therefore omitted.

Proof (sketch). The proof considers a series of N hybrid experiments. In very rough terms, the
ith hybrid generates the challenge ciphertext by computing an encoding c = (c[1], . . . , c[N]) of the
challenge plaintext and by replacing the first i bits c[i] of c by random values c̃[i] before encrypting

8

PKE Scheme Π′ = (KG ′, E′, D′)

Key Generation KG ′

for i← 1 to N
(pki, ski)←$ KG

pk← (pk1, . . . , pkN)
sk← (sk1, . . . , skN)
s← Gen
return (pk, (sk, s))

Encryption E′pk(m)

c = (c[1], . . . , c[N])← Enc(m)
for i← 1 to N

ei←$ Epki(c[i])
return e = (e1, . . . , eN)

Decryption D′(sk,s)(e)

(e1, . . . , eN)← e
for i← 1 to N

c[i]←$Dski(ei)
if c[i] = ⊥

return ⊥
m← Dec(c[1] · · · c[N], s)
return m

Figure 4: The K-bit PKE scheme Π′ = (KG ′, E′, D′) built from a 1-bit PKE scheme Π = (KG , E,D)
and a (K,N)-coding scheme with secret state (Gen,Enc,Dec).

the encoding bit-wise, leading to the challenge (e∗1, . . . , e
∗
N). Moreover, when answering decryption

queries (e′1, . . . , e
′
N), if e′j = e∗j for j ≤ i, the ith hybrid sets the outcome of e′j ’s decryption to be

the corresponding bit c[j] of the original encoding c, whereas if e′j 6= e∗j , it decrypts normally (then
it decodes the resulting N -bit string normally). This follows the above intuition that a CCA-secure
PKE scheme guarantees that if a decryption query is different from the challenge ciphertext, then
the plaintext contained in it must have been created independently of the challenge plaintext. The
indistinguishability of the hybrids follows from the security of the underlying single-bit scheme Π.

In the N th hybrid, the challenge consists of N encryptions of random values. Thus, the only
information about the encoding of the challenge plaintext that an attacker gets is that leaked through
decryption queries. But in the N th hybrid there is a 1-to-1 correspondence between decryption queries
and the tamper function f = (f [1], . . . , f [N]) applied to the encoding of the challenge plaintext: The
case e′j = e∗j corresponds to f [j] = keep, and the case e′j 6= e∗j corresponds to f [j] = zero or f [j] = one,
depending on whether e′j decrypts to zero or to one. This allows a reduction to the security of the
non-malleable code.

4.3 Non-Malleable Code Construction

It remains to construct a non-malleable code (with secret state) resilient against parallel tampering.
The intuition behind our construction is the following: If a code has the property (as has been the
case with previous schemes secure against (non-parallel) bit-wise tampering) that changing a single
bit of a valid encoding results in an invalid codeword, then the tamper function that fixes a particular
bit of the encoding and leaves the remaining positions unchanged can be used to determine the value
of that bit; this attack is parallelizable, and thus a code of this type cannot provide security against
parallel tampering. A similar attack is also possible if the code corrects a fixed (known) number of
errors. To circumvent this issue, our construction uses a—for the lack of a better word—“dynamic”
error-correction bound: The secret state (which is initially chosen at random) is used to determine
the positions of the encoding in which (a certain amount of) errors is tolerated.

Construction. Let F be a field of size L = 2` for some ` ∈ N, and let (E,D) be a (k, n)-ECSS
(cf. Definition 1 in Section 2) with error correction 2α and secrecy τ over F. Consider the following
(K,N)-code with secret state scheme (Gen,Enc,Dec) for K = k` and N = n`:

• Gen: Choose a subset T of [n] of size τn uniformly at random and output it.
• Enc(x) for x ∈ {0, 1}K : Compute c = E(x) and output it (as bit string).
• Dec(c, T) for c ∈ {0, 1}N : Interpret c as vector (c1, . . . , cn) over F. Find a codeword w =

(w1, . . . , wn) with dH(w, c) ≤ αn.7 If no such w exists, output ⊥. Moreover, if wi 6= ci for some
i ∈ T , output ⊥ as well. Otherwise, decode w to (x1, . . . , xk) and output it (as bit string).

We prove the following theorem:

7Recall that the Hamming distance is over F, i.e., it measures how many symbols of w and c differ.

9

Theorem 4. For all q, p ∈ N, coding scheme (Gen,Enc,Dec) is (Fset, q, p, εnmc)-non-malleable with

εnmc = p(e−τn/16+`s ln 2 + e−τ
2n/4) + pe−τ

2n,

where s is such that Ls = e`s ln 2 is an upper bound on the number of codewords in the range of E.

Instantiating the construction. The number s = k + r of the above theorem consists of the
number k of plaintext symbols and the number r of randomness symbols (both constant fractions
of s). An instantiation of the above construction using algebraic geometric codes (cf. Section 2) allows
to achieve constant error correction and secrecy. Moreover, the fact that the field size needed by
these codes is constant, which implies that ` is constant, allows constant s (s = βn for β < τ

16` ln 2)

and thus constant rate, while εnmc = pe−Ω(1)n. When combining the single-bit PKE scheme with our
non-malleable code (cf. Theorem 3), εnmc becomes negligible if n is chosen, e.g., linearly in the security
parameter λ of the scheme. This allows us to encrypt messages of length K = Ω(λ) with n = O(λ)
(more generally, K-bit messages with n = O(K + λ); cf. Theorem 1).

4.4 Proof of the Non-Malleable Code Construction

For the proof of Theorem 4, fix q, p ∈ N and a distinguisher D making at most q tamper queries of
size p each. Set F := Fset for the rest of the proof. The goal is to show

∆D(RF , SF ,sim) ≤ εnmc = p(e−τn/16+`s ln 2 + e−τ
2n/4) + pe−τ

2n

for a simulator sim to be determined.
On a high level, the proof proceeds as follows: First, it shows that queries that interfere with too

many symbols of an encoding and at the same time do not fully fix enough symbols (called middle
queries below) are rejected with high probability. For the remaining query types (called low and high
queries), one can show that their effect on the decoding process can always be determined from the
query itself and the symbols of the encoding at the positions indexed by the secret trigger set T . Since
the size of T is τn, these symbols are uniformly random and independent of the encoded message,
which immediately implies a simulation strategy for sim.

4.4.1 Tamper-Query Types

Recall that f ∈ Fset can be characterized by (f [1], . . . , f [N]), where f [j] : {0, 1} → {0, 1} is the action
of f on the jth bit, for f [j] ∈ {zero, one, keep}, with the meaning that it either sets the jth bit to 0
(zero) or to 1 (one) or leaves it unchanged (keep). Alternatively, since N = n`, f can be characterized
by (f1, . . . , fn), where fi : {0, 1}` → {0, 1}` is the action of f on the ith symbol.8 Abusing notation,
we write f = (f [1], . . . , f [N]) = (f1, . . . , fn).

Consider a tamper query f = (f1, . . . , fn) ∈ Fset and an N -bit string c = (c1, . . . , cn). Query f is
said to dirty a symbol ci of c if at least one of the corresponding bits of ci is fixed to 0 or to 1; it is
said to freeze a symbol if all of the corresponding bits are fixed. Note that if f freezes the ith symbol,
then fi ≡ c for some c ∈ {0, 1}`, in which case we set val(fi) := c. A tamper query f is a

• low query if it dirties at most τn symbols, a
• high query if it freezes all but τn symbols, and a
• middle query otherwise.

Denote by D(f), F (f) ⊆ [n] the sets of indices of the symbols dirtied respectively frozen by f . More-
over, generalize the Hamming distance to compare N -bit strings and tamper queries f as follows:

dH(w, f) :=
∑
i∈F (f)

dH(wi, val(fi)),

i.e., dH(w, f) compares w to the values of the symbols fully frozen by f .9 The distance between two
codewords can be bounded in terms of their distances from a tampering query.

8Note that fi still acts on each of the bits individually and may only set them to 0, to 1, or leave them unchanged.
9Note that dH(wi, val(fi)) is either 0 or 1.

10

Proposition 5. For any N -bit strings v, w and f ∈ Fset,

dH(v, w) ≤ dH(v, f) + dH(w, f) + (n− |F (f)|).

Proof. Let f = (f1, . . . , fn). Then,

dH(v, w) =
∑
i∈F (f)

dH(vi, wi) +
∑

i∈[n]\F (f)

dH(vi, wi)

≤
∑
i∈F (f)

(
dH(vi, val(fi)) + dH(wi, val(fi))

)
+ (n− |F (f)|)

= dH(v, f) + dH(w, f) + (n− |F (f)|).

4.4.2 Analyzing Query Types

The following lemma states that an isolated middle query is rejected with high probability.

Lemma 6. Let f ∈ Fset be a middle query. Then, for any x ∈ {0, 1}K ,

P[Dec(f(Enc(x))) 6= ⊥] ≤ e−τn/16+`s ln 2 + e−τ
2n/4

where the probability is over the randomness of Enc and the choice of the secret state T .10

Proof. Fix x ∈ {0, 1}K and a middle query f = (f [1], . . . , f [N]). Denote by c = (c[1], . . . , c[N]) =
(c1, . . . , cn) and c̃ = (c̃[1], . . . , c̃[N]) = (c̃1, . . . , c̃n) the (random variables corresponding to the) encod-
ing c = Enc(x) and the tampered encoding c̃ = f(c). For an arbitrary (N -bit) codeword c∗,

E[dH(c̃, c∗)] =

n∑
i=1

E[dH(c̃i, c
∗
i)] ≥

∑
i∈Tf

E[dH(c̃i, c
∗
i)],

where Tf ⊆ [n] is the set containing the indices of the first τn symbols not completely frozen by f .
Note that by the definition of middle queries, there are at least that many, i.e., |Tf | = τn.

Observe that for each i ∈ Tf , dH(c̃i, c
∗
i) is an indicator variable with expectation E[dH(c̃i, c

∗
i)] ≥ 1

2 ,
which follows from the fact that ci is uniformly distributed over {0, 1}` and at least one bit of ci is
not frozen by f . Thus, E[dH(c̃, c∗)] ≥ τn

2 .
Additionally, (dH(c̃i, c

∗
i))i∈Tf are independent. Therefore, using Theorem 39, for ε > 0

P[dH(c̃, c∗) < (1− ε)τn/2] ≤ e−τε
2n/4

Therefore, the probability that the above does not hold for all codewords c∗ is at most e−τε
2n/4+`s ln 2

by a union bound, since there are at most Ls = e`s ln 2 codewords.
Suppose now that dH(c̃, c∗) ≥ (1− ε)τn/2 for all codewords c∗. Then, over the choice of T ,11

P[∀i ∈ T : dH(c̃i, c
∗
i) = 0] ≤ (1− (1− ε)τ/2)τn ≤ e−(1−ε)τ2n/2.

The lemma now follows by setting ε := 1
2 .

It turns out that low and high queries always result in ⊥ or one other value.

Lemma 7. Low queries f ∈ Fset can result only in ⊥ or the originally encoded message x ∈ {0, 1}K .
High queries f ∈ Fset can result only in ⊥ or one other value x′f ∈ {0, 1}K , which solely depends on f .
Furthermore, x′f , if existent, can be found efficiently given f .

10Recall that s is such that Ls = e`s ln 2 is an upper bound on the number of codewords in the range of E.
11Recall that |T | = τn.

11

Proof. The statement for low queries is trivial, since a low query f cannot change the encoding beyond
the error correction bound αn (since α ≥ τ).

Consider now a high query f . Clearly, if w “appears” during the decoding, then dH(w, f) ≤ αn.
Assume codewords w and w′ with dH(w, f) ≤ αn and dH(w′, f) ≤ αn exist. Then, using Proposition 5,

dH(w,w′) ≤ dH(w, f) + dH(w′, f) + τn ≤ αn+ αn+ αn ≤ 3αn.

The assumed ability to correct 2αn errors means that 3αn is strictly less than the minimum distance
of the ECSS, and therefore w = w′.

If w′f := w exists, it can be computed as follows from f :

1. Compute c′ ← f(0N).
2. Decode c′ within 2αn (symbol) errors. If there is no codeword w′f within 2αn, output ⊥.
3. If dH(w′f , f) > αn, output ⊥. Otherwise, output w′f .

By Proposition 5, dH(w′f , f(0N)) ≤ dH(w′f , f) + dH(f(0N), f)︸ ︷︷ ︸
=0

+τn ≤ 2αn, and therefore the algorithm

finds w′f . Decoding w′f yields x′f .

4.4.3 Hybrids

Handling middle queries. Consider the hybrid game H1 that behaves as RF , except that it
answers all middle queries by ⊥.

Lemma 8. ∆D(RF , H1) ≤ p(e−τn/16+`s ln 2 + e−τ
2n/4).

The proof of Lemma 8 follows a generic paradigm, at whose core is the so-called self-destruct lemma,
which deals with the indistinguishability of hybrids with the self-destruct property and is explained
in detail in Section 6. Roughly, this lemma applies whenever the first hybrid (in this case RF) can
be turned into the second one (in this case H1) by changing (“bending”) the answers to a subset (the
“bending set”) of the possible queries to always be ⊥, and when additionally non-bent queries have
a unique answer (cf. the statement of Lemma 19). Intuitively, the lemma states that parallelism and
adaptivity do not help distinguish (much) in such cases, which allows using Lemma 6.

Proof. The lemma is proved conditioned on the message x encoded by D. To use the self-destruct
lemma, note first that both RF and H1 answer parallel tamper queries in which each component is
from the set X := F by vectors whose components are in Y := {0, 1}K ∪{⊥}. Moreover, both hybrids
use as internal randomness a uniformly chosen element from R := {0, 1}ρ × S, where ρ is an upper
bound on the number of random bits used by Enc. RF answers each component of a query f ∈ X by

g(f, (r, T)) := Dec(f(Enc(x; r)), T).

Define B ⊆ X to be the set of all middle queries; H1 is the B-bending of RF (cf. Definition 7).
Observe that queries f /∈ B are either low or high queries. For low queries f , the unique answer is

yf = x, and for high queries f , yf = x′f (cf. Lemma 7). Thus, by Lemmas 19 and 6,

∆D(RF , H1) ≤ p ·max
f∈B

P[g(f, (r, T)) 6= ⊥] ≤ p(e−τn/16+`s ln 2 + e−τ
2n/4),

where the probability is over the choice of (r, T).

Handling high queries. Consider the following hybrid game H2: It differs from H1 in the way it
decodes high queries f . Instead of applying the normal decoding algorithm to the tampered codeword
c̃, it proceeds as follows:

1. Find w′f (as in the proof of Lemma 7).
2. If w′f does not exist, return ⊥.
3. If c̃i = w′f,i for all i ∈ T , return Dec(w). Otherwise, return ⊥.

12

Lemma 9. ∆D(H1, H2) ≤ pe−τ
2n.

Proof. The lemma is proved conditioned on the message x encoded by D and the randomness r of
the encoding. For the remainder of the proof, r is therefore considered fixed inside H1 and H2. The
proof, similarly to that of Lemma 8, again uses the self-destruct lemma.

Set X := F and Y := {0, 1}K ∪{⊥}. However, this time, let R := S. For f ∈ X and T ∈ R, define

g(f, T) := Dec(c̃, T),

where c̃ := f(Enc(x; r)). The bending set B ⊆ X is the set of all high queries f such that w′f exists

and dH(w′f , c̃) > αn.12 It is readily verified that H2 is a parallel stateless self-destruct game (cf.
Definition 6) that behaves according to g, and that H1 is its B-bending.

Consider a query f /∈ B. If f is a low query, the unique answer is yf = x; if it is a middle query,
yf = ⊥; if it is a high query, yf = x′f (cf. Lemma 7). Therefore,

∆D(H1, H2) ≤ max
f∈B

P[g(f, T) 6= ⊥] ≤ pe−τ
2n,

where the first inequality follows from the self-destruct lemma (Lemma 19) and the second one from
the fact that dH(x′f , c̃) > αn for a query in B, and therefore the probability over the choice of T that

it is accepted is at most (1− α)τn ≤ e−τ2n.

4.4.4 Simulation

By analyzing hybrid H2, one observes that low and high queries can now be answered knowing only
the query itself and the symbols of the encoding indexed by the trigger set T .

Lemma 10. Consider the random experiment of distinguisher D interacting with H2. There is an
efficiently computable function Dec′ : Fset×S ×{0, 1}`τn → {0, 1}K ∪{same,⊥} such that for any low
or high query f , any fixed message x, any fixed encoding c thereof, and any output T of Gen,[

Dec′(f, T, (ci)i∈T)
]
same/x

= Dec(f(c)),

where [·]same/x is the identity function except that same is replaced by x and where (ci)i∈T are the
symbols of c specified by T .

Proof. Consider a low query f . Due to the error correction, Dec(f(c)) is the message originally encoded
if no bit indexed by T is changed and ⊥ otherwise. Which one is the case can clearly be efficiently
computed from f , T , and (ci)i∈T .

For high queries f the statement follows by inspecting the definition of H2 and Lemma 7.

In H2, by the τn-secrecy of the ECSS, the distribution of the symbols indexed by T is independent
of the message x encoded by D. Moreover, the distribution of T is trivially independent of x. This
suggests the following simulator sim: Initially, it chooses a random subset T from

(
[n]
τn

)
and chooses τn

random symbols (ci)i∈T . Every component f of any tamper query is handled as follows: If f is a low
or a high query, the answer is Dec′(f, T, (ci)i∈T); if f is a middle query, the answer is ⊥. This implies:

Lemma 11. H2 ≡ SF ,sim.

Proof of Theorem 4. Follows from Lemmas 8, 9, and 11 and a triangle inequality.

12These are queries potentially accepted by H2 but not by H1.

13

4.5 Impossibility for Codes without State

We show that codes without secret state (as, e.g., the ones in [16, 15, 1, 18, 10, 7, 2]) cannot achieve
(unconditional) non-malleability against parallel tampering. Specifically, we prove the following the-
orem:

Theorem 12. Let F := Fset. Let (Enc,Dec) be a (K,N)-code without secret state and noticeable
rate. There exists a distinguisher D asking a single parallel tampering query of size N6 such that, for
all simulators sim and all N large enough, ∆D(RF , SF ,sim) ≥ 1/2.

The above impossibility result requires that the rate of the code not be too small (in fact N =
o(2K/6) suffices, see Appendix B for the exact parameters). The distinguisher D is inefficient, so
it might still be possible to construct a non-malleable code against parallel tampering with only
computational security. We leave this as an interesting open question for future research.

Here, we outline an attack for the case where Dec is deterministic. A full proof and a generalization
to the setting where Dec uses (independent) randomness for (each) decoding is in Appendix B.

Proof (sketch). Roughly, a possible attack works as follows: There exists an (inefficient) extraction
algorithm that, by suitably tampering with an encoding in the real experiment RF , is able to recover
the original plaintext with high probability. Since (modulo some technicalities) this is not possible in
the ideal experiment SF ,sim (for any simulator sim), this constitutes a distinguishing attack.

For simplicity, suppose that the decoding algorithm Dec is deterministic. The extraction relies on
the fact that for any position i ∈ [N] with relevance in the decoding, there exist two codewords c′i and
c′′i with Dec(c′i) 6= Dec(c′′i) and differing in position i only. From the result of a tamper query fixing all
but the ith position to correspond with the bits of c′i (or c′′i) one can therefore infer the value of the ith

bit of the encoding. This extraction is an independent process for every (relevant) position and thus
parallelizable. In other words, a single parallel tamper query can be used to recover every relevant
position of an encoding (from which the original message can be computed by filling the non-relevant
positions with arbitrary values and applying the decoding algorithm).

5 Construction from CPA Security

In this section we show that NM-SDA security can be achieved in a black-box fashion from IND-CPA
security. Specifically, we prove that the scheme by Choi et al. [9] (dubbed the CDMW construction in
the remainder of this section) is NM-SDA secure as is. The main difficulty is to extend their analysis
to deal with adaptively chosen parallel decryption queries (with self-destruct).

The CDMW construction is presented in Section 5.1. We managed to slightly abstract away some
features of the original transformation, using the notion of error-correcting secret-sharing codes (cf.
Section 2) satisfying an additional property. We hope this might give a deeper understanding of the
result of [9]. Below, we first recap the CDMW construction; the proof that it achieves NM-SDA
security can be found in Section 5.2.

5.1 Construction

The CDMW construction first encodes a message using a randomized Reed-Solomon code, which is
captured as a special case by the notion of error-correcting sharing scheme (ECSS) (cf. Section 2).
For ease of description, we assume that the decoding algorithm returns not only the plaintext x but
also the corresponding codeword w, i.e., (x,w) ← D(c, t), where t ∈ N specifies the number of errors
to correct; moreover, the output is (x,w) = (⊥,⊥) if c is not within distance t of any codeword.

The additional property the ECSS has to satisfy is roughly that given a certain number of symbols
chosen uniformly at random and independently and a plaintext x, one can efficiently produce an
encoding that matches the given symbols and has the same distribution as E(x). It is described in
more detail in the proof of Lemma 18, where it is needed.13

13Of course, the Reed-Solomon-based ECSS from [9] has this property.

14

PKE Scheme Π′ = (KG ′, E′, D′)

Key Generation KG ′

for (b, i, j) ∈ {0, 1} × [κ]× [n]

(pkbi,j , sk
b
i,j)← KG

PK← (pkbi,j)b,i,j
SK← (skbi,j)b,i,j

T ←$

(
[n]
τn

)
return (PK, (SK, T))

Encryption E′PK(m)
(c1, . . . , cn)← E(m)
(verk, sigk)← KGots

(v[1], . . . , v[κ])← verk
for (i, j) ∈ [κ]× [n]

ei,j ← E
pk

v[i]
i,j

(cj)

E← (ei,j)i,j
σ ← Ssigk(E)
return (E, verk, σ)

Decryption D′(SK,T)(E, verk, σ)

if Vverk(E, σ) = 0
return ⊥

for j ∈ T
decrypt jth column of E
if not all entries identical

return ⊥
decrypt first row of E to c
(m,w)← D(c, αn)
if w = ⊥ or ∃j ∈ T : cj 6= wj

return ⊥
return m

Figure 5: The CDMW PKE scheme Π′ constructed from a CPA-secure scheme Π [9].

Construction. Let Π = (KG , E,D) be a PKE scheme with message space M = {0, 1}`, and let
Σ = (KGots, S, V) be a one-time signature scheme with verification keys of length κ. Moreover, let
(E,D) be a (k, n, 2α, τ)-ECSS.

The CDMW construction (cf. Figure 5), to encrypt a plaintext m ∈ {0, 1}k`, first computes an
encoding (c1, . . . , cn)← E(m) and then creates the (κ×n)-matrix C in which this encoding is repeated
in every row. For every entry Cij of this matrix, there are two possible public keys pkbi,j ; which of them

is used to encrypt the entry is determined by the ith bit v[i] of the verification key verk = (v[1], . . . , v[κ])
of a freshly generated key pair for Σ. In the end, the encrypted matrix E is signed using verk, producing
a signature σ. The ciphertext is (E, verk, σ).

The decryption first verifies the signature. Then, it decrypts all columns indexed by a set T ⊂ [n],
chosen as part of the secret key, and checks that each column consists of a single value only. Finally,
it decrypts the first row and tries to find a codeword with relative distance at most α. If so, it checks
whether the codeword matches the first row in the positions indexed by T . If all checks pass, it outputs
the plaintext corresponding to the codeword; otherwise it outputs ⊥.

We prove the following theorem in the subsequent section.

Theorem 13. Let t ∈ N and Π be a (t+tcpa, εcpa)-IND-CPA-secure PKE scheme, (E,D) a (k, n, 2α, τ)-
ECSS, and Σ a (t+tots, εots)-secure OTS scheme with verification-key length κ. Then, for any q, p ∈ N,
PKE scheme Π′ is (t, q, p, ε)-NM-SDA-secure with

ε = (1− τ)κn · εcpa + 2 · εots + 4 · p(1− τ)αn,

where tcpa and tots represent the overhead incurred by corresponding reductions.

Instantiating the construction. When instantiated with the ECSS by [8] based on Reed-
Solomon codes (cf. Section 2), the above bound becomes ε = 7

8κn · εcpa + 2εots + 4pe−49/64n. This
optimizes over the original CDMW construction by a factor of Ω(κ) (assuming constant rate k/n).
The ECSS could also be instantiated with algebraic geometric codes (which also satisfy the additional
property mentioned above); this would yield no significant asymptotic efficiency improvement, but
would allow to potentially encrypt shorter plaintexts.

5.2 Security Proof

5.2.1 Overview

The proof follows the original one by [9]. The main change is that one needs to argue that, unless
they contain invalid ciphertexts, adaptively chosen parallel queries do not allow the attacker to obtain
useful information, in particular on the secret set T . This is facilitated by using the self-destruct
lemma again (cf. Section 6). The proof proceeds in three steps using two hybrid games Hb and H ′b:

• The first hybrid Hb gets rid of signature forgeries for the verification key used to create the

challenge ciphertext. The indistinguishability of the hybrid from GΠ′,nm-sda
b follows the security

of the OTS scheme and requires only minor modifications compared to the original proof.

15

• The second hybrid H ′b uses an alternative decryption algorithm. The indistinguishability of H ′b
and Hb holds unconditionally; this step requires new techniques compared to the original proof.

• Finally, the distinguishing advantage between H ′0 and H ′1 is bounded by a reduction to the
IND-CPA security of the underlying scheme Π; the reduction again resembles the one in [9].

5.2.2 Dealing with Forgeries

For b ∈ {0, 1}, hybrid Hb behaves as GΠ′,nm-sda
b but generates the signature key pair (sigk∗, verk∗) used

for the challenge ciphertext initially and rejects any decryption query (E′, σ′, verk′) if verk′ = verk∗.

Lemma 14. For b ∈ {0, 1}, there exists a reduction R′b(·) such that for all distinguishers D,

∆D(GΠ′,nm-sda
b , Hb) ≤ ΓR

′
b(D)(GΣ,ots).

Proof. R′b(·) is a standard reduction to the unforgeability of Σ.

5.2.3 Alternative Decryption Algorithm

For b ∈ {0, 1}, hybrid H ′b behaves as Hb but for the way it answers decryption queries (E′, σ′, verk′):
As before, it first verifies the signature σ′ and checks that each column of E′ consists of encryptions
of a single value. Then, it determines the first position i at which verk′ and verk∗ differ, i.e., where
v′[i] 6= v∗[i]. It decrypts the ith row of E and checks if there is a codeword w within distance 2αn.14 If
such w does not exist or else if w does not match the first row in a position indexed by T , the check
fails. Otherwise, the plaintext corresponding to w is output.

Lemma 15. For b ∈ {0, 1} and all distinguishers D, ∆D(Hb, H
′
b) ≤ 2 · p(1− τ)αn.

The proof of Lemma 15 shows that the original and alternative decryption algorithms are indistin-
guishable not just for a single parallel query (as is sufficient for NM-CPA) but even against adaptively
chosen parallel queries (with self-destruct). It is the main technical contribution of this section.

At the core of the proof is an analysis of how different types of encoding matrices C are handled
inside the two decryption algorithms. To that end, one can define two games B and B′ (below) that
capture the behaviors of the original and the alternative decryption algorithms, respectively. The proof
is completed by bounding ∆(B,B′) (for all distinguishers) and showing the existence of a wrapper
Wb such that Wb(B) behaves as Hb and Wb(B

′) as H ′b (also below). This proves the lemma since
∆D(Hb, H

′
b) = ∆D(Wb(B),Wb(B

′)) = ∆D(Wb(·))(B,B′).
The games B and B′ behave as follows: Both initially choose a random size-τ subset of [n]. Then,

they accept parallel queries with components of the type (C, i) for C ∈ Fκ×n and i ∈ [κ]. The answer
to each component is computed as follows:

1. Both games check that all columns indexed by T consist of identical entries.
2. Game B tries to find a codeword w with distance less than αn from the first row (regardless of
i), whereas B′ tries to find w within 2αn of row i. Then, if such a w is found, both games check
that it matches the first row of C in the positions indexed by T .

3. If all checks succeed, the answer to the (component) query is w; otherwise, it is ⊥.

Both games then output the answer vector and implement the self-destruct, i.e., if any of the answers
is ⊥, all future queries are answered by ⊥.

Claim 16. For b ∈ {0, 1} and all distinguishers D, ∆D(B,B′) ≤ 2 · p(1− τ)αn.

Encoding matrices. Towards a proof of Claim 16, consider the following partition of the set of
encoding matrices C (based on the classification in [9]):

1. There exists a codeword w within αn of the first row of C, and all rows have distance at most αn.
2. (a) There exist two rows in C with distance greater than αn.

14Recall that the actual decryption algorithm always decrypts the first row and tries to find w within distance αn.

16

(b) The rest; in this case the first row differs in more than αn positions from any codeword.

Observe that queries (C, i) with C of type 1 are treated identically by both B and B′: A codeword w
within αn of the first row of C is certainly found by B; since all rows have distance at most αn, w is
within 2αn of row i and thus also found by B′. Furthermore, note that if C is of type 2b, it is always
rejected by B (but not necessarily by B′).

Consider the hybrids C and C ′ that behave as B and B′, respectively, but always reject all type-2
queries. Since type-1 queries are treated identically, C and C ′ are indistinguishable. Moreover:

Claim 17. For all distinguishers D,

∆D(B,C) ≤ p(1− τ)αn and ∆D(C ′, B′) ≤ p(1− τ)αn.

The proof of Claim 17 follows a generic paradigm, at whose core is the so-called self-destruct
lemma, which deals with the indistinguishability of hybrids with the self-destruct property and is
explained in detail in Section 6. Roughly, this lemma applies whenever the first hybrid (in this case
B resp. B′) can be turned into the second one (in this case C resp. C ′) by changing (“bending”) the
answers to a subset (the “bending set”) of the possible queries to always be ⊥, and when additionally
non-bent queries have a unique answer (cf. the statement of Lemma 19). Intuitively, the lemma states
that parallelism and adaptivity do not help distinguish (much) in such cases.

Proof. To use the self-destruct lemma, note that B, C, C ′, and B′ all answer queries from X :=
Fκ×n × [κ] by values from Y := Fn. Moreover, note that they use as internal randomness a uniformly
chosen element T from the set R :=

(
[n]
τn

)
of size-τn subsets of [n].

Consider first B and C. Let g : X × R → Y correspond to how B answers queries (C, i) (see
above). Let B be the set B of all type-2a-queries. Then, C is its B-bending (cf. Definition7). Observe
that queries x = (C, i) /∈ B are either of type 1 or 2b. For the former, the unique answer yx is the
codeword w within αn of the first row of C; for the latter, yx is ⊥. Therefore, using the self-destruct
lemma (Lemma 19), for all distinguishers D,

∆D(B,C) ≤ p · max
(C,i)∈B

P[g((C, i), T) 6= ⊥],

where the probability is over the choice of T . Since type-2a queries have two rows with distance
greater than αn, the probability over the choice of T that this remains unnoticed is at most (1− τ)αn.

For the second part of the claim, consider B′ and C ′. Now, let g : X ×R → Y correspond to how
B′ answers queries (C, i) (see above again), and let B be the set B of all type-2-queries. Then, C ′ is
the B-bending of B′.

Note that all queries x = (C, i) /∈ B′ are of type 1, and the unique answer yx is the codeword w
within 2αn of row i of C. Therefore, using Lemma 19 again, for all distinguishers D,

∆D(B′, C ′) ≤ p · max
(C,i)∈B′

P[g′((C, i), T) 6= ⊥],

where the probability is again over the choice of T . Since type-2a queries have two rows with distance
greater than αn and in type-2b queries the first row differs in more than αn positions from any
codeword, the probability over the choice of T that this remains unnoticed is at most (1− τ)αn.

Proof (of Claim 16). The proof follows using the triangle inequality:

∆D(B,B′) ≤ ∆D(B,C) + ∆D(C,C ′) + ∆D(C ′, B′) ≤ 2 · p(1− τ)αn.

Wrapper. It remains to show that there exists a wrapper Wb such that Wb(B) behaves as Hb

and Wb(B
′) as H ′b. The construction of Wb is straight forward: Hb and H ′b generate all keys and

the challenge in the identical fashion; therefore, Wb can do it the same way. Wb answers decryption
queries (E′, verk′, σ′) by first verifying the signature σ′ and rejecting queries if σ′ is invalid or if verk′

17

is identical to the verification key verk∗ chosen for the challenge, decrypting the entire matrix E′ to
C′ and submitting (C′, i) to the oracle (either B or B′), where i is the first position at which verk′

and verk∗ differ, and decoding the answer w and outputting the result or simply forwarding it if it is
⊥. Moreover, Wb implements the self-destruct. By inspection it can be seen that Wb(B) implements
the original decryption algorithm and Wb(B

′) the alternative one.

5.2.4 Reduction to IND-CPA Security

Lemma 18. There exists a reduction R(·) such that for all distinguishers D,

∆D(H ′0, H
′
1) = (1− τ)κn ·∆D(R(·))(GΠ,ind-cpa

0 , GΠ,ind-cpa
1).

Proof (sketch). The proof is a straight-forward generalization of the original proof by [9]; the only
difference is that it needs to process multiple parallel decryption queries and implement the self-
destruct feature appropriately. For ease of exposition, we describe the reduction to a many-public-key
version of the CPA game for Π.15

Reduction R(·) initially chooses the secret set T and creates the challenge OTS key pair with
verification key verk∗ = (v∗[1], . . . , v∗[κ]) and all key pairs (pkbi,j , sk

b
i,j) with j ∈ T or b 6= v∗[i]. The

remaining (1− τ)κn key pairs are generated by the CPA game.
Recall that the ECSS is assumed to satisfy the following property: Given τn symbols (ci)i∈T

chosen uniformly at random and independently and any plaintext x ∈ Fk, one can efficiently sample
symbols (ci)i/∈T such that (c1, . . . , cn) has the same distribution as E(x). Using this fact, R(·) creates
the challenge for m0 and m1 as follows: It picks the random symbols (ci)i∈T and completes them to
two full encodings cm0 and cm1 with the above procedure, once using m0 and once using m1 as the
plaintext. Let Cm0 and Cm1 be the corresponding matrices (obtained by copying the encodings κ
times). Observe that the two matrices match in the columns indexed by T . These entries are encrypted
by R(·), using the public key pkbi,j for entry (i, j) for which b 6= v∗[i]. Denote by C′m0

and C′m1
the

matrices Cm0 and Cm1 with the columns in T removed. The reduction outputs (chall,C′m0
,C′m1

) to
its oracle and obtains the corresponding ciphertexts, which it combines appropriately with the ones it
created itself to form the challenge ciphertext.

Finally, note that since the reduction knows all the secret keys pkbi,j with b 6= v∗[i], it can implement
the alternative decryption algorithm (and the self-destruct).

5.2.5 Overall Proof

Proof (of Theorem 13). Let tcpa be the overhead caused by reduction R(·) and tots the larger of the
overheads caused by R′0(·) and R′1(·). Moreover, let D be a distinguisher with running time at most t.
Using the triangle inequality, and Lemmas 14, 15, and 18,

∆D(GΠ′,nm-sda
0 , GΠ′,nm-sda

1) ≤ ∆D(GΠ′,nm-sda
0 , H0) + ∆D(H0, H

′
0)

+ ∆D(H ′0, H
′
1) + ∆D(H ′1, H1) + ∆D(H1, G

Π′,nm-sda
1)

≤ ΓD(R′0(·))(GΣ,ots) + 2 · p(1− τ)αn

+ (1− τ)κn ·∆D(R(·))(GΠ,ind-cpa
0 , GΠ,ind-cpa

1)

+ 2 · p(1− τ)αn + ΓD(R′1(·))(GΣ,ots)

≤ εots + 2 · p(1− τ)αn

+ (1− τ)κn · εcpa + 2 · p(1− τ)αn + εots.

15In the many-public-key version of the CPA game, an attacker can play the CPA game for several independently
generated public keys simultaneously; this is equivalent to the normal formulation by a standard hybrid argument [3].

18

6 A General Indistinguishability Paradigm

A recurring issue in this paper are proofs that certain self-destruct games answering successive parallel
decryption/tampering queries are indistinguishable. We formalize such games as parallel stateless self-
destruct games.

Definition 6. An oracle U is a parallel stateless self-destruct (PSSD) game if

• it accepts parallel queries in which each component is from some set X and answers them by
vectors with components from some set Y,

• ⊥ ∈ Y,
• there exists a function g : X × R → Y such that every query component x ∈ X is answered by
g(x, r), where r ∈ R is the internal randomness of U , and

• the game self-destructs, i.e., after the first occurrence of ⊥ in an answer vector all further outputs
are ⊥.

A PSSD game can be transformed into a related one by “bending” the answers to some of the
queries x ∈ X to the value ⊥. This is captured by the following definition:

Definition 7. Let U be a PSSD game that behaves according to g and let B ⊆ X . The B-bending of
U , denoted by U ′, is the PSSD game that behaves according to g′, where

g′(x, r) =

{
⊥ if x ∈ B,

g(x, r) otherwise.

The self-destruct lemma below states that in order to bound the distinguishing advantage between
a PSSD and its bending, one merely needs to analyze a single, non-parallel query, provided that all
non-bent queries x can only be answered by a unique value yx or ⊥.

Lemma 19. Let U be a PSSD game and U ′ its B-bending for some B ⊆ X . If for all x /∈ B there
exists yx ∈ Y such that

{g(x, r) | r ∈ R} = {yx,⊥},

then, for all distinguishers D,

∆D(U,U ′) ≤ p ·max
x∈B

P[g(x,R) 6= ⊥],

where the probability is over the choice of R.

Proof. Fix a distinguisher D and denote by R and R′ the random variables corresponding to the
internal randomness of U and U ′, respectively. Call a value x ∈ X dangerous if x ∈ B and a query
dangerous if it contains a dangerous value.

In the random experiment corresponding to the interaction between D and U , define the event
E that the first dangerous query contains a dangerous value X with g(X,R) 6= ⊥ and that the self-
destruct has not been provoked yet. Similarly, define the event E′ for the interaction between D and
U ′ that the first dangerous query contains a dangerous value X ′ with g(X ′, R′) 6= ⊥ and that the
self-destruct has not been provoked yet.16

Clearly, U and U ′ behave identically unless E resp. E′ occur. Thus, it remains to bound P[E] =
P[E′]. To that end, note that adaptivity does not help in provoking E. For any distinguisher D, there
exists a non-adaptive distinguisher D̃ such that whenever D provokes E, so does D′. D′ proceeds as
follows: First, it interacts with D only. Whenever D asks a non-dangerous query, D′ answers every
component x /∈ B by yx. As soon as D specifies a dangerous query, D′ stops its interaction with D
and sends all queries to U .

Fix all randomness in experiment D′(U), i.e., the coins of D (inside D′) and the randomness r
of U . Suppose D would provoke E in the direct interaction with U . In such a case, all the answers
by D′ are equal to the answers by U , since, by assumption, the answers to components x /∈ B in

16Note that the function g is the same in the definitions of either event.

19

non-dangerous queries are yx or ⊥ and the latter is excluded if E is provoked. Thus, whenever D
provokes E, D′ provokes it as well.

The success probability of non-adaptive distinguishers D is upper bounded by the probability over
R that their first dangerous query provokes E, which is at most p ·maxx∈B P[g(x,R) 6= ⊥].

References

[1] Divesh Aggarwal, Yevgeniy Dodis, and Shachar Lovett. Non-malleable codes from additive com-
binatorics. ECCC, 20:81, 2013. To appear in STOC 2014.

[2] Shashank Agrawal, Divya Gupta, Hemanta K. Maji, Omkant Pandey, and Manoj Prabhakaran.
Explicit non-malleable codes resistant to permutations and perturbations. IACR Cryptology
ePrint Archive, 2014:841, 2014.

[3] Mihir Bellare, Alexandra Boldyreva, and Silvio Micali. Public-key encryption in a multi-user
setting: Security proofs and improvements. In EUROCRYPT, pages 259–274, 2000.

[4] Mihir Bellare and Amit Sahai. Non-malleable encryption: Equivalence between two notions, and
an indistinguishability-based characterization. In CRYPTO, pages 519–536, 1999.

[5] Ran Canetti, Shai Halevi, and Jonathan Katz. Chosen-ciphertext security from identity-based
encryption. In EUROCRYPT, pages 207–222, 2004.

[6] Ran Canetti, Hugo Krawczyk, and Jesper Buus Nielsen. Relaxing chosen-ciphertext security. In
CRYPTO, pages 565–582, 2003.

[7] Eshan Chattopadhyay and David Zuckerman. Non-malleable codes against constant split-state
tampering. Electronic Colloquium on Computational Complexity (ECCC), 21:102, 2014.

[8] Mahdi Cheraghchi and Venkatesan Guruswami. Non-malleable coding against bit-wise and split-
state tampering. In TCC, pages 440–464, 2014.

[9] Seung Geol Choi, Dana Dachman-Soled, Tal Malkin, and Hoeteck Wee. Black-box construction
of a non-malleable encryption scheme from any semantically secure one. In TCC, pages 427–444,
2008.

[10] Sandro Coretti, Ueli Maurer, Björn Tackmann, and Daniele Venturi. From single-bit to multi-bit
public-key encryption via non-malleable codes. IACR Cryptology ePrint Archive, 2014:324, 2014.

[11] Ronald Cramer, Goichiro Hanaoka, Dennis Hofheinz, Hideki Imai, Eike Kiltz, Rafael Pass, Abhi
Shelat, and Vinod Vaikuntanathan. Bounded CCA2-secure encryption. In ASIACRYPT, pages
502–518, 2007.

[12] Ronald Cramer and Victor Shoup. A practical public key cryptosystem provably secure against
adaptive chosen ciphertext attack. In CRYPTO, volume 1462 of LNCS, pages 13–25, 1998.

[13] Ronald Cramer and Victor Shoup. Universal hash proofs and a paradigm for adaptive chosen
ciphertext secure public-key encryption. In EUROCRYPT, pages 45–64, 2002.

[14] Danny Dolev, Cynthia Dwork, and Moni Naor. Nonmalleable cryptography. SIAM J. Comput.,
30(2):391–437, 2000.

[15] Stefan Dziembowski, Tomasz Kazana, and Maciej Obremski. Non-malleable codes from two-
source extractors. In CRYPTO (2), pages 239–257, 2013.

[16] Stefan Dziembowski, Krzysztof Pietrzak, and Daniel Wichs. Non-malleable codes. In ICS, pages
434–452, 2010.

[17] Sebastian Faust, Pratyay Mukherjee, Jesper Buus Nielsen, and Daniele Venturi. Continuous
non-malleable codes. In TCC, pages 465–488, 2014.

20

[18] Sebastian Faust, Pratyay Mukherjee, Daniele Venturi, and Daniel Wichs. Efficient non-malleable
codes and key-derivation for poly-size tampering circuits. In EUROCRYPT, pages 111–128, 2014.

[19] Yael Gertner, Tal Malkin, and Steven Myers. Towards a separation of semantic and CCA security
for public key encryption. In TCC, pages 434–455, 2007.

[20] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. J. Comput. Syst. Sci., 28(2):270–
299, 1984.

[21] Dennis Hofheinz and Eike Kiltz. Practical chosen ciphertext secure encryption from factoring. In
EUROCRYPT, pages 313–332, 2009.

[22] Susan Hohenberger, Allison B. Lewko, and Brent Waters. Detecting dangerous queries: A new
approach for chosen ciphertext security. In EUROCRYPT, pages 663–681, 2012.

[23] Kaoru Kurosawa and Yvo Desmedt. A new paradigm of hybrid encryption scheme. In CRYPTO,
pages 426–442, 2004.

[24] Yehuda Lindell. A simpler construction of cca2-secure public-key encryption under general as-
sumptions. In EUROCRYPT, pages 241–254, 2003.

[25] Steven Myers and Abhi Shelat. Bit encryption is complete. In FOCS, pages 607–616, 2009.

[26] Moni Naor and Moti Yung. Public-key cryptosystems provably secure against chosen ciphertext
attacks. In STOC, pages 427–437, 1990.

[27] Rafael Pass, Abhi Shelat, and Vinod Vaikuntanathan. Construction of a non-malleable encryption
scheme from any semantically secure one. In CRYPTO, pages 271–289, 2006.

[28] Amit Sahai. Non-malleable non-interactive zero knowledge and adaptive chosen-ciphertext secu-
rity. In FOCS, pages 543–553, 1999.

21

PKE Scheme Π′ = (KG ′, E′, D′)

Key Generation KG ′

(pk, sk)← KG

ρ←$ {0, 1}λ
pk′ = pk
sk′ = (ρ, sk)
return (pk′, sk′)

Encryption E′
pk′

(m)

e← Epk(m)
e′ = 0‖e
return e

Decryption D′
sk′

(e′)

e′ = β ‖e
m← Dsk(e)
if β = 1

return ρ
else

if m = ρ
return sk

else
return m

Figure 6: PKE scheme Π′ in the proof of Theorem 20

A Relating IND-SDA and NM-CPA

Theorem 20. IND-SDA and NM-CPA are incomparable notions:

(i) Assume there exists a PKE scheme Π that is NM-CPA secure. Then there exists a PKE scheme
Π′ that is NM-CPA secure but not IND-SDA secure.

(ii) Assume there exists a PKE scheme Π that is IND-SDA secure. Then there exists a PKE scheme
Π′′ that is IND-SDA secure but not NM-CPA secure.

The proof follows the following intuition: Towards proving (i), an assumed non-malleable PKE
scheme is modified as follows: An additional 0-bit is added to every ciphertext. If it is changed to 1
by an adversary, the decryption algorithm outputs a secret random value ρ (from a sufficiently large
space) instead of the normal decryption, and when the decryption algorithm is fed with an encryption
of ρ, it outputs the secret key. The modified scheme is not IND-SDA-secure since an adversary can
obtain the secret key by making just two adaptive decryption queries. It is, however, still non-malleable
since a non-adaptive adversary can only try to guess ρ.

For (ii), an IND-SDA-secure PKE scheme is modified as follows: Prior to encrypting a message,
it is encoded using a code with the property that a sufficiently large fraction of the bits of the
encoding are random. Similarly to above, ciphertexts have a format that allows an adversary, using
the decryption oracle, to guess a bit of this encoding, where a wrong guess leads to a self-destruct.
Since, by definition, an adversary can ask arbitrarily many (non-adaptively chosen) invalid ciphertexts
in the NM-CPA game, he can recover the entire encoding of the message. At the same time, due to the
randomness of the encoding, an adversary trying to guess the bits of the encoding sequentially is highly
likely to produce a self-destruct in the process. Therefore, the modified scheme is not non-malleable,
but it is still IND-SDA-secure.

Proof. We prove the two statements separately.
(i) Let Π = (KG , E,D) be a PKE scheme that is NM-CPA secure, with message spaceM = {0, 1}λ

for some value λ that is superpolynomial in the security parameter κ ∈ N. Consider the PKE scheme
Π′ = (KG ′, E′, D′), derived from Π, depicted in Figure 6. A secret key generated via KG ′ consists of
a valid secret key for Π, together with a random string ρ←$ {0, 1}λ. A ciphertext generated via E′

consists of a valid ciphertext generated via E, to which we append a single bit β that is usually set
to 0 in honestly generated ciphertexts. Upon input a ciphertext with β = 0, the decryption algorithm
D′ behaves as D except that it returns the secret key in case the ciphertext decrypts to ρ; ciphertexts
with β = 1 are always decrypted to ρ.

Claim 21. There exists a distinguisher D such that ∆D(GΠ′,2,1
0 , GΠ′,2,1

1) = 1.

Proof. Consider the following distinguisher D that breaks IND-SDA security of Π′ with probability 1,
using two adaptive decryption queries, and without ever provoking a self-destruct. Given the challenge
ciphertext e, the distinguisher creates e1 = 1‖ ē where ē ← Epk(m̄) for a fixed message m̄ ∈ M, and
queries (dec, e1); note that the answer to such query will be the value ρ (no matter what the value of

22

PKE Scheme Π′′ = (KG ′′, E′′, D′′)

Key Generation KG ′′

(pk, sk)← KG

m̄←$ {0, 1}k
pk′′ = (pk, m̄)
sk′′ = sk
return (pk′′, sk′′)

Encryption E′′
pk′′

(m)

c← Enc(m)
e← Epk(c)
e′′ = 0‖0‖0‖e
return e′′

Decryption D′′
sk′′

(e′′)

e′′ = β1 ‖β2 ‖α‖e
c← Dsk(e)
m← Dec(c)
if β1 = 0

if (β2 = 0) ∧ (ctr = 0)
return m

else
return ⊥

else
if (m′[α] = β2)

return m̄
else

return ⊥

Figure 7: PKE scheme Π′′ in the proof of Theorem 20

m̄ is). Given ρ, the distinguisher encrypts e2←$ 0‖eρ where eρ ← Epk(ρ) and queries (dec, e2). Note
that, by definition of Π′, the answer to such query will be the secret key sk that can be used to decrypt
the challenge ciphertext e with probability 1.

Claim 22. For all p ∈ N, and for all distinguishers D′, there exists a distinguisher D such that

∆D(GΠ,1,p
0 , GΠ,1,p

1) ≥ ∆D′(GΠ′,1,p
0 , GΠ′,1,p

1)− p · 2−λ.

Proof. We build distinguisher D (based on D′) as follows:

1. At the beginning D samples a random ρ←$ {0, 1}λ (but not sk), and forwards the public key pk
it receives from game GΠ,nm-cpa

b to D′.

2. Upon input (chall,m0,m1) from D′, distinguisher D calls (chall,m0,m1) to its own challenge
oracle obtaining a ciphertext e, and returns e′ := 0‖e to D′.

3. Upon input the decryption query (dec, e′1, . . . , e
′
p) from D′, distinguisher D parses e′i = βi ‖ ei

for all i ∈ [p] and queries (dec, e1, . . . , ep) to its own decryption oracle, obtaining (m1, . . . ,mp).
Hence, D proceeds as follows for each i ∈ [p]:

• In case βi = 1, replace mi with mi := ρ.

• In case mi = ρ, abort.

Return (m1, . . . ,mp).

4. Output whatever D′ outputs.

Note that D perfectly simulates the key generation of Π′ (this is because the value ρ is chosen uniformly
and independently by D). The same holds for the simulation of the challenge ciphertext. Furthermore,
the simulation of the parallel decryption query is perfect unless D aborts; thus, it suffices to bound
the probability that D aborts. By the union bound, this probability is at most p · 2−λ. The claim
follows.

The two claims above conclude the proof of statement (i), by observing that λ and p are, respec-
tively, super-polynomial and polynomial in κ.

(ii) Let Π = (KG , E,D) be a PKE scheme, with message space M = {0, 1}n, that is IND-SDA
secure. Moreover let (Enc,Dec) be a (k, n)-encoding scheme with the property that the bits of a
codeword are individually uniform and τn-wise independent (over the randomness of the encoding).
Consider the PKE scheme Π′′ = (KG ′′, E′′, D′′), with message space M′′ = {0, 1}k, obtained from Π
as depicted in Figure 7. The key generation is identical in the two schemes, except that KG ′′ includes

23

a message m̄←$ {0, 1}k in the public key. The encryption algorithm first encodes the plaintext m
obtaining a codeword c, encrypts c via pk, and appends to the ciphertext two bits β1, β2 ∈ {0, 1} and
a special value α ∈ [n] (normally set to 0). The decryption algorithm simply decrypts the ciphertext
and runs the decoding algorithm, in case β1 = 0. Otherwise it checks that the bit in position α of c
equals β2; if this is the case it returns the message m̄, else it returns ⊥.

Claim 23. There exists a distinguisher D′′ such that ∆D′′(GΠ′′,1,n
0 , GΠ′′,1,n

1) = 1.

Proof. Consider the following distinguisher D′′ playing the NM-CPA game. At the beginning D′′

receives the public key (pk, m̄), and issues (chall,m0,m1), for some m0,m1, obtaining a challenge
e′′ = (0‖0‖0‖e).

Next, D′′ defines a sequence of n ciphertexts e1, . . . , en and issues (dec, e1, . . . , en). For all i ∈ [n],
the i-th ciphertext ei has a type (1 ‖ β2,i ‖ i ‖ e) where β2,i is a guess for c[i] (i.e., the i-th bit of the
codeword c← Dsk(e)).

Let (m1, . . . ,mn) be the answer from the decryption oracle. Distinguisher D′′ defines a codeword
c = (c[1], . . . , c[n]) where c[i] = β2,i if m = m̄ (and c[i] = 1 − β2,i otherwise).17 By inspection, this is
exactly the codeword c encoding the challenge, and thus D′′ wins the game with probability 1.18

Claim 24. For all q ∈ N, and for all distinguishers D′′, there exists a distinguisher D such that

∆D(GΠ,q,1
0 , GΠ,q,1

1) ≥ ∆D′′(GΠ′′,q,1
0 , GΠ′′,q,1

1)− 2−τn.

Proof. We build distinguisher D (based on D′′) as follows:

1. At the beginning D samples m̄←$ {0, 1}k, and forwards pk′′ = (pk, m̄) to D′′, where pk is the
public key it receives from its own challenger. FurthermoreD samples n uniform and independent
bits b = (b1, . . . , bn).

2. Upon input (chall,m0,m1) at the inside, D defines c0 ← Enc(m0) and c1 ← Enc(m1) and issues
(chall, c0, c1) to its own challenger. Given the challenge ciphertext e, distinguisher D returns
e′′ := (0‖0‖0‖e) to D′′.

3. For all i ∈ [q], upon input the i-th decryption query (dec, e′′i) from D′′, distinguisher D parses
e′′i = (β1,i ‖β2,i ‖αi ‖ei) and proceeds as follows:

(a) If β1,i = β2,i = 0 and αi = 0, issue (dec, ei) to the decryption oracle receiving a value
ci ∈ {0, 1}n and compute mi ← Dec(ci); return mi to D′′.

(b) If β1,i = 0 and αi 6= 0 or β2,i 6= 0, output ⊥ and self-destruct.

(c) If β1,i = 1, check whether b[αi] = β2,i; if that is the case return m̄, and otherwise return ⊥
and self-destruct.

4. D outputs whatever D′′ does.

Clearly D perfectly simulates the public key and the challenge ciphertext. As for decryption queries,
the simulation for queries of type 3(a) and 3(b) is also perfect. Define the event E that D′′ issues
more than τn decryption queries of type 3(c), such that the guess β2,i for b[αi] is correct. It easy to
see that in case E does not happen, the simulation of decryption queries with type 3(c) is correct,
because any subset of dimension up to τn of the codeword c corresponding to the challenge ciphertext
is uniformly distributed. Thus, it suffices to bound the probability of the event E which is at most
2−τn. The claim follows.

The two claims above imply statement (ii), by setting τ to be super-logarithmic in the security
parameter κ.19

17Recall that, by definition of Π′′, the values m̄ and ⊥ are the only possible outcomes for each of the mi.
18The latter holds true in case the encryption scheme and the encoding scheme have perfect correctness. However, it

is straightforward to generalize the proof to the case of a small correctness error.
19Suitable encoding schemes (Enc,Dec) with such τ exist unconditionally [16].

24

B Necessity of Codes with Secret State

In this section we prove Theorem 12, stating that (unconditional) non-malleability under parallel
tampering is impossible—already for the case q = 1—in case the coding scheme has no secret state
(even if decoding is randomized). Before proving the theorem, let us give a precise definition of coding
schemes with no secret state and randomized decoding.

Definition 8 (Code without secret state). A (K,N)-code is a pair of algorithms (Enc,Dec), where
the (randomized) encoding algorithm Enc takes a K-bit plaintext x and outputs an N -bit encoding
c ← Enc(x), and the (randomized) decoding algorithm Dec takes an N -bit encoding c and outputs a
K-bit plaintext x← Dec(c) or the special symbol ⊥, indicating an invalid encoding.

We say that (Enc,Dec) has correctness error ν if for all x ∈ {0, 1}K , it holds that Dec(Enc(x)) = x
with probability at least 1− ν over the randomness of Enc and Dec.

Let us restate Theorem 12 for the reader’s convenience.

Theorem 12. Let F := Fset. Let (Enc,Dec) be a (K,N)-code without secret state and noticeable
rate. There exists a distinguisher D asking a single parallel tampering query of size N6 such that, for
all simulators sim and all N large enough, ∆D(RF , SF ,sim) ≥ 1/2.

The proof of the above theorem follows directly by the following lemma:

Lemma 25. Let F := Fset. Let (Enc,Dec) be a (K,N)-code without secret state, and with correctness
error ν < 1/2− 1/N . There exists a distinguisher D such that, for all simulators sim,

∆D(RF , SF ,sim) ≥ 1− (ν + 2/N + 2Ne−1/2N + (2N6 + 1) · 2−K).

The distinguisher D asks a single tampering query (i.e., q = 1) with p = N6.

It remains to prove Lemma 25. The proof is non constructive, meaning that the distinguisher D
depends on some “auxiliary information” that is fixed once the code is given, but might be hard to
compute. However, as we show below, such auxiliary information always exists (for any code) provided
that the correctness error of the code is not too large (but a good code would typically have a small
correctness error).

We discuss some intuition for the proof of Lemma 25. The main idea is to define an extraction
algorithm that (almost) always succeeds to extract the encoded message when it interacts with RF ,
but only does so with a small probability when interacting with SF ,sim (for any sim). For simplicity,
let us first assume that decoding is deterministic and that the code has perfect correctness (i.e, ν = 0).
Define a position i ∈ [N] to be relevant if there exists a pair of codewords (c′i, c

′′
i), differing only at

position i, for which decoding c′i and c′′i leads to different values. One can show that the set of all
relevant position is not empty (by correctness of the code), and is always fixed once the coding scheme
is given (this is because the code has no secret state). Additionally, in order to decode any codeword
c ∈ {0, 1}N , one needs to know only the values c[i] for the relevant positions; all other values can be
set to 0 and play no role in decoding a codeword.

Consider now the following distinguisher D that is given a set of pairs (c′i, c
′′
i), one for each relevant

position i ∈ [N]. At the beginning D encodes a value x, which defines a target encoding c. Next,
D attempts to extract the i-th relevant bit of c via a tampering query fi ∈ F that keeps the bit
in position i and replaces all other values with the bits of c′i or c′′i (recall that the two codewords
only differ at position i). Since c′i and c′′i decode to different values, D can determine with a single
tampering query (of size at most N) all relevant values c[i] with certainty; the non-relevant bits can
be set to 0, as they play no role in decoding c. Distinguisher D outputs 1 if and only if the above
extraction procedure leads to the chosen value x. Clearly, D always outputs 1 when interacting with
RF . On the other hand, one can show that D almost never outputs 1 when interacting with SF ,sim,
which concludes the proof.

The impossibility proof extends to the case where the decoding is probabilistic, with correctness
error ν > 0. That means, in particular, that for a fixed codeword c, the value Dec(c) is a random
variable. For each position i and a parameter µ ∈ [0, 1], either of the following cases applies: (i) There

25

exists a pair of codewords (c′i, c
′′
i), differing only at position i, such that for the statistical distance it

holds that ∆(Dec(c′i),Dec(c′′i) ≥ µ; (ii) For all codewords c′i and c′′i again differing only at position i,
∆(Dec(c′i),Dec(c′′i) < µ. In case (i), position i is called relevant; in case (ii) it is called non-relevant.
This distinction can then be exploited as in the deterministic case, but with two adaptations:

1. The extraction has to be repeated roughly Θ(µ−3) times in order to get a good estimation of
the i-th relevant bit. Since the individual decoding attempts use independent randomness, by
the Hoeffding bound we should get a good estimation of that bit after a polynomial number of
queries.

2. As before, the decoding is at the end computed by filling the non-relevant positions with suffi-
ciently many 0s. Since the statistical distance for all strings with each of the bits flipped in the
non-relevant positions varies by at most µ, the triangle inequality allows to (lower) bound the
probability of actually computing the correct value.

In order to formalize the above intuition, we state a general lemma that will be useful in the sequel.
Let (Enc,Dec) be a (K,N)-coding scheme without secret state. Fix a parameter µ ∈ [0, 1]. Define a
position i ∈ [N] to be µ-relevant for the encoding scheme if there exists two codewords c′i, c

′′
i ∈ {0, 1}N

that differ only in position i, for which ∆(Dec(c′i),Dec(c′′i)) ≥ µ. Let R = R(µ) ⊆ [N] be the set of
all relevant positions.

Lemma 26. Let µ ∈ [0, 1] and consider a (K,N)-coding scheme (Enc,Dec) without secret state, and
with correctness error ν ∈ [0, 1]. The following holds:

(i) The set R(µ) is not empty, whenever 0 ≤ µ < 1−2ν
2N .

(ii) Let c′ ← Enc(x′) for some x′ ∈ {0, 1}K . For all c′′ such that c′′[i] = c′[i] for all i ∈ R(µ) we
have that

P[Dec(c′′) = x′] ≥ 1− ν − 2N · µ.

Proof. We start by proving statement (i). For the sake of contradiction, assume that R(µ) is empty.
This means that for all i ∈ [N], and for all possible pairs of codewords c′i, c

′′
i (differing only at

coordinate i) we have that ∆(Dec(c′i),Dec(c′′i)) < µ. By the triangle inequality, this implies that any
two codewords c′, c′′ satisfy ∆(Dec(c′),Dec(c′′)) ≤ N · µ. Fix now two values x′, x′′ ∈ {0, 1}K , such
that x′ 6= x′′. Let c′ ← Enc(x′) and c′′ ← Enc(x′′) be the corresponding encodings. We have:

2N · µ ≥
∑

x∈{0,1}K

∣∣P[Dec(c′′) = x]− P[Dec(c′) = x]
∣∣

≥ P[Dec(c′′) = x′′]− P[Dec(c′) 6= x′],

where the first inequality follows by definition of statistical distance, and the second inequality follows
by the fact that P[Dec(c′) 6= x′] ≥ P[Dec(c′) = x′′]. Using the correctness property of the code, and
our choice of µ < 1−2ν

2N , we have obtained

P[Dec(c′) 6= x′] ≥ 1− ν − 2N · µ > ν,

a contradiction.
We now show statement (ii). Let c′, c′′ be as in the statement of the lemma. First observe that, since

the code has no secret state, the event that c′′ could decode to something different than x′ depends
only on the randomness of the decoding process. Without loss of generality, assume that c′′ 6= c′

(otherwise there is nothing to prove). By definition of R(µ) and by using the triangle inequality, we
get that ∆(Dec(c′),Dec(c′′)) ≤ |R(µ)| · µ ≤ N · µ. Hence,

2N · µ ≥
∑

x∈{0,1}K

∣∣P[Dec(c′) = x]− P[Dec(c′′) = x]
∣∣

≥ P[Dec(c′) = x′]− P[Dec(c′′) = x′]

≥ 1− ν − P[Dec(c′′) = x′],

which concludes the proof.

26

We now turn to the proof of Lemma 25.

Proof of Lemma 25. Fix parameters µ ∈ [0, 1] and ρ ∈ N to be determined later. Let R(µ) ⊆ [n],
with |R(µ)| := r ≤ N , the set of all µ-relevant positions, and denote with (c′i, c

′′
i)i∈R(µ) the corre-

sponding pairs of codewords that are ensured to exist by definition. Additionally, let Xi := {x ∈
{0, 1}K : P[Dec(c′i) = x] > P[Dec(c′′i) = x]} be the set of all values x for which the probability
that decoding c′i leads to x is larger than than the probability that decoding c′′i leads to x; also let
p′i := P[Dec(c′i) ∈ Xi] and p′′i := P[Dec(c′′i) ∈ Xi]. We define the “auxiliary information” of the code to
be:

aux :=
{
R(µ), (c′i, c

′′
i ,Xi, p′i, p′′i)i∈R(µ)

}
.

Note that information aux is fixed once a particular encoding scheme (Enc,Dec) is given. This is
because the code has no secret state.

Consider the following extraction algorithm Extaux
µ,ρ (with the above auxiliary information hard-

coded), issuing a single parallel tampering query and outputting a value x̄ ∈ {0, 1}K ∪ {⊥}.

1. For all i ∈ R(µ), consider a function fi ∈ F being specified via (fi[1], . . . , fi[N]) where fi[i] =
keep and fi[j] is set to c′i[j] or c′′i [j] for all other positions j ∈ [N] \ {i} (recall that c′i and c′′i
differ only at position i ∈ R(µ)).

2. Extaux
µ,ρ defines the following parallel tampering query (tamper, (fi, . . . , fi)i∈R(µ)), where we take

ρ copies of each function fi. Let (x1,1, . . . , x1,ρ, . . . , xr,1, . . . , xr,ρ) be the answers corresponding
to Extaux

µ,ρ ’s query.

3. For each i ∈ R(µ), Extaux
µ,ρ checks whether

{xi,j ∈ Xi : j ∈ [ρ]} ≥
(
p′i
2

+
p′′i
2

)
ρ;

if that is the case it sets c̄[i] := c′i[i], and otherwise c̄[i] := 1− c′i[i] = c′′i [i]. All other values c̄[i],
with i 6∈ R(µ), are set to 0.

4. Finally, Extaux
µ,ρ outputs x̄ = Dec(c̄).

Claim 27. Let 0 < µ < 1−2ν
2N , and ρ ∈ N. For all x ∈ {0, 1}K , let x̄ be the value returned by Extaux

µ,ρ

after tampering with c← Enc(x). Then, P[Extaux
µ,ρ outputs x̄ = x] ≥ 1− (ν + 2N/µ+ 2Ne−1/2ρµ2).

Proof. Note that by Lemma 26, the range of values allowed for the parameter µ ensures that the set
R(µ) is not empty. We need to show that Extaux

µ,ρ extracts the bits c[i] of the target encoding of x in
all µ-relevant positions, with high enough probability (the other bits are set to 0 by Extaux

µ,ρ and play
almost no role in decoding c̄).

Let c̃i = fi(c) be the i-th tampered codeword as defined by Extaux
µ,ρ in step 2. For all j ∈ [ρ], and for

all i ∈ R(µ), let X ′i,j (resp. X ′′i,j) be a binary random variable which equals 1 if and only if xi,j happens
to be in the set Xi, where xi,j is the value obtained by decoding c̃i = c′i (resp. c̃i = c′′i). Note that,
for each i ∈ R(µ), the random variables X ′i,j (resp. X ′′i,j) are independent and follow the Bernoulli
distribution with parameter p′i (resp. p′′i). Let X ′i =

∑ρ
j=1X

′
i,j and similarly X ′′i =

∑ρ
j=1X

′′
i,j . We

bound the probability that Extaux
µ,ρ extracts the i-th relevant bit of the target encoding incorrectly as

follows:

P[Extaux
µ,ρ sets c̄[i] incorrectly] ≤ P[Extaux

µ,ρ sets c̄[i] incorrectly|c̃i = c′i]

+ P[Extaux
µ,ρ sets c̄[i] incorrectly|c̃i = c′′i]

= P[X ′i ≤ (p′i + p′′i)ρ/2] + P[X ′′i ≥ (p′i + p′′i)ρ/2]

≤ P[X ′i ≤ (p′i − µ/2)ρ] + P[X ′′i ≥ (p′′i + µ/2)ρ]

≤ 2e−1/2ρµ2 ,

27

where the first inequality comes from the fact that µ ≤ p′i−p′′i , and the second inequality follows from
the Hoeffding inequality.20 By the union bound, we get that the probability of extracting at least one
position incorrectly is bounded by 2Ne−1/2ρµ2 , so the probability that Extaux

µ,ρ extracts all µ-relevant

positions correctly is at least 1− 2Ne−1/2ρµ2 .
Finally, we observe that the probability that decoding c̄ as defined by Extaux

µ,ρ in step 3 leads to the
correct value x is at least 1− ν − 2N/µ (see Lemma 26). The claim follows.

Define now the following distinguisher D (depending on Extaux
µ,ρ). The distinguisher chooses x ∈

{0, 1}K and issues (encode, x) to the oracle it has access to. Then it fixes µ = N−2 and ρ = N5, and
it lets Extaux

µ,ρ interact with that oracle. In case at least one of the values {xi,j}i∈R(µ),j∈[ρ] seen by
Extaux

µ,ρ in step 2 happens to be equal to x, D outputs 0. Otherwise, whenever Extaux
µ,ρ returns a value

x̄ ∈ {0, 1}K ∪ {⊥}, D outputs 1 if and only if x̄ = x.

Claim 28. P[D(RF) = 1] ≥ 1− (ν + 2/N + 2Ne−1/2N +N6 · 2−K+1).

Proof. The statement follows by definition of D. Note that D outputs 1 provided that Extaux
µ,ρ returns

the value x chosen uniformly at random by D, except in case it happens that one of the answers xi,j
corresponding to Extaux

µ,ρ ’s tampering query happens to be equal to x. Denote by E the latter event.
Since we already have a lower bound on the probability of success of Extaux

µ,ρ (see Claim 27), it suffices
to bound the probability of the event E.

Note that for each tampering function fi ∈ F specified by Extaux
µ,ρ , we have that the tampered

codeword c̃i = fi(c) overwrites all the bits with known values but the bit in position i, which is copied
from the original codeword c. It follows that the output of such tampering query can decrease the
entropy of x by at most one, and hence the probability that each xi,j happens to be equal to x is at
most 2−K+1. By a union bound, we get that P[E] ≤ rρ · 2−K+1 ≤ Nρ · 2−K+1.

The claim now follows by the choice of µ = N−2 and ρ = N5, which in particular ensures that
R(µ) is not empty (see Lemma 26) by our assumption that ν < 1/2− 1/N .

Claim 29. For all simulators sim, we have that P[D(SF ,sim) = 1] ≤ 2−K .

Proof. We first observe that we can assume, without loss of generality, that sim never outputs same.
In fact, if sim happens to return same for any of the queries fi defined by D (via Extaux

µ,ρ), then the
oracle SF ,sim would replace the output of the simulator with x. By definition in this case D outputs
1 with probability 0.

On the other hand, assume that sim never outputs same. In such a case the view of Extaux
µ,ρ is

completely independent of x, and so the extractor will output x̄ = x with probability at most 2−K .
The claim follows.

Lemma 25 follows by combining Claim 28 and Claim 29.

C Composing Non-Malleable Codes, PKE, and MACs

This section contains the proof of Theorem 3, which is split into two parts. First, we prove that
the PKE scheme Π′ resulting from combining a single-bit PKE Π and a non-malleable code with
secret state (Gen,Enc,Dec) as shown in Section 4.2 (cf. Figure 4) is replayable NM-SDA secure (NM-
RSDA); the proof is based on the corresponding one in [10] for IND-SDA security. Then, we show that
a MAC-based transformation suggested by [6] to obtain IND-CCA security from IND-RCCA security
also works in our setting, i.e., the transformation applied to Π′ yields a fully NM-SDA secure PKE
scheme Π′′. All results in this section also apply to NM-CPA security. Overall, we prove:

20The general form is: Let X1, . . . , Xn be i.i.d. with Xi ∼ Be(p). Then, for X :=
∑

iXi, and for any ε ∈ (0, 1],

P[X ≤ (p− ε)n] ≤ e−2ε2n and P[X ≥ (p+ ε)n] ≤ e−2ε2n.

28

Theorem 3. Let q, p ∈ N and Π be a (t+ t1bit, q, p, ε1bit)-NM-SDA-secure 1-bit PKE scheme, (T, V)
a (t + tmac, 1, qp, εmac)-MAC, and (Gen,Enc,Dec) a (Fset, q, p, εnmc)-non-malleable (K,N)-code with
secret state. Then, Π′′ is (t, q, p, ε)-NM-SDA-secure PKE scheme with

ε = 2(2(Nε1bit + εnmc) + qp · 2−` + εmac) + 2(Nε1bit + εnmc),

where t1bit and tmac are the overheads incurred by the corresponding reductions and ` is the length of
a verification key for the MAC.

C.1 Replayable NM-SDA Security

The notion of replayable CCA security was introduced by Canetti et al. [6] to deal with the artificial
strictness of CCA security. Intuitively, it potentially allows an attacker to maul a target ciphertext
into one that decrypts to the same message.21 This idea carries over seamlessly to the definition of
NM-SDA security; the corresponding distinguishing game GΠ,nm-rsda

b is obtained by changing GΠ,nm-sda
b

(cf. Figure 2) to answer test whenever a ciphertext e(j) decrypts to m0 or m1 (instead of only when
e(j) equals the challenge ciphertext).

Definition 9. A PKE scheme Π is replayable (t, q, p, ε)-NM-SDA-secure (NM-RSDA) if for all dis-
tinguishers D with running time at most t and making at most q decryption queries of size at most p
each,

∆D(GΠ,nm-rsda
0 , GΠ,nm-rsda

1) ≤ ε.

C.2 Non-Malleable Codes and PKE

In this section we show that the PKE scheme Π′ is NM-RSDA if the underlying single-bit scheme Π
is NM-SDA secure. Concretely, we prove:

Theorem 30. Let q, p ∈ N and Π be a (trsda + t1bit, q, p, ε1bit)-NM-SDA-secure 1-bit PKE scheme and
let (Gen,Enc,Dec) be (Fset, q, p, εnmc)-non-malleable. Then, Π′ is (trsda, q, p, εrsda)-NM-RSDA-secure
PKE scheme with

εrsda = 2(Nε1bit + εnmc),

where t1bit represents the overhead incurred by the reductions.

The proof follows directly from the following lemma:

Lemma 31. For b ∈ {0, 1} and i ∈ [N], there exist reductions Rb,i(·) and Wb(·) such that for all
distinguishers D,

∆D(GΠ′,nm-rsda
0 , GΠ′,nm-rsda

1) ≤
∑
b,i

∆D(Rb,i(·))(GΠ,nm-sda
0 , GΠ,nm-sda

1) +
∑
b

∆D(Wb(·))(RF , SF ,sim),

where sim is the simulator for the non-malleable code. Moreover, all reductions preserve the number q
and the size p of the queries.

Proof. Let t1bit be the maximal occurring overhead caused by the reductions Rb,i(·). Fix a dis-
tinguisher D having running time trsda and making at most q decryption queries of size at most
p. Due to the preservation property of the reductions, ∆D(Rb,i(·))(GΠ,nm-sda

0 , GΠ,nm-sda
1) ≤ ε1bit and

∆D(Wb(·))(RF , SF ,sim) ≤ εnmc, which completes the proof.

Towards a proof of Lemma 31, consider the following hybrids for b ∈ {0, 1} and i ∈ [N]: Hb,i pro-

ceeds asGΠ′,nm-rsda
b except that the challenge query (chall,m0,m1) and decryption queries (dec, e(1), . . . ,

e(p)) are handled differently:

21In contrast, full CCA security requires that any ciphertext created by the attacker (other than the target ciphertext)
decrypt to an independent message.

29

• Challenge query: The first i bits of the encoding c = (c[1], . . . , c[N]) of mb are replaced by
uniformly random and independent bits. The resulting N -bit string is then encrypted bit-wise
(as done by E′). This results in the challenge ciphertext e∗ = (e∗1, . . . , e

∗
N).

• Decryption query: Every component e(l) = (e′1, . . . , e
′
N) is answered as follows: Hybrid Hb,i

computes c′ = (c′[1], . . . , c′[N]), where

c′[i] =

{
c[j] if e′j = e∗j , and

Dskj (e
′
j) otherwise.

Then, Hb,i outputs Dec(c′, s) as the answer to the component of the decryption query.22

Let Hb,0 := GΠ′,nm-rsda
b .

Lemma 32. For all b ∈ {0, 1} and i ∈ [N], there exist a reduction Rb,i(·) such that for all D

∆D(Hb,i−1, Hb,i) = ∆D(Rb,i(·))(GΠ,nm-sda
0 , GΠ,nm-sda

1).

Proof. Fix b and i. Hybrid Rb,i(·) works as follows: Initially, it generates the secret state s← Gen and

N − 1 key pairs (pkj , skj) for j ∈ [N] \ {i}, obtains pki (but not ski) from the oracle (from GΠ,nm-sda
0

or GΠ,nm-sda
0), and outputs pk := (pk1, . . . , pkN). When it receives (chall,m0,m1), it computes an

encoding c = (c[1], . . . , c[N])← Enc(mb). Then, it chooses i random bits c̃[1], . . . , c̃[i] and computes

e∗j =

{
Epkj (c̃[j]) for j < i, and

Epkj (c[j]) for j > i.

Moreover, it outputs (chall, c[i], c̃[i]) to its oracle and obtains a ciphertext e∗i . It finally returns e∗ =
(e∗1, . . . , e

∗
N).

When Rb,i(·) receives a (parallel) decryption query, for each component e′ = (e′1, . . . , e
′
N) it proceeds

as follows: For j 6= i, it computes c′[j] as Hb,i does. Moreover, if e′i = e∗i , it sets c′[i]← c[i]. Otherwise,
it outputs (dec, e′i) to its oracle and obtains the answer c′[i].23 Then, it computes m′ ← Dec(c′). The
answer to the component of the decryption query is m′, unless m′ ∈ {m0,m1}, in which case the it is
test. If one of the component answers is ⊥, Rb,i(·) implements the self-destruct mode, i.e., answers all
future queries by ⊥.

Consider Rb,i(G
Π,nm-sda
0) and Hb,i−1. Both generate the public key in the same fashion. As to

the challenge ciphertext, the first i − 1 ciphertext components ej generated by Rb,i(G
Π,nm-sda
0) are

encryptions of random bits c̃[j], whereas the ith and the remaining components are encryptions of the

corresponding bits of an encoding of mb (generated by GΠ,nm-sda
0 and Rb,i(·), respectively). The same

is true for Hb,i−1. The answer to a decryption query component sent to Rb,i(G
Π,nm-sda
0) is Dec(c′) for

c′ = (c′[1], . . . , c′[N]), where c′[j] = Dskj (e
′
j) unless j < i and e′j = ej , in which case c′[j] = c̃[j]. Again,

the same holds for Hb,i−1. Moreover, both Rb,i(G
Π,nm-sda
0) and Hb,i−1 answer test if Dec(c′) ∈ {m0,m1}.

Thus, they behave identically.
Rb,i(G

Π,nm-sda
1) and Hb,i are compared similarly. This concludes the proof.

Lemma 33. For b ∈ {0, 1}, there exists a wrapper Wb(·) such that

1. Wb(RF) behaves as Hb,N , and
2. W0(SF ,sim) and W1(SF ,sim) behave identically.

Proof. Wrapper Wb(·) works as follows: Initially, it generates N key pairs (pki, ski) for i ∈ [N] and
outputs pk := (pk1, . . . , pkN). When it receives (chall,m0,m1), it picks N random values c̃[1], . . . , c̃[N],
computes e∗i ←$ Epk(c̃[i]) for i = 1, . . . , N , and returns e = (e1, . . . , eN). Additionally, it outputs
(encode,mb) to its oracle.

22Assume here and below that Dec(c′) = ⊥ if any of the bits c′[j] equal ⊥.
23In fact, it is important that Rb,i(·) output a single parallel decryption query containing all e′i for the individual

components; but it is less cumbersome to describe how individual components are handled.

30

When it gets a (parallel) decryption query, for every component e′ = (e′1, . . . , e
′
N), it proceeds as

follows: First, it creates a tamper query f = (f [1], . . . , f [N]) where

f [i] =


zero if e′i 6= e∗i and Dski(e

′
i) = 0,

one if e′i 6= e∗i and Dski(e
′
i) = 1, and

keep if e′i = e∗i .

Then, it outputs (tamper, f) to its oracle and obtains an answer x′. If x′ ∈ {m0,m1}, the answer to the
component query test.24 Otherwise, it is x′. If one of the component answers is ⊥, Wb(·) implements
the self-destruct mode, i.e., answers all future queries by ⊥.

Consider Wb(RF) and Hb,N . Both generate the public key in the same fashion. Furthermore, in
either case, the challenge ciphertext consists of N encryptions of random bits. Finally, both answer
a decryption query by applying the same tamper function to an encoding of mb before decoding it.
When the decoding of the tampered codeword results in m0 or m1, both answer test. Therefore, they
behave identically.

Due to the fact that test is output when a decryption query results in m0 or m1, the observable
behavior is the same in W0(SF ,sim) and W1(SF ,sim).25

Proof (of Lemma 31). Lemma 31 follows using a triangle inequality. Specifically, for any distinguisher
D,

∆D(GΠ′,nm-rsda
0 , GΠ′,nm-rsda

1) ≤
∑
i

∆D(H0,i−1, H0,i) + ∆D(W0(RF),W0(SF ,sim))

+ ∆D(W1(SF ,sim),W1(RF)) +
∑
i

∆D(H1,i−1, H1,i)

≤
∑
b,i

∆D(Rb,i(G
Π,nm-sda
0), Rb,i(G

Π,nm-sda
1))

+
∑
b

∆D(Wb(·))(RF , SF ,sim).

C.3 From Replayable to Full NM-SDA Security

Message authentication codes. A message authentication code (MAC) is a pair of algorithms
(T, V), where the tagging algorithm T takes as input a message m and a key K and outputs a tag
t ← TK(m) and where the verification algorithm V takes a key K, a message m, and a tag t and
outputs a bit VK(m, t).

MAC security is defined using the following game Gmac played by an adversary A: Initially, the
game chooses a random key K. Then, A gets access to a tagging oracle, which returns a tag t← TK(m)
when given a message m, and to a verification oracle, which outputs VK(m, t) when given a message
m and a tag K. The adversary wins the game if he submits to the verification oracle a pair (m, t)
that is not a query-answer pair for the tagging oracle and for which VK(m, t) = 1.

Definition 10. A MAC Σ is (t, u, v, ε)-secure if for all adversaries A with running time at most t,
making at most u tag queries and at most v verification queries, ΓA(Gmac) ≤ ε.

An NM-RSDA-secure PKE scheme Π′ = (KG ′, E′, D′) and a message-authentication code (MAC)
(V, T) can be combined as follows to obtain a fully NM-SDA-secure scheme Π′′ [6]: The key generation
remains unchanged. To encrypt a message m, the new encryption algorithm first chooses a key K for
the MAC and computes an encryption e1 ← E′pk(m ‖K) and e2 ← TK(e1); the ciphertext is (e1, e2).

24Again, Wb(·) needs to output a single parallel tamper query containing the tamper functions f for the individual
components.

25This is where the proof reflects that Π′ is only NM-RSDA secure.

31

The new decryption algorithm decrypts e1 to (m,K) and verifies the tag e2. If the tag is valid, the
decryption algorithm outputs m; otherwise, it outputs ⊥.

Theorem 34. Let Π′ be a (t + trsda, q, p, εrsda)-NM-RSDA secure PKE scheme and (V, T) a (t +
tmac, εmac)-secure MAC. Then, Π′′ is a (t, q, p, ε)-NM-SDA-secure PKE scheme for

ε ≤ 2(εrsda + qp · 2−` + εmac) + εrsda,

where ` is the length of the MAC key.

The theorem follows from the following lemma:

Lemma 35. For b ∈ {0, 1} there exist reductions Rb(·), R′(·), and R′′b (·), such that for all distinguish-
ers D,

∆D(GΠ′′,nm-sda
0 , GΠ′′,nm-sda

1) ≤
∑
b

(
∆D(Rb(·))(GΠ′,nm-rsda

b , GΠ′,nm-rsda
1) + qp · 2−` + ΓD(R′′b (·))(Gmac)

)
+ ∆D(R′(·))(GΠ′,nm-rsda

0 , GΠ′,nm-rsda
1).

where ` is the length of the MAC key. Moreover, reductions Rb(·) and R′(·) preserve the number q
and the size p of the queries, and reduction R′′b (·) asks a single tag query and qp verification queries.

Proof. Let trsda be the maximal occurring overhead caused by the reductions Rb(·), R′(·) and tmac

that by the reductions R′′b (·). Fix a distinguisher D having running time trsda and making at most q
decryption queries of size at most p. Due to the preservation properties of the above reductions, the

distinguishing advantages on GΠ′,nm-rsda
b are at most εrsda and ΓD(R′′b (·))(Gmac) is at most εmac.

Hybrid 1. The first hybrid Hb captures the fact that the MAC key in the challenge ciphertext is

computationally hidden; it differs from GΠ′′,nm-sda
b as follows:

• It generates the challenge ciphertext using two independent MAC keys K∗ and K, i.e., (e∗1, e
∗
2)←

(E′pk(mb ‖K∗), TK(e∗1)).
• When answering (components of parallel) decryption queries (e′1, e

′
2) ← (E′pk(mb ‖ K ′), e′2), if

K ′ = K∗, the tag is verified using K instead of K∗.

Lemma 36. There exists a reduction Rb(·) such that for all distinguishers D asking at most q parallel
queries of size at most p each,

∆D(GΠ′′,nm-sda
b , Hb) ≤ ∆D(Rb(·))(GΠ′,nm-rsda

0 , GΠ′,nm-rsda
1) + qp · 2−`,

where ` is the length of the MAC key.

Proof (sketch). Initially, reduction Rb(·) outputs (to D) the public key obtained from its oracle. When
it gets (chall,m0,m1), it outputs ((chall,mb ‖K,mb ‖K∗)) to its oracle and gets a response e∗1. Then,
it computes e∗2 ← TK(e∗1) and outputs (e∗1, e

∗
2). As long as no self-destruct has occurred, Rb(·) answers

(components of parallel) decryption queries (e′1, e
′
2) (different from the challenge ciphertext) as follows:

It outputs (dec, e′1) to its oracle. If the answer is test, Hb verifies the tag e′2 with K and returns mb to
D if it is valid. If the answer is m′ ‖K ′, Hb verifies the tag with K ′ and returns m′ if it is valid.

By inspection one observes that Rb(G
Π′,nm-rsda
0) behaves as GΠ′′,nm-sda

b unless D asks a query (e′1, e
′
2)

where e′1 is an encryption of a message concatenated with K∗; however, since the view of D when

interacting with Rb(G
Π′,nm-rsda
0) is independent of K∗, the probability of this event is bounded by 2−`.

On the other hand, observe that Rb(G
Π′,nm-rsda
1) behaves exactly as hybrid Hb.

Hybrid 2. The second hybrid H ′b behaves as Hb except that queries (e′1, e
′
2) where e′1 contains K∗

are always rejected.

Lemma 37. There exists a reduction R′′b (·) such that for all distinguishers D,

∆D(Hb, H
′
b) ≤ ΓD(R′′b (·))(Gmac).

32

Proof. R′′b (·) is a standard reduction to the strong unforgeability of the MAC.

Reduction to NM-RSDA. Distinguishing GΠ′,nm-rsda
0 and GΠ′,nm-rsda

1 can now be reduced to dis-
tinguishing H ′0 and H ′1.

Lemma 38. There exists a reduction R′(·) such that for all distinguishers D,

∆D(H ′0, H
′
1) = ∆DR′(·)(GΠ′,nm-rsda

0 , GΠ′,nm-rsda
1).

Proof (sketch). The reduction translates between the NM-SDA game for Π′′ and the NM-RSDA game
for Π′, using the fact that decryption queries for which the first component contains K∗ can be rejected.
In particular, when the NM-RSDA game outputs test, a ciphertext can be rejected.

D Miscellaneous

D.1 Chernoff Bound

We make use of the following Chernoff bound.

Theorem 39. Let X1, . . . , Xn be i.i.d. with Xi ∼ Be(pi). Then, for X :=
∑

iXi and µ :=
∑

i pi,

P[X ≤ (1− ε)µ] ≤ e−µε
2/2

for any ε ∈ (0, 1].

33

	Introduction
	Preliminaries
	Non-Malleability under Self-Destruct Attacks
	Domain Extension
	A New Flavor of Non-Malleable Codes
	Combining Single-bit PKE and Non-Malleable Codes
	Non-Malleable Code Construction
	Proof of the Non-Malleable Code Construction
	Tamper-Query Types
	Analyzing Query Types
	Hybrids
	Simulation

	Impossibility for Codes without State

	Construction from CPA Security
	Construction
	Security Proof
	Overview
	Dealing with Forgeries
	Alternative Decryption Algorithm
	Reduction to IND-CPA Security
	Overall Proof

	A General Indistinguishability Paradigm
	Relating IND-SDA and NM-CPA
	Necessity of Codes with Secret State
	Composing Non-Malleable Codes, PKE, and MACs
	Replayable NM-SDA Security
	Non-Malleable Codes and PKE
	From Replayable to Full NM-SDA Security

	Miscellaneous
	Chernoff Bound

