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Abstract. Assuming the existence of an indistinguishability obfuscator (iO), we show that a number
of prominent constructions in the random-oracle model are uninstantiable in the standard model. We
first show that the Encrypt-with-Hash (EwH) transform of Bellare, Boldyreva, and O’Neill (CRYPTO
2007) for converting randomized public-key encryption (PKE) to deterministic PKE is not instantiable
in the standard model. The techniques that we use to establish this result are flexible and lend
themselves easily to other transformations. These include the classical Fujisaki–Okamoto transform
(CRYPTO 1998) for converting CPA to CCA security, a transformation akin to that by Bellare
and Keelveedhi (CRYPTO 2011) for obtaining key-dependent security, as well as the convergent
encryption transform for obtaining messaged-locked encryption by Bellare, Keelveedhi, and Ristenpart
(EUROCRYPT 2013). Our techniques build on the recent work of Brzuska, Farshim, and Mittelbach
(CRYPTO 2014) and rely on the existence of iO for Turing machines or circuits to derive two flavors
of uninstantiability. Our results call for a re-assessment of scheme design in the random-oracle model
and point out the need for new transforms which do not suffer from our attacks.
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1 Introduction

1.1 Background

The random-oracle model (ROM) is an idealized model of computation where all parties, honest or
otherwise, have oracle access to a random function. Random oracles model ideal hash functions and
were first formalized in the work of Bellare and Rogaway [BR93]. They have since found a plethora
of applications, enabling the security proofs of a wide range of practical cryptosystems which include,
amongst others, digital signature schemes, CCA-secure encryption, key-exchange protocols, identity-
based encryption, cryptosystems that are resilient to related-key and key-dependent-message attacks,
as well as more advanced security goals such as deterministic encryption of high-entropy messages,
de-duplication schemes, and point-function obfuscation.

In this paper we revisit the random-oracle methodology, whereby one first designs a scheme in the
ROM and then instantiates the oracle via a concrete hash function. We show that a number of prominent
ROM cryptosystems cannot be securely instantiated in the standard model.

1.2 Uninstantiability

The power and practicality of random oracles drew attention to their standard-model instantiations and
Canetti, Goldreich, and Halevi (CGH) [CGH98] demonstrated a general negative result by showing that
one can construct digital signature and encryption schemes which are secure in the random-oracle model
but become insecure as soon as the oracle is instantiated with any concrete hash function. Roughly
speaking, these uninstantiable schemes rely on the existence of a compact description for the hash
functions (and lack of one for a truly random function). The idea is to take a secure ROM scheme
and tweak it so that it behaves in an “obviously insecure” way (e.g., it returns the signing key or the
message) when run on messages that match the code of the hash function used in instantiation (and
behaves securely otherwise).

A number of follow-up works have further studied uninstantiability problems associated with random
oracles in the standard model. CGH, in a follow up work, extend their result to signature schemes which
only support short messages [CGH03]. Bellare, Boldyreva and Palacio [BBP04] show that no instantiation
of the hashed ElGamal key-encapsulation mechanism composes well with symmetric schemes, even
though it enjoys this property in the ROM. Goldwasser and Tauman-Kalai [GK03] study the Fiat–Shamir
heuristic and establish uninstantiability results for it. Nielsen [Nie02] gives an uninstantiable ROM
task, namely that of non-interactive, non-committing encryption. CGH-type uninstantiability has been
adapted to other idealized models of computations such as the ideal-cipher model [Bla06] and the
generic-group model [Den02].

A number of recent works have looked into ROM (un)instantiability in light of the recently proposed
candidate for indistinguishability obfuscation (iO) [GGH+13]. Roughly speaking, a secure indistinguisha-
bility obfuscator guarantees that the obfuscations of two functionally equivalent algorithms (which may
be modeled as circuits or Turing machines) are computationally indistinguishable. On the positive side,
Hohenberger, Sahai, and Waters [HSW14] show how to instantiate the hash function in full-domain hash
signatures using iO. Bellare, Stepanovs and Tessaro [BST14] show the first standard-model construction
for polynomially many hardcore bits for any one-way function. Recently, Brzuska and Mittelbach [BM14c]
have shown how to use iO to instantiate assumptions from the UCE (Universal Computational Extractor)
framework of Bellare, Hoang and Keelveedhi [BHK13a]. Roughly speaking, UCEs model various strong
extractor properties enjoyed by random oracles.

On the negative side, Brzuska, Farshim, and Mittelbach [BFM14] show that if iO exists then
several security notions in the UCE framework are uninstantiable in the standard model. Brzuska and
Mittelbach [BM14b] show that assuming iO, multi-bit output point-function obfuscation secure in the
presence of auxiliary information cannot be realized. Both results can be interpreted as conditional
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uninstantiability results as ROM constructions for both UCEs [BHK13a, Mit14] and strong multi-output
bit point obfuscation [LPS04] exist. Bitansky et al. [BCPR14] show that indistinguishability obfuscation
rules out the existence of certain types of extractable one-way function families which can be easily
constructed in the random-oracle model [CD08]. We note that indistinguishability obfuscation is also
mutually exclusive with a number of other assumptions [BCC+14, MO14, KRW13].

1.3 Our results

Our work continues the study of uninstantiability of random oracles and shows that a number of
well-known and widely employed ROM constructions are provably uninstantiable if indistinguishability
obfuscators exist. More specifically, we are interested in ROM transformations TRO which take as input
any scheme S that satisfies a mild form of security, and convert S to a scheme TRO[S] which meets a
stronger level of security. We ask whether or not TRO can be instantiated with in standard mode hash
function. That is, whether or not there exists an efficient hash function H such that TH[S] is strongly
secure for any mildly secure S. A negative result in this direction would therefore take the form: there is
a mildly secure scheme S∗ such that no matter which hash function H is picked, scheme T[S∗,H] := TH[S∗]
is provably insecure.

Our results come in two flavors depending on the class of programs that the indistinguishability
obfuscator supports. Assuming iO for the class of polynomial-sized circuits, we show that for any
hash function of size at most p, an a priori fixed parameter, there is a ROM cryptosystem which is
uninstantiable with respect to (keyed) hash functions of description size at most p. This means that
there exists a scheme Sp such that for any hash function H that has a description size of at most p
the scheme T[Sp,H] will be insecure. This yields an impossibility result for any fixed, finite set of hash
functions. On the other hand, this result does not rule out instantiating the oracle with hash functions
which are “more complex” than the ROM scheme that they are instantiating. By assuming the existence
of iO for the class of polynomial-time Turing machines, we can strengthen this result to one which rules
out instantiations with respect to any, possibly scheme-dependent, hash function.

Overview of BFM. We build on the techniques by Brzuska, Farshim, and Mittelbach (BFM) [BFM14]
to construct our uninstantiable schemes and briefly recall their result here. BFM utilize the power of
indistinguishability obfuscation to show that a recent notion of security for hash functions known as
UCE1 (later renamed as UCE[Scup]) is uninstantiable in the standard model.1 To this end, BFM attack
UCE1 by leaking an indistinguishability obfuscation of the circuit

C[x, y](·) := (H(·, x) = y) ,

where x is a random domain point and y is the corresponding hash value received from the oracle. Both
these values are hardcoded into C. BFM need to argue that indistinguishability obfuscation of this
circuit hides x when y is truly random. They prove this by showing that, under appropriate restriction
on the size of the range and the key space, the above circuit implements the constant all-zero circuit
with overwhelming probability. They then employ the security of the obfuscator to conclude as the zero
circuit is independent of x. The size restriction that they need requires the number of hash keys to be
much smaller than the size of the co-domain, which means y, with overwhelming probability, is outside
the set of values that H(·, x) assumes.

1In UCE1 security a two-stage adversary needs to distinguish a hash function from a random oracle. The first-stage
adversary is given oracle access to either the hash function under an unknown key or a random oracle. It does not get to
see the hash key but may leak a message once to the second-stage adversary which additionally does get to see the hash key.
The second-stage adversary can no longer call the oracle. UCE1 security requires that the leaked message should be such
that it does not reveal any of the oracle queries when the oracle is random.
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Techniques. We consider a universal variant of the BFM circuit which takes as input the description
of a hash function (including its key if there is one) and returns the result of running the BFM circuit on
the input hash function. It performs the latter in the standard way by using a universal machine UEval:

P[x, y](Hhk) := (UEval(Hhk, x) = y) .

In other words, we no longer consider a fixed hash function and varying keys, but instead (potentially)
look at the set of all hash functions on a given range and domain. Similar ideas have been recently
used by Brzuska and Mittelbach [BM14b] to study the feasibility of multi-bit output point function
obfuscation in the presence of auxiliary inputs under the iO assumption. In adopting this approach,
however, a number of technicalities need to be addressed, which we discuss next.

Our ultimate goal is to derive a strong result which rules out instantiations by any arbitrary hash
function. This means that P above should accept inputs of arbitrary length. This, however, lies beyond
the powers of the circuit model of computation. We address this problem in two (incomparable) ways.
First, we weaken the target uninstantiability result and consider only bounded sized circuits. Put
differently, assuming iO for circuits, we are able to rule out instantiations by a priori bounded size
circuits. Second, in order to strengthen this result to full uninstantiability, we consider a stronger
form of iO which supports the class of Turing machines. The crucial difference with the circuit class is
that Turing machines can take inputs of arbitrary size. Note that the actual machine that we need to
obfuscate is a universal Turing machine of size, say, λ which is able to accept arbitrarily large inputs. Our
theorem statements will contain two parts to reflect this trade off between the strength of assumptions
and the strength of the negative result than can be achieved.

A second problem arises from the fact that the number of possible hash functions might be greater
than 2|y| so that we cannot directly apply the counting argument used by BFM. We overcome this
obstacle by composing both sides of the equality in P with a pseudorandom generator (PRG):

P[x, y](Hhk) := (PRG(UEval(Hhk, x)) = PRG(y)) .

This does not affect the success probability of the attack. Next, to argue that x remains hidden, we
observe that the right hand side, i.e., PRG(y), can be changed to a truly random value by the security of
the PRG. Note that in this step we do not rely on the security of iO as the two circuits might implement
significantly different functionalities. Finally, we use the fact that a truly random value is outside the
range of a PRG with sufficiently long stretch with overwhelming probability. As a result we conclude
that the obfuscations of the above circuit are computationally indistinguishable from those of the all-zero
circuit. We note that our usage of the PRG is somewhat similar to that by Sahai and Waters in their
construction of a CCA-secure PKE scheme from iO [SW14] as well as the range-extension of Matsuda
and Hanaoka [MH14] of a multi-bit point function to obtain shorter point values, the range-extension of
a UCE1-secure hash function by Bellare et al. [BHK13c] and the 1-out-of-2 result for iO and multi-bit
output point function obfuscation in the presence of auxiliary inputs by Brzuska and Mittelbach [BM14b].

Plausibility of assumptions. Garg et al. [GGH+13] base indistinguishability obfuscation for all
circuits in NC1 on intractability assumptions related to multi-linear maps, which they validate in generic
models of computation. To achieve indistinguishability obfuscation for all polynomial-time circuits,
they then apply a bootstrapping technique using fully homomorphic encryption with decryption in
NC1. Recent results show how to improve the assumptions used in constructing indistinguishability
obfuscators [PST14, BR14, BGK+14, AGIS14a, GLSW14a], further supporting their plausibility.

Indistinguishability obfuscation for Turing machines has been constructed in the works of Boyle,
Chung, and Pass [BCP14] and Ananth et al. [ABG+13]. The authors study a stronger primitive called
extractability or differing-inputs obfuscation (diO) which extends iO to circuits (and Turing machines)
that are not necessarily functionally equivalent. The requirement is that any adversary that can break
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the indistinguishability property can be converted to an extractor that can output a point on which the
two circuits differ. Boyle et al. [BCP14], and independently Ananth et al. [ABG+13], show how to build
iO for Turing machines assuming diO for circuits.

The plausibility of differing-inputs obfuscation has become somewhat controversial due to a recent
result of Garg et al. [GGHW14] who show that the existence of a special-purpose obfuscator for a
signature scheme implies that diO with arbitrary auxiliary input cannot exist. We currently do not know
how to build this special-purpose obfuscator. However, as the special-purpose obfuscator appears to be
a milder assumption than diO, one can consider its existence to be more likely. It is therefore important
to seek alternative instantiations of iO for Turing machines from assumptions that are weaker than diO
for circuits.

Deterministic PKEs. Our first result establishes the uninstantiability of the Encrypt-with-Hash
(EwH) transform of Bellare, Boldyreva and O’Neill [BBO07], whereby one converts a randomized public-
key encryption scheme into a deterministic public-key encryption (D-PKE) scheme for high-entropy
messages by extracting the randomness needed for encryption by hashing the message and the public
key. This simple transformation meets the strongest notion of security that has been proposed for
deterministic encryption (that is, PRIV security) in the ROM if the underlying encryption scheme is
IND-CPA secure. This notion of security has only been met in idealized models, and standard-model
counterparts achieve a weaker level of security (e.g., for block sources [BFOR08, BFO08] or q-bounded
adversaries [FOR12, BM14a]).

We ask if a hash function can be used to instantiate the random oracle within the EwH transform.
Assuming indistinguishability obfuscation, we answer this question in the negative. Starting with an
arbitrary scheme PKE we convert it to a new scheme PKE∗ which includes an obfuscation of the following
circuit as part of its ciphertexts.

P[pk,m, r](Hhk) := if (PRG(UEval(Hhk, pk‖m)) = PRG(r)) return m else return 0

This circuit performs the same check as that in the universal BFM circuit above, and if it passes, instead
of returning a Boolean value, it returns the encrypted messages. This circuit can be used to attack
the security of EwHH[PKE∗], by running it on a description Hhk (with hardcoded key hk) that is used
in the instantiation. A corollary of this result is that any security assumption which is strong enough
to build D-PKEs via EwH cannot be instantiated in the standard model. In particular, under iO for
Turning machines, any UCE assumption [BHK14] that suffices to instantiate EwH is uninstantiable
assuming iO for Turing Maschines (and p-bounded uninstantiable assuming iO for circuits). We note
that our results are incomparable to those of Wichs [Wic13] who shows an unprovability result for
D-PKEs using arbitrary techniques from single-stage assumptions. In turn, assuming iO, our result shows
uninstantiability of EwH regardless of the assumptions used. An extension of our result establishes that
the Randomized-Encrypt-with-Hash [BBN+09] transform for building hedged PKEs is also uninstantiable.

The Fujisaki–Okamoto transform. We are able to generalize the above result to a wider class of
(possibly randomized) structured transformations that we term admissible. These are transformations
which use their underlying PKE scheme in a specific way and admit a recovery algorithm (we leave the
details to the main body). Somewhat surprisingly, we show that the Fujisaki–Okamoto (FO) transform
for converting CPA into CCA security falls under this class of transformations and thus suffers from
similar problems to EwH. The FO transform, which dates back to the 1990s, is a simple and flexible
technique to boost the security of various schemes and has been widely used in primitives such as
identity-based encryption (IBE) [BF01], hierarchical and fuzzy IBEs [GS02, SW05], forward-secure
encryption [CHK03], and certificateless and certificate-based encryption [ARP03, Gen03]. As before,
our uninstantiability results for FO also come in two flavors depending on the strength of the underlying
obfuscator. We remark that our results also show that one cannot instantiate the oracle used within
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the asymmetric component of the FO transform, and in this sense complement those of Boldyreva and
Fischlin [BF05] on partial instantiation of oracles in FO.

We give a new transform for building D-PKEs that does not fall into the class of admissible
transformations. This transform is specifically designed to bypass our attacks above by encrypting two
values independently across two invocations of the encryption algorithm so that information needed for
the attack is shared out. Perhaps surprisingly, we show that the circuits used in the attacks above can
be split into several circuits, and by feeding obfuscations of one circuit into obfuscation of another we
can launch an attack on this transform. Consequently, our attacks apply to a potentially wider class of
transforms whose characterization we leave as an interesting open problem.

Other transforms. The uninstantiability problems arising from the existence of indistinguishability
obfuscators are not limited to D-PKEs and its generalizations. We revisit the work of Bellare and
Keelveedhi (BK) [BK11] on authenticated and misuse-resistant encryption of key-dependent data and
show that it too suffers from uninstantiability problems. Roughly speaking, BK give a transformation
to convert authenticated encryption into one which resists key-dependent-message (KDM) attacks by
hashing the key with a random nonce before use. More precisely, in this transform one encrypts M as
(R, enc(H(hk, R‖K),M)) for a random R. Our iO-based uninstantiability result describes an IND-CPA
and INT-CTXT-secure authenticated encryption (AE) scheme whose transformation is not KDM secure.

Interestingly, BK assume a stronger notion than IND-CPA security in their work, namely, that
ciphertexts are indistinguishable from random strings. BK do not consider this difference to be a major
issue, as they consider their transform to work for any authenticated encryption scheme. Our result brings
this stronger requirement to light, and shows that assuming that ciphertexts are pseudorandom might
be a way to circumvent uninstantiability: the current state-of-the-art obfuscators produce programs that
are structured and do not look random. It is an interesting problem to give positive feasibility results in
contexts that exploit this subtlety in the strength of security definition. Moreover, it is unclear whether
indistinguishability obfuscation can produce obfuscations of the all-zero circuit that look random.2 If
possible, then reverting to the stronger security definition of indistinguishability from random strings
would not be of help to circumvent our uninstantiability result.

As another example we show that the convergent encryption transform originally proposed by
Douceur et al. [DAB+02] and formalized by Bellare, Keelveedhi and Ristenpart (BKR) [BKR13] for
building message-locked encryption is uninstantiable. Note that the same considerations as for BK apply
and that also BKR used the stronger assumption of pseudorandom ciphertexts in their proofs.

Comparison with CGH. It is natural to ask if CGH-like techniques can be directly used so as to
obtain uninstantiability results that do not rely on iO. With respect to unkeyed hash functions one
can indeed construct anomalous PKE schemes which follow the CGH paradigm and give the desired
uninstantiability result. For keyed hash functions, on the other hand, there seems to be an inherent
limitation to CGH-like techniques. For instance, the security model for D-PKEs do not allow message
distributions to depend on the hash key as this value is a component of the public key and the latter is
denied to the first-stage adversary. Consequently there is no way to generate messages which contain
the full description of the hash function used, including its key. It might appear that this issue can be
resolved by noting that the encryption routine does have access to the hash key and a full description
of the hash function can be formed at this point. However, the caveat is that such an uninstantiable
scheme would not fall under the umbrella of schemes arising from the encrypt-with-hash transform. More
precisely, although we can freely modify the base PKE to prove uninstantiability, the transformation is
fixed and in particular it only allows black-box access to the hash function and denies encryption access

2Note that generally, obfuscations of circuits cannot look like random strings, because obfuscation maintains functionality
and thus, the all-zero circuit and the all-one circuit are distinguishable. However, such a trivial attack does not apply here
if we only require pseudorandomness for the all-zero circuit.
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to the hash key. These observations also apply to the other transformations that we consider. For the
case of the FO transformation, note that the message that is PKE-encrypted is chosen uniformly at
random and thus cannot be set to the description of the hash function. Despite this, CGH-like techniques
render Encrypt-with-Hash uninstantiable when stronger notions of security are considered [RSV13].

ROM protocol design. The shortcomings that we have identified in this work call for a re-assessment
of the security of protocols whose security analyses have only been carried out in idealized models of
computation such as ROM. We believe the structural soundness of such schemes should be further
validated by studying if iO-based attacks similar to those given above can be launched against them. One
way to rule out such attacks would be to prove security under assumptions, which although strong, are
known to be instantiable in the standard model or at least are not known to be uninstantiable. Candidate
examples include UCEs against statistically or strongly unpredictable sources [BFM14, BHK13b, BM14c]
and indistinguishability obfuscation [GGH+13, ABG+13, BCP14].

One can also combine this approach with stronger assumptions on the base schemes such as
pseudorandomness of ciphertexts. For instance, it would be interesting to find positive results that
circumvent iO-based uninstantiability by merely exploiting the pseudorandomness of ciphertexts, even if
this were done for somewhat artificial tasks. This, in turn, would substantially strengthen our confidence
in modular RO-based design despite the broad uninstantiability results presented in this paper.

2 Preliminaries

Notation. We denote the security parameter by λ ∈ N and assume that it is implicitly given to all
algorithms in the unary representation 1λ. We denote the set of all bit strings of length ` by {0, 1}`,
the set of all bit strings of finite length by {0, 1}∗, the length of x ∈ {0, 1}∗ by |x|, the concatenation of
two strings x1, x2 ∈ {0, 1}∗ by x1‖x2, and the exclusive or of two strings x1, x2 ∈ {0, 1}∗ of the same
length by x1 ⊕ x2. The i-th bit of a string x is indicated by x[i]. A vector of strings x is written in
boldface, and x[i] denotes its i-th entry. The number of entries of x is denoted by |x|. For a finite set X,
we denote the cardinality of X by |X| and the action of sampling x uniformly at random from X by
x←$ X. We say a function ν(λ) is negligible if ν(λ) ∈ O(λ−ω(1)). We denote the set of all negligible
functions by negl. For a random variable X we denote the support of X by [X].

Turing machines and circuits. Throughout this paper we will consider two models of computation:
Turing machine and circuits. We denote the (worst-case) runtime of a Turing machine M on input x
by timeM(x) and the description size by |M|. We denote the size (aka. runtime) of a circuit C by |C|.
Recall that a Turing machine can take inputs of arbitrary length whereas the input length to a circuit is
fixed. A universal Turing machine UM is a machine that takes two inputs (M, x), interprets M as the
description of a Turing machine and returns M(x). A universal circuit UC is defined analogously by
taking the description of a circuit C. Note that UC only accepts inputs (C, x) of a specific length, whereas
UM can take inputs of arbitrary length. In order to simplify we use the term program to refer to either a
Turing machine or a circuit. Analogously, we may speak of a universal program UEval, which denotes
either a universal Turing machine UM or a universal circuit evaluator UC, and evaluates a program P on
some input x. When defining a program P we will often use the notation P [z](·) to denote that program
has z hardcoded into it.

We assume all algorithms are randomized unless otherwise stated. We call an algorithm efficient
or PPT if it runs in time polynomial in the (length of the) security parameter. The action of running
an algorithm A on input x and random coins r is denoted by y ← A(x; r). If A is randomized and
no randomness is specified, then we assume that A is run with freshly and uniformly chosen random
coins and write this as y←$ A(x). We often refer to algorithms, or tuples of algorithms, as schemes or
adversaries.
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Indistinguishability obfuscation. In the following we define indistinguishability obfuscation for
circuits and Turing machines. Roughly speaking, an indistinguishability obfuscator (iO) ensures that
the obfuscations of any two functionally equivalent programs (that is, circuits or Turing machines) are
computationally indistinguishable. Indistinguishability obfuscation was originally proposed by Barak
et al. [BGI+01, BGI+12] as a potential weakening of virtual-black-box obfuscation for which wide
infeasibility results are known. We here give a game-based definition of indistinguishability obfuscation
in the style of [BST14] with extensions to also cover obfuscation for Turing machines [ABG+13]. We
note that we only consider the weaker uniform setting for both sampler and distinguisher but consider
samplers that only need to output equivalent circuits with overwhelming probability.

A PPT Turing machine iO is called an indistinguishability obfuscator for a program class P = {Pλ}λ∈N
if iO on input the security parameter 1λ and (the description of) a program P outputs a program P ′

and furthermore the following conditions are satisfied:

• Correctness. For all λ ∈ N, all P ∈ Pλ, and all P ′←$ iO(1λ, P ), the programs P and P ′ are
functionally equivalent.

• Succinctness. There is a polynomial poly such that for all λ ∈ N, all P ∈ Pλ and all
P ′←$ iO(1λ, P ) we have that |P ′| ∈ O(poly(λ+ |P |)).

• Input-specific runtime. There is a polynomial poly such that for all λ ∈ N, all P ∈ Pλ and all
P ′←$ iO(1λ, P ) and all input values x we have that TimeP ′(x) ∈ O(poly(λ+ TimeP (x))).

• Security. For any pair of PPT adversaries (S,D), where S is an equivalent sampler, i.e.,

AdveqS (λ) := Pr
[
∃x s.t. P0(x) 6= P1(x) ∨ TimeP0(x) 6= TimeP1(x) : (P0, P1, aux)←$ S(1λ)

]
∈ negl,

we have that
AdvioiO,S,D(λ) := 2 · Pr

[
IOS,DiO (λ)

]
− 1 ∈ negl ,

where game IO is shown in Figure 1 on the left.

When working with circuits, the succinctness and input-specific runtime requirements follow from the
facts that iO runs in polynomial time and that the size of a circuit is its runtime.

Garg et al. [GGH+13] prove that under intractability assumptions related to multi-linear maps
an indistinguishability obfuscator for all NC1 circuits exists. Assuming the existence of a perfectly
correct, levelled fully homomorphic encryption scheme and a perfectly sound non-interactive witness-
indistinguishable proof system, they also show how to bootstrap the NC1 construction to support all
polynomial-size circuits, i.e., the family C := {Cp(λ)}λ∈N where p is a polynomial and

Cp(λ) := {C : C is a valid circuit of size at most p(λ)} .

Remark. For Cp(λ), our definition is implied by the (non-uniform) definition of Garg et al. [GGH+13].
We define indistinguishability obfuscation with respect to circuit samplers that are overwhelmingly
equivalent, i.e., where

AdveqS (λ) ∈ negl .

Although we allow samplers to not always output functionally equivalent circuits, the randomized sampler
only errs with negligible probability. To reduce to the definition of Garg et al., we can average over the
coins of the sampler and yield a bad event analysis where the bad event captures the event that the
sampler outputs two circuits which are not functionally equivalent.

Several follow-up works improved the assumptions underlying indistinguishability obfuscators as well
as the performance [PST13, BR14, AGIS14b, BGK+14, GLSW14b]. As mentioned above, circuits and
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IOS,DiO (λ)

(P0,P1, aux)←$ S(1λ)

b←$ {0, 1}
P̃←$ iO(1λ,Pb)

b′←$ D(P̃, aux)

return (b = b′)

IND-CPAAPKE(λ)

(sk, pk)←$ PKE.Kg(1λ)

(m0,m1)←$ A(pk)

b←$ {0, 1}
c←$ PKE.enc(pk,mb)

b′←$ A(c)

return (b = b′)

INDA1,A2

D-PKE(λ)

(m0,m1)←$ A1(1λ)

(sk, pk)←$ D-PKE.Kg(1λ)

for i = 1 . . . |m0|do
b←$ {0, 1}

c[i]← D-PKE.enc(pk,mb[i])

b′←$ A2(pk, c)

return (b = b′)

Figure 1: Left: The IO game defines the security of an indistinguishability obfuscator. Middle: The IND-CPA game for
randomized PKEs. Right: The IND security game for deterministic PKEs.

obfuscations thereof admit fixed-length inputs only. Ananth et al. [ABG+13] and Boyle et al. [BCP13]
give constructions of indistinguishability obfuscators for Turing machines which admit inputs of arbitrary
lengths. Their constructions achieve the stronger notion of differing-inputs (aka. extractability) obfusca-
tion, initially also suggested in the work of Barak et al. [BGI+01, BGI+12]. This type of obfuscation can
be regarded as a generalization of indistinguishability obfuscation to programs which are not necessarily
functionally equivalent. We recall [ABG+13, Theorem 3] and refer the reader to the original works for
details and discussion.

Theorem 2.1 (Ananth et al. [ABG+13]). Under the existence of CPA-secure levelled fully homomorphic
encryption, succinct non-interactive arguments of knowledge (SNARKs), differing-inputs obfuscation for
all circuits in P/poly, and collision-resistant hash functions, there exists a differing-inputs obfuscator
for the class of all Turing machines M := {Mλ}λ∈N, where

Mλ := {M : M is a valid Turing machine of description size at most λ} .

Public-key encryption. A public-key encryption scheme PKE := (PKE.Kg,PKE.enc,PKE.dec) con-
sists of three PPT algorithms as follows. On input the security parameter, the randomized key-
generation algorithm PKE.Kg(1λ) generates a key pair (pk, sk). The randomized encryption algorithm
PKE.enc(pk,m; r) gets a message m, a public key pk and possibly some explicit random coins r and
outputs a ciphertext c. The deterministic decryption algorithm PKE.dec(c, sk) is given a ciphertext c and
secret key sk and outputs a plaintext or a special symbol ⊥. We denote the supported message-length
by PKE.il(λ) and the length of the random string for an encryption by PKE.rl(λ).

We say that scheme PKE is correct if for all λ ∈ N, all m ∈ PKE.il(λ), all (sk, pk) ∈ [PKE.Kg(1λ)]
and all c ∈ [enc(pk,m)] we have that PKE.dec(sk, c) = m. We say that PKE is IND-CPA secure, if the
advantage of any PPT adversary in the IND-CPA game (shown in Figure 1; center) defined by

Advind-cpaPKE,A(λ) = 2 · Pr
[

IND-CPAAPKE(λ)
]
− 1

is negligible.

Hash function families. Following [BST14] we define a function family FF as a five tuple of PPT
algorithms (FF.Kg,FF.Ev,FF.kl,FF.il,FF.ol) where the algorithms FF.kl, FF.il, and FF.ol are deterministic
and on input 1λ specify the key length, input length, and output length, respectively. The key-generation
algorithm FF.Kg gets the security parameter 1λ as input and outputs a key fk ∈ {0, 1}FF.kl(λ). The
deterministic evaluation algorithm FF.Ev takes as input the security parameter 1λ, a key fk, a message
x ∈ {0, 1}FF.il(λ) and generates a hash value FF.Ev(1λ, fk, x) ∈ {0, 1}FF.ol(λ).
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Pseudorandom functions and generators. We say that a function family FF is pseudorandom if
for any PPT Turing machine A we have that

AdvprfFF,A(λ) := Pr
[
AFF.Ev(fk,·)(1λ) = 1

]
− Pr

[
ARO(·)(1λ) = 1

]
∈ negl .

In the first term, the probability is taken over a random choice of a key fk ∈ {0, 1}FF.kl(λ) and in the
second over a random choice of a function RO with domain {0, 1}FF.il(λ) and range {0, 1}FF.ol(λ). We
will often refer to function families as hash functions in this work.

We say (PRG,PRG.il,PRG.ol) is a secure pseudorandom generator if PRG on a string of length
PRG.il(λ) outputs a string of length PRG.ol(λ) and for any PPT Turing machine A we have that

AdvprgPRG,A(λ) := Pr
[
A(1λ,PRG(s)) = 1 : s←$ {0, 1}PRG.il(λ)

]
− Pr

[
A(1λ, y) = 1 : y←$ {0, 1}PRG.ol(λ)

]
is negligible.

Keyed random oracles. As we are interested in the standard-model instantiations of random oracles
via keyed hash functions, we use a slight generalization of the ROM whereby all parties (as usual) have
oracle access to a random keyed function of the form

RO(·, ·) : Keyλ × Domλ → Rngλ .

Whether or not a party gets to see the hash key will depend on how the random oracle is used within a
cryptosystem. For instance, if a construction appends hash keys to the public keys, a party sees the
hash key as long as it also sees the public key.3 We note that in defining the correctness and security
of a cryptosystem all probability spaces are extended to include a random choice of the keyed oracle.
Further note that we recover the standard unkeyed random-oracle model if the key space contains only a
single key 1λ.

(Un)instantiability. Given a scheme in the keyed random-oracle model, we consider its standard-
model instantiation via (concrete) keyed hash functions. Formally, this means using a keyed hash
function which has key space, domain and range that are identical to those of the oracle, using its key
generation algorithm whenever a hash key is needed, and calling the evaluation routine of the hash
function whenever an oracle query is placed. Given a KROM scheme and a KROM security model
for it, we say that the scheme is securely instantiable if there exists a hash function which when used
to instantiate the scheme (and the security model) results in a secure scheme (with respect to the
instantiated model). Conversely, we say that a scheme is (strongly) uninstantiable if no hash function
can securely instantiate the KROM scheme. As discussed in the introduction our uninstantiability
results come in two levels of strength depending on the strength of the underlying assumption. For a
polynomial p, we call a KROM scheme p-uninstantiable, if no hash function of size at most p(λ) securely
instantiates the scheme.

If T is a transform for public-key encryption schemes we denote the random oracle scheme resulting
from plugging in scheme PKE by TRO[PKE]. When the random oracle is instantiated by a hash function
H we denote the resulting standard model scheme by T[PKE,H].

3Again note that we prove impossibility results and thus considering restricted adversaries (i.e., not giving every adversary
access to the random oracle) strengthens the result.
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Remark. We note that random oracle transformations in the literature—for example Encrypt-with-
Hash [BBO07] or the Fujisaki–Okamoto transform [FO99]—are usually not analyzed in the keyed
random-oracle model, but only in the random-oracle model. This reflects the idea of a single, unkeyed
hash-function. However, keyed hash-functions are usually more powerful when it comes to instantiating
random oracles. Thus, this leaves open the question of how the scheme is to be instantiated with a keyed
hash function, that is, how the hash key is to be generated and who gets access to it. For example if
we consider a transformation from a symmetric encryption scheme, the hash key could be part of the
key generation process in which case the hash key would remain hidden from the adversary, or it could
be a parameter generated during setup time, in which case it would be available to an adversary. We
elaborate on this in Appendix A where we examine the Randomized-Hash-then-Encrypt transformation
by Bellare and Keelveedhi [BK11] and analyze it with respect to both possibilities. Note that all our
results also apply in to the unkeyed setting.

3 Deterministic Encryption

We start by studying the Encrypt-with-Hash (EwH) transform of Bellare, Boldyreva and O’Neil [BBO07]
for building deterministic encryption from standard (randomized) encryption schemes. We will show
that under the existence of indistinguishability obfuscation there is an IND-CPA public-key encryption
scheme that cannot be safely used within EwH. We begin by formally defining the syntax and security
of deterministic PKEs and the EwH transform.

3.1 Definitions

Deterministic public-key encryption. Deterministic public-key encryption was first introduced
by Bellare, Boldyreva and O’Neil [BBO07] and syntax and correctness of a deterministic public-key
encryption scheme D-PKE := (D-PKE.Kg,D-PKE.enc,D-PKE.dec) is defined similarly to a randomized
PKE scheme with the difference that the encryption routine is now deterministic, i.e., D-PKE.rl(λ) := 0.
Bellare et al. [BBO07] capture security via a form of semantic security called Priv. In later works Bellare
et al. [BFOR08] and independently Boldyreva et al. [BFO08] introduced an indistinguishability style
security notion called IND (which we adopt in this paper) and showed that it implies Priv-security.
The IND security game for deterministic (public-key) encryption is formally defined in Figure 1 on
the right.4 Roughly speaking, an IND adversary A := (A1,A2) consists of two stages. On input the
security parameter, adversary A1 outputs a pair of message vectors (m0,m1) of the same length that
have distinct components and component-wise contain messages of the same length. Furthermore, each
component is required to have super-logarithmic min-entropy. This condition is formalized by requiring
that for any x ∈ {0, 1}D-PKE.il(λ), any b ∈ {0, 1} and any i ∈ [|mb|]

Pr
[
x = mb[i] : (m0,m1)←$ A1(1

λ)
]
∈ negl .

Then a key pair (pk, sk)←$ D-PKE.Kg(1λ) is chosen and according to a secret bit b either of the two
message vectors is encrypted component-wise. The second stage adversary A2 is run on the resulting
vector of ciphertexts and the public key, and wins the game if it correctly guesses the hidden bit b. We
define the advantage of an adversary A in the IND game (see Figure 1) against scheme D-PKE by

AdvindD-PKE,A1,A2
(λ) = 2 · Pr

[
INDAD-PKE(λ)

]
− 1 .

4Bellare et al. [BFOR08] define the IND security game with an additional zeroth stage adversary that outputs shared
state for adversaries A1 and A2. This is done to facilitate the presentation of proofs and in their security definition Bellare
et al. quantify only over adversaries with a trivial zeroth stage (i.e., no shared state). As we proof an impossibility result
we choose the weaker definition, i.e., do not consider adversaries that are allowed shared state.
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We call scheme D-PKE IND-secure if the advantage of any admissible PPT adversary A = (A1,A2) in
the IND game is negligible.

Encrypt-with-Hash. The Encrypt-with-Hash (EwH) transform constructs a deterministic public-
key encryption scheme from a (randomized) public-key encryption scheme PKE [BBO07] in the keyed
random-oracle model. We assume the keyed RO to have a range which matches the randomness space of
the PKE scheme, and a domain consisting of all bit strings of length |pk|+ |m|, that is, the length of a
public key of the PKE scheme plus the length of a message. The Encrypt-with-Hash transform now
constructs a D-PKE scheme as follows. The key-generation generates a key pair using the key generation
algorithm of the base PKE scheme as well as a hash key hk←$ Keyλ. It returns (sk, (hk, pk)). Algorithm
D-PKE.encRO(·,·)(m, (hk, pk)) first computes random coins r ← RO(hk, pk‖m) and then invokes the base
encryption algorithm on m and pk using coins r to generate the ciphertext. The decryption routine is
identical to that of the underlying scheme (plus an additional ciphertext check where the ciphertext
is recomputed and checked against the input). We denote this scheme by EwHRO[PKE]. We note that
the original EwH transform [BBO07] uses an unkeyed oracle, and we recover this transformation for
singleton key spaces Keyλ := {1λ}. The EwH transform results in an IND secure D-PKE scheme in
keyed ROM when starting from an IND-CPA public-key encryptions scheme. When instantiated with a
keyed hash function H we denote the resulting scheme by EwH[PKE,H] and assume that the hash key is
part of the public-key. In particular this means that the first adversary does not get the hash key.

Key access in EwH. With the formalisms introduced above, both adversaries A1 and A2 get access
to RO(·, ·). The first-stage adversary, however, does not get to see hk (although the second does). One
may consider a stronger model where the hash key is given out. For example, [BBO07] give the first
stage (Priv)-adversary access to the (unkeyed) random oracle, which corresponds to giving out the hash
key to the first adversary. We note that EwH meets this stronger notion of security, however, since our
results are negative we use the conventional (and weaker) IND model and note that our result also rules
out the stronger variant.

3.2 Uninstantiability of EwH

We start by observing that when the EwH transformation is used in conjunction with respect to an
unkeyed random oracle a CGH-style uninstantiability result can be established [CGH98]. Put differently,
this shows that the use of a keyed hash function is essential for standard-model instantiability. As
in CGH we take an arbitrary PKE scheme PKE and consider a tweaked variant of it PKE′ such that
EwH[PKE′,H] for any H fails to be secure. In more detail, on input a message m, public key pk and
randomness r the encryption algorithm of PKE′ first interprets parts of the message as the description of
a hash function (together with its single key) and then checks if the provided random coins r match
H.Ev(pk‖m). If so, it returns 0‖m and else it returns 1‖PKE.enc(pk,m; r). Scheme PKE′ is IND-CPA
secure because the probability that a random r matches H.Ev(pk‖m) is 2−H.ol(λ), and thus negligible. On
the other hand, when the random coins are generated deterministically by applying the hash function
to the message and the public key, an IND adversary against EwH[PKE′,H] can easily distinguish the
encryptions of mi‖H for any two messages m0 and m1 which differ on, say, their most significant bits.

Observe that the above attack generalizes to the setting where the first-stage adversary can guess
the hash key that will be used within the construction with non-negligible probability. In particular,
EwH is uninstantiable with respect to the stronger IND model where the first-stage adversary gets to see
the hash key, even for keyed hash functions. The standard IND game, however, restricts the first-stage
adversary not to learn the public key of the deterministic PKE scheme, and thus, it cannot guess the
(high min-entropy) hash key.
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We next show how to use indistinguishability obfuscation to extended uninstantiability to the IND
model with respect to keyed hash functions. As mentioned in the introduction, our result comes in the
weak and strong flavors depending on the programs that the obfuscator securely supports. Assuming iO
for Turing machines we obtain a strong uninstantiability result stating that there exists an IND-CPA
public-key encryption scheme that cannot be securely used in the EwH construction for any keyed hash
function. Assuming the weaker notion of iO for circuits, we get the weaker p-uninstantiability for any
polynomial p. In other words, we show that there exists an IND-CPA public-key encryption scheme
that cannot be securely used in EwH for any hash function whose description size is at most p. This, in
particular means that for any finite set of hash functions, we can give a PKE scheme that when used
within EwH yields an insecure D-PKE scheme for any hash function in the set.

Theorem 3.1 (Uninstantiability of EwH). Assuming the existence of indistinguishability obfuscation
for Turing machines M (resp. p-bounded circuits Cp), the EwH transform is uninstantiable (resp.
p-uninstantiable) with respect to IND-security in the standard model.

We start by giving a high-level description of the proof before presenting the formal details. Note
that we may assume that an IND-CPA-secure PKE scheme exists, as otherwise uninstantiability follows
trivially. This, in turn, implies that we can also assume the existence of a pseudorandom generator.
Now given an IND-CPA-secure scheme PKE, we construct a tweaked scheme PKE such that the D-PKE
scheme EwH[PKE,H] is not IND secure.

To construct an adversarial scheme PKE we follow the CGH blueprint. The fundamental difference
here is that when encrypting we do not have access to the hash key. We solve this problem by considering
obfuscation of programs which take as input a hash key hk and “run the CGH attack.” We do this by
considering a universal variant of the BFM circuit (see [BFM14]) which takes as input the description of
a hash function H(hk, ·), including its key, runs the code on hardcoded values m and pk, and checks if
the result matches another hardcoded value r:

P[pk, r,m]
(
H(hk, ·)

)
: if H(hk, pk‖m) = r return m else return 0 .

The tweak that we introduce in PKE is that we change the encryption operation to append the ciphertext
with an obfuscation of the above program P[pk, r,m] where values pk, r and m are hardcoded into the
program.

Next we need to argue that outputting an indistinguishability obfuscation of P does not hurt the
IND-CPA security of PKE. This would be the case if we can argue that for a randomly chosen r the
above circuit implements the constant zero circuit Z. Indeed, for any fixed H(hk, ·) and over a random
choice of r the check performed by P fails with all but negligible probability (assuming r is sufficiently
longer than |m‖pk|). This, however, does not mean that the circuit is zero as there could exist a hash
function H(hk, ·) which passes the check. Contrary to BFM, we cannot bound the probability of existence
of such a bad code via the union bound as the number of hash descriptions might exceed the size of the
randomness space.

To resolve this issue, we consider a further tweak to the base scheme. We construct a scheme
PKE∗ which has a much smaller randomness space and runs scheme PKE on coins that are generated
pseudorandomly via a PRG. This means that the randomness space used by PKE is sparse within the
set of all possible coins. We need to adapt the program above to cater for the new tweaks:

P[pk, r,m]
(
H(hk, ·)

)
: if PRG(H(hk, pk‖m)) = PRG(r) return m else return 0 .

At this point it might appear that no progress has been made as the above program, for reasons
similar to those given above, is not functionally equivalent to Z. We note, however, that for a random
s ∈ {0, 1}PRG.ol(λ) the program

P′[pk, s,m]
(
H(hk, ·)

)
: if PRG(H(hk, pk‖m)) = s return m else return 0 .
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has a description which is indistinguishable from that of P[pk, r,m] (down to the security of PRG), and
furthermore is functionally equivalent to the zero circuit with overwhelming probability as s will be
outside the range of PRG with overwhelming probability. This allows us to prove that obfuscations of
P′, and hence those of P as well, leak no information about the message m. This means the modified
scheme PKE∗ constructed above is IND-CPA secure. To finish the proof, observe that an obfuscation of
P allows an adversary to break the IND property of the EwH-transformed scheme: simply run P on the
descriptions of the hash function used in instantiation to recover the encrypted message.

We note that program P will be using a universal evaluator to run the input hash functions. If
the (obfuscated) program is a Turing machine, it can be run on descriptions of arbitrary size, and
consequently arbitrarily sized hash functions are ruled out. On the other hand, if the (obfuscated)
program is a circuit, it has an a priori fixed input length, and thus can only be run on hash functions
that can be encoded according to the input size restrictions.

Proof (of Theorem 3.1). Throughout the proof, we will state our constructions independently of the
underlying model of computation and will simply speak of programs. The obfuscated programs that
we consider contains a universal program (a universal Turing machine or a universal circuit evaluator)
which we denote by UEval.

Let PKE be an IND-CPA-secure public-key encryption scheme, PRG be a pseudorandom generator
of appropriate stretch and iO be an indistinguishability obfuscator. We define a modified PKE scheme
PKE∗ as follows. The key-generation algorithm is left unchanged. The modified decryption algorithm
on input a ciphertext (c1,P) uses the decryption routine of PKE to decrypt c1 (and ignores P). The
adapted encryption algorithm is as follows:

Algo. PKE∗.enc(pk,m; r‖r′)
s←$ PRG(r)

c1←$ PKE.enc(pk,m; s)

P←$ iO(P[pk,m, s](·); r′)
return (c1,P)

Prog. P[pk,m, s](H)

r‖r′ ← UEval(H, pk‖m)

s′ ← PRG(r)

if (s′ = s) then return m

return 0

When the above construction is considered with respect to circuits, an extra parameter p specifying the
size of the inputs to the universal circuit evaluator needs to be provided. This parameter thus controls
the maximum size of programs that the universal circuit admits, which in our settings translates to the
size of the hash function and inputs to it. Note that when the construction is considered for Turing
machines, the input size is arbitrary.

We show that the above tweaked scheme PKE∗ is IND-CPA secure via a sequence of four games that
we describe next. We present the pseudocode in Figure 2.

Game0: This game is identical to the original IND-CPA game for PKE∗.

Game1: This game proceeds as Game0 except that the randomness s is sampled uniformly at random
and is no longer generated via a PRG call.

Game2: This game proceeds as Game1 except that the ciphertext component P is now generated as
an indistinguishability obfuscation of the constant zero-program Z (Turing machine or circuit,
respectively) padded to the appropriate length (resp. running time).

We now show that each of the above transitions only negligibly changes the probability that the
game returns true.
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Game0(λ)

b←$ {0, 1}
(sk, pk)←$ PKE.Kg(1λ)

(m0,m1)←$ A(pk)

r‖r′←$ {0, 1}PKE.rl(λ)

s← PRG(r)

c1←$ PKE(pk,mb; s)

P←$ iO(P[pk,mb, s]; r
′)

b′←$ A((c1,P))

return (b′ = 1)

Game1(λ)

b←$ {0, 1}
(sk, pk)←$ PKE.Kg(1λ)

(m0,m1)←$ A(pk)

r‖r′←$ {0, 1}PKE.rl(λ)

s←$ {0, 1}PRG.ol(λ)

c1←$ PKE(pk,mb; s)

P←$ iO(P[pk,mb, s]; r
′)

b′←$ A((c1,P))

return (b′ = 1)

Game2(λ)

b←$ {0, 1}
(sk, pk)←$ PKE.Kg(1λ)

(m0,m1)←$ A(pk)

r‖r′←$ {0, 1}PKE.rl(λ)

s←$ {0, 1}PRG.ol(λ)

c1←$ PKE(pk,mb; s)

P←$ iO(Z|P[pk,mb,s]|; r
′)

b′←$ A((c1,P))

return (b′ = 1)

Prog. P[pk,mb, s](H)

r‖r′ ← UEval(H, pk‖mb)

s′ ← PRG(r)

if (s′ = s) then return mb

return 0

PRG iO

Figure 2: The hybrids for the proof of Theorem 3.1 on the left and the program P obfuscated in the first two games on the
right. We have highlighted the changes between the games with a light-grey background. By P← P[pk,mb, s] we denote
the generation of the program (Turing machine or circuit, respectively) which is obfuscated to yield the second part of the
ciphertext for scheme PKE∗.

Game0 to Game1. We bound the difference in these games by the security of PRG. Note that a PRG
adversary that gets as input a value y, which is either a PRG image under a uniformly random seed
or a truly uniformly random value. We can perfectly simulate games Game0 and Game1 by using the
provided y as s in the two games. If y is a PRG image, then Game0 is run and if y is uniformly random
the Game1 is run. Hence:

Pr[Game0(λ)]− Pr[Game1(λ)] ≤ AdvprgPRG,A(λ) .

Game1 to Game2. We show that this hop negligibly affects the winning probabilities using the security
of the indistinguishability obfuscator. We let S be the sampler which runs all the steps of Game1 using
the first phase of A up to the generation of P. It sets P0 := P and P1 := Z|P0| and sets aux to be c1 and
the internal state of the first phase of the IND-CPA adversary. Algorithm D receives an obfuscation of
either P0 or P1, sets P to this obfuscation, and resumes the second phase of A on (c1,P) using the state
recovered from aux. When P0 is obfuscated A is run according to the rules of Game2 and when P1 is
obfuscated A is run according to the rules of Game2:

Pr[Game1(λ)]− Pr[Game2(λ)] ≤ AdvioiO,S,D(λ) .

To conclude we must further argue that our sampler S outputs functionally equivalent circuits with
overwhelming probability. To this end, we require the stretch of the PRG to be sufficiently large, i.e.,
PRG.ol(λ) ≥ 2 · PRG.il(λ). By the union bound, the probability over a random choice of s that there
exists an r ∈ {0, 1}PRG.il(λ) such that PRG(r) = s is upper bounded by 2PRG.il(λ)−PRG.ol(λ) ≤ 2−PRG.il(λ).
Hence, the probability that P0 is different from the all zero circuit is upper bounded by 2−PRG.il(λ), that
is,

Pr[∃xP0(x) 6= 0] ≤ 2−PRG.il(λ)

where the probability is over the random coins of sampler S.

Game2. We reduce the advantage of A in Game2 to the IND-CPA security of the base PKE scheme
PKE. To do so we note that the only difference between this game and the IND-CPA game is that an
obfuscation of Z|P[pk,mb,s]| is attached to the ciphertext. This program has a public description, and
hence its obfuscation can be perfectly simulated:

Pr[Game2(λ)] ≤ Advind-cpaPKE∗,A(λ) .
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INDA1,A2

EwH[PKE∗,H](λ)

1 : b←$ {0, 1}

2 : (m0,m1)←$ A1(1λ)

x0←$ {0, 1}PKE.il(λ)−1

x1←$ {0, 1}PKE.il(λ)−1

return (x0‖0, x1‖1)

3 : (sk, pk)←$ D-PKE.Kg(1λ)

4 : hk←$ HKg(1λ)

5 : (c1, P )← EwH[PKE∗,H].enc((pk, hk),mb)

r‖r′ ← H.Ev(hk, pk‖mb)

(c1, P )← PKE∗.enc((pk, hk),mb; r‖r′)

s← PRG(r)
c1 ← PKE.enc(pk,mb; s)

P←$ iO(P[pk,mb, s](·); r′)
return (c1, P )

return (c1, P )

6 : b′←$ A2(1λ, (pk, hk), (c1,P))

mb ← P(H(hk, ·))
b′ ← mb[|mb|]
return b′

7 : return (b = b′)

Prog. P[pk,mb, s](H(hk, ·))
1 : r‖r′ ← UEval (H(hk, ·), pk‖mb)

2 : s′ ← PRG(r)

3 : if (s′ = s) then

4 : return mb

5 : else

6 : return 0

Figure 3: The IND-security game for scheme EwH[PKE∗,H] with our adversary (A1,A2) as constructed in the proof
of Theorem 3.1. The boxed algorithms are to be understood as subroutines. Program P that is obfuscated as part of
ciphertexts is given on the right.

To conclude the proof of the theorem it suffices to show that for any function H there exists an
adversary that breaks IND-security for scheme EwH[PKE∗,H], that is, the scheme constructed with
the Encrypt-with-Hash transformation from our adapted PKE scheme PKE∗ and hash function H. We
will construct this adversary (A1,A2) next and visualize the attack in Figure 3. Let PKE.il(λ) denote
the message length of the resulting D-PKE scheme EwH[PKE∗,H]. Adversary A1 chooses two values
x0, x1←$ {0, 1}PKE.il(λ)−1 uniformly at random and outputs messages m0 := x0‖0 and m1 := x1‖1.
Observe that A1 adheres to the high-entropy requirements of admissible IND adversaries, because x0 and
x1 both have (almost) full entropy. Adversary A2 gets as input the public key (pk, hk) and a ciphertext
(c1,P). It then evaluates the program encoded in P on the description of hash function H(hk, ·) with
key hk recovered from the public key and hardcoded into the program description. Note that if we are
considering circuits, the description of this circuit must have size at most p(λ). Adversary A2 returns the
last bit of the answer of the evaluation. This adversary always wins the IND security game irrespective
of which message is encrypted under the ciphertext. That is, the check performed by the obfuscated
program will always pass, and hence the least significant bit of the output of the obfuscated circuit
matches the challenge bit in the IND game:

AdvindD-PKE,A1,A2
(λ) = 1 .

3.3 Consequences for UCEs

We turn to Universal Computational Extractors (UCEs) a novel notion introduced by Bellare, Hoang,
and Keelveedhi (BHK) [BHK13a]. UCEs are a new set of assumptions on hash functions that can be used
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to instantiate random oracles in a diverse set of applications including the EwH transform for D-PKE.
In [BHK14], BHK show that if a scheme PKE is IND-CPA secure and a hash function H meets what
they call UCE[Scup ∩ SPKE] security then EwH[PKE,H] is IND secure. Note that this security definition
depends on the PKE scheme, because the source class SPKE runs the PKE scheme as a subroutine. Our
negative result on EwH allows us to obtain the following corollary.

Corollary 3.2 (UCE[Scup ∩ SPKE] Uninstantiability). Assuming the existence of indistinguishabil-
ity obfuscation for Turing machines M (resp. p-bounded circuits Cp), UCE[Scup ∩ SPKE] security is
uninstantiable (resp. p-uninstantiable) in the standard model.

The security of EwH can also be based on other, stronger assumptions from the UCE-framework,
see [BHK13a, BHK13b], which are also mutually exclusive with indistinguishability obfuscation [BFM14].

3.4 Extension to hedged PKEs

Hedged public-key encryption, introduced by Bellare et al. [BBN+09] models the security of public-key
encryption schemes where the random coins used in encryption have low (or possibly no) entropy.
Indistinguishability under a chosen-distribution attacks (IND-CDA) formalize what it means for a hedged
PKE to be secure (see Figure 4). This notion is defined similarly to the IND game for D-PKEs, with
the only difference being that the adversary, additionally to the two message vectors, also outputs a
randomness vector which is used for the encryption operation. The high min-entropy restriction is spread
over the message and randomness vectors. When the length of the randomness entries is 0, one recovers
the IND model for D-PKEs. A transform similar to EwH can be defined for Hedged PKEs: hash the
message, public key and the randomness to obtain new coins, and use them in encryption which yields
the Randomized-Encrypt-with-Hash transformation of [BBN+09]. Our uninstantiability result can be
adapted to this transform by considering a construction similar to before but with a slightly changed
program:

Prog. P[pk,m, s](H, ρ)

r ← UEval(H, pk‖m‖ρ)

s′ ← PRG(r)

if (s′ = s) then return m

return 0

That is, the program takes an additional parameter ρ that allows the attacker to specify the randomness.
We note that this requires the adversary to choose the randomness in a predictable way, which does
however not violate the min-entropy requirements as long as the min-entropy on the messages is
sufficiently high. We note that if one strengthens the IND-CDA notion to require that the randomness
distribution needs to have super-logarithmic min-entropy that then our attacks would not work any
longer.

4 Uninstantiability beyond EwH

In this section we show that our uninstantiability result applies to a wide class of transformations
including the classical and widely deployed Fujisaki–Okamoto transformation [FO99].

4.1 Generalizing Encrypt-with-Hash

Let RTRO[PKE] be a transformation in the ROM mapping PKE schemes to PKE schemes.5 When the
random oracle in transformation RTRO[PKE] is instantiated with hash function H we write RT[PKE,H].

5Without loss of generality we assume that there is only a single random oracle. Multiple random oracles can be
simulated, for example, via domain separation.
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IND-CDAA1,A2

H-PKE(λ)

b←$ {0, 1}
(m0,m1, r0)←$ A1(1λ)

(sk, pk)←$ H-PKE.Kg(1λ)

for i = 1 . . . |m0|do
c[i]← H-PKE.enc(pk,mb[i]; r[i])

b′←$ A2(pk, c)

return (b′ = 1)

Figure 4: The IND-CDA security game for hedged public-key encryption schemes here in the formulation of [RSS11]
without initial adversaries. Our results carry over to a setting where an initial adversary that passes state to the first and
second phase of the attack is present.

We say RT respects its input if it takes the following form where TRO is a (possibly randomized) oracle
PPT machine.

RTRO[PKE].enc(pk,m; r)

(pk′,m′, r′, c′)← TRO(pk,m; r)

c← PKE.enc(pk′,m′; r′)

return (c, c′)

We note that in order to obtain a deterministic encryption routine, the transformation T needs to
be deterministic but as we also want to capture other transformations—for example the IND-CCA
transformation by Fujisaki–Okamoto [FO99]—this is not necessarily a requirement. In addition to the
transformation taking the above form, we also require the transformation to admit a deterministic
recovery algorithm RRO that on input (pk′,m′, c, c′), where (pk′,m′, r′, c′)←$ TRO(pk,m, r) and c ←
PKE.enc(pk′,m′; r′), recovers the message m and random coins r′ used in the PKE encryption for every
choice of (pk,m), coins r of T, and oracle RO. (Note that RRO does not get to see the secret key.)
Finally, we call a transformation admissible if it is both PKE respecting and recoverable.

Let us explain how the Encrypt-with-Hash transformation falls under this more general class of
transformations. In Encrypt-with-Hash the encryption operation is defined as

EwHRO[PKE].enc(pk,m) := PKE.enc(pk,m;RO(pk‖m)).

To show that EwHRO[PKE] is admissible we first need to rewrite it in the above form. For EwH the
transformation T keeps message and public key, does not output any additional ciphertext component c′

and outputs random coins as RO(pk‖m). That is, we can write

RTRO[PKE].enc(pk,m; r)

(pk′,m′, r′, c′)← TRO(pk,m)

r′ ← RO(pk‖m)
return (pk,m, r′, ε)

c← PKE.enc(pk′,m′; r′)

return (c, c′)

where ε denotes the empty bit-string.
We further need to specify a recovery algorithm RRO that on input (pk′,m′, c, c′) recovers m and r′.

As m = m′ and pk = pk′ recovery algorithm RRO outputs(
m′,RO(pk′‖m′)

)
.
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We now give our generalized uninstantiability result. We note that we now consider both randomized
transformations (such as the FO transformation) as well as deterministic transformations (such as EwH).
In the former we show that the result is not instantiable with respect to IND-CPA security while for the
latter we show that the result is not instantiable with respect to IND security.

Theorem 4.1 (Uninstantiability of Admissible Transformations). Let PKE be an IND-CPA secure PKE
scheme and let RTRO[PKE] be an admissible transformation. Assuming the existence of indistinguishability
obfuscation for Turing machines M (resp. p-bounded circuits Cp), the RT transform is uninstantiable
(resp. p-uninstantiable) in the standard model with respect to IND security in case RT is deterministic
and uninstantiable (resp. p-uninstantiable) with respect to IND-CPA if RT is randomized.

Proof. Similarly to the case of EwH, we will modify a scheme PKE to a tweaked variant PKE∗ by
attaching an obfuscation of a program that can be used to win the IND game for RT[PKE,H], in case
the transformation yields a deterministic scheme, or the IND-CPA game, in case the transformation
yields a randomized encryption scheme (as, for example, in the FO-transformation [FO99]).

The adapted PKE scheme PKE∗ will output an additional obfuscation which depends on algorithm R
and uses it to recompute the randomness. If the check works, the obfuscated program will, as before,
output the original message m.

Algo. PKE∗.enc(pk,m; r‖r′)
s←$ PRG(r)

c1←$ PKE.enc(pk,m; s)

P ←$ iO(P[pk,m, s, c1](·, ·); r′)
return (c1, P )

Prog. P[pk,m, s, c1](H, c
′)

(m, r‖r′)←RUEval(H,·)(pk,m, c1, c
′)

s′ ← PRG(r)

if (s′ = s) then return m

return 0

The important conceptual difference here is that the program P not only takes a description of a hash
function as input, but it also gets a ciphertext component as input. In other words the program allows
the adversary to exploit the extra information that it has, namely a ciphertext, to break the modified
scheme.

The tweaked scheme remains IND-CPA secure even in presence of obfuscations of P. The proof is
analogous to that of Theorem 3.1. First we replace s with a truly random value s in generation of P
which is indistinguishable down to the security of the pseudorandom generator. Next we note that this
program would output a non-zero value only if s is within the range of PRG. This occurs with only a
negligible probability. The remainder of the proof follows from the security of the indistinguishability
obfuscator.

It remains to show that RT[PKE∗,H] is an IND-insecure deterministic scheme (assuming that T is
deterministic) and in case the transformation is randomized (i.e., T is not deterministic) we show that
RT[PKE∗,H] is not IND-CPA secure.

IND insecurity. In the following we assume that RT[PKE∗,H] is deterministic and we show that it
fails to be IND-secure where IND-insecurity is proved similarly to before in Theorem 3.1. We define A1

to output two random messages such that one ends in 0 and the other in 1. The second stage adversary
gets as input (pk, (c, c′)), where c = (c1, P ) and P is an obfuscation of P. It constructs a description of
the hash function H with the hash key hk hardcoded into the description and runs the obfuscation of P
on (H, c′). It returns the least significant bit of the output. We give the pseudocode of the attack in
Figure 5.

Let us analyze the case that m0 is encrypted. In this case the adversary gets an obfuscation of
P[pk′,m′, s, c1] where pk′ and m′ are generated by T on input (pk,m0) and random coins ε (note that
we currently consider deterministic transformations). On input (H, c′) program P[pk′,m′, s, c1] runs the
recovery algorithm R on input (pk′, c1, c

′,m′) and giving it access to a hash oracle for function H. By
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INDA1,A2

RT[PKE∗,H](λ)

1 : b←$ {0, 1}

2 : (m0,m1)←$ A1(1λ)

x0←$ {0, 1}PKE.il(λ)−1

x1←$ {0, 1}PKE.il(λ)−1

return (x0‖0, x1‖1)

3 : (sk, pk)←$ D-PKE.Kg(1λ)

4 : hk←$ HKg(1λ)

5 : ((c1, P ), c′)← RT[PKE∗,H].enc((pk, hk),mb; r)

(pk′,m′, r′, c′)← TH(pk,mb; r)

(c1, P )← PKE∗.enc(pk′,m′; r′‖r′′)

s←$ PRG(r′)
c1←$ PKE.enc(pk′,m′; s)
P ←$ iO(P[pk′,m′, s, c1](·, ·); r′′)
return (c1, P )

return ((c1, P ), c′)

6 : b′←$ A2(1λ, (pk, hk), ((c1,P), c′))

mb ← P(H(hk, ·), c′)
b′ ← mb[|mb|]
return b′

7 : return (b = b′)

Prog. P[pk′,m′, s, c1](H(hk, ·), c′)
1 : (mb, r‖r′)←RUEval(H,·)(pk′,m′, c1, c

′)

2 : s′ ← PRG(r)

3 : if (s′ = s) then

4 : return mb

5 : else

6 : return 0

Figure 5: The IND-security game for scheme RT[PKE∗,H] with our adversary (A1,A2) as constructed in the proof of
Theorem 4.1. Note that for IND-security we assume that RT[PKE∗,H] is deterministic and thus r is the empty string ε.

assumption the transformation is recoverable and thus the recovery algorithm outputs (m0, r‖r′) where
r were the coins given to PKE∗. Program P then recomputes PRG(r) and as this will always match s it
will output m0.

Breaking IND-CPA. Next we show, that assuming the transformation RT is randomized, that then
the resulting scheme RT[PKE∗,H] will not be IND-CPA secure, even though RTH[PKE] could still be
IND-CPA secure in the ROM. To this end, consider an IND-CPA adversary A—note that IND-CPA
is defined relative to a single stateful adversary—that outputs two messages m0 = 0 and m1 = 1 as
its chosen plaintexts in its first phase and then in its second phase launches the second stage of the
above IND attack. The analysis is identical to before noting that the recovery algorithm recovers the
encrypted message as well as the random coins given to the PKE encryption operation.

Remark. We note that for our uninstantiability results it suffices if recovery algorithmR is probabilistic
and only has noticeable success probability in recovering message m and randomness r′.

4.2 Strong IND and other transformations

The IND security game for deterministic public-key encryption is rather restrictive in that the message
distribution must be completely independent of the public-key. Raghunathan et al. [RSV13] strengthen
the IND definition to allow adversaries to adaptively choose messages after learning some information
about the public-key. They then give constructions in the standard model and also two new constructions
in the random-oracle model. The first ROM scheme generates an additional random value u as part of
the public-key and generates randomness as H.Ev(hk,m‖u); that is, the entire public-key is not used
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for randomness generation but only a specific part of it. The second ROM scheme is parameterized
by a polynomial q and generates randomness as ⊕q+1

i=1H.Ev(hk,m‖i). Both of these schemes fall prey
to our iO-based uninstantiability results as they can be shown to be admissible similarly to the EwH
transformation.

4.3 The Fujisaki–Okamoto transformation

The Fujisaki–Okamoto (FO) transformation [FO99] is a ROM technique to convert weak public-key
encryption schemes, e.g., those which are indistinguishable (or even one-way) against chosen-plaintext
attacks, into strong ones which resist chosen-ciphertext attacks (i.e., are IND-CCA secure). In this
transform a public-key encryption scheme PKE and an additional (deterministic) symmetric encryption
scheme SE and two random oracles RO1 and RO2 are used. The FO encryption of a message m is
generated by picking a random value σ (note that FO is randomized) and computing:

FORO1,RO2 [PKE,SE].enc(pk,m;σ) := PKE.enc(pk, σ;RO1(σ‖m)),SE.enc(RO2(σ),m) .

In the standard model the two random oracles are replaced by keyed hash functions H and G and the
hash keys are assumed to be part of the public key. We denote the standard model instantiation by
FO[PKE,SE,H,G].

Under the FO transform, a ciphertext for a message m is generated by picking a random value σ—
value σ is chosen independently from message m—which will be hashed and then used as key for the
symmetric scheme which in turn is used to encrypt the actual message m. The asymmetric scheme PKE
is then used to encrypt value σ, however, in a checkable way: the randomness used to encrypt can be
derived from message m and value σ.

Similarly to EwH, the FO-transformation is admissible so that Theorem 4.1 implies the following
result.

Theorem 4.2 (Uninstantiability of FO). Assuming the existence of indistinguishability obfuscation
for Turing machines M (resp. p-bounded circuits Cp), the FO transform is uninstantiable (resp. p-
uninstantiable) with respect to IND-CPA in the standard model.

Proof. To show that FORO1,RO2 [PKE,SE] is admissible we first give a transformation T and then a
recovery algorithm R (in order to be consistent with earlier presentations of the FO transform we call
the random coins σ):

Algo. FORO1,RO2 [PKE, SE].enc(pk,m;σ)

(pk′,m′, r′, c′)← TRO1,RO2(pk,m;σ)

m′ ← σ
r′ ← RO1(σ‖m)
c′ = SE.enc(RO2(σ), (m)
return (pk,m′, r′, c′)

c← PKE.enc(pk′,m′; r′)

return (c, c′)

Next we give the recovery algorithm RRO1,RO2 which on input (pk′,m′, c, c′) outputs the original
message m and random coins r′. As σ = m′ the recovery algorithm can decrypt c′ and then recompute r′.
That is

Algo. RRO1,RO2 [PKE,SE](pk′,m′, c, c′)

σ ← m′

m← SE.dec(RO2(σ), c′)

r′ ← RO1(σ‖m)

return (m, r′)
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The proof follows with Theorem 4.1.

Impossibility of partial instantiations. Boldyreva and Fischlin [BF05] study the security of the
FO transformation when only one of the two random oracles in the construction is instantiated.6 They
consider perfectly one-way hash functions (POWHF) [Can97], which, on a high-level, hide all information
about pre-images even given the hash key. Boldyreva and Fischlin [BF05] show that under the so-called
POWHF-encryption assumption one can securely instantiate the H oracle in the FO transformation. The
POWHF-encryption assumption asks that for any efficient message distribution M the following two
distributions are computationally indistinguishable.

(sk, pk)←$ PKE.Kg(1λ)

k←$ POWHF.Kg(1λ)

r←$ POWHF.coins(λ)

(m, st)←$ M(pk, k, r)

σ←$ {0, 1}λ

ω ← POWHF.Ev(k, σ‖m; r)

c← PKE.enc(pk, σ;ω)

return (pk, k, r, st, c)

≈

(sk, pk)←$ PKE.Kg(1λ)

k←$ POWHF.Kg(1λ)

r←$ POWHF.coins(λ)

(m, st)←$ M(pk, k, r)

σ←$ {0, 1}λ

ω←$ {0, 1}PKE.rl(λ)

c← PKE.enc(pk, σ;ω)

return (pk, k, r, st, c)

Looking at the proof of Theorem 4.2 and in particular the obfuscated program P we see that it uses
both random oracles, that is, the recovery algorithm R which is a subroutine in program P first decrypts
using oracle RO2 and then recomputes the randomness.

We can simplify this algorithm and get an impossibility result also for partial uninstantiability.
Namely, instead of the decryption operation, we can hardcode the message m1 := 1λ into the circuit.
For this, it is crucial that now, we operate in the setting of IND-CPA security where the adversary
can always submit the same two messages, say m0 = 0λ and m1 = 1λ. In contrast, for IND-security as
considered before, the messages were required to have high entropy.

Now, we will use the same obfuscated program P as in the proof of Theorem 4.2, but we will change
the subroutine R as follows:

Algo. RRO1 [PKE, SE,m1](pk′,m′, c, c′)

σ ← m′

r′ ← RO1(σ‖m1)

return (m1, r
′)

The second phase of IND-CPA adversary A, as before, runs P and outputs the last bit of the result. If
m0 was encrypted it will get 0 as output and output 0. In turn, if m1 was encrypted, it will receive 1λ

and returns 1 in this case.
Note that this way, we removed the dependency on the second random oracle altogether and thus,

we can restate our result as: the first random oracle in the FO transformation is uninstantiable (resp. p-
uninstantiable). Or in terms of the POWFH-encryption assumption we get that assuming the existence of
indistinguishability obfuscation the POWHF-encryption assumption does not hold for all PKE schemes.

4.4 KDM security and message-locked encryption

So far we applied our techniques to transformations for (randomized) public-key encryption schemes. In
Appendix A and B we show that our techniques are not limited to this setting but can be used also
for other random oracle transformations. The transformations that we consider are for deterministic
and symmetric encryption schemes and target security in the presence of key-dependent messages
(Appendix A) as well as message-locked encryption for secure de-duplication schemes (Appendix B)
where the encryption key is generated from the encrypted message.

6Note that the security analysis is still in the random-oracle model, as only one of the random oracles is instantiated.
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5 Careful with Conversion

We explore new classes of transformations that lie beyond those captured by admissible transformations.
In this section we present one such candidate transformation for deterministic public-key encryption
which seemingly bypasses our techniques. We first show that this transformation is structurally sound by
giving a ROM security proof for it. We then show how to extend our techniques to this (and potentially
other) transforms. The goal of this section is to illustrate that our main technique can be tweaked and
extended in many ways, e.g., by splitting the attack circuit into two. In particular, it is currently not
clear to us how to design transforms that circumvent attacks of this flavour.

The underlying idea behind this new transformation, which we term Hybrid Double-Encrypt-with-
Hash (HD-EwH), is to use a fixed symmetric encryption scheme, and furthermore ensure that the
randomness and message given to the public-key scheme are separated out among two independent
invocations so that it is computationally infeasible to compute one set of inputs from another.

Let PKE be a public key-encryption scheme and let H be a hash function. We define the Hy-
brid Double-Encrypt-with-Hash transformation HD-EwH[PKE,H] as follows. Key generation creates
(pk, sk)←$ PKE.Kg(1λ) as well as hk1←$ H.Kg(1λ), hk2←$ H.Kg(1λ) and gk1←$ HKg(1λ), gk2←$ HKg(1λ).
The public-key is set to (pk, hk, gk). An encryption of a message m consists of the following three com-
ponents

PKE.enc
(

pk,H(hk1, pk‖m);H(gk1, pk‖m)
)
,

PKE.enc
(

pk,H(hk2, pk‖m);H(gk2, pk‖m)
)
,

m⊕ H2(hk1, pk‖m)⊕ H2(hk2, pk‖m) ,

where H2(hk, pk‖m)← H(hk,H(hk, pk‖m)).
We establish the soundness of the above transform, by showing that it indeed results in a secure

D-PKE in the random-oracle model, that is, we show that the scheme is IND secure down to the IND-CPA
security of the underlying PKE scheme. In the random-oracle model, we safely ignore dependance on a
key, and treat H(hk1, ·), H(hk2, ·), H(gk2, ·), and H(gk2, ·) as four independent random oracles H1,H2 and
G1,G2:

PKE.enc
(

pk,H1(pk‖m);G1(pk‖m)
)
,PKE.enc

(
pk, (H2(pk‖m);G2(pk‖m)

)
,m⊕ H2

1(pk‖m)⊕ H2
2(pk‖m) .

We prove the following theorem in Appendix C.

Theorem 5.1. Let PKE be an IND-CPA-secure public-key encryption scheme. Then, in the random-
oracle model, the transformation HD-EwH[PKE] is IND secure.

It is easily seen that this transformation falls outside the realm of our generalized result (Section 4).
This, however, does not mean that it cannot be attacked using indistinguishability obfuscation as we
next show, that is, we show that our techniques can be extended to also cover HD-EwH. For this we
will slightly generalize the construction and introduce another function F which is used to generate a
one-time pad key. That is, we consider the following generalized version of HD-EwHH1,H2,G1,G2 [PKE,F]
which on input a message m and a public key pk generates a ciphertext as:

PKE.enc
(

pk,H1(pk‖m);G1(pk‖m)
)
,

PKE.enc
(

pk, (H2(pk‖m);G2(pk‖m)
)
,

m⊕ F
(
H1(pk‖m)⊕ H2(pk‖m)

)
.

Note that if we set F to F(x, x′) := H1.Ev(hk1, x)⊕ H2.Ev(hk2, x
′) we get our original scheme.
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In the following we will prove that also HD-EwH is uninstantiable. The proof technique will be
similar to our previous approach in that we construct a PKE scheme PKE∗ which outputs an obfuscation
as part of the ciphertext. In this case, however, the scheme will not output the obfuscation of a single
program, but rather the obfuscations of two independent programs P1 and P2. In the following figure we
present our adapted scheme PKE∗ (which is based on an IND-CPA secure scheme PKE) on the left and
the two programs P1 and P2 on the right. We denote the message given to the public-key encryption
scheme by x instead of m in order to be consistent with notation throughout the proof. That is, m
will be the message encrypted under HD-EwHH1,H2,G1,G2 [PKE∗,F] while x and x′ will be the messages
encrypted using the pke scheme PKE∗.

Algo. PKE∗.enc(x, pk; r‖r1‖r2)
s← PRG(r)

c0 ← PKE.enc(pk, x; s)

P1 ← iO(P1[pk, x, s](·); r1)

P2 ← iO(P2[pk, x, s](·); r2)

return (c0,P1,P2)

Prog. P1[pk, x, s](G1,G2,F, c,P2)

m← UEval(P2, (G2,F, x, c))

(r‖r1‖r2)← G1(pk,m)

if (PRG(r) = s) then return m

return 0

Prog. P2[pk, x, s](G2,F, x
′, c)

m← c⊕ UEval(F, (x, x′))

(r‖r1‖r2)← G2(pk‖m)

if (PRG(r) = s) then return m

return 0

The proof that PKE∗ is still IND-CPA secure is analogous to the proof of Theorem 3.1. We rely on
the indistinguishability security of the obfuscator and the security of the pseudorandom generator to
show that the obfuscations of the above programs are indistinguishable from those of the zero program
in the ROM. We first replace s with a truly uniform random string. This change affects any adversary’s
advantage with negligible probability down to the security of PRG. Now except for the unlikely event
that s is in the range of PRG, both programs P1 and P2 implement the all-zero program. Hence we can
replace the obfuscation of P1 and P2 by those of the zero program (padded to the right size).

We now show that using scheme PKE∗ in the HD-EwH transform would yield an insecure scheme for
any choice of H1, H2, G1, G2 and F.

Algo. HD-EwH[H1,H2,G1,G2,F](pk,m)

r1||r′1||r′′1 ← G1(pk‖m), r2||r′2||r′′2 ← G2(pk‖m)

s1 ← PRG(r1), s2 ← PRG(r2)

x1 ← H1(pk‖m), x2 ← H2(pk‖m)

c1 ← PKE.enc(pk, x1; r̃1), c′1 ← PKE.enc(pk, x2; r̃2)

P1 ← iO(P1[pk, x1, s1](·); r′1), P1
′ ← iO(P1[pk, x2, s2](·); r′2)

P2 ← iO(P2[pk, x1, s1](·); r′′1 ), P2
′ ← iO(P2[pk, x2, s2](·); r′′2 )

c← m⊕ F(x1, x2)

return ((c1,P1,P2), (c′1,P1
′
,P2
′
), c)

We construct an adversary (A1,A2) against the IND security of scheme HD-EwH[PKE∗,H1,H2,G1,G2,F].
The first adversary A1 chooses two random values d0, d1←$ {0, 1}PKE.il(λ)−1 uniformly at random and
outputs messages m0 ← d0‖0 and m1 ← d1‖1. The second adversary A2 then receives as input a

ciphertext ((c1,P1,P2), (c
′
1,P1

′
,P2
′
), c), where components P1 and P

′
1 are obfuscations of P1[pk, x1, s1]

and P1[pk, x2, s2] respectively, and P2 and P2
′

are obfuscations of P2[pk, x1, s1] and P2[pk, x2, s2] respec-
tively. Adversary A2 then runs P1[pk, x1, s1] on input descriptions of functions G1(gk1, ·) and G2(gk2, ·),
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a description of function F, the ciphertext component c and the obfuscated program P2
′
[pk, x,s2].

7 It
returns the least significant bit of the output as its guess.

To see that this attack is successful, observe that the program consisting of composition of P1 with
P2 as run by the adversary is, with overwhelming probability, functionally equivalent to program P
below and that the least significant bit of mb is b.

Prog. P[pk, x1, s1, x2, s2](G1,G2,F, c)

m← c⊕ UEval(F, (x1, x2))

r1||r′1||r′′1 ← G1(pk‖m), r2||r′2||r′′2 ← G2(pk‖m)

if (PRG(r1) 6= s1) then return 0

if (PRG(r2) 6= s2) then return 0

return m

This program is the analogue of the EwH program adapted to HD-EwH. Indeed, had we access to both
x1, s1 and x2, s2 in one of the runs of the encrypt algorithm, we could have directly attacked the scheme
by obfuscating P. Since this access is (by design) denied to the scheme, we instead emulate the effect of
the above program by constructing two obfuscated programs each having access to only one of x1, s1
or x2, s2. As before, the above program returns the message m when run on correct hash descriptions
and the last component of ciphertext. Hence, by our choice of challenge messages, returning the least
significant bit of the output message would match the hidden bit with probability one.

6 Concluding Remarks

The uninstantiability result presented in the previous section for HD-EwH serves as an example of the
applicability of our techniques to a more general class of transforms beyond those captured by admissible
transformations. It seems an intricate task to characterize the class of transformations which are subject
to our iO-based attacks (e.g., consider extending our generalized result in Section 4 to multiple, possibly
cascaded, encryptions). It is an interesting and non-trivial question to propose a D-PKE transformation
that is not subject to our uninstantiability result.

One promising avenue is to build schemes based on assumptions from the framework of Universal
Computational Extractors (UCEs) [BHK14]. For instance, Bellare, Hoang and Keelveedhi [BHK14]
show that message-locked encryption can be based on UCE[Ssup], that is, UCEs with statistically
unpredictable sources. This result, however, is not generic with respect to symmetric encryption schemes
but rather fixes the base symmetric scheme. Note also that iO is not known to contradict statistical
UCEs [BFM14].

Alternatively, one could switch to base schemes that meet stronger notions of security. For instance,
IND$-type security notions require that ciphertexts are indistinguishable from random bit strings, and
to see that our results do not readily extend to this setting, note that it is unclear if obfuscation schemes
can provide circuits which are indistinguishable from random strings (see also Section A.2).
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A Key-Dependent Security

In this section, we consider uninstantiability results for generic ROM constructions with the purpose of
achieving secure encryption even if the encrypted message depends on the secret key, i.e., we consider
constructions that are key-dependent message (KDM) secure. The transformations that we consider apply
to symmetric encryption schemes. In line with [BK11] we consider an extended notion of (deterministic)
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KIAEASE(λ)

K←$ SE.Kg(1λ)

S ← ∅
b←$ {0, 1}
b′←$ AEnc,Dec(1λ)

return (b = b′)

Enc(m)

N←$ {0, 1}SE.nl(λ)

c1 ← SE.enc(K,N,m)

m′←$ {0, 1}|m|

c0 ← SE.enc(K,N,m)

S ← S ∪ {(N, cb)}
return (N, cb)

Dec(N, c)

if (N, c) ∈ S then return ⊥
m← ⊥
if b = 1 then

m← SE.dec(K,N, c)

return (m 6= ⊥)

Figure 6: The KIAE security game for authenticated encryption [BK11]. Note that [BK11] consider a slightly stronger
variant where the encryption oracle responds with random strings rather than random encryptions. We denote this stronger
notion by $-KIAE.

symmetric encryption schemes that encompasses nonces. For simplicity we do not introduce the additional
header field introduced in [BK11].

A symmetric encryption scheme SE = (SE.Kg, SE.enc,SE.dec) uses keys k ∈ {0, 1}SE.kl(λ) generated
by the probabilistic key generation algorithm SE.Kg(1λ). The encryption algorithm SE.enc takes as
input a key k, a nonce N ∈ {0, 1}SE.nl(λ), and a message m ∈ {0, 1}SE.il(λ). We require that the
scheme is correct, that is, for all choices of the key k, message m and nonce R it must hold that
SE.dec(k, N, SE.enc(k, N,m)) = m. In general it is up to the application to ensure transport of the nonce,
but for simplicity we assume that the nonce is part of the ciphertext, that is a ciphertext is a pair (N, c),
where c is the actual encrypted message.

Key-independent authenticated encryption (KIAE). We consider symmetric encryption in the
authenticated encryption setting as defined via the key-independent authenticated encryption (KIAE)
security game in Figure 6. The game chooses a key K and gives the adversary access to two oracles
Enc and Dec which are parameterized with key K and allow adversary A to encrypt messages of its
choice and to test whether (mauled) ciphertexts are well-formed. Depending on a hidden bit b the
decrypt oracle always returns ⊥ (if b = 0) or if b = 1, it checks whether the supplied ciphertext is
“fresh,” decrypts it, and responds with a Boolean value indicating if decryption succeeded.8 For the
encryption oracle, according to the hidden bit b, either an encryption of the supplied message (with a
fresh random nonce) or an encryption of a random plaintext (of appropriate length) is returned. We
define the advantage of an adversary A in the KIAE game against a symmetric encryption scheme SE by

AdvkiaeSE,A(λ) := 2 · Pr
[
KIAEASE(λ)

]
− 1 .

We call a symmetric encryption scheme SE a secure key-independent authenticated encryption scheme
(KIAE) if the advantage AdvkiaeSE,A of any PPT adversary A is negligible. Note that we consider the nonce
to be outside the control of the adversary; that is, the nonce is chosen afresh on every encryption and is
appended to the output.

Key-dependent authenticated encryption (KDAE). We consider a strengthening of KIAE to
the key-dependent setting, and allow the adversary to obtain encryptions of messages which are derived
from the key in an adversarially specified manner. Following [BK11] we formally define the KDAE
security of a symmetric encryption scheme in Figure 7. We define the advantage of an adversary in the
KDAE game with a symmetric encryption scheme SE via

AdvkdaeSE,A1,A2
(λ) := 2 · Pr

[
KDAEASE(λ) = 1

]
− 1 .

8The decryption oracle, thus, models unforgeability of ciphertexts, since an adversary which manages to place a successful
decryption query (i.e., one where the oracle does not return false), can detect that the bit b is set to 1.

33



KDAEASE,w(λ)

for j = 1, . . . , w do

Kj←$ SE.Kg(1λ)

Sj←$ ∅
b←$ {0, 1}
b′←$ AEnc,Dec(1λ)

return (b = b′)

Enc(j, φ)

m← φ(K1, . . . ,Kw)

N←$ {0, 1}SE.nl(λ)

c1 ← SE.enc(Kj , N,m)

m′←$ {0, 1}|m|

c0←$ SE.enc(Kj , N,m
′)

Sj ← Sj ∪ {(N, cb)}
return (N, cb)

Dec(j,N, c)

if (N, c) ∈ Sj then return ⊥
m← ⊥
if b = 1 then

m← SE.dec(Kj , N, c)

return (m 6= ⊥)

Figure 7: The KDAE security game with procedures Enc and Dec. Note that we consider an authenticated setting and
thus give the adversary access to a decryption oracle with checks ciphertext for well-formedness.

We call a scheme KDAE secure if the advantage of any PPT adversary A in game KDAE is negligible.
Note that the KDAE game is parameterized by w which specifies the number of keys in the system.
Note also that for the encryption oracle, the adversary specifies a key index as well as a function φ,
which is applied to the keys in the system to obtain plaintext m.

The Randomized-Hash-then-Encrypt transform. Bellare and Keelveedhi [BK11] introduce the
Randomized Hash-then-Encrypt transform (RHtE) as a means to convert a KIAE symmetric encryption
scheme to one which is KDAE secure. This transformation RHtERO[SE] builds on a symmetric encryption
scheme SE in the random-oracle model and the key for the hash function is chosen during setup time
and assumed to be public. We will later discuss the case when the hash function key is kept private
and modeled as being part of the key generation process. In the standard model the random oracle is
instantiated by a keyed hash function H which yields scheme RHtE[SE,H]. Encryption and decryption
are defined in the following form, where the nonce underlying scheme SE is fixed and thus omitted from
the description. Also note that the nonce N is outside the control of the adversary and assumed to be
uniformly random for each encryption. For consistency with [BK11] we, however, add the nonce as input
to the encryption operation.

RHtE[SE,H].enc((k, hk), N,m)

K ← H.Ev(hk, N‖k)
c← SE.enc(K,m)

return (c,N)

RHtE[SE,H].dec((k, hk), N, c)

K ← H.Ev(hk, N‖k)
m← SE.dec(K, c)

return m

Bellare and Keelveedhi (BK; [BK11]) show that the RHtE transform yields a $-KDAE secure scheme,
when starting from a one-time secure symmetric encryption scheme, that is, a scheme which requires
indistinguishability of encryptions when only one ciphertext (encrypting one of two adversarially chosen
messages) is available. Loosely speaking, one-time security is sufficient as in the RHtE transform a fresh
key for the symmetric scheme SE is chosen for every new encryption. Let us note that BK consider
slightly stronger variants of KIAE and KDAE that we denote by $-KIAE and $-KDAE where ciphertexts
are indistinguishable from a random string rather than from an encryption of a random string. We note
that it is not clear whether the results by BK can be extended to also hold for the case of KIAE and
KDAE (rather than for $-KIAE and $-KDAE). We elaborate on the distinction and on the interpretation
of our result in Section A.2.

Uninstantiability of RHtE. We show how to tweak any (one-time KIAE secure) scheme SE to one
which is still one-time KIAE secure, but which yields an insecure scheme when used within RHtE for
standard-model hash functions. As before our result comes in two flavors assuming indistinguishability
obfuscation for Turing machines and circuits respectively.
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Theorem A.1 (RHtE uninstantiability). Assuming the existence of indistinguishability obfuscation
for Turing machines M (resp. p-bounded circuits Cp), the RHtE transform is uninstantiable (resp.
p-uninstantiable) with respect to KDAE security in the standard model.

Proof. First note that we cannot use our generalized result as we are now considering a transformation of
a (deterministic) symmetric encryption scheme rather than a transformation of a randomized public-key
encryption scheme. The overall proof strategy will however be similar to before.

Let SE be a one-time KIAE-secure symmetric-key encryption scheme with a key generation algorithm
that samples a key uniformly at random from {0, 1}SE.kl(λ). Let PRG be a pseudorandom generator
of appropriate stretch. The encryption routine generates a ciphertext c that consists of three com-
ponents c1,P and τ where c1 is the ciphertext generated with the underlying scheme SE and P is an
indistinguishability obfuscation of program P[s,N,m], that is, the program defined on the right which
depends on the extended key s, the encrypted message m and nonce N . Since we need to ensure that
the modified scheme remains (one-time) secure in the presence of a decryption oracle, an unforgeable
MAC of (c1,P) as tag τ is appended to the outputs. For technical reasons that we will explain later, we
use a PRF instead of a MAC. Note that a PRF with long output is always a MAC, but that a MAC is
not necessarily a PRF. Decryption first checks if the tag value is correct by computing a PRF of (c1,P).
If not it returns ⊥. It then calls SE.dec on the (adapted) secret key and ciphertext c1 to learn m.

Algo. SE∗.enc(k||k′‖r,N,m)

s← PRG(k)

c1 ← SE.enc(s,N,m)

P←$ iO(P[s,N,m](·); r)
τ ← PRF(k′, c1‖P‖N)

return (c1,P, N, τ)

Algo. SE∗.dec(k||k′‖r, c1,P, N, τ)

τ ′ ← PRF(k′, c1‖P‖N)

if (τ 6= τ ′) then return ⊥
s← PRG(k)

m← SE.dec(s, c1, N)

return m

Prog. P[s,N,m](H)

k||k′‖r ← UEval(H, N‖m)

s′ ← PRG(k)

if (s′ = s) then return m

return 0

Note that since Bellare and Keelveedhi only need one-time security, we only consider one-time
security, too. As the scheme is deterministic, we will interpret parts of the key as randomness needed for
obfuscation.

To reduce the KIAE security of the adapted scheme to that of the underlying scheme, we first note
that the decryption oracle can be simulated by answering with ⊥ for all queries down to the hardness of
predicting PRF-values. Indeed, an adversary would need to come up with a new ciphertext (c1,P, N)
and a valid tag τ on it as otherwise, by the rules of the game, the oracle will return ⊥. Such a query
can be directly used to break the pseudorandomness of the PRF. In order to show that the scheme is
KIAE-secure, we follow a strategy similar to that given for EwH. Indeed, it can shown following similar
steps as in proof of Theorem 3.1 that the obfuscation of P is indistinguishable from an obfuscation of
the all zero functionality and hence, does not have any adverse effects on KIAE security.

We now show how to attack the KDAE security of RHtE when it is instantiated with some hash
function H and scheme SE∗ as constructed above. We construct an adversary A that uses a single key
(i.e., w = 1) and needs a single encryption query. Adversary A sets φ to the identity function and calls
Enc(1, φ) to receive nonce and ciphertext (N, c). It parses the ciphertext as (c1,P, τ), interprets the
second component P as a program, and runs it on (an encoding of) the hash function H (with key hk
hardcoded). Note that by assumption the adversary is aware of the hash key hk (we shortly discuss the
case when hk is kept private). When the program returns a message m, A interprets this value as a key
K and attempts to decrypt the challenge ciphertext. If it decrypts successfully, A returns 1. Otherwise,
it returns 0.

Assuming the hidden bit b is 1, the ciphertext is honestly generated for message m ← φ(K). Let
K be the key for scheme SE. Since φ has been chosen to be the identity map, message m = K will
be encrypted. Hence, in the RHtE-transformed scheme, key k||k′‖r ← H(hk, N‖K) will be used during
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encryption. This means the first part of the ciphertext will be generated as c1 ← SE.enc(PRG(k),K)
and the second component of the ciphertext contains an obfuscation of the program P[PRG(k), N,K].
Recalling the definition of P, this program returns the key K if the description of hash function which is
equivalent to that used in the institution is passed to it. (It returns 0 otherwise.) This is because the s
and s′ variables used in the check are computed in exactly the same way.

In case b = 0, message m is set to a uniformly chosen random string, and hence the probability that
m will correctly decrypt the challenge ciphertext is negligible. Hence, in this case, the adversary outputs
0 with overwhelming probability.

A.1 Secret hash keys

In the above proof we relied upon the hash key being publicly known. An alternative way to model
the instantiation of the RHtE scheme in the standard model is to model the hash key generation as
part of the key generation process. That is a (secret) key (k, hk) is generated as k←$ SE.Kg(1λ) and
hk←$ H.Kg(1λ).

Our attack can also be mounted in this setting. For this note, that when the adversary A1 chooses
function φ as the identity map, the message then becomes (k, hk). All that remains is to adapt the
program to extract the hash key and plug it into the description of the hash function. In this case the
adversary can thus simply send a description of the hash function without the hash key embedded.

A.2 Real-or-random security

The KIAE and KDAE definitions considered by Bellare and Keelveedhi [BK11] require that ciphertexts
are indistinguishable from a random string rather than an encryption of a random string. We refer to
these stronger variants as $-KIAE and $-KDAE. Bellare and Keelveedhi [BK11] show that RHtE yields
a random-nonce KDAE secure scheme, if the underlying symmetric scheme is one-time $-KIAE secure.

This raises the question if our results also apply when starting with a $-KDAE-secure scheme. Our
uninstantiability result crucially depends on embedding an obfuscation of a circuit into the ciphertext.
Such an obfuscation is, however, heavily structured and it is not clear if indistinguishability obfuscation
schemes exist that have an obfuscation which is indistinguishable from a uniformly random bit string.
One straight forward distinguishing attack against an obfuscation scheme would be to simply execute the
code. In particular, it cannot be the case, that an indistinguishability obfuscation of the all-zero circuit
looks like a random string and also, the indistinguishability obfuscation of the all-one circuit looks like a
random string, because clearly, the all-zero circuit and the all-one circuit are efficiently distinguishable.

However, potentially, there could be indistinguishability obfuscation schemes where obfuscations of
the zero circuit look like random strings and random strings can also be “run” (and would describe
a circuit that looks like the all zero circuit). In this case, the symmetric encryption scheme that we
constructed would also by $-KIAE-secure.

According to the current state-of-the-art, it is not clear whether such an indistinguishability obfus-
cation scheme exists. In particular, we do not understand very well whether assuming real-or-random
indistinguishability obfuscation is a plausible assumption or not and we leave the study of such random
looking obfuscators for future work.

Despite this, if the base scheme is $-KIAE-secure, the tweaked scheme can be shown to have
simulatable ciphertexts in the sense that it is possible to extend the ciphertexts to those which look
indistinguishable from real tweaked ciphertexts. This is the reason why we used a PRF instead of a
MAC. An inspection of the proof given by Bellare and Keelveedhi [BK11, page 25] reveals that this
property suffices to extend their proof to the generalized setting, where only simulatability is required.
Put differently, our uninstantiability result shows that the $-KIAE assumption cannot be weakened to
simulatable ciphertexts when the hash function is instantiated in the standard model.
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PRV-CDAAMLE(λ)

prm←$ MLE.Pg(λ)

b←$ {0, 1}
(m0,m1)←$ A1(1λ)

for i = 1 . . . |m0|do
k← MLE.Kg(prm,mb[i])

c[i]← MLE.enc(k,mb[i])

b′←$ A2(prm, c)

return (b = b′)

PRV$-CDAAMLE(λ)

prm←$ MLE.Pg(λ)

b←$ {0, 1}
m←$ A1(1λ)

for i = 1 . . . |m|do
k← MLE.Kg(prm,m[i])

c1[i]← MLE.enc(k,m[i])

c0[i]←$ {0, 1}|c1[i]|

b′←$ A2(prm, cb)

return (b = b′)

Figure 8: The MLE security games PRV-CDAMLE and PRV$-CDAMLE of BKR [BKR13]. We here give a slightly simpler
variation where the adversaries are not allowed to communicate in the clear. As we give an impossibility result, this
strengthens our result as it also rules the weaker notion.

B Message-Locked Encryption

Message-locked encryption (MLE) is a form of deterministic symmetric encryption where the encryption
key is derived deterministically from the message that is to be encrypted. This mechanism ensures that
encryptions of identical plaintexts produce identical ciphertexts, thereby allowing secure (cloud) storage
providers to keep a single copy of the encrypted data. MLE was first formalized by Bellare, Keelveedhi
and Ristenpart (BKR) [BKR13], who defined appropriate security models and constructed schemes that
meet these definitions both in the random-oracle and standard models.

BKR propose several security notions for MLEs. One is called PRV-CDA and is similar to the IND
notion for deterministic PKE (see Figure 8 on the left). In place of the public key, the public parameters
P are now outside the reach of the first phase of the attack adversary. These parameters are used for
encryption to derive the actual encryption key. Also here, in order to rule out trivial plainchecking
attacks via re-encryption, each component of the message vectors, similarly to the IND notion, need to
have high min-entropy.

Convergent encryption. One transformation which is formally studied by BKR and originally
proposed by Douceur et al. [DAB+02] is called convergent encryption. The convergent encryption trans-
formation constructs an encryption scheme from a one-time secure deterministic symmetric encryption
scheme SE in the random-oracle model or by implementing the random oracle RO by a hash function
family H. (Note that, in contrast to Section A we now consider SE schemes that only take a key and a
message but not an additional nonce.) In the random-oracle model, the convergent encryption scheme
chooses the encryption key k for a message m and public parameters prm—parameters prm are chosen
during setup time as a uniformly random string—as k← RO(prm‖m); that is the key is simply the hash
of parameters and the message. In the standard model the public parameters are assumed to contain
the hash key and there key k is generated as k ← H.Ev(hk,m). For encryption and decryption the
algorithms of SE are used directly without change. Note that the range of the hash function must be a
subset of the scheme’s key space. This is without loss of generality, because one can always interpret the
randomness of the key-generation algorithm as the scheme’s key. We denote the resulting scheme in the
random-oracle model by CERO[SE] and by CE[SE,H] if it is in the standard model with hash function H.

Attacking PRV-CDAMLE. We now show how to apply our uninstantiability techniques to the conver-
gent encryption transformation. In other words, we will show that this transform may yield insecure
schemes when starting from a one-time, key-recovery and IND-CPA-secure scheme SE. One-time key
recovery requires that in presence of at most one ciphertext, no adversary can guess the entire key but
with negligible probability. One-time IND-CPA security is analogous and requires indistinguishability
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when only one ciphertext (encrypting one of two adversarially chosen messages) is available. The reason
that it suffices to consider one-time secure symmetric encryption schemes instead of full IND-CPA secure
schemes lies in the nature of message-locked encryption where for each encryption a fresh key is chosen.
Especially, when considering the random-oracle model, then for each message a uniformly random fresh
key is selected by hashing the message and public parameters. Under one-time key recovery and a slightly
stronger variant of IND-CPA security is the assumption under which the CE transformation is proved
PRV-CDAMLE secure in the random oracle model [BKR13]. Namely, the assumption is that ciphertexts
are indistinguishable from random strings. For a discussion on the feasability of an uninstantiability
result in this case, see the discussion in Appendix A.2 on the analogous topic for KDM-security.

We get the following result.

Theorem B.1 (Uninstantiability of Convergent Encryption). Assuming the existence of a one-time
IND-CPA and key-recovery secure SE scheme SE and the existence indistinguishability obfuscation
for Turing machines M (resp. p-bounded circuits Cp), the convergent encryption transform CE is
uninstantiable (resp. p-uninstantiable) with respect to PRV-CDAMLE-security in the standard model.

Again note, that we cannot use our generalized result as we are considering the transformation of a
(deterministic) symmetric encryption scheme as for KDM in Appendix A.

We next present our construction of a one-time IND-CPA secure symmetric encryption scheme that
breaks CE[SE,H], that is, CE[SE,H] will not be PRV-CDAMLE-secure. The idea, as before, is to append
an obfuscated circuited to the ciphertext. Since in MLE the scheme is not randomized, we obtain the
necessary randomness for obfuscation directly from the secret key. Let SE be a one-time IND-CPA
and one-time key-recovery secure symmetric-key encryption scheme with a key generation algorithm
that samples a key uniformly at random in {0, 1}SE.kl(λ) and let PRG be a pseudorandom generator
of appropriate stretch. We construct SE∗ as follows. Key generation will be adopted and we define
encryption as:

Algo. SE∗.enc(k‖k′,m)

s← PRG(k)

c1 ← SE.enc(s,m)

P←$ iO(P[m, s](·); k′)
return (c1,P)

Prog. P[m, s](H)

k‖k′ ← UEval(H,m)

s′ ← PRG(k)

if (s′ = s) then return m

return 0

Proving that the above modifications do not affect the one-time IND-CPA and one-time key-recovery
security of SE is analogous to the proof of IND-CPA security of the construction for deterministic
public-key encryption. For this note that since we consider one-time security, each encryption is run on
a freshly sampled random key. This means the key can take the role of randomness used in the proof for
D-PKEs. The attack against PRV-CDAMLE security of the modified scheme also works analogously to
the D-PKE case. We present the pseudocode outline of the attack in Figure 9.

Remark. In our adapted scheme SE∗ we abuse the fact that the scheme only needs to be one-time
secure, because we can get arbitrary randomness from the key. It is an interesting question whether
our attack can also be mounted if the symmetric-encryption scheme satisfies stronger security notions.
Note that removing the one-time restriction is delicate, because one would need to introduce fresh
randomness to avoid trivial attacks (or introduce a more complex security model). Then, the syntax
would be different and the transformation would not apply anymore.

Another, simpler avenue to circumvent our uninstantiability result that we also discuss in Appendix A.2
in a similar context is to make the stronger requirement that ciphertexts look random. This notion called
PRV$-CDAMLE was also proposed by BKR for MLEs. This definition can be seen as a “real-or-random”
analogue of the PRV-CDAMLE game, and is formally defined in Figure 8 on the right. Since our tweaked
symmetric encryption embeds an obfuscated circuit as part of ciphertext, it is unclear if our results
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PRV-CDAA1,A2

CE[SE∗,H](λ)

1 : b←$ {0, 1}
2 : hk←$ HKg(1λ)

3 : (m0,m1)←$ A1(1λ)

x0←$ {0, 1}PKE.il(λ)−1

x1←$ {0, 1}PKE.il(λ)−1

return (x0‖0, x1‖1)

4 : (c1, P )← CE[SE∗,H].enc(hk,mb)

k‖k′ ← H.Ev(hk,m)

(c1, P )← SE∗.enc(k‖k′,mb)

s← PRG(k)
c1 ← SE.enc(s,mb)

P←$ iO(P[mb, s](·, ·); k′)
return (c1, P )

return (c1, P )

5 : b′←$ A2(1λ, hk, (c1,P))

mb ← P(H(hk, ·), prm)
b′ ← mb[|mb|]
return b′

6 : return (b = b′)

Prog. P[mb, s](H(hk, ·), prm)

1 : k‖k′ ← UEval (H(hk, ·), prm‖mb)

2 : s′ ← PRG(k)

3 : if (s′ = s) then

4 : return mb

5 : else

6 : return 0

Figure 9: The PRV-CDAMLE-security game for scheme CE[SE∗,H] with our adversary (A1,A2) as constructed in the proof
of Theorem B.1. The boxed algorithms are to be understood as subroutines. Program P that is obfuscated as part of
ciphertexts is given on the right. Note that the hash key has taken over the role of public parameters prm.

carry over to this stronger setting. Also see the discussion in Appendix A.2. Indeed, to prove a similar
uninstantiability result in this case one would need to have a stronger obfuscator where obfuscations of
the constant zero circuit look indistinguishable from random (See also the discussion in Section A.2).

C IND Security of HD-EwH in ROM

Before we present the formal proof of Theorem 5.1, we give some intuition. The idea in the upcoming
proof is to turn an IND adversary into an IND-CPA adversary, that is, we are going to construct an
IND-CPA adversary B that will use an IND adversary (A1,A2) as a subroutine and simulate the random
oracles H1, H2, G1 and G2.

Let us make the simplifying assumption that the second part of the IND adversary A2 does not make
any random oracle calls. Then, the adversary A2 expects as input ciphertexts of the form

PKE.enc
(

pk,H1(pk‖m);G1(pk‖m)
)
,PKE.enc

(
pk,H2(pk‖m);G2(pk‖m)

)
,m⊕ H2

1(pk‖m)⊕ H2
2(pk‖m) ,

where the first two values are distributed as encryptions of two uniformly random values and the
last component is a uniformly random value that is information-theoretically independent from the
message m.

Now, let us consider what could be the first oracle query of the adversary. As m is drawn from
a high-entropy distribution and as the random values are independent from m, the first query of the
adversary will not contain m as a substring. However, it could be that the adversary breaks the
encryption and recovers H1(pk‖m) or H2(pk‖m). Note that, unless the adversary makes both of these
queries, the third component of the ciphertext is still a uniformly random string that is independent of
the message. Thus, if the adversary wants to recover m, he has to make these two queries.
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We can exploit this fact in the design of adversary B, that is, B can choose random looking ciphertexts
and embed random-looking “markers” into H1(pk‖m) and H2(pk‖m) to recognize which message got
encrypted. We now make this intuition formal.

Proof (of Theorem 5.1). Assume there exists an adversary (A1,A2) in the random-oracle model, against
the IND security of HD-EwHH1,H2,G1,G2 [PKE]. Based on (A1,A2), we construct an adversary B against
the IND-CPA security of PKE as follows.

Adversary B1 gets as input a public key pk and runs A1 on input the security parameter, simulating
random oracle queries (for oracles H and G) via lazy sampling in order to learn the equality pattern on
the messages as output by A1. That is, when A1 terminates with outputs (m0,m1), adversary B1 then
samples vectors m′0 and m′1 as

m′0[i]←$ {0, 1}H.ol(λ) m′1[i]←$ {0, 1}H.ol(λ)

for all i = 1, . . . , |m0| while observing the equality pattern of (m0,m1), that is, if

mb[i] = mb[j]

for some j 6= i and b ∈ {0, 1} then m′b[j] is set to m′b[i]. (Note that the equality pattern must be identical
for b = 0 and b = 1.) Adversary B outputs message vectors m′0,m

′
1.

The second phase of adversary B then receives as input a ciphertext vector c which is either an
encryption of message vector m′0 or of vector m′1. It then adjusts ciphertext vector c according to the
equality of (m0,m1). That is, if for some j > i and b ∈ {0, 1},

mb[i] = mb[j]

it sets c[j]← c[i]. Adversary B then constructs two additional vectors c′ and c′′ of the same length as c.
Vector c′ is constructed as encryptions under pk of uniformly random messages (adhering to the same
equality pattern as mb and vector c′′ is sampled uniformly at random.

Adversary B then calls adversary A2 on input (pk, (c, c′, c′′)). Note that for easier notation we assume
that A2 takes three ciphertext vectors, the first two corresponding to the public-key parts and the last
one corresponding to the symmetric key part. Adversary B then continues answering random oracle
queries using lazy sampling. If there is an oracle query q to H1 by A2 such that there exists a b ∈ {0, 1}
and an i ∈ [1, . . . , |m′b|] such that q = m′b[i], then B stops and outputs b. If b is not uniquely specified,
or there is no such query, or if A2 stops, then adversary B flips a bit and outputs the result.

Let us consider an adversary (A1,A2) in the IND security game. Adversary A2 expects to receive as
input the public key pk and ciphertexts of the form(
PKE.enc(pk,H1(pk‖mb);G1(pk‖mb)),PKE.enc(pk,H2(pk‖mb);G2(pk‖mb)),mb ⊕ H2

1(pk‖mb)⊕ H2
2(pk‖mb)

)
where the vector notation denotes that it receives a vector where the i-th entry is

PKE.enc(pk,H1(pk‖mb[i]);G1(pk‖mb[i])),

PKE.enc(pk,H2(pk‖mb[i]);G2(pk‖mb[i])),

mb[i]⊕ H2
1(pk‖mb[i])⊕ H2

2(pk‖mb[i]) .

First let us argue that the simulation of our adversary B from the point of view of (A1,A2) is
perfect but for negligible probability. By assumption the public key cannot be guessed with noticeable
probability and thus we have that A1 will not query any of the random oracles H1, H2, G1, or G2 on
input pk‖mb[i] for any i ∈ [|mb|] and b ∈ {0, 1} with overwhelming probability. Thus, an encryption of
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H1(pk‖mb[i]) (resp. for H2, G1, G2) is distributed identically to an encryption of a uniformly random
value generated with independent randomness.

Recall that B1 chooses its messages m′0 and m′1 uniformly at random and constructs c′ as encryptions
of uniformly random messages.

Furthermore, A2 expects that the last ciphertext component

mb[i]⊕ H1(H1(pk‖mb[i]))⊕ H2(H2(pk‖mb[i]))

is distributed uniformly as it is a one-time pad as long as adversary A2 does not query the random
oracle on values H1(H1(pk‖mb[i])) and H2(H2(pk‖mb[i])).

Note that this also matches the simulation by B2. Thus, unless A2 queries H1 on input H1(pk‖mb[i])
(which we programmed to be m′b[i]) the simulation is indistinguishable for adversary A2 and furthermore
it information theoretically hides b. Thus, if (A1,A2) has noticeable probability in winning the IND-
security game the probability that A2 queries H1 on H1(pk‖mb[i]) (that is, on m′b[i]) is also noticeable.
However, if A2 queries H1 on input m′b[i] then B stops and outputs b. As m′b contains no information
about m′1−b we have that A2 queries H1 on any m′1−b[i] only with negligible probability and thus if A
wins with noticeable probability in the IND game, then so does B in the IND-CPA game.
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