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Abstract. Assuming the existence of indistinguishability obfuscation (i0), we show that a number of
prominent transformations in the random-oracle model are uninstantiable in the standard model. We
start by showing that the Encrypt-with-Hash transform of Bellare, Boldyreva and O’Neill (CRYPTO
2007) for converting randomized public-key encryption schemes to deterministic ones is not instantiable
in the standard model. To this end, we build on the recent work of Brzuska, Farshim and Mittelbach
(CRYPTO 2014) and rely on the existence of iO for circuits or iO for Turing machines to derive
uninstantiability for hash functions of a priori bounded polynomial size and arbitrary polynomial size,
respectively. The techniques that we use to establish this result are flexible and lend themselves to a
number of other transformations such as the classical Fujisaki-Okamoto transform (CRYPTO 1998)
and transformations akin to those by Bellare and Keelveedhi (CRYPTO 2011) and Douceur et al.
(ICDCS 2002) for obtaining KDM-secure encryption and de-duplication schemes respectively. Our
results call for a re-assessment of scheme design in the random-oracle model and highlight the need
for new transforms that do not suffer from iO-based attacks.
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1 Introduction

1.1 Background

The random-oracle model (ROM) [BR93] is an idealized model of computation where all parties, honest
or otherwise, have oracle access to a uniformly chosen random function. Random oracles (ROs) model
ideal hash functions and have found a plethora of applications in cryptography. They have enabled the
security proofs of a wide range of practical cryptosystems which include, amongst others, digital signature
schemes, CCA-secure encryption, key-exchange protocols, identity-based encryption, cryptosystems that
are resilient to related-key and key-dependent-message attacks, as well as more advanced security goals
such as deterministic encryption of high-entropy messages, de-duplication schemes, and point-function
obfuscators. Once a scheme is designed and analyzed in the random-oracle model, one instantiates the
oracle via a concrete hash function, tacitly assuming that it has a “RO-like” behavior. In this paper we
revisit this random-oracle methodology and show that a number of prominent RO-model transforms
cannot be securely instantiated with any hash function in the standard model.

1.2 Uninstantiability

The power and practicality of random oracles drew early attention to their standard-model instantiations.
Canetti, Goldreich and Halevi (CGH) [CGH98] demonstrated a general negative result by constructing
digital signature and encryption schemes which are secure in the random-oracle model but become
insecure as soon as the oracle is instantiated with any concrete hash function. Such wuninstantiable
schemes rely on the existence of a compact description for concrete hash functions and the lack of one
for truly random functions. Roughly speaking, the idea is to take a secure ROM scheme and tweak it
slightly so that it behaves securely unless it is run on messages that match the code of the hash function
used in the instantiation, in which case something “obviously insecure,” is done (e.g., the signing key or
the message is returned).

A number of other works have further studied uninstantiability problems associated with random
oracles. In a follow-up work CGH [CGHO3] extend their result to signature schemes which only support
short messages. Bellare, Boldyreva and Palacio [BBP04] show that no instantiation of the hashed
ElGamal key-encapsulation mechanism composes well with symmetric schemes, even though it enjoys
this property in the ROM. Goldwasser and Kalai [GK03] study the Fiat—Shamir heuristic and establish
uninstantiability results for it. Nielsen [Nie02] gives an uninstantiable cryptographic task, namely that
of non-interactive, non-committing encryption, which although achievable in the ROM, is infeasible in
the standard model. CGH-type uninstantiability has been adapted to other models of computations
such as the ideal-cipher model [Bla06] and the generic-group model [Den02].

A number of recent works have looked into ROM (un)instantiability in light of the recently proposed
candidate for indistinguishability obfuscation (10) [GGH™13|. A secure indistinguishability obfuscator
guarantees that the obfuscations of any two functionally equivalent programs (modeled as circuits or
Turing machines) are computationally indistinguishable. On the positive side, Hohenberger, Sahai and
Waters [HSW14] show how to instantiate the hash function in full-domain hash (FDH) signatures using
i0O. Bellare, Stepanovs and Tessaro [BST14] give the first standard-model construction for polynomially
many hard-core bits for any one-way function. Recently, Brzuska and Mittelbach [BM14c| have shown
how to use iO to instantiate certain forms of Universal Computational Extractors (UCEs). UCE is a
novel framework of security notions introduced by Bellare, Hoang and Keelveedhi [BHK13al] and can be
used to generically instantiate random oracles in many protocols.

On the negative side, Brzuska, Farshim and Mittelbach [BEM14] show that under the existence of iO,
several security notions in the UCE framework are uninstantiable in the standard model, and proposed
fixes to salvage many of the applications. Brzuska and Mittelbach [BM14b] show that assuming iO,
multi-bit output point-function obfuscation secure in the presence of auxiliary information cannot be



realized. Both results can be interpreted as (conditional) uninstantiability results, as ROM constructions
for both UCEs [BHK13al, [Mit14] and strong multi-output bit point obfuscation [LPS04] exist. Bitansky
et al. [BCPR14] show that indistinguishability obfuscation rules out the existence of certain types of
extractable one-way function families which can be constructed in the random-oracle model [CDOS].

1.3 Our results

Our work continues the study of uninstantiability of random oracles and shows that a number of
well-known and widely deployed ROM transforms are provably uninstantiable if indistinguishability
obfuscators exist. More specifically, we are interested in ROM transformations TRO that take as input
any standard-model scheme S which is guaranteed to satisfy a mild form of security, and convert S into
a new scheme TRO[S] in the random-oracle model that meets a stronger level of security. A fundamental
question for such transforms is their instantiability, that is, whether or not there exists an efficient hash
function H such that TH[S] is strongly secure for all mildly secure S. We show a number of negative
results in this direction, which take the following form: there is a mildly secure scheme S* such that no
matter which hash function H is picked, scheme TH[S*] is provably insecure.

Our results come in two flavors depending on the class of programs that the indistinguishability
obfuscator supports. Assuming iO for circuits of a priori bounded size p, we show there is a ROM
cryptosystem which is uninstantiable with respect to keyed hash functions of description size at most p.
This means that there exists a scheme S;, such that for any hash function H of description size at most p
the scheme TH [Sp) is insecure. This, in particular, yields an uninstantiability result for any fixed and
finite set of hash functions. This result, however, does not rule out instantiating the oracle with hash
functions which have larger description size and are in some sense “more complex” than the base scheme.
By assuming the existence of iO for Turing machines we are able to further strengthen this result to one
which rules out instantiations with respect to any, possibly scheme-dependent, hash function.

OVERVIEW OF BFM. We build on techniques of Brzuska, Farshim and Mittelbach (BFM) [BEM14] to
construct our uninstantiable schemes and briefly recall their technique here. BFM utilize the power of
indistinguishability obfuscation to show that a recent notion of security for hash functions known as
UCEL is uninstantiable in the standard model. (See Section for a brief description of UCEs.) To
this end, BFM construct an adversary which outputs an indistinguishability obfuscation of the Boolean
circuit

C[l’,y](hk) = (H(hkv 33) = y) )

where x is a random domain point and y is the corresponding hash value which could be real or ideal.
That is, the circuit Clz,y] has z and y hard-coded into it and gets as input a hash key hk, computes
H(hk, z) and outputs 1 if and only if this value is equal to y.

BFM need to argue that an indistinguishability obfuscation of this circuit hides x whenever y is truly
random. They prove this by a counting argument that establishes that, under appropriate restrictions
on the lengths of y and the length of the key hk, the above circuit implements the constant zero circuit
with overwhelming probability. They then employ the security of the obfuscator to conclude as the zero
circuit is independent of x. The restriction that they require is that the number of hash keys hk is much
smaller than the size of the range 2!/, which means that a random y (with overwhelming probability
over the choice of y) is outside the range of the function H(-,z) that maps hash keys hk to H(hk, z) for a
fixed . On the other hand, the above circuit returns 1 when the hash value y is computed as H(hk, x)
and the correct hash key is plugged into C[z, y].

TECHNIQUES. In our uninstantiability results for encryption, we will embed an obfuscated program
into the ciphertext. We use programs for either circuits or Turing machines throughout the paper. We
now describe this program which is a universal variant of the BFM circuit. This program takes as input



the full description of a hash function Hyy, including its key hk if there is one, and returns the result of
running the BFM circuit on the input hash-function description. It performs the latter in the standard
way by using a universal evaluator UEval, which could be a universal Turing machine or a universal
circuit evaluator depending on the underlying model of computation:

Plx,y](Hnk) := (UEval(Hpk, ) = y) .

That is, program P[z,y] has x and y hard-coded in, takes as input a description of Hpy, computes Hpx(x)
and checks whether this value is equal to y. We no longer consider a fixed keyed hash function here, but
instead (potentially) consider the set of all hash functions on a given range and domainE] (Similar ideas
have been used by Brzuska and Mittelbach [BM14b] to study the feasibility of multi-bit output point
function obfuscation in the presence of auxiliary inputs under the iO assumption.) Note that P[z,y] is
either a circuit or a Turing machine depending on the underlying universal evaluator UEval. In adopting
this approach, a number of technicalities need to be addressed, which we discuss next.

Our ultimate goal is to derive a strong result which rules out instantiations (of a transformation)
by arbitrary hash functions. This means that program P above should accept inputs of arbitrary
length. This, however, lies beyond the powers of the circuit model of computation which standard
indistinguishability obfuscators support. We address this problem in two incomparable ways. First,
we weaken the target uninstantiability and under iO for circuits rule out instantiations by a priori
bounded-size hash functions. Second, in order to obtain full uninstantiability, we consider a stronger
form of iO which supports Turing machines. For our purposes, the crucial difference between iO for
circuits and iO for Turing machines is that an obfuscated Turing machine is still a Turing machine and
can process inputs of arbitrary length. (Note that the actual Turing machine that we need to obfuscate
is a universal Turing machine and has an a priori fixed size.) Our theorem statements will therefore
contain two parts to reflect this trade off between the strength of assumptions and the reach of the
uninstantiability result obtained.

A second problem arises from the fact that the number of possible hash function descriptions might
be greater than 2/ so that we cannot directly apply BFM’s counting argument. We overcome this
obstacle by composing both sides of the equality in P with a pseudorandom generator (PRG) and look
at the program

Plz, PRG(y)](Hnk) := (PRG(UEval(Hpk, z)) = PRG(y)) .

This does not affect the success probability of the attack and allows us to argue that x remains hidden as
follows. First, note that on the right-hand side of the check PRG(y) is a constant that does not depend
on the program input and can thus be hard-coded into P. Now, in a first step we can replace the right
hand-side value with a truly random value by the security of the PRG. Note that in this step we do not
rely on the security of the obfuscator and merely use the indistinguishability of program descriptions.
Indeed, the two programs might implement significantly different functionalities. Next, we use the fact
that a truly random value with overwhelming probability is outside the range of a PRG that has a
sufficiently long stretch. Hence, by iO security, the obfuscation of the above program is computationally
indistinguishable from an obfuscation of the zero program. We note that our usage of the PRG is
somewhat similar to that by Sahai and Waters in their construction of a CCA-secure PKE scheme
from iO [SW14], the range extension of Matsuda and Hanaoka [MHI4] of a multi-bit point function
to obtain shorter point values, the range-extension of a UCE1l-secure hash function by Bellare, Hoang
and Keelveedhi [BHK13c], and the negative result of Brzuska and Mittelbach [BM14b] on multi-bit
point-function obfuscation with auxiliary inputs.

ASSUMPTIONS. Garg et al. [GGHT13] construct an indistinguishability obfuscator for N'C! circuits
based on intractability assumptions related to multi-linear maps, and show how to bootstrap it to

! Alternatively, we can consider the universal hash function.



support all polynomial-size circuits via a fully homomorphic encryption scheme which has an NC*
decryption circuit. The authors validate their multi-linear intractability assumption in a generic
model of computation. Recent results show how to improve the assumptions used in constructing
indistinguishability obfuscators [PST14, [BR14, BGK™ 14l [AGIS14l, [GLSWT14], further supporting their
plausibility.

Indistinguishability obfuscation for Turing machines has been constructed in the works of Boyle,
Chung and Pass [BCP14] and Ananth et al. [ABG™13|. The authors study a stronger primitive called
extractability or differing-inputs obfuscation (diO) which extends iO to circuits (and Turing machines)
that are not necessarily functionally equivalent. Security of diO requires that any adversary that can
break the indistinguishability property can be converted to an extractor that can output a point on
which the two circuits differ. Boyle, Chung and Pass [BCP14] and Ananth et al. [ABG™13] show how to
build iO for Turing machines assuming diO for circuits. The plausibility of differing-inputs obfuscation,
however, has become somewhat controversial due to a recent result of Garg et al. [GGHW14]. They show
that the existence of a special-purpose obfuscator for a signature scheme implies that diO with arbitrary
auxiliary input cannot exist. Although we currently do not know how to build this special-purpose
obfuscator, its existence appears to be a milder assumption than diO, and hence more likelyE] It is
therefore important to seek alternative instantiations of iO for Turing machines from assumptions that
are weaker than diO for circuits. Indeed, very recently and shortly after the appearance of this work,
Koppula, Lewko and Waters [KLW14] have succeeded in constructing iO for Turing machines without
relying on diO and using iO for circuits, one-way functions and injective pseudorandom generators.

DETERMINISTIC ENCRYPTION. Our first result establishes the uninstantiability of the Encrypt-with-Hash
(EwH) transform of Bellare, Boldyreva and O’Neill [BBO07|, whereby one converts a randomized IND-
CPA public-key encryption scheme into a deterministic public-key encryption (D-PKE) scheme D-PKE
by extracting the randomness needed for encryption via hashing the message and the public key; that
is, the encryption algorithm D-PKE.Enc®® (m, (hk, pk)) first computes random coins r < RO(hk, pk||m)
and then invokes the base encryption algorithm on message m, public key pk and random coins r
to generate a ciphertext. This simple transformation meets the strongest notion of security that
has been proposed for deterministic encryption in the ROM if the underlying encryption scheme is
IND-CPA secure. Roughly speaking, a deterministic public-key encryption is IND-secure if no adversary
can distinguish the encryptions of two high-entropy and pk-independent messages. Known standard-
model constructions, on the other hand, achieve weaker levels of security, e.g., security against block
sources [BFOROS, BFO0§|. Deterministic public-key encryption secure against g-bounded adversaries
can be build from correlation-secure trapdoor functions [FOR12] or iO [BM14a].

We ask if any hash function can be used to instantiate the random oracle within the EwH transform
to achieve IND security. Assuming iO for circuits/Turing machines, we build an IND-CPA-secure
encryption scheme such that when the EwH transform is applied to it together with some (p-bounded)
hash function, the resulting scheme is not secure, not even for block-sources or 1-bounded adversaries.

In more details, starting with an arbitrary scheme PKE we consider a new scheme PKE* which
includes as part of its ciphertexts an indistinguishability obfuscation of the program

P[pk, m, PRG(7)](Hnk) := if (PRG(UEval(Hpk, pk||m)) = PRG(r)) return m else return 0 .

This program performs a similar check to that of the universal BFM circuit, but instead of returning
a Boolean value, it returns the encrypted message m when the check passes. That is, in P[pk, m, PRG(r)]
the public key pk, the message m and the randomness PRG(7) are parameters, and the program takes
as input a hash function Hpx (with a hard-coded key hk), evaluates Hnk on pk||m to get some value y.
Then, it applies PRG to y and checks whether PRG(y) is equal to hard-wired value PRG(r). If this is the
case, it returns the message m. Else, it returns 0.

2Instantiating this special-purpose obfuscator from more standard assumptions is an open problem.



We can use an obfuscation of this program to attack the security of EWH"[PKE*]. The adversary
runs this program on the description Hp, of the hash function that is used in the instantiation (with
hard-coded hk) to obtain the encrypted message. (Note that this (second-stage) adversary gets to see
the public and hence hk.) A corollary of this result is that under iO, no security assumption (single or
multi-staged, falsifiable or not) is strong enough to build D-PKEs via EwH. In particular, a new UCE
assumption used to instantiate EwH [BHK14] is uninstantiable assuming iO for Turing machines (and
p-bounded uninstantiable assuming iO for circuits). We remark that our results are incomparable to
those of Wichs [Wicl3] who shows an unconditional unprovability result for D-PKEs using arbitrary
techniques from single-stage assumptions. (Our results are conditional and show uninstantiability of EwH
regardless of the assumptions used.) This result naturally extends to the Randomized-Encrypt-with-Hash
transform for building hedged PKEs [BBN™09).

THE FuJisAKI-OKAMOTO TRANSFORM. The above result generalizes to a wider class of (possibly
randomized) transformations that use their underlying PKE schemes in a structured way and admit
recovery algorithms that satisfy certain correctness properties. We call these transformation admissible.
(See Section (| for the details.) Somewhat surprisingly, the Fujisaki-Okamoto (FO) transform for
converting CPA into CCA security is admissible and thus suffers from uninstantiability. The FO
transform, which dates back to the 1990s, is a simple and flexible technique to boost security of various
schemes and has been widely used in identity-based encryption [BF01], its hierarchical and fuzzy
variants [GS02, [SW05], forward-secure encryption |[CHKO03], and certificateless and certificate-based
encryption [ARPO03| [Gen03] to mention a few. Our results, once again, come in two flavors depending
on the strength of the underlying obfuscator. Our techniques can be further tweaked to show that one
cannot instantiate the oracle used within the asymmetric component of the FO transform. This in
particular means that the POWHF-encryption assumption of Boldyreva and Fischlin [BF05] used for
partial instantiation of the oracles in FO is also uninstantiable if iO for Turing machines/circuits exists.

OTHER CONSTRUCTS. The uninstantiability problems arising from the existence of indistinguishability
obfuscators are not limited to deterministic encryptions and its generalizations. We revisit the work of
Bellare and Keelveedhi (BK) [BK11] on authenticated and misuse-resistant encryption of key-dependent
data and show that it too suffers from uninstantiability problems. Roughly speaking, BK give a
transformation called RHtE to convert authenticated encryption into one which resists key-dependent-
message (KDM) attacks. This is done by hashing the key with a random nonce to derive the actual key
used in encryption: one encrypts m as (N, Enc(H(hk, N||k), m)) for a random nonce N. Our iO-based
uninstantiability result describes an IND-CPA and INT-CTXT-secure authenticated encryption (AE)
scheme whose BK transformation is not KDM secure.

Interestingly, BK require the base scheme to meet a stronger security level than IND-CPA: ciphertexts
should be indistinguishable from random strings. BK do not seem to consider this difference to be of
major importance: in the abstract of their paper [BK11] they write that they “present a RO-based
transform RHtE that endows any AE scheme with this security.” Our result brings this stronger
requirement to light, and shows that assuming that ciphertexts are pseudorandom might be a way
to circumvent uninstantiability as the current state-of-the-art obfuscators produce programs that are
structured and do not look random. Conversely, if an indistinguishability obfuscator can produce
obfuscations of the zero circuit that look randomE] then reverting to the stronger security notion would
no longer be of any help.

As a final application of our techniques, we show that the Convergent-Encryption transform of
Douceur et al. [DABT02] formalized by Bellare, Keelveedhi and Ristenpart (BKR) [BKR13] for building

3Note that generally, obfuscations of circuits cannot look random, because obfuscation maintains functionality and thus,
the obfuscations of the zero circuit would be distinguishable from those of the constant one circuit. This trivial attack,
however, does not apply here if we require pseudorandomness only for the zero circuit only.



message-locked encryption is also uninstantiable. Once again, BKR formally rely on pseudorandomness
of ciphertexts but similar observation to those given above for BK apply here too.

CoMPARISON WITH CGH. Recall that Canetti, Goldreich and Halevi (CGH) [CGH9§| show the
uninstantiability of certain ROM digital signature and encryption schemes without relying on iO. Their
technique is to give a (contrived) scheme that is secure in the random oracle model but behaves
anomalously on certain inputs that are related to a compact description of the hash function. Our
uninstantiability results share these features, that is, neither their nor our uninstantiability results apply
to “natural” schemes. (For instance, it is not known if Encrypt-with-Hash when used with ElGamal is
uninstantiable or not.) On the other hand, our results apply to natural transformations.

It is natural to ask if CGH-like techniques can be directly applied here so as to obtain uninstantiability
results that do not rely on the iO machinery. For uninstantiability with respect to unkeyed hash functions,
one can indeed construct anomalous PKE schemes which follow the CGH paradigm and give the desired
uninstantiability result for Encrypt-with-Hash. For keyed hash functions, on the other hand, there seems
to be an inherent limitation to CGH-like techniques. For instance, the security model for D-PKEs do not
allow message distributions to depend on the hash key as this value is included in the public key and the
latter is denied to the first-stage adversary. Consequently there is no way to generate messages which
contain a full description of the hash function used, including its key, which seems to be necessary when
applying CGH-like techniques. It might appear that this issue can be easily resolved by noting that the
encryption routine does have access to the hash key, and a full description of the hash function can be
formed at this point. The caveat, however, is that such an uninstantiable scheme no longer falls under
the umbrella of schemes arising from the Encrypt-with-Hash transform. More precisely, although we can
freely modify the base PKE to prove uninstantiability, the transformation is fized and it only allows
black-box access to the hash function and denies encryption access to the hash keyE] This observation
applies to other transformations as well. For instance, in the FO transformation the message that is
asymmetrically encrypted is chosen uniformly at random and thus cannot be set to the description
of the hash function. To summarize, although the description of the hash function will be eventually
made public, the adversarial scheme never gets to the hash function in full and to be successful it needs
to coordinate the attack with the actual adversary (who does see the hash key). Indistinguishability
obfuscation allows this distributed attack to be carried out.

CONCURRENT WORK. In concurrent and independent work, Green et al. [GKMZI4] use iO and
techniques similar to ours to demonstrate the uninstantiability of random-oracle schemes. Like us, they
embed an obfuscated program into schemes in order to make them uninstantiable. Our results, however,
rule out the instantiability of (existing) random-oracle transformations whereas Green et al. construct
uninstantiable schemes for primitives which cannot be targeted with CGH-like techniques. For instance
bit encryption falls outside the reach of CGH as its input space is too short. Green et al. show that
indistinguishability obfuscation can be used to extended CGH to such constrained primitives.

PRIMITIVE DESIGN. The shortcomings of ROM primitives that we have identified call for a re-assessment
of primitives whose security analyses have only been carried out in idealized models of computation. To
highlight the importance of this task, we propose a new transform for building deterministic encryption
that is specifically designed to bypass our attacks. In this transform one encrypts two values independently
across two invocations of the underlying encryption algorithm to make sure that the information needed
for the attack is not available to any of the invocations. (This transform, in particular, is not admissible.)
We prove this scheme secure in the ROM, but show that the program that one would need to successfully
attack the construction (assuming the availability of all needed information) can be split into several

“Despite this, CGH-like techniques render Encrypt-with-Hash uninstantiable when stronger notions of security are
considered [RSV13].



programs such that by feeding obfuscations of one program into the obfuscations of another an attack can
be launched. We leave the characterization of the class of transformations which fall prey to extensions
of the i0 attack as an interesting open problem.

We believe that the structural soundness of ROM schemes should be further validated by studying
if attacks similar to those given in this work can be launched against them. To provably rule out
such attacks one needs to reduce security to assumptions, which although strong, are not known to
be uninstantiable under existence of (d)iO. Candidate examples include UCEs against statistically
and/or strongly unpredictable sources [BEM14, BM14c| and indeed indistinguishability obfuscation
itself. For instance, recently Bellare and Hoang [BH14|] have proposed a D-PKE transform starting from
lossy trapdoor function and statistical UCEs. This approach can be further combined with stronger
assumptions on the base schemes (such as pseudorandomness of ciphertexts). Indeed, it would be
interesting to find a transformation from encryption to some other security notion that suffers from
iO-based uninstantiability when the encryption scheme is CPA-secure but becomes instantiable when
the encryption scheme has ciphertexts that are indistinguishable from random strings. Such a result
would be interesting even for somewhat artificial tasks. These, in turn, would strengthen our confidence
in applying the random-oracle methodology despite the broad uninstantiability results presented in this

paper.

2 Preliminaries

NOTATION. We denote the security parameter by A € N and assume that it is implicitly given to all
algorithms in the unary representation 1*. We denote the set of all bit strings of length ¢ by {0, 1}6,
the set of all bit strings of finite length by {0,1}*, the empty string by &, the length of x € {0,1}*
by |z|, the concatenation of two strings z1,z2 € {0,1}* by x1||z2, and the exclusive-or of two strings
x1,x9 € {0,1}* of the same length by x; @ z5. The ith bit of a string = is indicated by z[i]. A vector of
strings x is written in boldface, and x[i] denotes its ith entry. The number of entries of x is denoted by
|x|. For a finite set X, we denote the cardinality of X by |X| and the action of sampling = uniformly at
random from X by x < X. For a random variable X we denote the support of X by [X]. A real-valued
function v()) is negligible if v(\) € O(A~“(1). We denote the set of all negligible functions by negl.

An algorithm is a randomized, stateless Turing machine unless otherwise stated. We call an algorithm
efficient or PPT if its runtime on any choice of inputs and random coins is at most a polynomial function
of the security parameter. The action of running an algorithm A on input x and random coins r is
denoted by y < A(x;r). If A is randomized and no randomness is specified, then we assume that A is
run with freshly and uniformly generated random coins and write y <—s A(z). An adversary is a tuple of
stateful PPT algorithms. We omit explicit input and output states to ease notations. When an adversary
A = (A1, A2) consists of two stages A; and Ag, these two stages are assumed to be distinct algorithms
that do not share any state, unless this is explicitly permitted by a game.

TURING MACHINES AND CIRCUITS. Throughout the paper we consider two models of computation:
Turing machines and circuits. Recall that a Turing machine can take inputs of arbitrary length whereas
the input length to a circuit is fixed. We denote the runtime of a Turing machine M on input = by
timem (x) and its description size by |M|. We denote the size (a.k.a. runtime) of a circuit C by |C|. A
universal Turing machine UM is a machine that takes two inputs (M, z), interprets M as the description
of a Turing machine and returns M(z). A universal circuit UC is defined analogously on descriptions
of circuits C and inputs z for them. Note that UC only accepts inputs (C,z) of a specific total length,
whereas UM can take inputs of arbitrary length. In order to simplify the presentation we use the term
program to refer to either a Turing machine or a circuit. We may, therefore, speak of a universal program
UEval, which denotes either a universal Turing machine UM or a universal circuit UC, and evaluates a



program P on some input . When defining a program P, we use the notation P[z](:) to emphasize the
fact that the value z is hard-coded into P.

INDISTINGUISHABILITY OBFUSCATION. We define indistinguishability obfuscation for circuits and
Turing machines under a single definition. Roughly speaking, an indistinguishability obfuscator (iO)
ensures that the obfuscations of any two functionally equivalent programs (that is, circuits or Turing
machines) are computationally indistinguishable. Indistinguishability obfuscation was originally proposed
by Barak et al. [BGIT01, BGIT12] as a potential weakening of the virtual-black-box obfuscation
property, for which wide infeasibility results are known. Here we give a game-based definition of
indistinguishability obfuscation in the style of [BST14] with extensions to also cover obfuscation for
Turing machines [ABG™13]. We only consider the setting where both the sampler and distinguisher
are uniform but allow the sampler to output inequivalent programs with negligible probability. This
game-based formulation is convenient for use in proofs of security.

A PPT algorithm iO is called an indistinguishability obfuscator for a program class P = {Py}ren if
iO on input the security parameter 1* and (the description of) a program P outputs a program P’ and
furthermore the following conditions are satisfied.

e CORRECTNESS. For all A € N, all P € Py, and all P’ < iO(1*, P), the programs P and P’ are
functionally equivalent. That is, P(x) = P’(x) for all input values x.

e SUCCINCTNESS. There is a polynomial poly such that for all A € N, all P € Py and all P’ < iO(1*, P)
we have that |P’| € O (poly(\ + |P])).

e INPUT-SPECIFIC RUNTIME. There is a polynomial poly such that for all A € N, all P € Py and all
P’ s i0(1*,P) and all input values = we have that Timep/(z) € O(poly()\ + Timep(z))).

e SECURITY. For any pair of PPT adversaries (S, D), where S is an equivalent sampler, i.e., where
AQVE(A) 1= Pr[ 3ws.t. Po(x) # P (2) V Timep, (x) # Timep, («) : (Po, Py, auz) s S(1*)]
is negligible, we have that
io S,D
AdvS s p(\) := 2 Pr [Ioio ()\)} — 1€ negl,

where game 10 is shown in Figure [I] on the left.

When working with circuits, succinctness and runtime requirements are redundant and follow from the
facts that iO is polynomial time and that the size and runtime of a circuit are identical.

Garg et al. [GGHT13] prove that under intractability assumptions related to multi-linear maps an
indistinguishability obfuscator supporting all NC! circuits exists. Assuming the existence of a perfectly
correct leveled fully homomorphic encryption with AN'C* decryption and a perfectly sound non-interactive
witness-indistinguishable proof system, they also show how to extended this to support all polynomial-size
circuits, i.e., the family C := {Cp(/\)}AeN where p is a polynomial and

Cp(n) := {C: Cis a valid circuit of size at most p(A)} .

p

For any bound p, existence of iO for Cp,(y) under our definition is implied by the (non-uniform) definition
of Garg et al. [GGH™13].

Several follow-up works improved the assumptions underlying indistinguishability obfuscators as
well as the performance [PST14, BR14, [AGIST14, BGK™ 14, [GLSWT14]. As mentioned above, circuits and
obfuscations thereof admit fixed-length inputs only.
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10557 () IND-CPAp (M) INDp ke (M)
(Po, Py, auz) s S(1%) (sk, pk) s PKE.Kg(1) (mo, m;) s A, (1%)
bs{0,1} (mo,m1) s A(pk) (sk, pk) <—s D-PKE.Kg(1")
P’ s i0(1%, Py) b+s{0,1} b+s{0,1}
b «s D(P', aux) c+s PKE.Enc(pk, ms) fori=1...|mp|do
return (b =) b s Alc) c[i] < D-PKE.Enc(pk, msi])
return (b =) b s As(pk, c)
return (b= 1)

Figure 1: Left: IO game defining the security of an indistinguishability obfuscator. Middle: IND-CPA game for a
public-key encryption scheme. Right: IND security game for a deterministic PKE.

Ananth et al. ]ABG™T13] and Boyle et al. [BCP14] give constructions of indistinguishability obfuscators
for Turing machines which admit inputs of arbitrary lengths. Their constructions achieve the stronger
notion of differing-inputs (a.k.a. extractability) obfuscation, initially also suggested in the work of
Barak et al. [BGIT01, BGIT12]. This type of obfuscation can be regarded as a generalization of
indistinguishability obfuscation to programs which are not necessarily functionally equivalent. We
recall JABGT13, Theorem 3] here and refer the reader to the original works for details and discussion.

Theorem 2.1 (Ananth et al. [ABG™13]). Under the existence of CPA-secure leveled fully homomorphic
encryption, succinct non-interactive arguments of knowledge (SNARKSs), differing-inputs obfuscation for
all circuits in P /poly, and collision-resistant hash functions, there exists a differing-inputs obfuscator
for the class of all Turing machines M := { M} en, where

My :={M: M is a valid Turing machine of description size at most \} .

Koppula, Lewko and Waters [KLW14] have recently succeeded in constructing iO for Turing machines
without relying on diO and using iO for circuits, one-way functions and injective pseudorandom generators
only.

PUBLIC-KEY ENCRYPTION. A public-key encryption scheme PKE := (PKE.Kg, PKE.Enc, PKE.Dec)
consists of three PPT algorithms as follows. On input the security parameter, the randomized key-
generation algorithm PKE.Kg(1") generates a key pair (sk, pk). The randomized encryption algorithm
PKE.Enc(pk, m;r) gets a public key pk, a message m and possibly some explicit random coins 7 and
outputs a ciphertext ¢. The deterministic decryption algorithm PKE.Dec(sk, c) is given a secret key
sk and a ciphertext ¢, and outputs a plaintext m or a special symbol L. We denote the supported
message length by PKE.il(\) and the maximum length of random strings used to encrypt a PKE.il(\)-bit
message by PKE.rl(A). We say that scheme PKE is correct if for all A € N, all m € PKE.il(\), all
(sk, pk) € [PKE.Kg(1M)] and all ¢ € [Enc(pk, m)] we have that PKE.Dec(sk, c) = m. We say that PKE is
IND-CPA secure if the advantage of any PPT adversary A in the IND-CPA game (shown in Figure
center) defined by
AdvEREP () =2 Pr [IND-CPAZe (V)] — 1

is negligible.

FuncTION FAMILIES. Following [BST14], we define a function family FF as a five tuple of PPT
algorithms (FF.Kg, FF.Ev, FF kI, FF.il, FF.ol) where the algorithms FF.kl, FF.il, and FF.ol are deterministic
and on input 1* specify the key, input, and output lengths, respectively. The key-generation algorithm
FF.Kg gets the security parameter 1* and outputs a key fk € {0, 1}FF""(/\). The deterministic evaluation
algorithm FF.Ev takes as input the security parameter 1*, a key fk, a message = € {0, 1}FF'”()‘) and
generates a hash value FF.Ev(1*, fk, z) € {0,1}FFo'V). We will often refer to function families as hash
functions in this work.
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PRFs aNnD PRGs. We say that a function family FF is pseudorandom if for any PPT adversary A we
have that
AdVE (X) := Pr [AFF-EV“K')(P) - 1] ~Pr [AW(')(P) - 1] € negl .

In the first term above, the probability is taken over a random choice of a key fk € {0, 1}FF'k'(’\) and in
the second over a random choice of RO with domain {0, 1}FF!(\) and range {0, 1}FFoI(V,

We say (PRG, PRG.il, PRG.ol) is a secure pseudorandom generator if PRG on strings of length PRG.il(\)
outputs strings of length PRG.ol(\) and for any PPT adversary A we have that

Advgﬁ-fG’A()\) = Pr .A(lk, PRG(s)) =1 : s<+s{0, 1}PRG'”(A)} —Pr [.A(lA, y)=1:y+s{0, 1}PRG'°I(’\)

is negligible.

KEYED RANDOM ORACLES. Most random-oracle transformations and schemes in the literature are
analyzed in the “unkeyed” random-oracle model, and this reflects the fact that a fixed unkeyed hash
function will be used in their instantiations. Keyed hash functions, however, are more powerful when it
comes to instantiating random oracles and this leaves the question of how the scheme is to be instantiated
with a keyed hash function, that is, how the hash key is generated and who gets it, rather unclear.
For example, if we consider a transformation of symmetric encryption schemes, the hash key could be
part of the key-generation process in which case it remains hidden from the adversary, or it could be a
parameter generated during set-up, in which case it would be available to the adversary. We therefore
use a generalization of the standard random-oracle model whereby all parties get access to a keyed
random function. More precisely, in the (kl, il, ol)-ROM, where (kl,il, ol) specify various lengths as before,
on security parameter A\ all parties get access to a random function of the form

RO(a ) : {07 1}k|(>\) X {0’ 1}”0\) — {07 1}OI()\) :

Note that we recover the standard unkeyed random-oracle model when kl(A\) = 0 (there is only one key
¢). In defining the security of a cryptosystem, the underlying probability space is extended to include a
random choice of a keyed function (and choices of hash keys as specified by the scheme). Whether or not
a party gets to see the hash key depends on the specification of the scheme and its security model. For
instance, if a keyed ROM scheme includes hash keys under its public keys, an honest or malicious party
gets to sees the hash key whenever it gets to see the public key. As our results are mostly negative, it
suffices to consider weak adversaries that do not get oracle access and/or the hash key in some of their
stages.

(UN)INSTANTIABILITY. Given a scheme in the keyed ROM, we consider its standard-model instantiations
via (concrete) keyed hash functions. Formally, this entails: (1) using a hash function that has key, input
and output lengths that are identical to those of the keyed random oracle, (2) running the key-generation
algorithm whenever a hash key is generated in the ideal scheme, and (3) calling the evaluation routine of
the hash function whenever an oracle query is placed. Given a keyed ROM scheme and a security model
for it, we say that the scheme is instantiable if there exists a hash function which when used to instantiate
the scheme (and its security model) results in a secure scheme (with respect to the instantiated security
model). Conversely, we say that a scheme is (strongly) uninstantiable if no hash function can securely
instantiate the ideal scheme. Finally, for a polynomial bound p, we call a scheme p-uninstantiable, if no
hash function of size at most p(\) can securely instantiate the scheme.

3 Deterministic Encryption

We start by studying the Encrypt-with-Hash (EwH) transform of Bellare, Boldyreva and O’Neill
(BBO) [BBOOT]| for building deterministic encryption from standard (randomized) encryption schemes.
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We show that under the existence of indistinguishability obfuscation there is an IND-CPA public-key
encryption scheme that cannot be safely used within EwH. We begin by formally defining the syntax
and security of deterministic PKEs and the EwH transform. We then prove uninstantiability, and end
with two corollaries of this result.

3.1 Definitions

DETERMINISTIC PUBLIC-KEY ENCRYPTION. Deterministic public-key encryption was first introduced
by Bellare, Boldyreva and O’Neill [BBO07]. The syntax and correctness of a deterministic public-
key encryption (D-PKE) scheme D-PKE := (D-PKE.Kg, D-PKE.Enc, D-PKE.Dec) is defined similarly
to a randomized PKE scheme with the difference that the encryption routine is deterministic (i.e.,
D-PKE.rl(A) = 0 for all A). BBO [BBOOT7] model the security of D-PKEs via a form of simulation-based
notion called PRIV. In later works, Bellare et al. [BFOR0S8] and independently Boldyreva, Fehr and
O’Neill [BEFOO§]| introduce an indistinguishability-based notion called IND and show that it is equivalent
to PRIV security. The IND game is formally defined in Figure |lf on the rightE] Roughly speaking, an
IND adversary A := (Aj,.A2) consists of two stages. On input the security parameter, adversary 4,
outputs a pair of message vectors (mg, m;) of the same dimension that have distinct components and
component-wise contain messages of the same length. (Adversary A; does not get to see the public
key.) Furthermore, each component is required to have super-logarithmic min-entropy. This condition is
formalized by requiring that for any z € {0, 1}P-PKEIN "any b € {0,1} and any i € [jmy]],

Pr|z =my[i]: (mo,m)<s Al(l/\)} € negl .

A key pair (sk, pk) <s D-PKE.Kg(1*) is then chosen, and according to the challenge bit b, one of the two
message vectors is component-wise encrypted. The second-stage adversary As is run on the resulting
vector of ciphertexts and the public key, and wins the game if it correctly guesses the hidden bit b. We
define the advantage of an adversary A in the IND game (see Figure [1)) against scheme D-PKE by

. ApLA
AV b A, 4, (A) = 2 Pr [INDD}PK%(A)] -b

We say that scheme D-PKE is IND secure if the advantage of any PPT adversary A = (Aj,.A3) in the
IND game is negligible. The g-bounded version of the model demands that (mg, m;) contain at most ¢
message each. All the adversaries that we consider in our uninstantiability results will be 1-bounded
(and thus also use block sources).

THE ENCRYPT-WITH-HASH TRANSFORM. The Encrypt-with-Hash (EwH) transform constructs a
deterministic public-key encryption scheme from a (randomized) public-key encryption scheme PKE
in the random-oracle model [BBO07]|. We present this transform in the keyed ROM, and note that it
matches the original transform for singleton key spaces. The keyed RO is assumed to have a range which
matches the randomness space of the PKE scheme and a domain which consisting of all bit strings of
length the maximum length of public keys plus the length of messages.

The EwH transform operates as follows. The key-generation generates a key pair using the key-
generation algorithm of the base PKE scheme. It also generates a hash key hk <s {0, l}k'()‘) and returns
(sk, (hk, pk)). Algorithm D-PKE.Enc®CC) (m, (hk, pk)) first computes random coins r < RO(hk, pk||m)
and then invokes the base encryption algorithm on m and pk and coins r to generate a ciphertext. The
decryption routine is identical to that of the underlying scheme (plus a ciphertext re-computation check
to ensure non-malleability). EwH results in an IND-secure D-PKE scheme in the keyed ROM when
starting from any IND-CPA public-key encryption scheme.

®Bellare et al. [BFOR0S] allow an additional zeroth-stage adversary to output shared state for adversaries A; and As.
As we prove an impossibility result we choose the weaker definition where this shared state is empty.
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KEY AccEss IN EWH. With the formalism introduced above, both adversaries A; and Ay get oracle
access to RO(-,-). The first-stage adversary, however, does not get to see hk since the hash key is
distributed as a component of the public keys. The second-stage adversary, on the other hand, does get
to see it. A stronger model where the hash key is also given out in the first stage can be considered.
EwH meets this stronger notion of security, but since our results are negative we use the conventional
(and weaker) IND model.

3.2 Uninstantiability of EwH

When the EwH transformation is instantiated with an unkeyed random oracle a CGH-style uninstantia-
bility result can be directly established [CGH98]. (This in particular shows that the use of a keyed hash
function is necessary to instantiate EwH.) Given an arbitrary PKE scheme PKE, consider a tweaked
variant of it PKE’ which first interprets parts of the message m as the description of a hash function H
(together with its single key) and checks if the provided random coins r match the hash value H(pk||m).
If so, it returns O||m and else it returns 1||PKE.Enc(pk, m;r). Scheme PKE’ is still IND-CPA secure
because the probability that a truly random value r matches H(pk||m) is negligible. On the other hand,
when the random coins are generated deterministically by applying a hash function, an IND adversary
which asks for encryptions of m;||H for any two high min-entropy messages mgy and mq which differ, say,
on their most significant bits can easily win the gameﬁ The standard IND game, however, restricts the
first-stage adversary not to learn the public key, and thus, it cannot guess the (high min-entropy) hash
key.

We show how to use indistinguishability obfuscation to extend the above uninstantiability to keyed
hash functions. As mentioned in the introduction, our result comes in the weak and strong flavors
depending on the programs that the obfuscator is assumed to support. Assuming iO for Turing machines
we obtain a strong uninstantiability result: there exists an IND-CPA encryption scheme that cannot be
securely used in EwH in conjunction with any keyed hash function. Assuming the weaker notion of iO
for circuits, we get p-uninstantiability: for any polynomial bound p there exists an IND-CPA scheme
that cannot be securely used in EwH for any hash function whose description size is at most p. The
latter result is also quite strong as, in particular, it means that for any finite set of hash functions (e.g.,
those which are standardized), we can give a PKE scheme that when used within EwH yields an insecure
D-PKE scheme for any choice of hash function from this set. We note that the adversarial PKE scheme
that we construct depends only on an upper bound on description sizes and not on their implementation
details.

Theorem 3.1 (Uninstantiability of EwH). Assuming the existence of indistinguishability obfuscation
for Turing machines M (resp. p-bounded circuits Cp), the EwH transform is uninstantiable (resp.
p-uninstantiable) with respect to IND security and IND-CPA base schemes in the standard model.

We start by giving a high-level description of the proof before presenting the details. We may assume,
without loss of generality, that an IND-CPA-secure PKE scheme exists as otherwise uninstantiability
trivially holds. This, in turn, implies that we can also assume the existence of a secure pseudorandom
generator.

Now given an IND-CPA-secure PKE scheme PKE, we construct a tweaked scheme PKE* that is also
IND-CPA secure but the D-PKE scheme EwH"[PKE*] fails to be IND secure.

To construct the adversarial scheme PKE* we follow a similar strategy to CGH. The fundamental
difference here is that PKE*.Enc does not have access to the hash key. To overcome this problem, we
consider the obfuscation of a program P’ that implements a universal variant of the BFM circuit [BEM14],

SThis attack generalizes to the setting where the first-stage adversary can guess the hash key with non-negligible
probability and in particular, EwH is uninstantiable with respect to the stronger IND model [RSV13].
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i.e., it takes as input the description of a hash function H(hk,-), with a hard-wired key, runs it on two
values m and pk embedded into P’, and outputs m if the result matches a third hard-wired value 7:

P'[pk, m, 7] (H(hk, )) - if H(hk, pk||m) = r return m else return O .

The tweak that we introduce in PKE* is that the encryption operation appends obfuscations of P'[pk, m, 7]
to its ciphertexts, where pk, m and r are the values input to the encryption routine.

We need to argue that (1) this tweak allows an adversary to break the scheme whenever the hash
function is instantiated and (2) outputting such an indistinguishability obfuscation of P’ does not hurt
the IND-CPA security of PKE*.

For (1), note that given an obfuscation of P’[pk, m,r] and a description of H(hk, -), an adversary can
recover m by running the above circuit on H(hk,-). Now the second stage of the IND adversary gets the
public key and thus the description of the hash function H(hk,-). Furthermore, it also gets a ciphertext
which contains an obfuscation of P'[pk, m,r]. Hence, the second-stage adversary has all the information
needed to break the IND security of the deterministic encryption scheme EwH"[PKE*].

Now this insecurity might have nothing to do with the transform because the tweaked scheme PKE*
is already insecure anyway. Hence, we also need to argue that PKE*, as a randomized encryption scheme,
is IND-CPA secure. Following BFM, we try to prove this by showing that the obfuscated circuit is
functionally equivalent to the zero circuit and hence it does not leak any information about m.

In other words, we would like to argue that for a truly random r—such an r is used in randomized
encryption—P’ implements the constant zero program Z. Indeed, if r is sufficiently longer than |pk|+ |m|
then for any fixed H(hk, ), over a random choice of r the check performed by P’ would fail with all but
negligible probability. This, however, does not necessarily mean that the circuit is functionally equivalent
to Z as there could exist a hash function H(hk,-) which passes the check. Contrary to BEM, we cannot
bound the probability of this event via the union bound as the number of hash descriptions might exceed
the size of the randomness space.

To resolve this issue, we consider a further tweak to the base scheme. We consider a scheme which
has a much smaller randomness space and instead uses coins that are pseudorandomly generated. This
ensures that the randomness space used by PKE is sparse within the set of all possible coins, allowing a
counting argument to go through. We adapt the program above to cater for the new tweaks:

P[pk, m, PRG(r)] (H(hk, )) : if PRG(H(hk, pk|jm)) = PRG(r) return m else return O .

At this point it might appear that no progress has been made as the above program, for reasons
similar to those given above, is not functionally equivalent to Z. We note, however, that for a truly
random s € {0, 1}PRGIN) the program P[pk,m, s] has a description which is indistinguishable from that
of P[pk, m,PRG(r)] down to the security of PRG. Furthermore for such an s, this program can be shown
to be functionally equivalent to the zero circuit with overwhelming probability as s will be outside the
range of the PRG with overwhelming probability. These two steps allow us to prove that obfuscations of
P leak no information about m, and show that scheme PKE* is IND-CPA secure.

Formally, program P will use a universal program evaluator to run its input hash-function descriptions.
If the (obfuscated) program is a Turing machine, it can be run on arbitrary large descriptions and
arbitrarily sized hash functions are ruled out. On the other hand, if the program is a circuit, it has
an a priori fized input length, and thus can only be run on hash functions that respect the input-size
restrictions. We formalize this proof intuition next.

Proof (of Theorem (3.1). Let PKE be an IND-CPA-secure public-key encryption scheme, PRG be a
pseudorandom generator of appropriate stretch and iO be an indistinguishability obfuscator supporting
either Turing machines or circuits. We define a modified PKE scheme PKE* as follows. The key-
generation algorithm is unchanged. The adapted encryption algorithm is defined as shown below by
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PRG i0

/\/—\

Gamep(A) Game; (M) Gamez () PRroG. P[pk, my, s|(H(hk,-))
b+s{0,1} b+s{0,1} b+s{0,1} r||r’ < UEval(H(hk, -), pk||ms)
(sk, pk) < PKE.Kg(1*)  (sk, pk) <—s PKE.Kg(1")  (sk, pk) <—s PKE.Kg(1") s' < PRG(r)

(mo, m1) «s A(pk) (mo, m1) <—s A(pk) (mo, m1) s A(pk) if (s’ = s) then return m;
rllr’ s {0, LFPEA) s {0, 1PREIY | s {0, 1}PRENOY return 0
s « PRG(r) s {0, 1}PRGAM s < {0, 1}PRGAIO0
¢ <+ PKE(pk, msp; s) ¢ + PKE(pk, ms; s) ¢ < PKE(pk, my; s)

P« iO(P[pk,ms, s];7") P « iO(P[pk,mw, s];7') P« iO(Zp(pk,my 513 T )
b s A(c,P) b s A(c, P) b s A(c,P)
return (b’ = b) return (b’ = b) return (b’ = b)

Figure 2: Hybrids used in the proof of Theorem (left) and the program P obfuscated in the first two games (right).
The highlighted lines show the changes in game transitions.

appending an obfuscated program P to its outputs. UEval denotes a universal program evaluator. The
modified decryption algorithm ignores the P component and decrypts as in the base scheme.

Avco. PKE*.Enc(pk, m;r||r’) ProcG. P[pk,m, s|(H(hk,-))
s < PRG(r) r||r’ < UEval(H(hk, -), pk||m)
¢ < PKE.Enc(pk,m; s) s’ < PRG(r)
P « iO(P[pk,m, s](-);r") if (s = 5) then return m

return (c,P) return 0

When we consider the above construction with respect to circuits, we need to specify an extra
parameter p that upper-bounds the size of the inputs to the universal circuit evaluator. This maximum
size of programs that the universal circuit admits corresponds to the maximum size of the hash functions
that our uninstantiability proof applies to. Note that when the construction is considered for Turing
machines, the input size is arbitrary.

We show that the above tweaked scheme PKE* is IND-CPA secure via a sequence of four games that
we describe next. We present the pseudocode in Figure

Gameg: This game is identical to the IND-CPA game for the randomized base scheme PKE* and an
arbitrary adversary A.

Game;: In this game the randomness s used in encryption is no longer generated via a PRG call and is
sampled uniformly at random.

Gamey: In this game the ciphertext component P is generated as an indistinguishability obfuscation of
the zero program (that is, Turing machine or circuit) Z padded to the appropriate length (and
running time).

We now show that each of the above transitions negligibly changes the game’s output with respect to

any adversary A.

Gameg TO Game;. We bound the difference in these games by the security of PRG. Note that a PRG
adversary that gets as input y, a PRG image under a uniformly random seed or a truly uniformly random
value, can perfectly simulate games Gameyg and Game; for A by using y in place of s. If y is a PRG
image, then Gameg is run and if y is uniformly random the Game; is run:

Pr[Gameg())] — Pr[Game; ()] < Advpge 4(A) -
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Game; TO Games. We show that this hop negligibly affects the winning probability of A down to the
security of the indistinguishability obfuscator. We let S to be the sampler which runs all the steps of
Game; using the first phase of A up to the generation of P. It then sets Pg := P[pk, my, 5], P1 := Zipy|
and aux to be the ciphertext component ¢ and the internal state of the first phase of the IND-CPA
adversary. Algorithm D receives an obfuscation P of either Py or Py, and resumes the second phase of A
on (c, P) using the state recovered from auz. When Pjq is obfuscated A is run according to the rules of
Game; and when P is obfuscated A is run according to the rules of Games. Hence,

Pr{Game;(\)] — Pr[Gamex(\)] < Adv%&&D(A) .

We must show that the sampler S constructed above with overwhelming probability outputs functionally
equivalent circuits. Assuming that the stretch of the PRG is sufficiently large, i.e., PRG.ol(\) >
2 - PRG.il(\), by the union bound the probability over a random choice of s that there exists an
r € {0, 1}PRGIN such that PRG(r) = s is upper bounded by 2PRGI(N)=PRGol(A) < 9-PRGII(N) Hence, the
probability that Py is functionally inequivalent to the zero circuit is upper bounded by 27 PRGN that
is,

Pr| 32 Pg(x) # 0 : (P, P1, auz) s S(lA)] < 9~PRGII(N)

When working with Turing machines, we also need to ensure that the two programs used above respect
the run-time requirements of the definition of a secure indistinguishability obfuscator for Turing machines.
Formally, we will implement the Turing machines P and Z obliviously as follows. We first consider an
oblivious Turing machine which takes in the description of the hash function and a message as input and
performs exactly the same computation that P does. We then implement P by fixing the message input
of this machine to that passed to the encryption algorithm, retaining the machine’s oblivious structure.
The same strategy will be used in constructing the zero circuit, where the constant zero message (of
correct length) is hard-wired in. Since these machines are oblivious, their runtimes depends only on the
sizes of the message and the hash description and hence coincide.

Gamey.  We reduce the advantage of A in Games to the IND-CPA security of scheme PKE. The only
difference between this game and the usual IND-CPA game for PKE is that an obfuscation of Zjpyi.m, |
is attached to the ciphertexts. This program has a public description and hence its obfuscations can be

perfectly simulated. Hence, '
2. Pr[Gamex(\)] — 1 < Advpiee P (N)

THE ATTACK. To conclude the proof, we show there exists an adversary (Ai,.As) that breaks the
IND security of D-PKE* := EwH"[PKE*] for any function H that respects the input requirements of
P (arbitrary if P is a Turing machine, and p-bounded if a circuit). Adversary A; chooses two values
o, 71 s {0, 1}PKEIN =1 yniformly at random and outputs messages mg = z0]|0 and m; := x1]/1.
Observe that Ay adheres to the entropy requirements of admissible IND adversaries. Adversary As gets
as input the public key (hk, pk) and a ciphertext (¢, P). It then evaluates P on the description of hash
function H(hk, -) with key hk recovered from the public key and hard-coded into the program description.
(Note that if we are considering circuits, the description of this circuit must have size at most p(}\).)
Adversary As returns the least significant bit of P’s output. This adversary and its operation within the
IND game is shown in Figure |3| By the correctness of the obfuscator, (Aj, A2) always win IND with
probability 1 irrespectively of the message that is encrypted:

ind
AdVD pre* a,,4,(A) = 1.
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INDAI,AQPKE*]()\) ProaG. P[pk, mp, s](H(hk,-))

EwHH|[

L bes{0.1) Vil UBval (H(hk, ), pkm)
L U a . s +« PRG

21 (mo,m1) <! A (1Y) } Z . iSf (s = s)(:ilen

. | . -

| Tos {0, l}PKE'iI(A)il : 4 return my
e {0, 1}PKE.|I()\)71 : .
i return (x0]|0,z1||1) | 50 else
b s - - - 6: return 0

3: (sk, pk) <s D-PKE.Kg(1™)
4: hk+s HKg(1%)

|
|
s < PRG(r) |
¢ < PKE.Enc(pk, msp; s) |
P « iO(P[pk, ms, s](-); ") :
return (c, P) :

1 my < P(H(hk, "))
|

tob < mp[|ms]]

| return b’

7: return (b=1"b")

Figure 3: The IND security game for scheme EwH"[PKE*] with our adversary (A;,.Az) as constructed in the proof
of Theorem [3.1] The boxed algorithms are to be understood as subroutines. Program P that is obfuscated as part of
ciphertexts is given on the right.

3.3 Consequences for UCEs

We turn to Universal Computational Extractors (UCEs), a novel notion introduced by Bellare, Hoang and
Keelveedhi (BHK) [BHK13a] to generically instantiate random oracles across a number of cryptographic
protocols. UCEs constitute a set of assumptions that roughly speaking model the strong extractor
properties enjoyed by (keyed) random oracles. Roughly speaking, in UCEL security (later renamed to
UCE[S¢"P] security) a two-stage adversary needs to distinguish a hash function from a random oracle.
The first-stage adversary is given oracle access to either the hash function under a random key or the
random oracle. It does not get to see the hash key but can leak a message to the second-stage adversary
on termination. The latter additionally gets the hash key, can no longer call the oracle, and outputs a
bit. UCEL security requires that the leaked message should be such that it does not computationally
reveal any of the oracle queries when the oracle is a random function.

One application of this new framework has been to the EwH transform. BHK [BHK14] show that
if a scheme PKE is IND-CPA secure and a hash function H meets what they call UCE[S“"P N Spkg]
security then EwHH[PKE] is IND secure. (We refer the reader to the May 2014 version of the paper for
the details.) We emphasize that this security definition depends on the PKE scheme, because the source
class Spke is restricted to those which run the PKE scheme as a subroutine. Our negative results on
EwH show that UCE[S"P N Spkg| security is uninstantiable.

Corollary 3.2 (UCE[S"P N Spke| uninstantiability). Assuming the existence of indistinguishability
obfuscation for Turing machines M (resp. p-bounded circuits Cp), UCE[S®™™P N Spkg] security for hash
functions is uninstantiable (resp. p-uninstantiable) in the standard model.

We remark that in previous versions of their work [BHK13al, BHK13b], BHK based the security of
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At,A
IND-CDA7'22 (\)

b+s{0,1}
(mo, my,r) s A (1%)
(sk, pk) +s H-PKE.Kg(1)
fori=1...|mg|do

c[i] < H-PKE.Enc(pk, m,[i]; r[i])
b s As(pk, c)
return (b’ = b)

Figure 4: The IND-CDA security game for hedged public-key encryption without initial adversaries. Our results carry
over to a setting where an initial adversary that passes state to the first and second phase of the attack is present [RSSTT].

EwH on other stronger UCE assumptions. Our results also show the uninstantiability of these notions
assuming indistinguishability obfuscation and in particular imply the negative results of [BEM14] for
UCE[S"P] security and bounded parallel sources, a notion introduced in [BHKI3b], as both of these
notions imply a secure instantiation of EwH. The idea behind bounded parallel sources is to circumvent iO
attacks by potentially exploiting the efficiency of public-key encryption compared to obfuscation. As our
counterexample encryption scheme uses an obfuscator as a subroutine, the scheme is at least as complex
as the obfuscator and this intuition does not apply anymore. Note, however, that BEM [BEM14] rule
out the instantiability of bounded parallel sources for a wider choice of parameters, even for extremely
efficient public-key encryption schemes.

3.4 Extension to hedged PKEs

Hedged public-key encryption, introduced by Bellare et al. [BBNT09] models the security of public-key
encryption schemes where the random coins used in encryption might have low entropy. Indistinguisha-
bility under chosen-distribution attacks (IND-CDA) shown in Figure [4] formalizes the security of hedged
PKEs. This notion is similar to IND and the only difference is that the adversary additionally to the
two message vectors also outputs a randomness vector. The high min-entropy restriction is spread over
the message and randomness vectors. When the length of the randomness entries is 0, one recovers the
IND model for D-PKEs. A transform similar to EwH, called Randomized Encrypt-with-Hash, can be
defined for hedged PKEs [BBNT09|: hash the message, public key and the randomness to obtain new
coins, and use them in encryption. Our uninstantiability result can be immediately adapted to this
transform as long as the message space has super-polynomial size:

PRrROG. P[pk,m,s](H(hk,),p)

r <= UEval(H(hk, -), pk||m||p)
s’ < PRG(r)

if (s’ = s) then return m

return 0

That is, the program takes an additional input p that allows the attacker to specify the randomness.
We note that this requires the adversary to choose the randomness in a predictable way, which does
not violate the min-entropy requirements as long as the min-entropy of the messages is sufficiently high.
We note that if one strengthens the IND-CDA notion to require the randomness distribution to have
super-logarithmic min entropy, our attacks would no longer work. This in particular is the case if the
message space of the scheme is small.
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4 Beyond Encrypt-with-Hash

We show that our uninstantiability results can be further leveraged to rule out standard-model instantia-
tions of a number of other known transformations. We generalize the iO attack of the previous section to
what we call admissible transformations, and show that the classical and widely used Fujisaki—-Okamoto
transformation [FO99] falls under it. We also show that a generic approach to building secure symmetric
encryption in the presence of key-dependent messages, and another one for building de-duplication
schemes are uninstantiable.

4.1 Generalizing the attack

Let GTRO[PKE} be a ROM transformation mapping PKE schemes to PKE schemes. Without loss of
generality we assume that there is a single random oracle as multiple random oracles can be simulated
via domain separation. When the oracle in GTRP[PKE] is instantiated with a hash function H we
write GTH[PKE]. We say that transform GT is structured if it takes the following form for a (possibly
randomized) oracle PPT machine TR and a public-key encryption scheme PKE.

GTRO[PKE].Enc(pk, m;)
(oK ,m/, 1", ') < TR (pk,m;7)
¢ + PKE.Enc(pk,m/;7")

return (c,c)

Note that in order to obtain a deterministic encryption routine T needs to be deterministic (i.e.,
r = ¢). For the sake of generality, however, we allow T to be randomized.

In addition to the above structural requirement on GTR?, we require the existence of a deterministic
recovery algorithm Rec™® such that experiment Recover returns true with probability 1 for any valid
choice of message m |

EXP. Recoverpke T Rec,m ()

RO s Func(kl(\),il(A), ol(N))

75 {0, 1}7KE1N) 6k pk) «—s PKE.Kg(1)
(pk ,m/ v, &) TRC (pk,m;r)

¢ + PKE.Enc(pk,m/;7")

(m*,r*) < Rec™C (pk ,m’, ¢, )

return (m* =mAr* =1r').

Note that Rec®? gets to see the adapted public key pk, the adapted message m’ and the ciphertext
(¢,’) as computed by a transformation GTRO[PKE] but it does not get to see the secret key sk nor the
original randomness r (if present). We call a transformation admissible if it is structured and admits a
recovery algorithm.

As an example, let us check that the Encrypt-with-Hash transformation is admissible. The encryption
operation of Encrypt-with-Hash is given by

EwHRO[PKE].Enc(pk, m) := PKE.Enc(pk, m; RO(pk||m)) .

This can be re-written in the above structured form as follows.

"For our results it is, in fact, sufficient if the recovery algorithm succeeds only with noticeable probability.
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EwHR[PKE].Enc(pk, m; €)

|
|
" v RO(pHm)
i return (pk,m,7’,€) 1
.}

¢ < PKE.Enc(pk ,m’;r")

return (c,c’)

RO

Note that EwH is deterministic, and so we set r = . The recovery algorithm Rec’™* on input (pk',m’, ¢, c’)

outputs

(m’,R(’)(pk’Hm’)) :
As m’ = m and pK = pk this is the required output in order to succeed in experiment Recover.

We now give our generalized uninstantiability result. Since we consider both randomized and
deterministic transformations, in the former case we show that the scheme resulting from applying the
transformation to an adversarial scheme is not IND-CPA secure, and in the latter case we show this for
IND security.

Theorem 4.1 (Uninstantiability of admissible transforms). Let GTRC be an admissible transformation.
Assuming the existence of indistinguishability obfuscation for Turing machines M (resp. p-bounded
circuits Cp), the GTRO transform is uninstantiable (resp. p-uninstantiable) with respect to IND security
and IND-CPA base schemes if GT is deterministic, and uninstantiable (resp. p-uninstantiable) with
respect to IND-CPA security and IND-CPA base schemes if GT is randomized.

Proof. Similarly to EwH, we modify a scheme PKE to a tweaked variant PKE* by attaching obfuscations
of a program that can be used to win the IND game for GT"[PKE] in case GTR? yields a D-PKE scheme,
or the IND-CPA game in case it yields a standard PKE scheme. The program that PKE* obfuscates
depends on the recovery algorithm Rec. Roughly speaking, the program uses the recovery algorithm to
recompute the randomness in application of the underlying PKE scheme and to check its well-formedness.
If this check passes the program outputs the original message m. Otherwise it outputs 0. The important
difference here is that P on top of a hash-function description also takes a ciphertext component as
input. In other words, this program allows the adversary to also exploit the ciphertext that it has as its
disposal.

Avrco. PKE*.Enc(pk, m;r||r’) PROG. P[pk,m, s, c|(H(hk,-),c)
s + PRG(r) (m,r||r') < RecVB2 M) ) bk m e, )
¢ < PKE.Enc(pk, m; s) s’ < PRG(r)
P « iO(P[pk,m, s,c](-,-); ") if (s’ = 5) then return m

return 0

return (c, P)

IND-CPA PRESERVATION. The tweaked scheme remains IND-CPA secure. The proof is analogous to
that of Theorem First we replace s with a truly random value in the generation of P. This is
indistinguishable down to the security of the pseudorandom generator. Next we note that program P
would only output a non-zero value in case s lies within the range of the pseudorandom generator. This
occurs with only a negligible probability via the union bound. The proof then follows from the security
of the indistinguishability obfuscator.

It remains to show that GTH[PKE*] is IND insecure assuming that T is deterministic and in case T
is randomized that the instantiated scheme is not IND-CPA secure.
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INDAGA () ProG. P[pk,m’, s, c](H(hk,-),c)

GTH[PKE*] -
1: bes{0,1} 1 (my, o’ ||r") = Rec"™ I (p e, )
e T n . s’ « PRG(r
2: (moyma) 51 Ay (1) ; 2: s < PRG(r)
\ 3: if (" = s) then
|

2o <8 {O7 l}PKE.iI()\)fl

|

|

l z1 5 {0, 1}PKE.iI()\)—1 } 4: return my
! | -

i return (z0]|0,z1]|1) 5: else
STl T - 6: return 0

3: (sk, pk) <s D-PKE.Kg(1™)
1: hk<s H.Kg(1")

(c,P) « | PKE" Enc(pk ,m's7'[[r")

!

s PRG(r")

- PKE.Enc(pk,m’; s)
|

|

|

|

ﬁ A IO(P[pkl7 mlv S, C](’, '); 7'//)
return (c, P)

" my « P(H(hk, ), )
| b/ < mb[|mb|]
| return b’

7: return (b="b")

Figure 5: The IND game with respect to GTH[PKE*] and adversary (A:,.A2) as constructed in the proof of Theorem [4.1
For IND we assume that GTH[PKE*] is deterministic and thus r = e.

BREAKING IND. The attack is similar to that for EwH. We define A; to output two random messages
that end in 0 and 1 respectively. The second-stage adversary As gets as input (pk, (¢, P),c’), that is,
the public key pk, the ciphertext part (¢,P) coming from our adapted scheme PKE* and the second
ciphertext part ¢ from the transformation GT (see definition of a structured transformation as described
at the start of Section . Adversary Ay constructs a description of the hash function H with the hash
key hk hard-coded i and runs P on (H,¢). It terminates by returning the least significant bit of P’s
output. We give the pseudocode of the attack in Figure

When m; is encrypted, the adversary gets an obfuscation of P[pk/,m/, s, c| where pk’ and m’ are
generated deterministically via T using input (pk,myp;e). (Note that we are currently considering
deterministic transformations.) On input (H,c’) program P[pk’,m’, s, c| runs the recovery algorithm Rec
on input (pk,c,c’,m’), giving it oracle access to H. The recovery algorithm outputs (my, r||7’), where
r||7" were the coins given to PKE*. Program P then recomputes PRG(7). This matches s by the definition
of GT, and hence the program outputs m;. Thus the adversary recovers the least significant bit of the
encrypted message with probability 1.

BREAKING IND-CPA. In this case, we consider an IND-CPA adversary A that outputs mg := 0 and
mq := 1 as its chosen plaintexts and in its second phase launches the second stage of the IND attack
above and checks which messages is recovered. The analysis is identical to the above case, noting that
the recovery algorithm recovers the encrypted message as well as the random coins given to the PKE
encryption operationﬂ ]

8Note that the description of the hash function is public and the key hk is either public or part of the public key pk.
9 Alternatively, simply note that IND implies IND-CPA security for pkindependent messages.
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STRONG IND. The IND security game for deterministic PKEs only applies to public-key-independent
distributions. Raghunathan, Segev and Vadhan [RSV13] strengthen this definition to allow the adversaries
to adaptively choose messages after learning some information about the public key. They then give
constructions in the standard model and present two new transformations in the random-oracle model.
The first scheme generates an additional random value u as part of the public key and sets the required
randomness to RO(hk, m||u); that is, the entire public key is not used for randomness generation but only
a specific part of it. The second scheme is parameterized by a polynomial Q and generates randomness
as @?:ﬁlRO(h k,ml|7). Both of these schemes fall prey to our iO-based attacks as they can be shown
admissible similarly to the EwH transformation.

4.2 The Fujisaki-Okamoto transformation

The Fujisaki-Okamoto (FO) transformation [FO99] is a ROM technique to convert weak public-key
encryption schemes, e.g., those which are indistinguishable (or even one-way) against chosen-plaintext
attacks into strong ones which resist chosen-ciphertext attacks (i.e., are IND-CCA secure). In this
transform a public-key encryption scheme PKE, a (deterministic) symmetric encryption scheme SE and
two independent random oracles RO; and ROz are used. Under the FO transform, a ciphertext for a
message m is generated by picking a fresh random value c—FO is randomized—which will be hashed
and then used as key for the symmetric scheme which in turn is used to encrypt the actual message
m. The asymmetric scheme PKE is then used to encrypt ¢ in a checkable way: the randomness used to
encrypt can be derived from message m and value o:

FOROLRO2PKE, SE].Enc(pk, m; o) := (PKE.Enc(pk, o3 RO1(c||/m)), SE.Enc(RO2(5), m)) .

In the standard model the random oracles are instantiated with keyed hash functions H and G. The
hash keys are assumed to be a part of the public key. We denote such a standard-model instantiation by
FOH’G[PKE, SE]. Similarly to EwH, the FO transformation is admissible and Theorem implies its
uninstantiability. We show that FO is uninstantiable even with respect to the weaker IND-CPA (rather
than IND-CCA) security.

Corollary 4.2 (Uninstantiability of FO). Assuming the existence of indistinguishability obfuscation
for Turing machines M (resp. p-bounded circuits Cy), the FO transform is uninstantiable (resp. p-
uninstantiable) with respect to IND-CPA security and IND-CPA base schemes in the standard model.

Proof. We show that FORP1RO2[PKE, SE] is admissible. The result would then follow from Theorem
The required transformation T and the recovery algorithm Rec are shown below.

¢ - SE.Enc(RO2(0), m)
return (pk,m’,r’,c)

return (m,r’)

ALGo. FOROLRO2[PKE, SE].Enc(pk, m; o) ALGO. RecRO1ROUPKE, SE|(pk,m/, ¢, )
R e v
| , ! m ¢ SE.Dec(ROz(0),¢)
\ m < o \ ,
'« RO (o]|m) | 4 RO1(o|lm)

¢ < PKE.Enc(pk,m’;r")

return (c,c’)
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PARTIAL INSTANTIATIONS OF FO. Boldyreva and Fischlin [BF05] study the security of the FO
transformation when only one of the two random oracles in the construction is instantiated ] They
consider perfectly one-way hash functions (POWHF) [Can97], which, on a high-level, hide all information
about pre-images even given the hash key. Boldyreva and Fischlin [BF05] show that under an assumption
which they call POWHF encryption one can securely instantiate the R(O; oracle. The POWHEF-
encryption assumption asks that for any efficient message distribution M the following two distributions
are computationally indistinguishable.

(sk, pk) s PKE.Kg(1) (sk, pk) s PKE.Kg(1")
ks POWHF.Kg(1") k+s POWHF.Kg(1")

r <% POWHF.coins(\) r s POWHF.coins(\)
(m, auz) s M(pk, k, ) ~ (m, auz) s M(pk, k, 1)
o «s{0,1}* o+s{0,1}*

w + POWHF.Ev(k, o||m;r) w <3 {0, 1}PKENX)

¢ + PKE.Enc(pk, o;w) ¢ < PKE.Enc(pk, o;w)
return (pk, k, 7, c, aux) return (pk, k, 7, c, aux)

Looking at the proof of Corollary and the obfuscated program P in particular (appearing in
Theorem , we see that P uses both of its random oracles; that is, the recovery algorithm Rec, which is
a subroutine of P, first decrypts a ciphertext component using RO2 and then recomputes the randomness
using RO;. We can modify this algorithm and obtain an impossibility result for partial instantiations as
follows. Instead of using the decryption routine, we hard-wire the message mj := 1 into the circuit. For
this, it is crucial that we operate in the setting of IND-CPA security where the adversary can always
submit the same two messages, say mg := 0 and my := 1. (In contrast, for IND security as considered
before, the messages were required to be unpredictable.) We use a program similar to that used in the
proof of Theorem and use the following subroutine Rec as follows.

ALGO. Rec®O1[PKE,SE, m1](pk,m/, ¢, )

om
7+ RO1(c||m1)

return (mi,7’)

The second phase of IND-CPA adversary A, as before, runs P and outputs (the last bit of) the result.
Through these modifications we have removed the dependency on the second random oracle altogether.
We can restate our result as follows.

Corollary 4.3 (Partial uninstantiability of FO). Assuming the existence of indistinguishability ob-
fuscation for Turing machines M (resp. p-bounded circuits Cp), the first random oracle in the FO
transformation is uninstantiable (resp. p-uninstantiable) with respect to IND-CPA security and IND-CPA
base schemes in the standard model. In particular the POWFH-encryption assumption is uninstantiable
(resp. p-uninstantiable) with respect to IND-CPA schemes in the standard model assuming iO for Turing
machines (resp. for Cp).

4.3 KDM security and message-locked encryption

So far we applied our techniques to transformations that operate on randomized public-key encryption
schemes. In Appendices [A] and [B] we show that our techniques can be also applied in the symmetric
setting and even to deterministic schemes. We give a brief overview of the results here.

1Note that the security analysis is still in the random-oracle model, as only one of the random oracles is instantiated.
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Bellare and Keelveedhi (BK) [BK11] give a transformation to convert an authenticated encryp-
tion scheme into a KDM-secure one. This is done by hashing the key with a random nonce N to
derive a new key, which will be then used for encryption. In other words, the encryption of m is
(N, SE.Enc(H(hk, N||k),m)). We can construct a program P which breaks this scheme when m = k is
passed to it and leaves it intact otherwise. Roughly speaking, this program checks if m equals k by first
hashing N ||k (via the code provided to it) and comparing the result with a correct valued embedded
into P upon encryption (encryption has access to the secret key). See Appendix [A|for the details and a
discussion of security requirements from the base scheme.

Message-locked encryption (MLE) is a form of deterministic symmetric encryption where the
encryption key is deterministically derived from the message that is to be encrypted. We show that the
Convergent-Encryption transform of Douceur et al. [DABT02] formalized and proved secure by Bellare,
Keelveedhi and Ristenpart (BKR) [BKR13] in the ROM for building message-locked encryption is also
uninstantiable. Roughly speaking, in this transformation one encrypts m via SE.Enc(H(hk,m), m)). The
program that we use to break this transform follows a similar design pattern: when run on input a hash
function it first computes a key by hashing a message hard-coded into it and checks if it matches the
correct key hard-coded into it. See Appendix [B] for the details.

5 Careful with Conversion

In this section we explore new classes of D-PKE transformations that lie beyond those captured by
admissible transformations. We present a candidate transformation that is specifically designed to
foil our 10 attack. We first show that this transformation is structurally sound by proving it secure
in the ROM. We then show how to extend our techniques to this (and potentially other classes of)
transformations. Our goal is to illustrate the flexibility of our main technique and show that it can be
tweaked and extended in many ways.

The underlying idea behind this new transformation, which we term Hybrid and Double Encrypt-
with-Hash (HD-EwH), is to fix the symmetric encryption scheme to one-time pad (so that it cannot
be modified adversarially) and “share out” the randomness and message given to the public-key
scheme among two independent invocations so that the necessary information needed for an iO attack
is not available for any single invocation. Formally, we define HD—EWHRO[PKE] as follows. Key
generation creates (sk, pk) <—s PKE.Kg(1*) as well as four keys hky, hka, gky, gko s {0, 1}¥') . It returns
(sk, (hky, hke, gky, gke, pk)). An encryption of a message m consists of the following three components

PKE.Enc (pk, RO(hky, pk|m); RO(gky, pkl|m) ) ,PKE.Enc ( pk, RO(hkz, pk|m); RO(gky, pklm) )
m ® RO?(hky, pkl|m) & RO?(hka, pk|m) ,

where RO?(hk, z) := RO(hk, RO(hk,z)). The decryption algorithm decrypts the asymmetric compo-
nents of the ciphertext to get RO (hky, pk||m) and RO(hka, pk||m), hashes them under keys hk; and hks
respectively and xors them to calculate the symmetric mask, and uses this to recover the message.

In Appendix [C] we establish the soundness of the above transform by showing that it indeed results
in a secure D-PKE in the random-oracle model. In this model, we can safely ignore the dependence on
keys, and treat the four invocations of the oracle as independent (unkeyed) random oracles.

Proposition 5.1 (ROM security of HD-EwH). Let PKE be an IND-CPA-secure public-key encryption
scheme. Then, in the random-oracle model, scheme HD-EwHRO1++RO1PKE] is an IND-secure D-PKE
scheme assuming that the probability of correctly guessing a public-key as generated by PKE.Kg on
uniformly random coins is negligible.

It is easy to seen that this transformation falls outside the realm of our generalized result in Section
and this opens up the possibility of its standard-model instantiability. We show that our techniques can
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be extended to also cover HD-EwH. We will prove this for a slight generalization of HD-EwH where a
fifth random oracle is used to generate a one-time-pad key for the ciphertext component:

m® RO (fk, (RO(hk, pkl|m), RO (hks, pka))) .

If the original scheme is instantiable, then so is this scheme: we first instantiate the first four oracles,
and then replace the fifth one by the hash function F.Ev(fk, (z1,x2)) := H1.Ev(hki,z1) & Ha.Ev(hkg, 22),
where fk := (hky, hko).

As before, we construct an adversarial PKE scheme PKE* which outputs obfuscations as part of its
ciphertext. In this case, however, the scheme will output the obfuscations of two programs P1 and P2 as
shown below. We denote the messages passed to the two instances of the public-key encryption scheme
by z and 2/, reserve m for the actual message encrypted under HD-EwH"1:H2:61.C2.FpKE*],

PKE*.Enc(x, pk; r||1]|72) P1[pk,, s](Gy, Ga, F, ¢, P2) P2[pk, z, s|(Ga, F, 2, ¢)

s + PRG(r) m + UEval(P2, (Gg,F, z,c)) m + c @ UEval(F, (z,z))

¢ < PKE.Enc(pk, z; s) r||lr1||re + Gi(pk||m) r||r1||re < Ga2(pk||m)

P1 « iO(P1[pk, z,s](-); 1) if (PRG(r) = s) then return m if (PRG(r) = s) then return m
P2 — iO(PZ[pk,am s](-); 7,2) return 0 return 0

return (c,P1,P2)

The proof that PKE* is IND-CPA secure is analogous to that of Theorem We rely on the
indistinguishability security of the obfuscator and the security of the pseudorandom generator to show
that the obfuscations of the above programs are indistinguishable from those of the zero program. We
first replace s with a truly random string. This change affects any adversary’s advantage with only a
negligible probability down to the security of PRG. Now unless s happens to be in the range of PRG,
an unlikely event, both programs P1 and P2 implement the zero program. Hence we can replace the
obfuscation of P1 and P2 by those of the (appropriately padded) zero program.

We now show that using scheme PKE* in the HD-EwH transform yields an insecure scheme for any
choice of hash functions Hy, Ho, Gy, G2 and F for the five random oracles. Let us see how the adversarial
scheme when plugged into HD-EwH with these hash functions looks likes.

ALGo. HD-EwHH1:H2:61.C2.F PKE] (pk, m)

rif|r||rY < Gi.Ev(gky, pkllm),  72||ro|lrh < G2.Ev(gky, pkfm)
s1 < PRG(r1), s2 + PRG(r2)

z1 < Hi.Ev(hky, pk|jm), x2 < Ha.Ev(hkse, pk||jm)

c1 < PKE.Enc(pk, x1; s1), i + PKE.Enc(pk, x2; s2)

P1 < iO(P1[pk, x1, s1](-); r1), Pl « iO(P1[pk, 22, 52](+);T4)
P2 < iO(P2[pk, z1, 51](-); 1), P2’ < i0(P2[pk, x2, 52](-); %)

¢+ m @ F.Ev(fk, z1, z2)
return (ci,P1,P2,c}, ﬁ/, @/, c)

We construct an adversary (A;,.42) against the IND security of our transformed scheme as follows.
The first adversary A; chooses two uniformly random values dy,d; +s {0, 1}PKE'”()‘)*1 and outputs
messages mg = do||0 and my := dj||1. The second adversary Az then receives as input a cipher-
text (c1,P1,P2, c’l,ﬁ/,@/,c), where components P1 and P1 are obfuscations of P1[pk,z1,s1] and
P1'[pk, z2, s2] respectively, and P2 and P2’ are obfuscations of P2[pk, x1, s1] and P2'[pk, x4, s3] respec-
tively. Adversary A then runs P1[pk,x1,s1] on input the descriptions of functions Gi(gk,-) and
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Ga(gksy, -), a description of function F(fk,-), the ciphertext component ¢ and the obfuscated program
@/[pk,:n,sﬂ(-). Note that the attack is running an obfuscated circuit on another obfuscated circuit
hereE] It returns the least significant bit of the output as its guess.

To see that this attack is successful, observe that the program consisting of the composition of P1

with P2 as run by the adversary is, with overwhelming probability, functionally equivalent to program
P* below.

Prog. P*[pk, x1,S81,%2, 82] (Gl, GQ, F, C)

m < ¢ @ UEval(F, (z1, x2))

rallriliry  Ga(phllm), rallrbliry + Ga(pklm)
if (PRG(r1) # s1) then return 0

if (PRG(r2) # s2) then return 0

return m

This program can be seen as the analogue of that presented for EwH adapted to the HD-EwH transform.
Indeed, had we access to both (z1,s1) and (z2, s2) in one of the runs of the encrypt algorithm, we could
have directly attacked the scheme by obfuscating P*. Since this access is (by design) denied to the
scheme, we instead emulate the effect of the above program by constructing two obfuscated programs,
each having access to only one of (z1,s1) or (x2, s2). As before, the above program returns the message
m when run on correct hash descriptions and the last component of the ciphertext. Hence, by our choice
of challenge messages, returning the least significant bit of the output message would match the hidden
bit with probability one.

6 Concluding Remarks

The uninstantiability results presented in the previous sections and in particular that for HD-EwH
serve as examples of the applicability of our techniques to a more general class of transforms beyond
those captured by admissible transformations. It seems an intricate task to characterize the class of
transformations which are subject to our iO-based attacks (e.g., consider extending our generalized
result in Section [4f to multiple, possibly cascaded, encryptions). It is also an interesting and non-trivial
question to propose a D-PKE transformation that is not subject to our uninstantiability result.

One promising avenue is to build schemes based on assumptions from the framework of Universal
Computational Extractors (UCEs) [BHK14]. For instance, Bellare, Hoang and Keelveedhi [BHK14]
show that message-locked encryption can be based on UCE[S®"P], that is, UCEs with statistically
unpredictable sources. i0 is not known to contradict statistical UCEs [BEM14]. This result, however, is
not generic with respect to symmetric encryption schemes and fixes the base symmetric scheme. Very
recently, Bellare and Hoang [BH14] have proposed a similar transform for D-PKE starting from lossy
trapdoor functions and statistical UCEs.

Alternatively, one could switch to schemes that meet stronger notions of security. For instance,
INDS$-type security notions that require the ciphertexts to be indistinguishable from random do not
lend themselves to out attacks as it is unclear if obfuscation schemes can provide circuits which are
indistinguishable from random strings (see also comments in Appendix .
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A Key-Dependent Security

In this section, we consider uninstantiability results for generic ROM constructions with the purpose of
achieving security in the presence of key-dependent data. The transformations that we consider in this
and the next appendix apply to symmetric encryption schemes, and show that our techniques are not
confined to the asymmetric setting.

A.1 Definitions

SYMMETRIC ENCRYPTION. In line with [BK11] we consider an extended notion of (deterministic)
symmetric encryption schemes that encompasses nonces. For simplicity, we do not introduce the additional
header field introduced in [BK11]. A symmetric encryption scheme SE = (SE.Kg, SE.Enc, SE.Dec) is

defined as follows. The probabilistic key-generation algorithm SE.Kg(1%) generates keys &k € {0, 1

YSEKOY,
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The encryption algorithm SE.Enc takes as input a key k, a nonce N € {0, l}SE'"'(’\), and a message
m € {0, 1}55”()‘) and outputs a ciphertext c. In general it is up to the application to ensure transport
of the nonce, but for simplicity we assume that the nonce is part of the ciphertext. The decryption
algorithm SE.Dec on input a key k, a nonce N, and a ciphertext ¢ outputs a message m or a special
symbol L. As usual we require the scheme to be correct, that is, for all choices of the key k, message m
and nonce N it holds that SE.Dec(k, N, SE.Enc(k, N, m)) = m.

KIAEZ ()) ENc(m) Dec(N, )

S0 N s {0, 1}°5) if (N,c) € S then return L
b+s{0,1} c1 < SE.Enc(k, N, m) m+— L

ks SE.Kg(1") m’ «s{0,1}/™! if b= 1 then

b s APNOPEC(1Y) co + SE.Enc(k, N,m) m < SE.Dec(k, N, ¢)
return (b=1) S+ SU{(N,e)} return (m # 1)

return (N, c)

Figure 6: The KIAE security game for authenticated encryption. Note that we consider an authenticated setting and thus
give the adversary access to a decryption oracle with checks ciphertext for well-formedness.

KEY-INDEPENDENT AUTHENTICATED ENCRYPTION (KIAE). We consider symmetric encryption in the
authenticated encryption setting as defined via the key-independent authenticated encryption (KIAE)
security game in Figure[6] The game chooses a key k and gives the adversary access to two oracles ENC
and DEC which allow an adversary A to encrypt messages of its choice and to test whether (mauled)
ciphertexts are well-formed. Depending on a hidden bit b the decrypt oracle always returns L (if b = 0)
or if b = 1, it checks whether the supplied ciphertext is “fresh,” decrypts it, and responds with a Boolean
value indicating if decryption succeededE For the encryption oracle, according to the hidden bit b,
either an encryption of the supplied message with a fresh chosen random nonce—the nonce is outside the
control of the adversary—or an encryption of a random plaintext (of appropriate length) is returned. We
define the advantage of an adversary A in the KIAE game against a symmetric encryption scheme SE by

Adv§ge(A) := 2 - Pr[KIAEG (M) — 1.

We call a symmetric encryption scheme SE KAIE secure if the above advantage of any PPT adversary A
is negligible. Note that [BK11] considers a stronger variant where the encryption oracle responds with
random strings rather than random encryptions. We denote this stronger notion by $-KIAE.

KEY-DEPENDENT AUTHENTICATED ENCRYPTION (KDAE). We consider a strengthening of KIAE to
the key-dependent setting, and allow the adversary to obtain encryptions of messages which are derived
from the key in an adversarially specified manner. Observe that the KDAE game is parameterized
by w which specifies the number of keys in the system. Note also that in its encryption queries the
adversary specifies a key index as well as a function ¢ that is applied to the keys in the system to obtain
a plaintext m. Following [BKI1I] we formally define the KDAE security of a symmetric encryption
scheme in Figure[7] and let

AdVSE5 (V) = 2 Pr[KDAEGE (V] — 1.

We call a scheme KDAE secure if the above advantage for any PPT adversary A in game KDAE is
negligible. The $-KDAE notion of [BK11] strengthens this game further to one where the encryption
oracle returns random strings when b = 0.

12This decryption oracle models the unforgeability of ciphertexts, since an adversary which manages to place a successful
decryption query (i.e., one where the oracle does not return false), can detect that the bit b is set to 1. KIAE security with
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KDAEZ (M) ENc(j, ¢) DEc(j, N, ¢)

for j=1,...,w do m < (k... kw) if (N,c) € Sj then return |
k; +s SE.Kg(1%) N s {0, 1}°E) m L
S; 0 c1 < SE.Enc(kj, N, m) if b =1 then

b+s{0,1} m’ «s{0,1}™ m < SE.Dec(kj, N, c)

b s ATNOPEO(1Y co + SE.Enc(k;, N,m) return (m # 1)

return (b =1) Sj  S; U{(N,cp)}

return (N, c)

Figure 7: The KDAE security game with procedures ENC and DEC.

A.2 Uninstantiability of RHtE

THE RANDOMIZED-HASH-THEN-ENCRYPT TRANSFORM. Bellare and Keelveedhi [BK11] introduce the
Randomized-Hash-then-Encrypt transform (RHtE) as a means to convert a KIAE symmetric encryption
scheme to one which is KDAE secure in the random-oracle model. This transformation RHtE®C[SE] takes
a deterministic (and nonceless) symmetric encryption scheme SE as input. In the keyed random-oracle
model a key is chosen during setup and assumed to be publicly available. (When this key is kept private
as part of the key-generation process our attack also applies; see the comment after the proof.) The
transformed encryption operation first hashes the nonce N together with key k to obtain a “one-time”
key ¥ which is then used to encrypt message m. The transformed encryption and decryption operations
are shown below.

RHtERC[SE].Enc(hk, k, N, m) RHtERC[SE].Dec(hk, k, N, ¢)
K« RO(hk, N||k) K« RO(hk, N|k)

¢ < SE.Enc(K,m) m < SE.Dec(¥, c)

return (N, c) return m

Bellare and Keelveedhi (BK) [BK11, Theorem 4.1] show that the RHtE transform yields a $-KDAE-

secure scheme, when starting from a one-time $-KIAE-secure symmetric encryption scheme. Loosely
speaking, one-time security is sufficient as in the RHtE transform a fresh key for the symmetric scheme
SE is chosen for every new encryption.
UNINSTANTIABILITY OF RHtE. BK require the base scheme to meet the slightly stronger “$ variants”
of KIAE and KDAE where ciphertexts are required to be indistinguishable from a random strings (rather
than from encryption of random strings). It is not clear whether BK’s result (in the RO model) can
be modified to also hold for the case the base scheme is only assumed to be KIAE and KDAE (rather
than $-KIAE and $-KDAE). We will elaborate on this distinction further in Section Here we show
that such a modified result would also suffer from uninstantiability results. We show how to tweak
any one-time KIAE-secure scheme SE to one which is still one-time KIAE secure, but which yields an
insecure scheme when used within RHtE for standard-model hash functions. As before our result comes
in two flavors assuming indistinguishability obfuscation for Turing machines and circuits respectively.

Theorem A.1 (RHtE uninstantiability). Assuming the ezistence of indistinguishability obfuscation
for Turing machines M (resp. p-bounded circuits Cy), the RHtE transform is uninstantiable (resp.
p-uninstantiable) with respect to KDAE security and one-time KIAE base schemes in the standard model.

respect to this weaker decryption oracle can be shown to be equivalent to one with respect to a full decryption oracle that
returns the message. Also observe that a full decryption oracle in the KDAE setting can lead to trivial attacks.
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Proof. We start by noting that we cannot use our generalized result as we are now considering
a transformation of (deterministic) symmetric encryption schemes rather than a transformation of
public-key encryption schemes. The overall proof strategy, however, will be similar.

Let SE be a one-time KIAE-secure symmetric encryption scheme with a key-generation algorithm
that samples a key uniformly at random from {0, 1}SE'k'()‘). Let PRG be a pseudorandom generator
with outputs in {0, 1}SE"‘|()‘). The encryption routine generates a ciphertext that consists of three
components (¢, P,7) where c is the ciphertext generated via the underlying scheme SE, program P is
an indistinguishability obfuscation of program P[s, N, m] defined on the right below. Since we need to
ensure that the modified scheme retains its (one-time) security even in the presence of a decryption
oracle, an unforgeable MAC tag 7 of (c, P) is appended to the outputs. For technical reasons that we will
explain at the end of Section we use a pseudorandom function PRF instead of a MACF_S-] Decryption
first checks the consistency of the tag and then calls SE.Dec on the (adapted) secret key and ¢ to recover
m.

ALGO. SE*.Enc(K, N, m) Avrco. SE*.Dec(K,N,¢c,P, 1) ProOG. P[s, N,m](H(hk,))
parse kol|ki||r < ¥ parse kol |k ||r « K ko||k1||r <— UEval(H(hk, ), N|lm)
s + PRG(ko) 7'« PRF(k1, c|[P||N) s’ < PRG(ko)

¢ + SE.Enc(s, N, m) if (1 # 7') then return L if (s' = s) then return m

P« iO(P[s, N,m](+);7) s + PRG(ko) return 0

7 ¢ PRF(k1, ¢|[P||N) m « SE.Dec(s, N, c)

return (N, c, P, 7) return m

To reduce the KIAE security of the adapted scheme to that of the underlying scheme, we first note
that the decryption oracle can be simulated by returning 1 for all queries down to the hardness of
predicting PRF values. Indeed, an adversary would need to come up with a new ciphertext (¢, P, N) and
a valid tag 7 to detect any inconsistent simulation as otherwise, by the rules of the game, the oracle
returns L. Such a query can be directly used to break the pseudorandomness of the PRF. In order to
show that the scheme is KIAE secure, we follow steps similar to those in the proof of Theorem [3.1] and
show that the obfuscations of P are indistinguishable from those of the zero program and hence inclusion
of P does not have any adverse effects on KIAE security.

We now show how to attack the KDAE security of RHtE when it is instantiated with scheme SE* and
an arbitrary hash function H. We construct an adversary A that uses a single key (w = 1) and needs a
single encryption query (i.e., it breaks one-time KDAE security). Adversary A sets ¢ to the identity
function id and calls ENC(1,id) to receive (N,c, P, 7). It interprets P as a program, and runs it on (an
encoding of) the hash function H (with key hk hard-coded in). Note that by our setup assumption the
adversary is aware of the hash key hk. When the program returns a message m, adversary A interprets
this value as a key k and attempts to decrypt the challenge ciphertext. If it decrypts successfully, A
returns 1. Otherwise, it returns 0.

Assume that b = 1 and let k be the key of the transformed scheme. Since the adversary sets ¢ := id,
message m = k will be encrypted. The key ¥ that is used by SE* is derived as ¥ < H.Ev(hk, N||k) for a
nonce N and parses to kp||k1||r. This means that the second component of the ciphertext contains an
obfuscation of the program P[PRG(ky), N,m = k|. Hence ko| k1||r will be correctly recovered under P
and the check performed by P will passes. In other words, the KDM query has allowed the adversary to
embed the key k in P so that the check passes when it is run on the code of the hash function used in
instantiation. This means that the adversary recovers a non-zero value with overwhelming probability{lz]

13Note that a PRF with sufficiently long output is an unforgeable MAC with the additional property that the tags look
random.

14 Alternatively we could define P to output 1 instead of m when the check passes. The current formulation of P, however,
leads to a total break of the scheme and recovers the key.
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On the other hand, when b = 0, the message m embedded in P will be random, and the probability that
the check passes is negligible. Hence, the adversary outputs a correct guess for b with an overwhelming
probability. O

PRIVATE HASH KEYS. The above proof relies on the public availability of the hash key. An alternative
transform is to include the hash key generation as part of the scheme’s key. That is a secret key
(k, hk) is generated as k<s SE.Kg(1*) and hk +—s H.Kg(1}). Our attack can be also mounted against this
transform. When the adversary A sets ¢ to the identity map, the output message becomes (k, hk). All
that remains is to adapt the program to first extract the hash key and then plug it into the description
of the hash function without the hash key hard-coded in.

A.3 $-KDAE security

The KIAE and KDAE definitions considered by Bellare and Keelveedhi [BK11] require the ciphertexts in
the base scheme to be indistinguishable from random strings rather than encryptions of random strings
(i.e., the base scheme is $-KIAE secure). This raises the question if our results also apply when starting
with a $-KDAE-secure scheme.

The uninstantiability result crucially depends on including the obfuscation of a circuit into the
ciphertext. Such an obfuscation is, however, heavily structured and it is not clear if indistinguishability
obfuscation schemes exist that have an obfuscation which is indistinguishable from a uniformly random
bit string. One straightforward distinguishing attack against any obfuscation scheme would be to simply
execute the code and check the outputs. In particular, it cannot be the case that an obfuscation of
both the zero circuit and the one circuit look like random strings. However, there could still exist an
indistinguishability obfuscation scheme with the extra property that the obfuscations of the zero circuit
look random. In this case, the symmetric encryption scheme that we constructed would also meet the
stronger $-KIAE notion. We leave the study of such real-or-random indistinguishability obfuscators for
future work.

Despite this, if the base scheme is $-KIAE secure, the tweaked scheme can be shown to have
stmulatable ciphertexts in the sense that it is possible to extend the ciphertexts to those which look
indistinguishable from real tweaked ciphertexts. This explains our choice of using a PRF instead of a
MAC for ciphertext integrity. An inspection of BK’s proof [BK11, page 25] reveals that this weaker
property is sufficient for their proof to go through. Put differently, our uninstantiability result shows that
one cannot weaken the $-KIAE assumption to simulatability and still hope for generic standard-model
instantiability, although this can be done in the ROM.

B Message-Locked Encryption

Message-locked encryption (MLE) is a form of deterministic symmetric encryption where the encryption
key is deterministically derived from the message that is to be encrypted. This mechanism ensures
that encryptions of identical plaintexts produce identical ciphertexts, allowing secure (cloud) storage
providers to keep a single copy of the encrypted data. MLE was first formalized by Bellare, Keelveedhi
and Ristenpart (BKR) [BKR13|, who defined appropriate security models and constructed schemes that
meet these definitions in the random-oracle and standard models.

BKR propose several security notions for MLEs. One is called PRV-CDA and is similar to the
IND notion for D-PKE. In place of the public key, the public parameters of the scheme 7 are now
outside the reach of the first phase of the attack. These parameters are used by encryption to derive
the encryption key. In order to rule out trivial re-encryption attacks, each component of the message
vectors, similarly IND, are required to have high min-entropy. See Figure |8 (left) for the details of the
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PRV-CDA122 ()) PRV$-CDAZ1Z2())
s MLE.Pg()) 7+ MLE.Pg()\)
b«s{0,1} b+s{0,1}
(mo, my) s A; (1) m s A; (1)
for i=1...|mo|do fori=1...|m|do
k < MLE.Kg(7, my[i]) k < MLE.Kg(7, m[i])
c[i] + MLE.Enc(k, m[i]) c1[i] < MLE.Enc(k, m[i])
b s Az(m, c) co[i] s {0, 1}l
return (b= 1) b s Ao(m, cp)
return (b =)

Figure 8: The MLE security games PRV-CDA and PRV$-CDA of BKR [BKR13]. Here we have given slightly simpler
variants where the adversaries are not allowed to share state via a zeroth-stage adversary. Once again, this only strengthens
our negative results.

game. The PRV$-CDA strengthens PRV-CDA by requiring the ciphertexts to look indistinguishable
from random strings.

CONVERGENT ENCRYPTION. One transformation which is formally studied by BKR and originates in
the work of Douceur et al. [DAB™02] is convergent encryption (CE). The CE transform constructs a
message-locked encryption scheme from a one-time-secure deterministic symmetric encryption scheme
SE in the (keyed) random-oracle model. Note that, in contrast to the KDM transform of Appendix
the SE scheme only takes a key and a message and does not use an additional nonce. Parameters 7 are
chosen during setup as a uniformly random string. The encryption key k for a message m and public
parameters 7 is computed as k <— RO(hk, 7|m). Note that the range of the hash function must be a
subset of the scheme’s key space. The encryption and decryption algorithms of SE are used directly
without change in the new scheme. Under one-time key recoveryE and a slightly stronger variant of
one-time IND-CPA security (which requieres ciphertexts are indistinguishable from random strings), the
CE transformation is proved PRV-CDA secure in the random-oracle model [BKRI3].

ATTACKING PRV-CDA. We now show that this transform yields an insecure schemes when starting
from an adversarial one-time key-recovery and one-time IND-CPA-secure scheme SE*. Our generalized
result presented in Section 4| does not apply here as, similarly to the KDM case (Appendix [A]), we are
considering a transformation of (deterministic) symmetric encryption schemes.

Theorem B.1 (Uninstantiability of convergent encryption). Assuming the existence of indistinguisha-
bility obfuscation for Turing machines M (resp. p-bounded circuits Cp) and a pseudorandom generator
the CE transform CE is uninstantiable (resp. p-uninstantiable) with respect to PRV-CDA security and
one-time key-recovery and one-time IND-CPA-secure base schemes in the standard model.

We next present our one-time IND-CPA-secure symmetric encryption SE* that breaks CEY. The
idea, as before, is to append an obfuscated circuited to the ciphertext. Since in MLE the scheme is not
randomized, we obtain the necessary randomness for obfuscation directly from the secret key. Given a
one-time IND-CPA-secure and one-time key-recovery-secure scheme SE with uniform keys in {0, 1}SE'k'(>‘)
and a pseudorandom generator PRG of appropriate stretch we construct SE* as follows. Key generation
is left unchanged, and encryption is shown below. Decryption simply ignores the second component of
the ciphertext and decrypts the first.

5One-time key recovery requires that in presence of at most one ciphertext no adversary can guess the key with
non-negligible probability. The reason that it suffices to consider one-time security is that for each encryption a fresh key is
chosen.
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PRV-CDAALA2 () PROG. P[my, s|(H(hk, ), 7)

CEM[SE*]
1: m<s MLE.Pg()\) 12 KK « UEval (H(hk, ), 7[/ms)
2: b+s{0,1} 2: s’ < PRG(k)
3: hk s HKg(1") 3: if (s’ = s) then
| nl . t
4 (mO,ml) gt Al(lA) | 4 return my
| PKE.il(A)—1 | 50 else
o s {0,137 ! 6: return 0
|
|
|

|
i o1 < {0’1}PKE.iI()\)—1
i return (z0]|0,z1]|1)

-

—_ r
(c,P) <= SE".Enc(k|[¥, ms) !
| s« PRG(K)
i ¢ <+ SE.Enc(s,my) |
. P« iO(P[mas, s](-,); K) 1
| return (c,P) |

LMy < P(H(hk, ), n)
I b mb[\mbﬂ
| return b’

7: return (b=10")

Figure 9: The PRV-CDA security game for scheme CE"[SE*] with our adversary (A1,.4Az2) as constructed in the proof
of Theorem |B.1] The boxed algorithms are to be understood as subroutines. Program P that is obfuscated as part of
ciphertexts is given on the right.

ALGO. SE*.Enc(K|¥,m) Proc. P[m,s](H(hk,-), )
s < PRG(k) KK < UEval(H(hk, ), 7|}m)

¢ < SE.Enc(s,m) s’ < PRG(k)

P « iO(P[m, s](-,-); k) if (s’ = 5) then return m
return (c, P) return 0

Proving that the above modifications do not affect the one-time IND-CPA and one-time key-recovery
security properties of SE* is analogous to that presented for D-PKEs. Since we consider one-time security,
each encryption is run on a freshly sampled random key which can take the role of randomness used in
the proof for D-PKEs. The attack against the PRV-CDA security of the transformed scheme also works
analogously to the EwH case. There is, however, a minor modification that needs to be taken care of as
the symmetric component of the scheme does not have access to the public parameters 7 of the MLE
scheme (and in particular cannot hard-code them into the obfuscated circuit). We address this issue by
considering a circuit which takes the public parameters 7 as an additional input. Note that according
to the rules of the PRV-CDA game, 7 will be available to the second-stage adversary. We present the
pseudocode outline of the attack in Figure [0

STRENGTHENING THE BASE SCHEME. In the adapted scheme SE* we somewhat abused the fact that
the base scheme only needs to be one-time secure, and derived arbitrary randomness from the key. It is
an interesting question whether our attack can also be mounted if the base scheme is required to meet
the standard IND-CPA notion. Removing the one-time restriction is intricate as one would have to
introduce fresh randomness to avoid trivial attacks. Another avenue to circumvent uninstantiability is
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to demand the stronger requirement that ciphertexts look random as we discuss in Appendix

C ROM Security of HD-EwH

We start by giving a high-level idea of the proof of Proposition Our goal is to convert a given IND
adversary (Aj, A2) into an IND-CPA adversary B. In the reduction we need to simulate the random
oracles ROq, ..., RO4. Adversary As expects as input ciphertexts of the form

PKE.Enc ( pk, RO1 (pH|m); ROs(pk|m) ) , PKE.Enc (pk, RO (pklm); RO (pk|m) )

m @ RO} (pkl|m) & RO3(pH|m) .

Without having made any random-oracle queries, the first two values are distributed as encryptions of
two uniformly random values and the last component is distributed identically to a uniformly random
string. In particular the message m is information-theoretically hidden.

Let us consider an IND adversary (\A;,.42) and a ciphertext ¢ consisting of two asymmetric parts and
one symmetric part. In order for an adversary to have any advantage, Ao must learn some information
about bit b and hence information about which of two messages was encrypted. The two asymmetric
ciphertext parts are encryptions of RO1(pk|jm) and ROz (pk||m) which, intuitively, hide m unless m
is already known. The symmetric part information-theoretically hides m unless the adversary queries
RO; on RO1(pk|jm) (and RO2 on RO2(pk|jm)). Our IND-CPA adversary B will completely ignore A;
(except for learning the length of the message vectors) and create two random message (vectors) mg and
mq which it outputs to receive ¢ <—s PKE.Enc(pk, my) for a random bit b. It will use ¢ as the first part of
ciphertexts for As and simulate the second asymmetric part by encrypting a random value, and the
symmetric part by simply choosing a uniformly random value of appropriate length. It will then monitor
random-oracle queries of A, and check if any of them matches my, in which case it stops and outputs b.
Note that the simulated environment for As is perfect down to the high min-entropy requirement of A,
and the unpredictability of the public key.

We next make this intuition formal.

Proof (of Proposition[5.1). Assume there exists a ROM adversary (A, As) against the IND security
of HD-EwH?®1-+RO4[PKE]. For the sake of simplicity of presentation, we assume that 4; outputs two
messages instead of two message vectors. Based on (A1, A3) we construct an adversary B against the
IND-CPA security of PKE as follows. (See Figure |10 for B’s pseudocode.)

Adversary B gets as input a public key pk. (It discards A; as by assumption it outputs two messages
instead of message Vectors.)E] It samples messages

}PKE.iI()\) }PKE.iI()\)

mo <s {0, 1 and mp<s{0,1
and outputs these. Note that PKE.il()\) is assumed to match the hash digest lengths ol;(A) and ol ().

The second phase of B receives as input a ciphertext ¢ which is either an encryption of message mg or
of my. Adversary B constructs two additional value ¢ and ¢’. Value ¢’ is constructed as an encryption
of a uniformly random message under key pk and ¢” is sampled uniformly at random. Values ¢ and ¢/
correspond to the asymmetric parts of the ciphertext expected by A and ¢’ corresponds to the the
symmetric part of the ciphertext.

Adversary B then calls adversary Ay on input (pk, (¢, , ")) and answers its random-oracle queries
via lazy sampling. If there is an oracle query g to RO; by As such that there ¢ = my for some d € {0, 1},
then B stops and outputs d. If such a query does not occur, B outputs a random bit.

160Qtherwise it would need to run A; in order to learn the length of the vector and its equality pattern and match that in
its simulation.
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IND-CPAB ¢ (V) Ro;(q)

ma s {0, 1}PKE4iI()\)
return (mo, m)

b+s{0,1} if Tj[q) = L then
(sk, pk) <—s PKE.Kg(1*) T[] s {0, 1371
r-- -~ - T T T T T T T a . .
(mo, m1) s ! B(1*, pk) ! if (j=1 A mq=gq) then
| b «s{0,1} | bs < d
mo s {0, 1}PKEI) 1 return T}|q]
!
!
!
!

!
!
| a ¢ {0, 1}PKE.iI(>\) |
s PKE.Enc(pk, x) |
: & g {07 1}PKE.iI(>\) }
| bz <% Agol'Roz’Ro?”RO“ (pk, (e, ', ")) |
| return bz |

Figure 10: Adversary B against the IND-CPA security of scheme PKE in proof of Proposition

ANALYSIS.  We need to argue that (1) B wins if a query ¢ = mg occurs, and that (2) As makes such a
query with non-negligible probability. For (1) consider that mg and m; are chosen uniformly at random
and ciphertext ¢ only contains information about mg but no information about my_4. For (2) consider
the simulation from the point of view of adversary As. Adversary As expects to receive as input the
public key pk and a ciphertext

PKE.Enc(pk, RO1(pk|/ms); ROs(pkl|ms)), PKE.Enc(pk, RO2(pk||my,); RO4(pk||ms)),
my & RO (pk{jmy) & RO3(pkf|my) -

In the simulation of B it gets two encryptions of uniformly random values and a uniformly random value.
The simulation of the symmetric part is perfect unless A queries RO1(pk|msp) to RO1 and RO2(pk||my)
to ROs. Furthermore, ¢’ hides m; unless these random-oracle queries occur. Similarly, the asymmetric
parts of the ciphertext are simulated perfectly since the message distribution output by A; is assumed
to have high min-entropy and hence

Pr|my = PROl""(pk, RO1(pkl|my)) : (sk, pk) <—s PKE.Kg(lA); b<«s{0,1}; (mo,m1) s A1(1>‘)]

is negligible for any algorithm P that makes at most polynomially many random-oracle queries.

Thus, in order for adversary Ay to win, it must unmask my from the symmetric part of the ciphertext,
which in turn requires it to query RO; on RO;(pk|/my). Assuming that (A;,.42) has non-negligible
advantage implies that Ay makes the said query with non-negligible probability. Hence B also has
non-negligible advantage in the IND-CPA game. O
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