
An algorithm for MD5 single-block collision attack using high-
performance computing cluster

Anton A. Kuznetsov

Program Systems Institute of Russian Academy of Sciences
aakuznetsoff@gmail.com

October 22, 2014

Abstract. The parallel algorithm and its implementation for performing a single-block collision attack on
MD5 are described. The algorithm is implemented as MPI program based upon the source code of Dr Marc
Stevens' collision search sequential program. In this paper we present a parallel single-block MD5 collision
searching algorithm itself and details of its implementation. We also disclose a pair of new single-block
messages colliding under MD5 that were found using our algorithm on the high-performance computing
cluster.

1. Introduction

 Hash functions are the one-way functions that map arbitrary input messages to a fixed-
length hash values. Hashes can be considered as signatures of the original message, and can be used
to check the message integrity and authenticity after it was delivered by network communication.
Hash functions are designed to be fast but difficult to revert (calculate f-1(hash)). MD5 is one of the
most widely-used hash functions. It was designed in 1992 by R.Rivest [1].
 The message pair (M,M') is called a collision if hashes of both messages are equal. In 2004
Wang et al. [2] have disclosed a differential method for finding MD5 collisions, and presented a
collision with input messages of size 1024 bit (two-block collision). In 2010 Xie and Feng
presented single-block colliding messages [3] but for security reasons haven't disclosed any detail
about the collision searching method. They posted a challenge to cryptology community to
construct a different MD5 single-block collision. In 2012 Dr Marc Stevens have answered that
challenge [4] by presenting a single-block collision attack for MD5 and an example colliding
message pair.
 In this paper we describe a parallel algorithm for finding single-block MD5 collisions, and
its MPI implementation that is based upon Dr Marc Stevens' sequential method. We also present a
new single-block colliding message pair that was found using our algorithm on the high-
performance computing cluster in 11 hours.
 So far only one parallel collision search method exists. Citation from [5]: "it is a simple
technique of parallelizing methods for solving search problems which seek collisions in pseudo-
random walks. According to that method, to perform a parallel collision search, each processor
proceeds as follows. Select a starting point Sx ∈0 and produce the trail of points xi = f(xi-1), for i =
1, 2,... until a distinguished point xd is reached based on some easily testable distinguishing property
such as a fixed number of leading zero bits. Add the distinguished point to a single common list for
all processors and start producing a new trail from a new starting point. Depending on the
application of collision search, other information must be stored with the distinguished point (e.g.,
one must store x0 and d in order to quickly locate the points a and b such that f(a) = f(b)). A
collision is detected when the same distinguished point appears twice in the central list."
 We found no publicly available research papers about parallel methods of collision search
that use Wang et al's differential method.

2. The sequential program structure

 The general structure of the sequential (one-threaded) program by Dr Marc Stevens roughly
is as follows (in pseudocode):

main():
 filltables();
 while (true) collinit();

collinit():
 // Instantiation
 // this is where random values are used
 compute Q1, Q4, Q5, Q12—Q18, m0, m5, m6, m11;
 compute Q3Q6cnt value;
 if Q3Q6cnt < 224: return;
 four nested 'do..while' loops:
 in the innermost 'do..while' loop:
 compute all other Qi;
 compute M and M';
 if md5compress(M) = md5compress(M'):
 // collision was found
 print (M,M') and Qi to stdout;
 exit();

Algorithm 1: Sequential program structure

3. The MPI program structure

 In MPI standard a program is executed in parallel by running the copy of the program on
each core of each node of compute cluster. Each running process is assigned a rank – a decimal
number from 0 to N-1, where N is the number of CPU cores in the cluster.
 To develop MPI program a few obvious source modifications were made. The original
algorithm was almost left intact, just a few MPI calls were inserted and some optimizations were
made.
 At the beginning of parallel program development for the convenience we wrote a wrapper
library for MPI routines with a set of primitives:

• mpi_init() – initialize MPI computing environment;
• mpi_final() – finalize MPI computing environment;
• mpi_send() – send an array of unsigned integers to a specified rank;
• mpi_recv() – receive an array of unsigned integers (on slave ranks);
• mpi_barrier() – synchronize execution, wait until all computing processes have reached this

routine;
• mpi_size() – return the total number of ranks;
• mpi_rank() – return the index of current rank;
• mpi_headrank() – check whether the current process has rank 0.

 A head rank is a rank with index 0, a slave rank is a rank with non-zero index.
 Each call is a wrapper for the genuine MPI call with error-checking. For example,
mpi_barrier() has the following definition:

void mpi_barrier() {
 int rc = MPI_Barrier(MPI_COMM_WORLD);
 if (rc != MPI_SUCCESS) {
 printf("Error in MPI_Barrier\n");
 fflush(stdout);
 }
}

Listing 1: mpi_barrier() wrapper subroutine

 The structure of developed parallel MPI program is as follows (in pseudocode):

main():
 mpi_init();
 filltables();
 while (true) collinit();
 mpi_final();

collinit():
 mpi_barrier();
 if mpi_headrank(): // node 0: Instantiation
 // this is where random values are used:
 compute Q1, Q4, Q5, Q12—Q18, m0, m5, m6, m11;
 if mpi_headrank():
 mpi_send(Q); // broadcast Qi
 mpi_send(M); // broadcast M
 else:
 mpi_recv(Q); // slave ranks receive Qi
 mpi_recv(M); // slave ranks receive M
 compute Q3Q6cnt value on each rank;
 if Q3Q6cnt < 224: return;
 mpi_barrier();
 four nested 'do..while' loops:
 in the innermost 'do..while' loop:
 if numIter mod mpi_size() = mpi_rank():
 // numIter – the counter of loop iterations
 compute all other Qi;
 compute M and M';
 if md5compress(M) = md5compress(M'):
 // collision was found on some rank
 print (M,M') and Qi to stdout;
 mpi_final();
 exit();

Algorithm 2: Parallel program structure

4. Optimizations to the source code

 Following is the list of optimizations applied in the parallel (MPI) version of single-block
collision search program.

• Do not declare vector and numeric variables in every iteration of the inner loop; declare
these before the outermost 'do..while'. This is due to the fact that innermost loop is executed
several billion times (in worst scenario), thus declaration of variables consume an amount of
CPU time.

• Using a simple yet powerful free code profiler we have made a conclusion that during the

program run most of the CPU clock is consumed by calls to the four routines:
• rotate_right()
• rotate_left()
• md5_ff()
• md5_gg()

 The former two were optimized using Intel compiler intrinsics:

• rotate_right() was rewritten using _rotr()
• rotate_left() was rewritten using _rotl()

 md5_ff() routine is optimized like this:
 rewrite from:

• D ^ (B & (C ^ D))
 to:

• (B & C) | (~B & D)

 md5_gg() routine is optimized like this:
 rewrite from:

• C ^ (D & (B ^ C))
 to:

• (D & B) | (~D & C)

• md5compress() C++ function was rewritten in Assembler. This yields about 20% speed-up.

• The following command is used to compile program source:
mpic++ *.cpp md5compress.S –O3 -xhost –ipo –o md5sbc

 It results in a faster binary for the host Intel Xeon processor with interprocedural
 optimizations and aggressive loop unrolling applied.

• Source code was refactored by running a small Tcl script on it. All substrings in the source
code that match the "offset+%i" mask were replaced by the actual sum of the 'offset'
constant (that equals to 3) and the integer %i. This was done solely to improve code
readability and examine data dependencies between program subroutines.

5. HPC cluster run

 For the experiments we have used a cluster (named "Tornado") that resides in South Ural
State University [6] in the city of Chelyabinsk, Russia. We had made several MPI program launches
about 24 hours duration each. The final launch that took 11 hours was successful – a collision was
found (see next section). In that launch 30 nodes were used with 12 processes on each node
(number of ranks – 360).
 It is obvious that the more nodes used in computations the higher possibility of finding
collision within reasonable timeslot (e.g. 24 hours). Program run time is different from launch to
launch because random number generator is used to calculate some of the Qi values at the

initialization stage.
 The parallel algorithm is highly scalable due to the fact that in the inner loop all iterations
are split equally among ranks. Total number of iterations is very high. In the worst scenario even
10-petaflop/s HPC cluster could take weeks to find collision.
 We did not use any accelerator devices like Intel Xeon Phi, that are present on the cluster,
but this is actually feasible for our implementation.

6. The colliding message pair

 We present a new message pair colliding under MD5. It was found by running our parallel
implementation of the collision finding program on the HPC cluster:

M

5D 11 69 3E 1E 33 4B 2C B3 88 EF AA F0 D0 EC F3
91 2D 73 0A 1C DD 7A AC 6E 3C E0 E4 CE 06 7B B1
8E 73 C7 BA A2 6A A8 19 66 C2 86 16 B3 4F 3D 07
AA B7 C8 1E 32 94 89 64 7C 11 73 4A 3F AF 03 EA

M'

5D 11 69 3E 1E 33 4B 2C B3 88 EF AA F0 D0 EC F3
91 2D 73 0A 1C DD 7A AC 6E 3C E0 E4 CE 06 7B B1
8E 73 C7 BC A2 6A A8 19 66 C2 86 16 B3 4F 3D 07
AA B7 C8 1E 32 94 89 E4 7C 11 73 4A 3F AF 03 EA

Common MD5 hash: 746c4e219320eae3fd23bcf3ebb7d71d

Table 1: The single-block colliding messages

The messages are available for download at [7].

 We also present here the list of Qi values that was found by the parallel program and was
used to generate message M:

Q-3=0x67452301
Q-2=0x10325476
Q-1=0x98BADCFE
Q0 =0xEFCDAB89
Q1 =0xD9A89593
Q2 =0xDA361481
Q3 =0x0660DFEA
Q4 =0x04812801
Q5 =0xEB78D1DC
Q6 =0x77D76EFF
Q7 =0xBE675C82

Q8 =0x29F20526
Q9 =0x3E1893ED
Q10=0x00000040
Q11=0xFFFFFDFE
Q12=0xB62EA109
Q13=0x062DA1C8
Q14=0x1661D7EA
Q15=0x00050621
Q16=0x14810A21
Q17=0xA8009748
Q18=0xADABC8E8

Q19=0x410F3F70
Q20=0x71936434
Q21=0xF7D2E265
Q22=0x09D6ECD5
Q23=0xF8B84FB6
Q24=0xBCCE16A3
Q25=0x463268A8
Q26=0x34EFF95F
Q27=0x5E7E0F7D
Q28=0xE8514E70
Q29=0xC677D867

Table 2: Q values list

Note: all the rest Q values (Q30—Q64) are equal to 0.

Message M = (m0 ... m15) is derived from Q values as follows:

mt = RR(Qt+1 – Qt, RCt) – ACt – ft(Qt, Qt-1, Qt-2) – Qt-3

where:
 RR(X, n) is a cyclic right rotation of X by n bit positions;
 RCt is a rotation constant: (RCt, RCt+1, RCt+2, RCt+3) = (7, 12, 17, 22) for t = (0, 4, 8, 12);
 ACt is an additive constant: ⎣ ⎦)1sin(232 += tACt ;

 ft(X, Y, Z) = F(X, Y, Z) =)()(ZXYX ∧⊕∧ .

Message M' is derived from M as follows:

M' = M + (0,0,0,0,0,0,0,0,225,0,0,0,0,231,0,0)

 Qi values presented here generally satisfy bitconditions (see Table 3 in [4]) but not all. There
are four values that do not satisfy bitconditions: Q3, Q4, Q9 and Q14. It is an open question why this
divergence occured.

7. Conclusion

 We presented the collision searching parallel algorithm that was derived from Dr Marc
Stevens' original method. It is implemented as MPI program and successfully used to find a pair of
messages colliding under MD5.
 Dr Marc Stevens' algorithm has a runtime cost of 250 md5compress() calls. We believe that a
single-block collision searching algorithm can be substantially improved, so that it requires much
less computational power. This is the subject for further research.
 The collision search program can be adapted to run on other massively parallel devices:
multi-core CPUs, Nvidia CUDA devices, Intel Xeon Phi accelerators. This can greatly speed up
collision search on the workstation and/or computational cluster.

Acknowledgements

 This work is supported by the Russian Academy of Sciences through the project
No.01201354596.
 We express gratitude to Dr Marc Stevens for permission to modify the source code of his
single-block collision search program [8].

References

1. Ronald L. Rivest, The MD5 Message-Digest Algorithm, Internet Request for Comments, April
1992, RFC 1321

2. Xiaoyun Wang, Dengguo Feng, Xuejia Lai, and Hongbo Yu, Collisions for hash functions MD4,
MD5, HAVAL-128 and RIPEMD, Cryptology ePrint Archive, Report 2004/199, 2004

3. Tao Xie and Dengguo Feng, Construct MD5 Collisions Using Just A Single Block Of Message,
Cryptology ePrint Archive, Report 2010/643, 2010

4. Marc Stevens, Single-block collision attack on MD5, Cryptology ePrint Archive, Report
2012/040, 2012

5. Paul C. Van Oorschot, Michael J. Wiener, Parallel collision search with cryptanalytic
applications, Journal of Cryptology, 1999, vol.12, pp. 1-28

6. http://supercomputer.susu.ac.ru/computers/tornado/

7. http://www.botik.ru/~botik/rnd/message1ak , http://www.botik.ru/~botik/rnd/message2ak

8. http://marc-stevens.nl/research/md5-1block-collision/

	An algorithm for MD5 single-block collision attack using hig
	1. Introduction
	2. The sequential program structure
	3. The MPI program structure
	4. Optimizations to the source code
	5. HPC cluster run
	6. The colliding message pair
	7. Conclusion
	Acknowledgements
	References

