
Bootstrapping for HElib

Shai Halevi (IBM) Victor Shoup∗(NYU)

October 22, 2014

Abstract

Gentry’s bootstrapping technique is still the only known method of obtaining fully homomor-
phic encryption where the system’s parameters do not depend on the complexity of the evaluated
functions. Bootstrapping involves a recryption procedure where the scheme decryption is evalu-
ated homomorphically. So far, there have been precious few implementations of recryption, and
none that could handle “packed ciphertexts” that encrypt vectors of elements.

In the current work we implemented recryption of fully-packed ciphertexts using the HElib

library for somewhat-homomorphic encryption. This required extending the recryption algorithms
from the literature, as well as many aspects of the HElib library.

Our implementation supports bootstrapping of packed ciphertexts over many extension
fields/rings. One example that we tested involves ciphertexts that encrypt vectors of 1024 el-
ements from GF(216). In that setting, the recryption procedure takes under 5.5 minutes (at
security-level ≈ 76) on a single core, and allows a depth-9 computation before the next recryption
is needed.

Keywords: Bootstrapping, Homomorphic Encryption, Implementation

∗Work partially done in IBM Research.

Contents

1 Introduction 1
1.1 Algorithmic Aspects . 2

2 Notations and Background 2
2.1 The BGV Cryptosystem . 3
2.2 Encoding Vectors in Plaintext Slots . 3
2.3 Hypercube structure and one-dimensional rotations . 4
2.4 Frobenius and linearized polynomials . 5

3 Overview of the Recryption Procedure 5
3.1 The GHS Recryption Procedure . 5
3.2 Our Recryption Procedure . 7

4 The Linear Transformations 8
4.1 Algebraic Background . 8
4.2 The Evaluation Map . 9

4.2.1 The Eval Transformation . 10
4.2.2 The Transformation Eval−1 . 12

4.3 Unpacking and Repacking the Slots . 12

5 Recryption with Plaintext Space Modulo p > 2 13
5.1 Simpler Decryption Formula . 13
5.2 Making an Integer Divisible By pe

′
. 14

5.3 Digit-Extraction for Plaintext Space Modulo pr . 15
5.3.1 An optimization for p = 2, r ≥ 2. 17

5.4 Putting Everything Together . 18

6 Implementation and Performance 18

7 Future work 20

A Parameters for Digit Extraction 22

B Homomorphic Polynomial Evaluation 25
B.1 The Paterson-Stockmeyer Algorithm . 25
B.2 Our Modifications . 26

C Why We Didn’t Use Ring Switching 27

1 Introduction

Homomorphic Encryption (HE) [23, 7] enables computation of arbitrary functions on encrypted
data without knowing the secret key. All current HE schemes follow Gentry’s outline from [7],
where fresh ciphertexts are “noisy” to ensure security and this noise grows with every operation
until it overwhelms the signal and causes decryption errors. This yields a “somewhat homomorphic”
scheme (SWHE) that can only evaluate low-depth circuits, which can then be converted to a “fully
homomorphic” scheme (FHE) using bootstrapping. Gentry described a recryption operation, where
the decryption procedure of the scheme is run homomorphically, using an encryption of the secret
key that can be found in the public key, yielding in a new ciphertext that encrypts the same plaintext
but has smaller noise.

The last few years saw a large body of work improving many aspects of homomorphic encryption
in general (e.g., [4, 10, 17, 3, 13, 5]) and recryption in particular [12, 1, 2, 20, 6]. However, so
far, only a few implementations of SWHE have been reported, and almost none of them supports
recryption. Prior to the current work, we are aware of only two reported implementations of recryp-
tion: the implementation due to Gentry and Halevi [8] of Gentry’s original cryptosystem [7], and the
implementation due to Rohloff and Cousins [24] of the NTRU-based cryptosystem [16, 17].

In this paper we report on our new implementation of recryption for the cryptosystem of Braker-
ski, Gentry and Vaikuntanathan (BGV) [4]. We implemented recryption on top of the open-source
library HElib [15, 14], which implements the ring-LWE variant of BGV. Our implementation in-
cludes both new algorithmic designs as well as re-engineering of some aspects of HElib. As noted
in [14], the choice of homomorphic primitives in HElib was guided to a large extent by the desire
to support recryption, but nonetheless in the course of our implementation we had to extend the
implementation of some of these primitives (e.g., matrix-vector multiplication), and also implement
a few new ones (e.g., polynomial evaluation).

The HElib library is “focused on effective use of the Smart-Vercauteren ciphertext packing tech-
niques [26] and the Gentry-Halevi-Smart optimizations [10],” so in particular we implemented recryp-
tion for “fully-packed” ciphertexts. Namely, our implementation supports recryption of ciphertexts
that encrypt vectors of elements from extension fields (or rings). Importantly, our recryption pro-
cedure itself is of very low depth, so as to allow significant processing between recryptions while
keeping the lattice dimension reasonable to maintain efficiency.

For example, one parameter-setting that we tested has ciphertexts that encrypt vectors of 1024
elements from GF(216). In our tests (for effective security level of 76 bits), recryption of such
a ciphertext takes 320 seconds (under 5.5 minutes) on a single CPU core, and allows additional
computations of depth 9 between recryptions. That setting can be conducive for implementing
homomorphic AES as in [11], since it allows embedding GF(28) elements in the slots and using a
byte-oriented implementation (thus embedding 64 AES blocks in each ciphertext). We estimate that
one would have to recrypt five times during such AES computation (but we have not yet attempted
this homomorphic AES implementation).

Compared to the two previous recrypt implementations, ours offers many advantages in both
flexibility and speed. For flexibility, the previous recryption implementations only apply to non-
packed ciphertexts that encrypt one bit per ciphertext, whereas ours supports packed ciphertexts
that encrypt vectors from “any extension field/ring.”1 Some examples that we tested include vectors
over the fields GF(216), GF(225), GF(224), GF(236), GF(1740), and GF(12736), as well as a degree-21
extension and a degree-30 extension of the ring Z256.

In terms of speed, the Gentry-Halevi implementation reportedly took 1/2-hour on a single core

1Some internals of HElib bound the characteristic of the supported fields/rings below one million or so. And even
before hitting these limits, trying to recrypt ciphertexts relative to high characteristic fields/rings or with very high
extension degree could be very slow.

1

to recrypt a single-bit ciphertext, and the Rohloff-Cousins implementation reported recryption time
of 275 seconds for a single-bit ciphertext with 64-bit security on 20 cores. For our implementation,
the tests that we ran clocked a single-core time of 320 seconds and up for packed ciphertexts with
security levels of 76 bits and up (see Section 6). We note that the same parallelism that was used by
Rohloff and Cousins could in principle be applied to our implementation too, but doing so involves
several software-engineering challenges, and we have not yet attempted it.

Concurrent work. Concurrently with out work, Ducas and Micciancio described a new bootstrap-
ping procedure [6]. This procedure is applied to Regev-like ciphertexts [22] that encrypt a single bit,
using a secret-key encrypted similarly to the new cryptosystem of Gentry at al. [13]. They reported
on an implementation of their scheme, where they can perform a NAND operation followed by re-
cryption in less than a second. Compared to our scheme, theirs has the advantage of a much faster
wall-clock time for recryption, but they do not support batching or large plaintext spaces (hence our
implementation has much better amortized per-bit timing). It is a very interesting open problem to
combine their techniques with ours, achieving a “best of both worlds” implementation.

1.1 Algorithmic Aspects

Our recryption procedure follows the high-level structure introduced by Gentry et al. [12], and for
the required linear transformations is makes use of the tensor decomposition of Alperin-Sheriff and
Peikert [1]. However those two works only dealt with characteristic-2 plaintext spaces so we had to
extend some of their algorithmic components to deal with characteristics p > 2 (see Section 5).

Also, to get an efficient implementation, we had to make the decomposition from [1] explicit,
specialize it to cases that support very-small-depth circuits, and align the different representations
to reduce the required data-movement and multiplication-by-constant operations. These aspects are
described in Section 4. One significant difference between our implementation and the procedure of
Alperin-Sheriff and Peikert [1] is that we do not use the ring-switching techniques of Gentry et al.
[9] (see discussion in Appendix C).

Organization. We describe our notations and give some background information on the BGV cryp-
tosystem and the HElib library in Section 2. In Section 3 we provide an overview of the high-level
recryption procedure from [12] and our variant of it. We then describe in detail our implementation
of the linear transformations in Section 4 and the non-linear parts in Section 5. In Section 5.4 we
explain how all these parts are put together in our implementation, and in Section 6 we discuss our
performance results. We conclude with directions for future work in Section 7. In Appendix A we de-
scribe our choice of parameters, and in Appendix B we describe our implementation of homomorphic
polynomial evaluation, which is used in the non-linear part of the recryption procedure for p > 2.

Disclaimer. Our recryption implementation is not yet available in open-source. We plan to clean up
the code and then make it available as part of HElib within the next month or two.

2 Notations and Background

For an integer z, we denote by [z]q the reduction of z modulo q into the interval [−q/2, q/2), except
that for q = 2 we reduce to (−1, 1]. This notation extends to vectors and matrices coordinate-wise,
and to elements of other algebraic groups/rings by reducing their coefficients in some convenient
basis.

For an integer z (positive or negative) we consider the base-p representation of z and denote its
digits by z〈0〉p, z〈1〉p, · · · . When p is clear from the context we omit the subscript and just write

2

z〈0〉, z〈1〉, · · · . When p = 2 we consider a 2’s-complement representation of signed integers (i.e., the
top bit represent a large negative number). For an odd p we consider balanced mod-p representation
where all the digits are in [−p−1

2 , p−12].
For indexes 0 ≤ i ≤ j we also denote by z〈j, . . . , i〉p the integer whose base-p expansion

is z〈j〉 · · · z〈i〉 (with z〈i〉 the least significant digit). Namely, for odd p we have z〈j, . . . , i〉p =∑j
k=i z〈k〉p

k−i, and for p = 2 we have z〈j, . . . , i〉2 = (
∑j−1

k=i z〈k〉2
k−i) − z〈j〉2j−i. The properties

of these representations that we use in our procedures are the following:

• For any r ≥ 1 and any integer z we have z = z〈r − 1, . . . , 0〉 (mod pr).

• If the representation of z is dr−1, . . . , d0 then the representation of z ·pr is dr−1, . . . , d0,

r zeros︷ ︸︸ ︷
0, · · · , 0.

• If p is odd and |z| < pe/2 then the digits in positions e and up in the representation of z are
all zero.

• If p = 2 and |z| < 2e−1, then the bits in positions e− 1 and up in the representation of z, are
either all zero if z ≥ 0 or all one if z < 0.

2.1 The BGV Cryptosystem

The BGV ring-LWE-based somewhat-homomorphic scheme [4] is defined over a ring R
def
=

Z[X]/(Φm(X)), where Φm(X) is the mth cyclotomic polynomial. For an arbitrary integer mod-

ulus N (not necessarily prime) we denote the ring RN
def
= R/NR. We often identify elements in R

(or RN) with their representation is some convenient basis, e.g., their coefficient vectors as polynomi-
als. When dealing with RN , we assume that the coefficients are in [−N/2, N/2) (except for R2 where
the coefficients are in {0, 1}). We discuss these representations in some more detail in Section 4.1.
The norm of an element ‖a‖ is defined as its norm in some convenient basis.2

As implemented in HElib, the native plaintext space of the BGV cryptosystem is Rpr for a prime
power pr. The scheme is parametrized by a sequence of decreasing moduli qL � qL−1 � · · · � q0,
and an “ith level ciphertext” in the scheme is a vector ct ∈ (Rqi)

2. Secret keys are elements s ∈ R
with “small” coefficients (chosen in {0,±1} in HElib), and we view s as the second element of the
2-vector sk = (1, s) ∈ R2. A level-i ciphertext ct = (c0, c1) encrypts a plaintext element m ∈ Rpr
with respect to sk = (1, s) if we have [〈sk, ct〉]qi = [c0 + s · c1]qi = m + pr · e (in R) for some “small”
error term, pr · ‖e‖ � qi.

The error term grows with homomorphic operations of the cryptosystem, and switching from qi+1

to qi is used to decrease the error term roughly by the ratio qi+1/qi. Once we have a level-0 ciphertext
ct, we can no longer use that technique to reduce the noise. To enable further computation, we need
to use Gentry’s bootstrapping technique [7], whereby we “recrypt” the ciphertext ct, to obtain a new
ciphertext ct∗ that encrypts the same element of Rpr with respect to some level i > 0.

2.2 Encoding Vectors in Plaintext Slots

As observed by Smart and Vercauteren [26], an element of the native plaintext space α ∈ Rpr can be
viewed as encoding a vector of “plaintext slots” containing elements from some smaller ring extension
of Z/(pr) via Chinese remaindering. In this way, a single arithmetic operation on α corresponds to
the same operation applied component-wise to all the slots.

Specifically, suppose the factorization of Φm(X) modulo pr is Φm(X) ≡ F1(X) · · ·Fk(X)
(mod pr), where each Fi has the same degree d, which is equal to the order of p modulo m. (This

2The difference between the norm in the different bases is not very important for the current work.

3

factorization can be obtained by factoring Φm(X) modulo p and then Hensel lifting.) From the CRT
for polynomials, we have the isomorphism

Rpr '
k⊕
i=1

(Z[X]/(pr, Fi(X)).

Let us now define E
def
= Z[X]/(pr, F1(X)), and let ζ be the residue class of X in E, which is a

principal mth root of unity, so that E = Z/(pr)[ζ]. The rings Z[X]/(pr, Fi(X)) for i = 1, . . . , k
are all isomorphic to E, and their direct product is isomorphic to Rpr , so we get an isomorphism
between Rpr and Ek. HElib makes extensive use of this isomorphism, representing it explicitly as
follows. It maintains a set S ⊂ Z that forms a complete system of representatives for the quotient
group Z∗m/〈p〉, i.e., it contains exactly one element from every residue class. Then we use a ring
isomorphism

Rpr →
⊕
h∈S

E

α 7→ {α(ζh)}h∈S .
(1)

Here, if α is the residue class a(X) + (pr,Φm(X)) for some a(X) ∈ Z[X], then α(ζh) = a(ζh) ∈ E,
which is independent of the representative a(X).

This representation allows HElib to effectively pack k
def
= |S| = |Z∗m/〈p〉| elements of E into

different “slots” of a single plaintext. Addition and multiplication of ciphertexts act on the slots of
the corresponding plaintext in parallel.

2.3 Hypercube structure and one-dimensional rotations

Beyond addition and multiplications, we can also manipulate elements in Rpr using a set of auto-
morphisms on Rpr , of the form

τj : Rpr → Rpr

a(x) + (pr,Φm(X)) 7→ a(Xj) + (pr,Φm(X)).
(j ∈ Z∗m)

We can homomorphically apply these automorphisms by applying them to the ciphertext elements
and then preforming “key switching” (see [4, 10]). As discussed in [10], these automorphisms induce a
hypercube structure on the plaintext slots, where the hypercube structure depends on the structure
of the group Z∗m/〈p〉. Specifically, HElib keeps a hypercube basis g1, . . . , gn ∈ Zm with orders
`1, . . . , `n ∈ Z>0, and then defines the set S of representatives for Z∗m/〈p〉 (which is used for slot
mapping Eqn. (1)) as

S
def
= {ge11 · · · g

en
n mod m : 0 ≤ ei < `i, i = 1, . . . , n}. (2)

This basis defines an n-dimensional hypercube structure on the plaintext slots, where slots are in-
dexed by tuples (e1, . . . , en) with 0 ≤ ei < `i. If we fix e1, . . . , ei−1, ei+1, . . . , en, and let ei range over
0, . . . , `i−1, we get a set of `i slots, indexed by (e1, . . . , en), which we refer to as a hypercolumn in di-
mension i (and there are k/`i such hypercolumns). Using automorphisms, we can efficiently perform
rotations in any dimension; a rotation by v in dimension i maps a slot indexed by (e1, . . . , ei, . . . , en)
to the slot indexed by (e1, . . . , ei + v mod `i, . . . , en). Below we denote this operation by ρvi .

We can implement ρvi by applying either one automorphism or two: if the order of gi in Z∗m is `i,
then we get by with just a single automorphism, ρvi (α) = τgvi (α). If the order of gi in Z∗m is different

4

from `i then we need to implement this rotation using two shifts: specifically, we use a constant “0-1
mask value” mask that selects some slots and zeros-out the others, and use two automorphisms with
exponents e = gvi mod m and e′ = gv−`ii mod m, setting

ρvi (α) = τe(mask · α) + τe′((1−mask) · α).

In the first case, we call i a “good dimension”, and in the latter, we call i a “bad dimension”.

2.4 Frobenius and linearized polynomials

We define σ
def
= τp, which is the Frobenius map on Rpr , and acts on each slot independently as the

Frobenius map σE on E, which sends ζ to ζp and leaves elements of Z/(pr) fixed (this is the same
as the pth power map on E when r = 1). If M is a Z/(pr)-linear transformation on E, then there

exist unique constants θ0, . . . , θd−1 such that for all η ∈ E, we have M(η) =
∑d−1

f=0 θfσ
f
E(η). When

r = 1, this follows from the general theory of linearized polynomials (see, e.g., Theorem 10.4.4 on
p. 237 of [25]), and these constants are readily computable by solving a system of equations mod p;
when r > 1, we may lift these solutions via Hensel to a solution mod pr. In the special case where
the image of M is the sub-ring Z/(pr) of E, then θf = σfE(θ0) for f = 1, . . . , d − 1; again, this is
standard field theory if r = 1, and is easily established for r > 1 as well.

Using linearized polynomials, we may effectively apply a fixed linear map to each slot of a plaintext
element α ∈ Rpr (either the same or different maps in each slot) by computing

∑d−1
f=0 κfσ

f (α),
where the κf ’s constants in Rpr obtained by embedding appropriate constants in E in each slot.
We may perform the same computation homomorphically on an encryption of α in the time of
d − 1 automorphisms and d constant-ciphertext multiplications, and in the depth of one constant-
ciphertext multiplication (since automorphisms consume almost no depth).

3 Overview of the Recryption Procedure

Recall that the recryption procedure is given a BGV ciphertext ct = (c0, c1), defined relative to
secret-key sk = (1, s), modulus q, and plaintext space pr, namely, we have [〈sk, ct〉]q ≡ m (mod pr)
with m being the plaintext. Also we have the guarantee that the noise is ct is still rather small, say
‖[〈sk, ct〉]q‖ < q/100.

The goal of the recryption procedure is to produce another ciphertext ct∗ that encrypts the same
plaintext element m relative to the same secret key, but relative to a much larger modulus Q � q
and with a much smaller relative noise. That is, we still want to get [〈sk, ct∗〉]Q = m (mod pr), but
with ‖[〈sk, ct∗〉]Q‖ � Q/100.3

Our implementation uses roughly the same high-level structure for the recryption procedure as
in [12, 1], below we briefly recall the structure from [12] and then describe our variant of it.

3.1 The GHS Recryption Procedure

The recryption procedure from [12] (for plaintext space p = 2) begins by using modulus-switching to
compute another ciphertext that encrypts the same plaintext as ct, but relative to a specially chosen
modulus q̃ = 2e + 1 (for some integer e).

Denote the resulting ciphertext by ct′, the rest of the recryption procedure consists of homomor-
phic implementation of the decryption formula m← [[〈sk, ct′〉]q̃]2, applied to an encryption of sk that
can be found in the public key. Note that in this formula we know ct′ = (c′0, c

′
1) explicitly, and it is sk

3The relative noise after recryption is a design parameter. In our implementation we tried to get the noise below
Q/2250, to allow significant additional processing before another recryption is needed.

5

that we process homomorphically. It was shown in [12] that for the special modulus q̃, the decryption
procedure can be evaluated (roughly) by computing u← [〈sk, ct′〉]2e+1 and then m← u〈e〉 ⊕ u〈0〉.4

To enable recryption, the public key is augmented with an encryption of the secret key s, relative
to a (much) larger modulus Q� q̃, and also relative to a larger plaintext space 2e+1. Namely this is
a ciphertext c̃t such that [〈sk, c̃t〉]Q = s (mod 2e+1). Recalling that all the coefficients in ct′ = (c′0, c

′
1)

are smaller than q̃/2 < 2e+1/2, we consider c′0, c
′
1 as plaintext elements modulo 2e+1, and compute

homomorphically the inner-product u← c′1 · s + c′0 (mod 2e+1) by setting

c̃t
′ ← c′1 · c̃t + (c′0, 0).

This means that c̃t
′
encrypts the desired u, and to complete the recryption procedure we just need to

extract and XOR the top and bottom bits from all the coefficients in u, thus getting an encryption
of (the coefficients of) the plaintext m. This calculation is the most expensive part of recryption,
and it is done in three steps:

Linear transformation. First apply homomorphically a Z2e+1-linear transformation to c̃t
′
, con-

verting it into ciphertexts that have the coefficients of u in the plaintext slots.

Bit extraction. Next apply a homomorphic (non-linear) bit-extraction procedure, computing two
ciphertexts that contain the top and bottom bits (respectively) of the integers stored in the slots. A
side-effect of the bit-extraction computation is that the plaintext space is reduced from mod-2e+1 to
mod-2, so adding the two ciphertexts we get a ciphertext whose slots contain the coefficients of m
relative to a mod-2 plaintext space.

Inverse linear transformation. Finally apply homomorphically the inverse linear transformation
(this time over Z2), obtaining a ciphertext ct∗ that encrypts the plaintext element m.

An optimization. The deepest part of recryption is bit-extraction, and its complexity — both
time and depth — increases with the most-significant extracted bit (i.e., with e). The parameter e
can be made somewhat smaller by choosing a smaller q̃ = 2e + 1, but for various reasons q̃ cannot
be too small, so Gentry et al. described in [12] an optimization for reducing the top extracted bit
without reducing q̃.

After modulus-switching to the ciphertext ct, we can add multiples of q̃ to the coefficients of
c′0, c

′
1 to make them divisible by 2e

′
for some moderate-size e′ < e. Let ct′′ = (c′′0, c

′′
1) be the resulting

ciphertext, clearly [〈sk, ct′〉]q̃ = [〈sk, ct′′〉]q̃ so ct′′ still encrypts the same plaintext m. Moreover, as
long as the coefficients of ct′′ are sufficiently smaller than q̃2, we can still use the same simplified
decryption formula u′ ← [〈sk, ct′′〉]2e+1 and m← u′〈e〉 ⊕ u′〈0〉.

However, since ct′′ is divisible by 2e
′

then so is u. For one thing this means that u′〈0〉 = 0 so the
decryption procedure can be simplified to m← u′〈e〉. But more importantly, we can divide ct′′ by 2e

′

and compute instead u′′ ← [〈sk, ct′′/2e′〉]2e−e′+1 and m← u′〈e− e′〉. This means that the encryption

of s in the public key can be done relative to plaintext space 2e−e
′

and we only need to extract e− e′
bits rather than e.

In this work we observe that we can do even slightly better by adding to ct′ multiples of q̃ and
also multiples of 2 (or more generally multiples of q̃ and p when recrypting a ciphertext with mod-p
plaintext space). This lets us get a value of e′ which is one larger than what we can get by adding
only multiples of q̃, so we can extract one less digit. See details in Section 5.2.

4This is a slight simplification, the actual formula for p = 2 is m← u〈e〉 ⊕ u〈e− 1〉 ⊕ u〈0〉, see Lemma 5.1.

6

3.2 Our Recryption Procedure

We optimize the GHS recryption procedure and extend it to handle plaintext spaces modulo arbitrary
prime powers pr rather than just p = 2, r = 1. The high-level structure of the procedure remains
roughly the same.

To reduce the complexity as much as we can, we use a special recryption key s̃k = (1, s̃), which is
chosen as sparse as possible (subject to security requirements). As we elaborate in Appendix A, the
number of nonzero coefficients in s̃ plays an extremely important role in the complexity of recryption.5

To enable recryption of mod-pr ciphertexts, we include in the public key a ciphertext c̃t that
encrypts the secret key s̃ relative to a large modulus Q and plaintext space mod-pe+r for some e > r.
Then given a mod-pr ciphertext ct to recrypt, we perform the following steps:

Modulus-switching. Convert ct into another ct′ relative to the special modulus q̃ = pe + 1. We
prove in Lemma 5.1 that for the special modulus q̃, the decryption procedure can be evaluated by
computing u← [〈sk, ct′〉]pe+r and then m← u〈r − 1, . . . , 0〉p − u〈e+ r − 1, . . . , e〉p (mod pr).

Optimization. Add multiples of q̃ and multiples of pr to the coefficients of ct′, making them
divisible by pe

′
for some r ≤ e′ < e without increasing them too much and also without increasing

the noise too much. This is described in Section 5.2. The resulting ciphertext, which is divisible by
pe
′
, is denoted ct′′ = (c′′0, c

′′
1). It follows from the same reasoning as above that we can now compute

u′ ← [〈sk, ct′′/pe′〉]pe−e′+r and then m← −u〈e− e′ + r − 1, . . . , e− e′〉p (mod pr).

Multiply by encrypted key. Evaluate homomorphically the inner product (divided by pe
′
),

u′ ← (c′1 · s + c′0)/p
e′ (mod pe−e

′+r), by setting c̃t
′ ← (c′1/p

e′) · c̃t + (c′0/p
e′ , 0). The plaintext space of

the resulting c̃t
′

is modulo pe−e
′+r.

Note that since we only use plaintext space modulo pe−e
′+r, then we might as well use the same

plaintext space also for c̃t, rather than encrypting it relative to plaintext space modulo pe+r as
described above. This yields somewhat smaller noise, see more details in Appendix A.

Linear transformation. Apply homomorphically a Zpe−e′+r -linear transformation to c̃t
′
, convert-

ing it into ciphertexts that have the coefficients of u′ in the plaintext slots. This linear transformation,
which is the most intricate part of the implementation, is described in Section 4. It uses a tensor
decomposition similar to [1] to reduce complexity, but pays much closer attention to details such as
the mult-by-constant depth and data movements.

Digit extraction. Apply a homomorphic (non-linear) digit-extraction procedure, computing r
ciphertexts that contain the digits e−e′+r−1 through e−e′ of the integers in the slots, respectively,
relative to plaintext space mod-pr. This requires that we generalize the bit-extraction procedure from
[12] to a digit-extraction procedure for any prime power pr ≥ 2, this is done in Section 5.3. Once we
extracted all these digits, we can combine them to get an encryption of the coefficients of m in the
slots (relative to plaintext space modulo pr).

Inverse linear transformation. Finally apply homomorphically the inverse linear transforma-
tion, this time over Zpr , converting the ciphertext into an encryption ct∗ of the plaintext element m
itself. This too is described in Section 4.

5In our implementation we use a Hamming-weight-56 key, which is slightly smaller than the default Hamming-
weight-64-keys that are used elsewhere in HElib.

7

4 The Linear Transformations

In this section we describe the linear transformations that we apply during the recryption procedure
to map the plaintext coefficients into the slots and back. We begin with some additional background.

4.1 Algebraic Background

Throughout this section, we write m = m1 · · ·mt, where the mi’s are pairwise relatively prime
positive integers. We write CRT(h1, . . . , ht) for the unique solution h ∈ {0, . . . ,m− 1} to the system
of congruences h ≡ hi (mod mi) (i = 1, . . . , t), where hi ∈ {0, . . . ,mi − 1} for all i = 1, . . . , t.

Lemma 4.1 Let p be a prime not dividing any of the mi’s. Let d1, . . . , dt be positive integers, where

di is the order of pd1···di−1 modulo mi. Then the order of p modulo m is d
def
= d1 · · · dt. Moreover,

suppose that S1, . . . , St are sets of integers such that the set Si ⊆ {0, . . . ,mi − 1} forms a complete

system of representatives for Z∗mi
/〈pd1···di−1〉 for each i = 1, . . . , t. Then the set S

def
= CRT(S1, . . . , St)

forms a complete system of representatives for Z∗m/〈p〉.

Proof. It suffices to prove the lemma for t = 2. The general case follows by induction on t.

The fact that the order of p modulo m
def
= m1m2 is d

def
= d1d2 is clear by definition. The cardinality

of S1 is φ(m1)/d1 and of S2 is φ(m2)/d2, and so the cardinality of S is φ(m1)φ(m2)/d1d2 = φ(m)/d.
So it suffices to show that distinct elements of S belong to distinct cosets of 〈p〉 in Z∗m.

To this end, let a, b ∈ S, and assume that pfa ≡ b (mod m) for some nonnegative integer f . We
want to show that a = b. Now, since the congruence pfa ≡ b holds modulo m, it holds modulo m1 as
well, and by the defining property of S1 and the construction of S, we must have a ≡ b (mod m1).
So we may cancel a and b from both sides of the congruence pfa ≡ b (mod m1), obtaining pf ≡ 1
(mod m1), and from the defining property of d1, we must have d1 | f . Again, since the congruence
pfa ≡ b holds modulo m, it holds modulo m2 as well, and since d1 | f , by the defining property of
S2 and the construction of S, we must have a ≡ b (mod m2). It follows that a ≡ b (mod m), and
hence a = b. �

The powerful basis. The linear transformations in our recryption procedure make use of the
same tensor decomposition that was used by Alperin-Sheriff and Peikert in [1], which in turn relies
on the “powerful basis” representation of the plaintext space, due to Lyubashevsky et al. [19, 18].
The “powerful basis” representation is an isomorphism

Rpr = Z[X]/(pr,Φm(X))←→ R′pr
def
= Z[X1, . . . , Xt]/(p

r,Φm1(X1), . . . ,Φmt(Xt)),

defined explicitly by the map PowToPoly : R′pr → Rpr that sends (the residue class of) Xi to (the

residue class of) Xm/mi .
Recall that we view an element in Rpr as encoding a vector over a ring E, where E is an extension

ring of Z/(pr) that contains a principal m’th root of unity ζ, and let us define ζi
def
= ζm/mi for i =

1, . . . , t. It follows from the definitions above that for h = CRT(h1, . . . , ht) and α = PowToPoly(α′),
we have α(ζh) = α′(ζh11 , . . . , ζhtt).

Using Lemma 4.1, we can generalize the above to multi-point evaluation. Let S1, . . . , St and S
be sets as defined in the lemma. Then evaluating an element α′ ∈ R′pr at all points (ζh11 , . . . , ζhtt),
where (h1, . . . , ht) ranges over S1× · · · ×St, is equivalent to evaluating the corresponding element in
α ∈ Rpr at all points ζh, where h ranges over S.

8

4.2 The Evaluation Map

With the background above, we can now describe our implementation of the linear transformations.
Recall that these transformations are needed to map the coefficients of the plaintext into the slots
and back. Importantly, it is the powerful basis coefficients that we put in the slots during the first
linear transformation, and take from the slots in the second transformation.

Note that since the two linear transformations are inverse of each other (except modulo different
powers of p), then once we have an implementation of one we also get an implementation of the
other. For didactic reasons we begin by describing in detail the second transformation, and later we
explain how to get from it also the implementation of the first transformation.

The second transformation begins with a plaintext element β that contains in its slots the
powerful-basis coefficients of some other element α, and ends with the element α itself. Important
to our implementation is the view of this transformation as multi-point evaluation of the polynomial
whose coefficients are found in the slots of β. This view depends on the set of representatives S from
Eqn. (2) that determines the plaintext slots to also be a CRT combination of sets of representatives
Si for the mi’s as in Lemma 4.1. If that is the case, then the second transformation begins with an
element β whose slots contain the coefficients of the powerful basis α′ = PowToPoly(α), and ends
with the element α that holds in the slots the values

α(ζh) = α′(ζh11 , . . . , ζhtt)

where the hi’s range over the Si’s and correspondingly h range over S.

Choosing the representatives. Our first order of business is therefore to ensure that the set S
of representatives defined in Eqn. (2) is the same as the set S defined in Lemma 4.1. To facilitate
this (and also other aspects of our implementation), we make some additional requirements on the
value of m and its factorization.6

I. In the terminology of Lemma 4.1, we restrict ourselves to the case where each group
Z∗mi

/〈pd1···di−1〉 is cyclic of order ki, and let its generator be denoted by (the residue class

of) g̃i ∈ {0, . . . ,mi − 1}. Then for i = 1, . . . , t, we set Si
def
= {g̃ei mod mi : 0 ≤ e < ki}.

We define gi
def
= CRT(1, . . . , 1, g̃i, 1, . . . , 1) (with g̃i in the ith position), and use the gi’s as

our hypercube basis with the order of gi set to ki. In this setting, the set S from Lemma 4.1
coincides with the set S in Eqn. (2); that is, we have

S =
{∏t

i=1g
ei
i mod m : 0 ≤ ei < ki

}
= CRT(S1, . . . , St).

II. In the terminology of Lemma Lemma 4.1, we further restrict ourselves to only use factorizations
m = m1 · · ·mt for which d1 = d. (That is, the order of p is the same in Z∗m1

as in Z∗m.) With
this assumption, we have d2 = · · · = dt = 1, and moreover k1 = φ(m1)/d and ki = φ(mi) for
i = 2, . . . , t.

Note that with the above assumptions, the first dimension could be either good or bad, but the other
dimensions 2, . . . , t are always good. This is because pd1···di−1 ≡ 1 (mod m), so also pd1···di−1 ≡ 1
(mod mi), and therefore Z∗mi

/〈pd1···di−1〉 = Z∗mi
, which means that the order of gi in Z∗m (which is

the same as the order of g̃i in Z∗mi
) equals ki.

6As we discuss in Section 6, there are still sufficiently many settings that satisfy these requirements.

9

Packing the coefficients. In designing the linear transformation, we have the freedom to choose
how we want the coefficients of α′ to be packed in the slots of β. Let us denote these coefficients by
cj1,...,jt where each index ji runs over {0, . . . , φ(mi) − 1}, and each cj1,...,jt is in Z/(pr). That is, we
have

α′(X1, . . . , Xt) =
∑

j1,j2,...,jt

cj1,...,jtX
j1
1 X

j2
2 · · ·X

jt
t =

∑
j2,...,jt

(∑
j1

cj1,...,jtX
j1
1

)
Xj2

2 · · ·X
jt
t .

Recall that we can pack d coefficients into a slot, so for fixed j2, . . . , jt, we can pack the φ(m1)
coefficients of the polynomial

∑
j1
cj1,...,jtX

j1
1 into k1 = φ(m1)/d slots. In our implementation we

pack these coefficients into the slots indexed by (e1, j2, . . . , jt), for e1 = 0, . . . , k1 − 1. That is, we
pack them into a single hypercolumn in dimension 1.

4.2.1 The Eval Transformation

The second (inverse) linear transformation of the recryption procedure beings with the element β
whose slots pack the coefficients cj1,...,jt as above. The desired output from this transformation is
the element whose slots contain α(ζh) for all h ∈ S (namely the element α itself). Specifically, we
need each slot of α with hypercube index (e1, . . . , et) to hold the value

α′
(
ζ
g
e1
1

1 , . . . , ζ
g
et
t
t

)
= α

(
ζg

e1
1 ···g

et
t
)
.

Below we denote ζi,ei
def
= ζ

g
ei
i
i . We transform β into α in t stages, each of which can be viewed as

multi-point evaluation of polynomials along one dimension of the hypercube.

Stage 1. This stage beings with the element β, in which each dimension-1 hypercolumn with index

(?, j2, . . . , jt) contains the coefficients of the univariate polynomial Pj2,...,jt(X1)
def
=
∑

j1
cj1,...,jtX

j1
1 .

We transform β into β1 where that hypercolumn contains the evaluation of the same polynomial in
many points. Specifically, the slot of β1 indexed by (e1, j2, . . . , jt) contains the value Pj2,...,jt(ζ1,e1).

By definition, this stage consists of parallel application of a particular Z/(pr)-linear transforma-
tion M1 (namely a multi-point polynomial evaluation map) to each of the k/k1 hypercolumns in
dimension 1. In other words, M1 maps (k1 · d)-dimensional vectors over Z/(pr) (each packed into k1
slots) to k1-dimensional vectors over E. We elaborate on the efficient implementation of this stage
later in this section.

Stages 2, . . . , t. The element β1 from the previous stage holds in its slots the coefficients of the k1
multivariate polynomials

Ae1(X2, . . . , Xt)
def
= α′(ζ1,e1 , X2, . . . , Xt)

=
∑
j2,...,jt

(∑
j1

cj1,...,jtζ
j1
1,e1

)
︸ ︷︷ ︸

slot (e1,j2,...,jt)=Pj2,...,jt
(ζ1,e1)

·Xj2
2 · · ·X

jt
t (e1 = 0, . . . , k1 − 1).

The goal in the remaining stages is to implement multi-point evaluation of these polynomials at all
the points Xi = ζi,ei for 0 ≤ ei < ki. Note that differently from the polynomial α′ that we started
with, the polynomials Ae1 have coefficients from E (rather than from Zpr), and these coefficients are
encoded one per slot (rather than d per slot). As we explain later, this makes it easier to implement
the desired multi-point evaluation. Separating out the second dimension we can write

Ae1(X2, . . . , Xt) =
∑
j3,...,jt

(∑
j2

Pj2,...,jt(ζ1,e1)Xj2
2

)
Xj3

3 · · ·X
jt
t .

10

We note that each dimension-2 hypercolumn in β1 with index (e1, ?, j3, . . . , jt) contains the E-

coefficients of the univariate polynomial Qe1,j3,...,jt(X2)
def
=
∑

j2
Pj2,...,jt(ζ1,e1)Xj2

2 . In Stage 2, we
transform β1 into β2 where that hypercolumn contains the evaluation of the same polynomial in
many points. Specifically, the slot of β2 indexed by (e1, e2, j3 . . . , jt) contains the value

Qe1,j3,...,jt(ζ2,e2) =
∑
j2

Pj2,...,jt(ζ1,e1) · ζj22,e2 =
∑
j1,j2

cj1,...,jtζ
j1
1,e1

ζj22,e2 ,

and the following stages implement the multi-point evaluation of these polynomials at all the points
Xi = ζi,ei for 0 ≤ ei < ki.

Stages s = 3, . . . , t proceed analogously to Stage 2, each time eliminating a single variable Xs

via the parallel application of an E-linear map Ms to each of the k/ks hypercolumns in dimension
s. When all of these stages are completed, we have in every slot with index (e1, . . . , et) the value
α′(ζ1,e1 , . . . , ζt,et), as needed.

Implementing stages 2, . . . , t. For s = 2, . . . , t, we obtain βs from βs−1 by applying the linear
transformation Ms in parallel to each hypercolumn in dimension s. We adapt for that purpose the
HElib matrix-multiplication procedure [14], using only rotations along dimension s. The procedure
from [14] multiplies an n× n matrix M by a n× 1 column vector v by computing

Mv = D0v0 + · · ·+Dn−1vn−1, (3)

where each vi is the vector obtained by rotating the entries of v by i positions, and each Di is a
diagonal matrix whose entries are taken from M . In our case, we perform k/ks such computations
in parallel, one on every hypercolumn along the s dimension, by setting

βs =

ks−1∑
e=0

κs,e · ρes(βs−1), (4)

where the κs,e’s are constants in Rpr obtained by embedding appropriate constants in E in each slot.
Eqn. (4) translates directly into a simple homomorphic evaluation algorithm, just by applying the
same operations to the ciphertexts. The cost in time for stage s is ks − 1 automorphisms and ks
constant-ciphertext multiplications; the cost in depth is a single constant-ciphertext multiplication.

Implementing stage 1. Stage 1 is more challenging, because the map M1 is a Z/(pr)-linear map,
rather than an E-linear map. Nevertheless, we can still use the same diagonal decomposition as in
Eqn. (3), except that the entries in the diagonal matrices are no longer elements of E, but rather,
Z/(pr)-linear maps on E. These maps may be encoded using linearized polynomials, as in Section 2.4,
allowing us to write

β1 =

k1−1∑
e=0

d−1∑
f=0

λe,f · σf
(
ρe1(β)

)
, (5)

where the λe,f ’s are constants in Rpr .
A naive homomorphic implementation of the formula from Eqn. (5) takes O(dk1) automorphisms,

but we can reduce this to O(d+ k1) as follows. Since σf is a ring automorphism, it commutes with
addition and multiplication, so we can rewrite Eqn. (5) as follows:

β1 =

d−1∑
f=0

k1−1∑
e=0

σf
(
σ−f (λe,f) · ρe1(β)

)
=

d−1∑
f=0

σf

(
k1−1∑
e=0

σ−f (λe,f) · ρe1(β)

)
. (6)

11

To evaluate Eqn. (6) homomorphically, we compute encryptions of ρe1(β) for e = 0, . . . , k1 − 1, then
take d different linear combinations of these values, homomorphically computing

γf =

k1−1∑
e=0

σ−f (λe,f) · ρe1(β) (f = 0, . . . , d− 1).

Finally, we can compute an encryption of β1 =
∑d−1

f=0 σ
f (γf) by applying Frobenius maps to the

ciphertexts encrypting the γf ’s, and summing.
If dimension 1 is good, the homomorphic computation of the γf ’s takes the time of k1 − 1

automorphisms and k1d constant-ciphertext multiplications, and the depth of one constant-ciphertext
multiplication. If dimension 1 is bad, we can maintain the same depth by folding the multiplication
by the constants σ−f (λe,f) into the masks used for rotation (see Section 2.3); the time increases to
2(k1 − 1) automorphisms and (2k1 − 1)d constant-ciphertext multiplications.

The entire procedure to compute an encryption of β1 has depth of one constant-ciphertext mul-
tiplication, and it takes time k1 + d− 2 +B(k1 − 1) automorphisms and k1d+B(k1 − 1)d constant-
ciphertext multiplications, where B is a flag which is 1 if dimension 1 is bad and 0 if it is good.

Complexity of Eval. From the above, we get the following cost estimates for computing the Eval
map homomorphically. The depth is t constant-ciphertext multiplications, and the time is at most

• (B + 1)φ(m1)/d+ d+ φ(m1) + · · ·φ(mt) automorphisms, and

• (B + 1)φ(m1) + φ(m2) + · · ·+ φ(mt) constant-ciphertext multiplications.

4.2.2 The Transformation Eval−1

The first linear transformation in the recryption procedure is the inverse of Eval. This transformation
can be implemented by simply running the above stages in reverse order and using the inverse linear
maps M−1s in place of Ms. The complexity estimates are identical.

4.3 Unpacking and Repacking the Slots

In our recryption procedure we have the non-linear digit extraction routine “sandwiched” between
the linear evaluation map and its inverse. However the evaluation map transformations from above
maintain fully-packed ciphertexts, where each slot contains an element of the extension ring E (of
degree d), while our digit extraction routine needs “sparsely packed” slots containing only integers
from Z/(pr).

Therefore, before we can use the digit extraction procedure we need to “unpack” the slots, so as
to get d ciphertexts in which each slot contains a single coefficient in the constant term. Similarly,
after digit extraction we have to “repack” the slots, before running the second transformation.

Unpacking. Let us consider the unpacking procedure in terms of the element β ∈ Rpr . Each slot

of β contains an element of E which we can write as
∑d−1

i=0 aiζ
i, where the ai’s are in Z/(pr). We

want to compute β(0), . . . , β(d−1), so that the corresponding slot of each β(i) contains ai. To obtain
β(i), we need to apply to each slot of β the Z/(pr)-linear map Li : E → Z/(pr) that maps

∑d−1
i=0 aiζ

i

to ai.
Using linearized polynomials, as discussed in Section 2.4, we may write β(i) =

∑d−1
f=0 κi,fσ

f (β),
for constants κi,f ∈ R/(pr). Given an encryption of β, we can compute encryptions of all of the
σf (β)’s and then take linear combinations of these to get encryptions of all of the β(i)’s. This takes

12

the time of d − 1 automorphisms and d2 constant-ciphertext multiplications, and a depth of one
constant-ciphertext multiplication.

While the cost in time of constant-ciphertext multiplications is relatively cheap, it cannot be
ignored, especially as we have to compute d2 of them. In our implementation, the cost is dominated
the time it takes to convert an element in Rpr to its corresponding DoubleCRT representation [11].
It is possible, of course, to precompute and store all d2 of these constants in DoubleCRT format, but
the space requirement is significant: for typical parameters, our implementation takes about 4MB
to store a single constant in DoubleCRT format, so for example with d = 24, these constants take
up almost 2.5GB of space.

This unappealing space/time trade-off can be improved considerably using somewhat more sophis-
ticated implementations. Suppose that in the first linear transformation Eval−1, instead of packing
the coefficients a0, . . . , ad−1 into a slot as

∑
i aiζ

i, we pack them as
∑

i aiσ
i
E(θ), where θ ∈ E is a

normal element. Further, let L′0 : E → Z/(pr) be the Z/(pr)-linear map that sends η =
∑

i aiσ
i
E(θ)

to a0. Then we have L′0(σ
−j(η)) = aj for j = 0, . . . , d− 1. If we realize the map L′0 with linearized

polynomials, and if the plaintext γ has the coefficients packed into slots via a normal element as
above, then we have

β(i) =
d−1∑
f=0

κf · σf−i(γ),

where the κf ’s are constants in Rpr . So we have only d constants rather than d2.
To use this strategy, however, we must address the issue of how to modify the Eval transformation

so that Eval−1 will give us the plaintext element γ that packs coefficients as
∑

i aiσ
i
E(θ). As it turns

out, in our implementation this modification is for free: recall that the unpacking transformation
immediately follows the last stage of the inverse evaluation map Eval−1, and that last stage applies
Z/(pr)-linear maps to the slots; therefore, we simply fold into these maps the Z/(pr)-linear map that
takes

∑
i aiζ

i to
∑

i aiσ
i
E(θ) in each slot.

We note that we can reduce the number of stored constants even further: since L′0 is a map
from E to the base ring Z/(pr), then the κf ’s are related via κf = σf (κ0). Therefore, we can
obtain all of the DoubleCRTs for the κf ’s by computing just one for κ0 and then applying the
Frobenius automorphisms directly to the DoubleCRT for κ0. We note, however, that applying these
automorphisms directly to DoubleCRTs leads to a slight increase in the noise of the homomorphic
computation. We did not use this last optimization in our implementation.

Repacking. Finally, we discuss the reverse transformation, which repacks the slots, taking
β(0), . . . , β(d−1) to β. This is quite straightforward: if ζ̄ is the plaintext element with ζ in each
slot, then β =

∑d−1
i=0 ζ̄

iβ(i). This formula can be evaluated homomorphically with a cost in time of
d constant-ciphertext multiplications, and a cost in depth one constant-ciphertext multiplication.

5 Recryption with Plaintext Space Modulo p > 2

Below we extend the treatment from [12, 1] to handle plaintext spaces modulo p > 2. In Sections
5.1 through 5.3 we generalize the various lemmas to p > 2, in Appendix A we discuss the choice of
parameters, and then in Section 5.4 we explain how these lemmas are put together in the recryption
procedure.

5.1 Simpler Decryption Formula

We begin by extending the simplified decryption formula [12, Lemma 1] from plaintext space mod-2
to any prime-power pr. Recall that we denote by [z]q the mod-q reduction into [−q/2, q/2) (except

13

when q = 2 we reduce to (−1, 1]). Also z〈j, . . . , i〉p denotes the integer whose mod-p expansion
consists of digits i through j in the mod-p expansion of z (and we omit the p subscript if it is clear
from the context).

Lemma 5.1 Let p > 1 be an integer, and let r ≥ 1, e ≥ r + 2 and q = pe + 1. Finally, let z be an

integer such that |z| ≤ q2

4 − q and |[z]q| ≤ q
4 .

• If p is odd then [z]q = z〈r − 1, . . . , 0〉 − z〈e+ r − 1, . . . , e〉 (mod pr).

• If p = 2 then [z]q = z〈r − 1, . . . , 0〉 − z〈e+ r − 1, . . . , e〉 − z〈e− 1〉 (mod 2r).

Proof. We begin with the odd-p case. Denote z0 = [z]q, then z = z0 + kq for some |k| ≤ q
4 − 1, and

hence |z0 + k| ≤ q
4 + q

4 − 1 = (q − 2)/2 = (pe − 1)/2. We can write

z = z0 + kq = z0 + k(pe + 1) = z0 + k + pek. (7)

This means in particular that z = z0 + k (mod pr), and also since the mod-p representation of the
sum w = z0 + k has only 0’s in positions e and up then k〈r − 1, . . . , 0〉 = z〈e+ r − 1, . . . , e〉. It
follows that

z0〈r − 1, . . . , 0〉 = z〈r − 1, . . . , 0〉 − k〈r − 1, . . . , 0〉 = z〈r − 1, . . . , 0〉 − z〈e+ r − 1, . . . , e〉 (mod pr).

The proof for the p = 2 case is similar, but we no longer have the guarantee that the high-order
bits of the sum w = z0 + k are all zero. Hence from Eqn. (7) we can only deduce that

z〈e+ r − 1, . . . , e〉 = w〈e+ r − 1, . . . , e〉+ k〈r − 1, . . . , 0〉 (mod 2r),

and also that z〈e− 1〉 = w〈e− 1〉.
Since |w| ≤ |z0|+ |k| < bq/2c = 2e−1, then the bits in positions e−1 and up in the representation

of w are either all zero if w ≥ 0, or all one if w < 0. In particular, this means that

w〈e+ r − 1, . . . , e〉 =

{
0 if w ≥ 0
−1 if w < 0

}
= − w〈e− 1〉 = − z〈e− 1〉 (mod 2r).

Concluding, we therefore have

z0〈r − 1, . . . , 0〉 = z〈r − 1, . . . , 0〉 − k〈r − 1, . . . , 0〉
= z〈r − 1, . . . , 0〉 −

(
z〈e+ r − 1, . . . , e〉 − w〈e+ r − 1, . . . , e〉

)
= z〈r − 1, . . . , 0〉 − z〈e+ r − 1, . . . , e〉 − z〈e− 1〉 (mod 2r). �

5.2 Making an Integer Divisible By pe
′

As sketched in Section 3, we use the following lemma to reduce to number of digits that needs to be
extracted, hence reducing the time and depth of the digit-extraction step.

Lemma 5.2 Let z be an integer, and let p, q, r, e′ be positive integers s.t. e′ ≥ r and q = 1 (mod pe
′
).

Also let α be an arbitrary real number in [0, 1]. Then there are integer coefficients u, v such that

z + u · pr + v · q = 0 (mod pe
′
)

and moreover u, v are small. Specifically |u| ≤ dαpe′−1/2e and |v| ≤ pr(12 + b(1− α)pe
′−1/2c).

14

Proof. Since q, p are co-prime then there exists v′ ∈ (−pr/2, pr/2] s.t. z′ = z + v′q = 0 (mod pr).

Let δ = −z′ · p−r mod pe
′−1, reduced into the interval [−p

e′−1

2 , p
e′−1

2], so we have |δ| ≤ pe
′−1/2 and

z′ + prδ = 0 (mod pe
′
). Denote β = 1− α and consider the integer

z′′
def
= z′ + dαδe · pr + bβδcpr · q.

On one hand, we have that z′′ = z + u · pr + v · q with |u| = |dαδe| ≤ |dαpe′−1/2e and |v| =
|v′ + prbβδc| ≤ pr(12 + bβpe′−1/2c). On the other hand since q = 1 (mod pe

′
) then we also have

z′′ = z′ + pr(dαδe+ bβδc) = z′ + prδ = 0 (mod pe
′
). �

Discussion. Recall that in our recryption procedure we have a ciphertext ct that encrypts some m
with respect to modulus q and plaintext space mod-pr, and use the lemma above to convert it into
another ciphertext ct′ that encrypts the same thing but is divisible by pe

′
, and by doing so we need

to extract e′ fewer digits in the digit-extraction step.
Considering the elements u ← 〈sk, ct〉 and u′ ← 〈sk, ct′〉 (without any modular reduction), since

sk is integral then adding multiples of q to the coefficients of ct does not change [u]q, and also as
long as we do not wrap around q then adding multiples of pr does not change [[u]q]pr . Hence as long
as we only add small multiples of pr then we have [[u]q]pr = [[u′]q]pr , so ct and ct′ still encrypt the
same plaintext. However in our recryption procedure we need more: to use our simpler decryption
formula from Lemma 5.1 we not only need the noise magnitude ‖[u′]q‖ to be smaller than q

4 , but the

magnitude of u′ itself (before mod-q reduction) must be smaller than q2

4 − q.
In essence, the two types of additive terms consume two types of “resources:” adding multiples

of q increases the magnitude of u′, and adding multiple of pr increases the magnitude of [u′]q. The
parameter α from Lemma 5.2 above lets us trade-off these two resources: smaller α means slower
increase in ‖[u′]q‖ but faster increase in ‖u′‖, and vice versa for larger α. As we discuss in Appendix A,
the best trade-off is often obtained when α is just under 1

2 ; our implementation tries to optimize this
parameter, and for many settings it uses α ≈ 0.45.

5.3 Digit-Extraction for Plaintext Space Modulo pr

The bit-extraction procedure that was described by Gentry et al. in [12] and further optimized by
Alperin-Sheriff and Peikert in [1] is specific for the case p = 2e. Namely, for an input ciphertext
relative to mod-2e plaintext space that contains an integer z in some slot, then the procedure can
be used to compute in the same slot the i’th top bit of z, relative to a plaintext space mod-2e−i+1.
Below we show how to extend this bit-extraction procedure to a digit-extraction also when p is an
odd prime.

The main observation underlying the original bit-extraction procedure, is that squaring an integer
keeps the least-significant bit unchanged but inserts zeros in the higher-order bits. Namely, if b is
the least significant bit of the integer z and moreover z = b (mod 2e), e ≥ 1, then squaring z we get
z2 = b (mod 2e+1). Therefore, z − z2 is divisible by 2e, and the LSB of (z − z2)/2e is the e’th bit
of z.

Unfortunately the same does not hold when using a base p > 2. Instead, we show below that for
any exponent e there exists some degree-p polynomial Fe(·) (but not necessarily Fe(X) = Xp) such
that when z = z0 (mod pe) then Fe(z) = z0 (mod pe+1). Hence z − Fe(z) is divisible by pe, and the
least-significant digit of (z−Fe(z))/pe is the e’th digit of z. The existence of such polynomial Fe(X)
follows from the simple derivation below.

Lemma 5.3 For every prime p and exponent e ≥ 1, and every integer z of the form z = z0 + pez1
(with z0, z1 integers, z0 ∈ [p]), it holds that zp = z0 (mod p), and zp = zp0 (mod pe+1).

15

Digit-Extractionp(z, e): // Extract e’th digit in base-p representation of z

1. w0,0 ← z
2. For k = 0 to e− 1
3. y ← z
4. For j = 0 to k
5. wj,k+1 ← Fe(wj,k) // Fe from Corollary 5.5, for p = 2 we have Fe(X) = X2

6. y ← (y − wj,k+1)/p
7. wk+1,k+1 ← y

8. Return we,e

Figure 1: The digit extraction procedure

Proof. The first equality is obvious, and the proof of the second equality is just by the binomial
expansion of (z0 + pez1)

p. �

Corollary 5.4 For every prime p there exist a sequence of integer polynomials f1, f2, . . ., all of
degree ≤ p − 1, such that for every exponent e ≥ 1 and every integer z = z0 + pez1 (with z0, z1
integers, z0 ∈ [p]), we have

zp = z0 +
e∑
i=1

fi(z0)p
i (mod pe+1).

Proof. From Lemma 5.3 we know that the mod-p digits of zp modulo-pe+1 depend only on z0, so there
exist some polynomials in z0 that describe them, fi(z0) = zp〈i〉p. Since these fi’s are polynomials
from Zp to itself, then they have degree at most p− 1. Moreover, by the 1st equality in Lemma 5.3
we have that the first digit is exactly z0. �

Corollary 5.5 For every prime p and every e ≥ 1 there exist a degree-p polynomial Fe, such that
for every integers z0, z1 with z0 ∈ [p] and every 1 ≤ e′ ≤ e we have Fe(z0 + pe

′
z1) = z0 (mod pe

′+1).

Proof. Denote z = z0 + pe
′
z1. Since z = z0 (mod pe

′
) then fi(z0) = fi(z) (mod pe

′
). This implies

that for all i ≥ 1 we have fi(z0)p
i = fi(z)p

i (mod pe
′+1), and of course also for i ≥ e′ + 1 we have

fi(z)p
i = 0 (mod pe

′+1). Therefore, setting Fe(X) = Xp −
∑e

i=1 fi(X)pi we get

Fe(z) = zp −
e∑
i=1

fi(z)p
i = zp −

e′∑
i=1

fi(z0)p
i = z0 (mod pe

′+1). �

We know that for p = 2 we have Fe(X) = X2 for all e, and one can verify that also for p = 3
we have Fe(X) = X3 for all e (when considering the balanced mod-3 representation), but for larger
primes we no longer have Fe(X) = Xp.

The digit-extraction procedure. Just like in the base-2 case, in the procedure for extracting the
e’th base-p digit from the integer z =

∑
i zip

i proceeds by computing integers wj,k (k ≥ j) such that
the lowest digit in wj,k is zj , and the next k − j digits are zeros. The code in Figure 1 is purposely
written to be similar to the code from [1, Appendix B], with the only difference being in Line 5 where
we use Fe(X) rather than X2.

In our implementation we compute the coefficients of the polynomial Fe during the first call
to the digit-extraction procedure for plaintext space mod-pe, and then store it for future use. In
the procedure itself, we apply the polynomial-evaluation procedure from Appendix B to compute
Fe(wj,k) in Line 5. We note that just as in [12, 1], the homomorphic division-by-p operation is done

16

by multiplying the ciphertext by the constant p−1 mod q, where q is the current modulus. Since
the encrypted values are guaranteed to be divisible by p, then this has the desired effect and also it
reduces the noise magnitude by a factor of p. Correctness of the procedure from Figure 1 is proved
exactly the same way as in [12, 1], the proof is omitted here.

5.3.1 An optimization for p = 2, r ≥ 2.

As it turns out, for p = 2 we can sometimes extract several consecutive bits a little cheaper than
what the procedure above implies. Specifically, it turns out that for p = 2, e ≥ 0 and r ≥ 2 we can
compute the integer z〈e+ r, . . . , e〉 by extracting only e + r − 1 bits (rather than e + r of them).
Specifically, when applying the procedure from Figure 1 (which for p = 2 is identical to the one from
[1, Appendix B]), it turns out that we get

z〈e+ r, . . . , e〉 =

e+r−1∑
j=r

2j−rwj,e+r−1 (mod 2e+r+1).

Note: the above would have been an immediate corollary from the correctness of the bit-extraction
procedure if we added the terms 2j−rwj,e+r and let the index j go up to e + r, but in this case we
can stop one step earlier and the result still holds.

To see why this works, observe that (by correctness), when we assign wk+1,k+1 ← y in line 7
then it must be the case that LSB(y) = z〈k + 1〉, and in subsequent iterations we just square wk+1

so as to get more zeros in higher-order bits, without changing the LSB. Recall also that squaring
indeed has the desired effect since for any i ≥ 1 and any bit b and integer n we have (b+ 2in)2 = b
(mod 2i+1). To prove the optimization, we need two additional observations:

Observation 1. For any bit b and integer n we have (b+ 2n)4 = b (mod 16).

Note that this is not a corollary of the squaring property above — that property only gives b (mod 8),
but in fact for this particular case we get one extra zero. (This holds only in this particular step, for
later steps we only get one additional zero per squaring.)

Observation 2. After line 7 in Figure 1, we always have z =
∑k+1

j=0 2jwj,k+1.

This can be verified by inspection: we start in line 3 from y = z, and at every step we subtract one
wj and divide by two, so adding them back with their respective powers of two gives back z.

Correctness now follows: Let us denote wj
def
= wj,e+r−1 so we will not have to carry this extra

index everywhere. Because of the first observation, the wj ’s for j = 0, 1, ..., e + r − 3 have an extra
zero bit, so for these wj ’s we have wj = z〈j〉 (mod 2e+r−j+1), not just (mod 2e+r−j). Denoting
vj = 2jwj , this means that the only vj ’s that potentially have a nonzero bit in position e + r are
ve+r−2 and ve+r−1. Also by correctness, for lower bit positions j < e + r, only vj potentially has
nonzero bit in position j, and all the other vj ’s have zero in that position. Namely, we have

bit position: ? e+ r e+ r − 1 e+ r − 2 e+ r − 3 . . . 1 0

v0 = w0 = ? 0 0 0 0 0 z〈0〉
v1 = 2w1 = ? 0 0 0 0 z〈1〉 0

...
...

ve+r−3 = 2e+r−3we+r−3 = ? 0 0 0 z〈e+ r − 3〉 0 0
ve+r−2 = 2e+r−2we+r−2 = ? σ 0 z〈e+ r − 2〉 0 0 0
ve+r−1 = 2e+r−1we+r−1 = ? τ z〈e+ r − 1〉 0 0 0 0

for some two bits σ, τ (where the ?’s are bits above position e+ r, which we do not care about).

17

This means that when adding
∑e+r−1

j=0 vj , we have no carry bits upto position e+ r. But by the
second observation the sum of all these vj ’s is z, so the two top bits σ, τ must satisfy σ⊕τ = z〈e+ r〉.
We conclude that when adding

∑e+r−1
j=e vj , we get all the bits z〈e+ r, . . . , e〉 which is what we needed

to prove.

5.4 Putting Everything Together

Having described all separate parts of our recryption procedure, we now explain how they are com-
bined in our implementation.

Initialization and parameters. Given the ring parameter m (that specifies the mth cyclotomic
ring of integers R = Z[X]/Φm(X)) and the plaintext space pr, we compute the recryption parameters
as explained in Appendix A. That is, we use compute the Hamming weight of recryption secret key
t ≥ 56, some value of α (which is often α ≈ 0.45), and some values for e, e′ where e − e′ − r ∈
{dlogp(t+ 2)e − 1, dlogp(t+ 2)e}.

We also pre-compute some key-independent tables for use in the linear transformations, with
the first transformation using plaintext space pe−e

′+r and the second transformation using plaintext
space pr.

Key generation. During key generation we choose in addition to the “standard” secret key sk
also a separate secret recryption key s̃k = (1, s̃), with s̃ having Hamming weight t. We include in the
secret key both a key-switching matrix from sk to s̃k, and a ciphertext c̃t that encrypts s̃ under key
sk, relative to plaintext space pe−e

′+r.

The recryption procedure itself. When we want to recrypt a mod-pr ciphertext ct relative to
the “standard” key sk, we first key-switch it to s̃k and modulus-switch it to q̃ = pe + 1, then make
its coefficients divisible by pe

′
using the procedure from Lemma 5.2, thus getting a new ciphertext

ct′ = (c′0, c
′
1). We then compute the homomorphic inner-product divided by pe

′
, by setting ct′′ =

(c′1/p
e′) · c̃t + (0, c′0/p

e′).
Next we apply the first linear transformation (the map Eval−1 from Section 4.2), moving to the

slots the coefficients of the plaintext u′ that is encrypted in ct′′. The result is a single ciphertext
with fully packed slots, where each slot holds d of the coefficients from u′. Before we can apply
the digit-extraction procedure from Section 5.3, we therefore need to unpack the slots, so as to put
each coefficient in its own slot, which results in d “sparsely packed” ciphertexts (as described in
Section 4.3).

Next we apply the digit-extraction procedure from Section 5.3 to each one of these d “sparsely
packed” ciphertexts. For each one we extract the digits upto e+ r− e′ (or upto e+ r− e′− 1 if p = 2
and r > 2), and combine the top digits as per Lemma 5.1 to get in the slots the coefficients of the
plaintext polynomial m (one coefficient per slot). The resulting ciphertexts all have plaintext space
mod-pr.

Next we re-combine the d ciphertext into a single fully-packed ciphertext (as described in Sec-
tion 4.3) and finally apply the second linear transformation (the map Eval described in Section 4.2).
This completes the recryption procedure.

6 Implementation and Performance

As discussed in Section 4.2, our algorithms for the linear transformations rely on the parameter m
having a fairly special form. Luckily, there are quite a few such m’s, which we found by brute-force

18

cyclotomic ring m 21845 18631 28679 35113
=257·5·17 =601·31 =241·17·7 =(73·13)·37

lattice dim. φ(m) 16384 18000 23040 31104
plaintext space GF(216) GF(225) GF(224) GF(236)
number of slots 1024 720 960 864
security level 76 110 96 159
before/after levels 22/10 20/10 24/11 24/12
initialization (sec) 177 248 224 694
linear transforms (sec) 127 131 123 325
digit extraction (sec) 193 293 342 1206
total recrypt (sec) 320 424 465 1531
space usage (GB) 3.4 3.5 3.5 8.2

Table 1: Experimental results with plaintext space GF(2d)

cyclotomic ring m 45551 51319 42799 49981
=(41·11)·101 =(19·73)·37 = 337·127 =331·151

lattice dim. φ(m) 40000 46656 42336 49981
plaintext space GF(1740) GF(12736) R(256, 21) R(256, 30)
number of slots 1000 1296 2016 1650
security level 106 161 79 91
before/after levels 38/10 32/11 52/6 56/10
initialization (sec) 1148 2787 1202 1533
linear transforms (sec) 735 774 2265 2834
digit extraction (sec) 3135 1861 8542 14616
total recrypt (sec) 3870 2635 10807 17448
space usage (GB) 14.8 39.9 15.6 21.6

Table 2: Experimental results with other plaintext spaces

search. We ran a simple program that searches through a range of possible m’s (odd, and not divisible
by p, and not prime). For each such m, we first compute the order d of p mod m. If this exceeds
a threshold (we chose a threshold of 100), we skip this m. Next, we compute the factorization of
m into prime powers as m = m1 · · ·mt. We then find all indexes i such that p has order d mod mi

and all pairs of indexes i, j such that p has order d mod mimj . If we find none, we skip this m;
otherwise, we choose one such index, or pair of indexes, in such a way to balance the time and depth
complexity of the linear transformations (so mi or mimj becomes the new m1, and the other prime
power factors are ordered arbitrarily).

For example, with p = 2, we processed all potential m’s between 16,000 and 64,000. Among these,
there were a total of 377 useful m’s with 15, 000 ≤ φ(m) ≤ 60, 016, with a fairly even spread (the
largest gap between successive φ(m)’s was less than 2,500, and there were no other gaps that exceeded
2,000). So while such useful m’s are relatively rare, there are still plenty to choose from. We ran this
parameter-generation program to find potential settings for plaintext-space modulo p = 2, p = 17,
p = 127, and pr = 28, and manually chose a few of the suggested values of m for our tests.

For each of these values of m, p, r, we then run a test in which we chose three random keys,
and performed recryption three times per key (for each key recrypting the same ciphertext over and
over). These tests were run on a five-year-old IBM BladeCenter HS22/7870, with two Intel X5570
(4-core) processors, running at 2.93GHz. All of our programs are single-threaded, so only one core
was used in the computations. Tables 1 and 2 summarize the results form our experiments.

In each table, the first row gives m and its factorization into prime powers. The first factor (or
pair of factors, if grouped by parentheses) shows the value that was used in the role of m1 (as in

19

Section 4.2). The second row gives φ(m). The third row gives the plaintext space, i.e., the field/ring
that is embedded in each slot (here, R(pr, d) means a ring extension of degree d over Z/(pr)). The
fourth row gives the number of slots packed into a single ciphertext. The fifth row gives the effective
security level, computed using the formula that is used in HElib, taken from [11, Eqn.(8)]. The sixth
row gives the levels of ciphertext just before recryption (i.e., the ciphertext which is included in the
public key) and just after the end of the recryption procedure. The difference accounts for the depth
of recryption, and the after-levels is roughly the circuit-depth that an application can compute on
the resulting ciphertext before having to recrypt again. We tried to target 10 remaining levels, to
allow nontrivial processing between recryptions.

The remaining rows show the resources used in performing a recryption. The timing results
reflect the average of the 9 runs for each setting, and the memory usage is the top usage among all
these runs. Row 7 gives a one-time initialization cost (all times in seconds). Row 10 (in boldface)
gives the total time for a single recryption, while the previous two rows give a breakdown of that
time (note that the time for the linear transforms includes some trivial preprocessing time, as well
as the less trivial unpacking/repacking time). The last row gives the memory used (in gigabytes).

7 Future work

Eventually, we would like to enhance our implementations to take advantage of multicore computing
environments. There are at least two levels at which the implementation could be easily parallelized.
At a low level, the conversions between DoubleCRT and polynomial representation in HElib could be
easily parallelized, as the FFT’s for the different primes can be done in parallel (as already observed in
[24]). Our bootstrapping procedure could also be parallelized at a higher level: the rotations in each
stage of the linear transformation step can be done in parallel, as can the d different digit extraction
steps. Doing the parallel steps at a higher level could possibly yield a better work/overhead ratio,
but this would have to be confirmed experimentally.

Another direction to explore is the possibility of speeding up the digit extraction procedure in the
special case where the values in the ciphertext slots are constants in the base ring Z/(pr) (or, more
generally, lie in some sub-ring of the ring E contained in each slot). Right now, our bootstrapping
algorithm does not exploit this: even in this special case, our digit extraction algorithm still has to
be applied to d ciphertexts. In principle, we should be able to reduce the number of applications
of the digit extraction significantly (from d to 1, if the values in the slots are constants); however,
it is not clear how to do this while maintaining the structure (and therefore efficiency) of the linear
transformations.

Another direction to explore is to try to find a better way to represent constants. In HElib,
the most compact way to store constants in Rpr is also the most natural: as coefficient vectors of
polynomials over Z/(pr). However, in this representation, a surprisingly significant amount of time
may be spent in homomorphic computations converting these constants to DoubleCRT format. One
could precompute and store these DoubleCRT representations, but this can be quite wasteful of
space, as DoubleCRT’s occupy much more space than the corresponding polynomials over Z/(pr).
We may state as an open question: is there a more compact representation of elements of Z/(pr)[X]
that can be converted to DoubleCRT format in linear time?

References

[1] J. Alperin-Sheriff and C. Peikert. Practical bootstrapping in quasilinear time. In R. Canetti
and J. A. Garay, editors, Advances in Cryptology - CRYPTO’13, volume 8042 of Lecture Notes
in Computer Science, pages 1–20. Springer, 2013.

20

[2] J. Alperin-Sheriff and C. Peikert. Faster bootstrapping with polynomial error. In J. A. Garay
and R. Gennaro, editors, Advances in Cryptology - CRYPTO 2014, Part I, pages 297–314.
Springer, 2014.

[3] Z. Brakerski. Fully homomorphic encryption without modulus switching from classical gapsvp.
In R. Safavi-Naini and R. Canetti, editors, CRYPTO, volume 7417 of Lecture Notes in Computer
Science, pages 868–886. Springer, 2012.

[4] Z. Brakerski, C. Gentry, and V. Vaikuntanathan. (leveled) fully homomorphic encryption with-
out bootstrapping. ACM Transactions on Computation Theory, 6(3):13, 2014.

[5] Z. Brakerski and V. Vaikuntanathan. Lattice-based FHE as secure as PKE. In M. Naor, editor,
Innovations in Theoretical Computer Science, ITCS’14, pages 1–12. ACM, 2014.

[6] L. Ducas and D. Micciancio. FHE Bootstrapping in less than a second. Cryptology ePrint
Archive, Report 2014/816, 2014. http://eprint.iacr.org/.

[7] C. Gentry. Fully homomorphic encryption using ideal lattices. In Proceedings of the 41st ACM
Symposium on Theory of Computing – STOC 2009, pages 169–178. ACM, 2009.

[8] C. Gentry and S. Halevi. Implementing gentry’s fully-homomorphic encryption scheme. In
Advances in Cryptology - EUROCRYPT’11, volume 6632 of Lecture Notes in Computer Science,
pages 129–148. Springer, 2011.

[9] C. Gentry, S. Halevi, C. Peikert, and N. P. Smart. Field switching in BGV-style homomorphic
encryption. Journal of Computer Security, 21(5):663–684, 2013.

[10] C. Gentry, S. Halevi, and N. Smart. Fully homomorphic encryption with polylog overhead. In
”Advances in Cryptology - EUROCRYPT 2012”, volume 7237 of Lecture Notes in Computer
Science, pages 465–482. Springer, 2012. Full version at http://eprint.iacr.org/2011/566.

[11] C. Gentry, S. Halevi, and N. Smart. Homomorphic evaluation of the AES circuit. In ”Advances
in Cryptology - CRYPTO 2012”, volume 7417 of Lecture Notes in Computer Science, pages
850–867. Springer, 2012. Full version at http://eprint.iacr.org/2012/099.

[12] C. Gentry, S. Halevi, and N. P. Smart. Better bootstrapping in fully homomorphic encryption.
In Public Key Cryptography - PKC 2012, volume 7293 of Lecture Notes in Computer Science,
pages 1–16. Springer, 2012.

[13] C. Gentry, A. Sahai, and B. Waters. Homomorphic encryption from learning with errors:
Conceptually-simpler, asymptotically-faster, attribute-based. In R. Canetti and J. A. Garay,
editors, Advances in Cryptology - CRYPTO 2013, Part I, pages 75–92. Springer, 2013.

[14] S. Halevi and V. Shoup. Algorithms in HElib. In J. A. Garay and R. Gennaro, editors, Advances
in Cryptology - CRYPTO 2014, Part I, pages 554–571. Springer, 2014. Long version at http:

//eprint.iacr.org/2014/106.

[15] S. Halevi and V. Shoup. HElib - An Implementation of homomorphic encryption. https:

//github.com/shaih/HElib/, Accessed September 2014.

[16] J. Hoffstein, J. Pipher, and J. H. Silverman. NTRU: A ring-based public key cryptosystem. In
J. Buhler, editor, ANTS, volume 1423 of Lecture Notes in Computer Science, pages 267–288.
Springer, 1998.

21

[17] A. López-Alt, E. Tromer, and V. Vaikuntanathan. On-the-fly multiparty computation on the
cloud via multikey fully homomorphic encryption. In STOC, pages 1219–1234, 2012.

[18] V. Lyubashevsky, C. Peikert, and O. Regev. ”a toolkit for ring-LWE cryptography”. In T. Jo-
hansson and P. Q. Nguyen, editors, Advances in Cryptology - EUROCRYPT 2013, pages 35–54.
Springer, 2013.

[19] V. Lyubashevsky, C. Peikert, and O. Regev. On ideal lattices and learning with errors over
rings. J. ACM, 60(6):43, 2013. Early version in EUROCRYPT 2010.

[20] E. Orsini, J. van de Pol, and N. P. Smart. Bootstrapping BGV ciphertexts with a wider choice
of p and q. Cryptology ePrint Archive, Report 2014/408, 2014. http://eprint.iacr.org/.

[21] M. Paterson and L. J. Stockmeyer. On the number of nonscalar multiplications necessary to
evaluate polynomials. SIAM J. Comput., 2(1):60–66, 1973.

[22] O. Regev. On lattices, learning with errors, random linear codes, and cryptography. J. ACM,
56(6), 2009.

[23] R. Rivest, L. Adleman, and M. Dertouzos. On data banks and privacy homomorphisms. In
Foundations of Secure Computation, pages 169–177. Academic Press, 1978.

[24] K. Rohloff and D. B. Cousins. A scalable implementation of fully homomorphic encryption
built on NTRU. 2nd Workshop on Applied Homomorphic Cryptography and Encrypted Com-
puting, WAHC’14, 2014. Available at https://www.dcsec.uni-hannover.de/fileadmin/ful/
mitarbeiter/brenner/wahc14_RC.pdf, accessed September 2014.

[25] S. Roman. Field Theory. Springer, 2nd edition, 2005.

[26] N. P. Smart and F. Vercauteren. Fully homomorphic SIMD operations. Des. Codes Cryptogra-
phy, 71(1):57–81, 2014. Early verion at http://eprint.iacr.org/2011/133.

A Parameters for Digit Extraction

Here we explain our choice of parameters for the recryption procedure (e, e′, α, etc.). These parame-
ters depend on the cyclotomic ring Rm, plaintext space pr, and the l1-norm of the recryption secret
key s̃k (which we denote t).

We begin the recryption procedure with a noise-n ciphertext (c0, c1), relative to plaintext space
pr, a secret key s̃k = (1, s̃) with ‖s‖1 ≤ t, and modulus q̃ = pe + 1. This means that for the element
u← 〈s̃k, ct〉 (without modular reduction) we have ‖[u]q‖∞ < n and ‖u‖∞ < (t+ 1)q/2, and that the
plaintext element encrypted in ct is m← [[u]q]pr . 7 We then make the coefficients of ct divisible by
pe
′

using Lemma 5.2, thus getting another ciphertext

ct′ = (c′0, c
′
1) = (c0 + pru0 + qv0, c1 + pru1 + qv1).

Consider the effect of this modification on the coefficients of u′ ← 〈s̃k, ct′〉 = c′0 + s̃ · c1. Clearly
we have increased both the noise (due to the added pr terms) and the magnitude of the coefficients

7The term (t + 1)q/2 assumes no “ring constant”, i.e. ‖s · c1‖ ≤ ‖s‖1 · ‖c1‖. This is not always true but it makes a
reasonable heuristic, and we use it for most of this section.

22

(mostly due to the added q terms). Specifically, we now have

‖u′‖ ≤ ‖u‖+ (‖u0‖+ t‖u1‖)pr + (‖v0‖+ t‖v1‖)q

≤ (t+ 1)

(
q

2
+

⌈
αpr+e

′−1

2

⌉
︸ ︷︷ ︸

<q

+qpr
(1

2
+

⌊
(1− α

)
pe
′−1

2

⌋))

≤ (t+ 1)q
(
1 + (1− α)pr+e

′−1/2 + pr/2
)
,

‖[u′]q‖ ≤ ‖[u]q‖+ (‖u0‖+ t‖u1‖)pr ≤ n+ (t+ 1)dαpr+e′−1/2e ≤ n+ (t+ 1)(1 + αpr+e
′−1/2).

To be able to still use Lemma 5.1 we need to have ‖[u′]q‖ < q/4 and ‖u′‖ < q2/4 − q. Namely we
need both

n+ (t+ 1)(1 + αpr+e
′−1/2) < q/4 and (t+ 1)

(
1 + (1− α)pr+e

′−1/2 + pr/2
)
< q/4− 1,

or in other words

q/4 ≥ max

{
(t+ 1)

(
1 + αpr+e′−1

2

)
+ n,

(t+ 1)
(
1 + (1−α)pr+e′−1

2

)
+ (t+1)pr

2 + 1

}
. (8)

To get good parameters we would like to set α, e′ such that these two constraints are roughly equiv-
alent. Ignoring for simplicity the +1 at the end of the bottom constraint, we would want to set the
parameters so that

(t+ 1)
(
1 +

αpr+e
′−1

2

)
+ n = (t+ 1)

(
1 +

(1− α)pr+e
′−1

2

)
+

(t+ 1)pr

2
⇔ α =

1

2
− n− (t+ 1)pr/2

(t+ 1)pr+e′−1
.

Note that with out parameters the noise n is much larger than (t+ 1)pr/2: The noise after modulus-
switching is at least as large as the modulus-switching added factor (cf. [4, Lemma 4]), and the heuris-
tic estimate for that added factor (taken from the HElib design document) is pr ·

√
(t+ 1)φ(m)/12.

Since we use Hamming weight t � φ(m) for the secret key s̃, then
√

(t+ 1)φ(m) � (t + 1),
which means that n ≈ pr ·

√
(t+ 1)φ(m) � pr · (t + 1). Hence to get good parameters we need

α ≈ 1
2 − n/((t+ 1)pr+e

′−1, and since we can only use α ∈ [0, 1] then it means that we need to set e′

large enough in order to get α > 0, and α tends to 1/2 as e′ grows.
To get a first estimate, we assume that we have e, e′ large enough to get α ≈ 1/2, and we analyze

how large must we make e− e′. With α ≈ 1/2 and the two terms in Eqn. (8) roughly equal, we can
simplify that equation to get

q/4 = (pe + 1)/4 > (t+ 1)
(
1 +

pr+e
′−1

4
+
pr

2

)
+ 1.

With e′ � 1 the most significant term on the right-hand side is (t+ 1)pr+e
′−1/4, so we can simplify

further to get pe/4 > (t + 1 + ε)pr+e
′−1/4 (with ε a small quantity that captures all the low-order

terms), or e− e′ > r− 1 + logp(t+ 1 + ε). In our implementation we therefore try to use the setting
e− e′ = r − 1 + dlogp(t+ 2)e, and failing that we use e− e′ = r + dlogp(t+ 2)e.

In more detail, on input m, p, r we set an initial value of t = 56, then set γ
def
= (t+ 1)/pdlogp(t+2)e.

Plugging e− e′ = r − 1 + dlogp(t+ 2)e in Eqn. (8) and ignoring some ‘+1’ terms, we get

pe > max

{
4(t+ n)

1− 2αγ
,

2(t+ 1)pr

1− 2(1− α)γ

}
. (9)

23

m pr e e′ α t B cm Comments

21854 2 15 9 0.453112 56 23 16.0
18631 2 15 9 0.45291 56 23 0.5
28679 2 15 9 0.452414 56 23 10.0
35115 2 13 6 0 59 25 4.0 “conservative” flag

45551 17 4 2 0 134 25 20.0
51319 127 3 2 0 56 25 2.0 forced t = 56
42799 28 23 10 0.451488 57 25 0.2 frequent mod-switching
49981 28 23 10 0.451254 57 25 1.0 frequent mod-switching

Table 3: Parameters in our different tests. B is the width (in bits) of levels in the modulus-chain,
and cm is the experimental “ring constant” that we used.

For the noise n we substitute twice the modulus-switching added noise term, n
def
= pr

√
(t+ 1)φ(m)/3,

and then we solve for the value α ∈ [0, 1] that minimizes the right-hand side of Eqn. (9). This gives
us a lower-bond on pe.

Next we check that this lower-bound is not too big: recall that at the beginning of the recryption
process we multiply the ciphertext c̃t from the public key by the “constant” c′1/p

e′ , whose entries can
be as large as q2/(4pe

′
) ≈ p2e−e′−2. Hence as we increase e we need to multiply by a larger constant,

and the noise grows accordingly. In the implementation we define “too big” (somewhat arbitrarily)
to be anything more than half the ratio between two successive moduli in our chain. If pe is “too
big” then we reset e − e′ to be one larger, which means re-solving the same system but this time
using γ′ = γ/p instead of γ.

Once we computed the values e, e′, α, we finally check if it is possible to increase our initial t = 56
(i.e., the recryption key weight) without violating Eqn. (9). This gives us the final values for all of
our constants. We summarize the parameters that we used in our tests in Table 3.

Caveats. The BGV implementation in HElib relies on a myriad of parameters, some of which are
heuristically chosen, and so it takes some experimentation to set them all so as to get a working
implementation with good performance. Some of the adjustments that we made in the course of our
testing include the following:

• HElib relies on a heuristic noise estimate in order to decide when to perform modulus-switching.
One inaccuracy of that estimate is that it assumes that ‖xy‖ ≤ ‖x‖ · ‖y‖, which does not
quite hold for the bases that are used in HElib for representing elements in the ring R =
Z[X]/(Φm(X)). To compensate, the library contains a “ring constant” cm which is set by
default to 1 but can be adjusted by the calling application, and then it sets estimate(‖xy‖) :=
estimate(‖x‖) · estimate(‖y‖) · cm. In our tests we often had to set that constant to a larger
value to get accurate noise estimation — we set the value experimentally so as to get good
estimate for the noise at the output of the recryption procedure.

• The same “ring constant” might also affect the setting of the parameters e, e′, α from above.
Rather than trying to incorporate it into the calculation, our implementation just provides a
flag that forces us to forgo the more aggressive setting of e − e′ = r − 1 + dlogp(t + 2)e, and
instead always use the more conservative e− e′ = r + dlogp(t+ 2)e. The effect is that we have
to extract one more digit during the digit extraction part, but it ensures that we do not get
recryption errors from the use of our simplified decryption formula. In our tests we had to use
this “conservative” flag for the tests at m = 35113.

24

• Also, we sometimes had to manually set the Hamming weight of the recryption key to a lower
value than what our automatic procedure suggests, to avoid recryption errors. This happened
for the setting p = 127,m = 51319, where the automated procedure suggested to use t = 59
but we had to revert back to t = 56 to avoid errors.

• The “width” of each level (i.e., the ratio qi+1/qi in the modulus chain) can be adjusted in
HElib. The trade-off is that wider levels give better noise reduction, but also larger overall
moduli (and hence lower levels of security). The HElib implementation uses by default 23 bits
per level, which seems to work well for values of m < 30000 and pr = 2. For our tests, however,
this was sometime not enough, and we had to increase it to 25 bits per level.

For the tests with plaintext space modulo 28, even 25 bits per level were not quite enough.
However for various low-level reasons (having to do with the NTL single-precision bounds),
setting the bit length to 26 bits or more is not a good option. Instead we changed some of the
internals of HElib, making it use modulus-switching a little more often than its default setting,
while keeping the level width at 25 bits. As a result, for that setting we used many more levels
than for all the other settings (an average of 1.5 levels per squaring).

B Homomorphic Polynomial Evaluation

Our polynomial-evaluation modules implements homomorphic evaluation of a cleartext polynomial
at an encrypted point. We roughly implement the Paterson-Stockmeyer algorithm [21], but with
several tweaks to minimize the multiplication depth of the resulting circuit.

B.1 The Paterson-Stockmeyer Algorithm

This algorithm is a variant of the baby-step/giant-step approach for computing a degree-n polynomial
using O(

√
n) products, but it achieves a better constant in the O(·) than the naive approach.

Recall the basic approach: for a cleartext polynomial f(X) =
∑n−1

i=0 fiX
i and an encryption

of the indeterminate X, we set some parameter s = O(
√
n) and denote t = bn/sc. We compute

homomorphically the “baby” powers ofX, X2, X3 . . . , Xs, and the “giant” powersX2s, X3s, . . . , Xt·s.
Then for i = 0, 1, . . . , t−1 we can compute Yi =

∑
j=0 s− 1fi·s+jX

j using only multiply-by-constant

and addition operations, and complete the evaluation of f as Y =
∑s−1

i=0 X
i·s · Yi. This simple

procedure takes s + t − 2 multiplications for computing the different powers and t − 1 more for
completing the evaluation, for a total of s + 2t − 3. Setting s = d

√
2ne we get roughly 2

√
2 ·
√
n

multiplications.
The Paterson-Stockmeyer algorithm reduces the number of multiplies by roughly a factor of two,

computing the same polynomial using only
√

2n+O(log n) multiplications. Differently than the naive
approach, they multiply not just powers of X by the polynomials fi(X) but different polynomials
by each other. The simplest variant of this algorithm applies to monic polynomials whose degree is
of the form n = (2m− 1)s with m a power of two.

Here we compute the “baby step” powers X2, . . . , Xs, and “giant step” powers
X2s, X4s, X8s, . . . Xms. Then we break f into a monic top half of degree (m− 1)s and a bottom half
of degree ≤ ms− 1:

f(X) = Xms
((m−1)s∑

i=0

fms+iX
i
)

︸ ︷︷ ︸
q(X)

+
(ms−1∑

i=0

fiX
i
)

︸ ︷︷ ︸
r(X)

.

25

Let us now denote r′(X) = X(m−1)s + r(X). Since q(X) is monic and deg(r′) < deg(q) + s, we
can use polynomial division with remainder to find two polynomials c(X), d(X) such that

r′(X) = c(X) · q(X) + d(X),

with deg(c) < s and deg(d) < deg(q) = (m− 1)s.
Now we can add X(m−1)s to d(X) to get a monic degree-(m−1)s polynomial d′(X) = X(m−1)s+

d(X). Now we can apply the same procedure recursively to the two monic polynomials q(X), d′(X),
compute c(X) from the baby-step powers using only additions and multiply-by-constant operations,
and complete the evaluation by setting

Y =
(
Xms + C(X)

)
· q(X) + d′(X) = Xms · q(X) + C(X) · q(X) +

(
d(X)−X(m−1)s)

= Xms · q(X) + r′(X)−X(m−1)s = Xms · q(X) + r(X) = f(X).

Complexity. For a polynomial of degree n = (2t − 1)s, the algorithm above takes s+ t− 2 multi-
plications to compute the baby-step and giant-step powers. Once they are computed the complexity
of the recursive procedure is captured by the recursion formula T (2t−1) = 2T (2t−1−1) + 1. Solving
this recursion with base-case T (21 − 1) = T (1) = 0 we get T (2t − 1) = 2t−1 − 1. Hence the total
number of multiplications that is needed is s + t + 2t−1 − 3 ≤ s + dn/2se + dlog(n/s)e − 3. Setting
s = d

√
n/2e yields total number of at most d

√
2n+ log(n)/2e multiplications.

B.2 Our Modifications

In our context we need to modify the procedure above to handle non-monic polynomials or arbitrary
degree, and also to account for the depth of the resulting multiplication circuit.

Minimizing depth. To see why the depth may matter, consider running the “naive” baby-
step/giant-step procedure to evaluate a degree-14 polynomial:

• It is not hard to check that without depth consideration it is best to set the baby-step parameter
to s = 5, yielding a total of 7 multiplications: five for the powers X2, X3, X4, X5 and X10 and
two more for evaluating f(X) = f0(X) +X5 · f1(X) +X10 · f2(X), with each of the fi’s having
degree 4.

However this setting yields a depth-5 circuit: Computing X5 takes a depth-3 circuit, squaring
it to get X10 makes depth-4 and then multiplying X10 · f2(X) makes depth-5.

• On the other hand, setting s = 4 yields 8 multiplications: five for the powers X2, X3, X4 and
X8, X12, and three more for f(X) = f0(X) + X4 · f1(X) + X8 · f2(X) + X12 · f3(X), with
f0, f1, f2’s having degree 3 and f3 having degree 2.

At the same time, this setting can be computed by a depth-4 circuit (which is optimal in this
case): we have X8 at depth-3, and then X8 · f3(X) at depth-4.

(Similar phenomena arises also for the Paterson-Stockmeyer procedure above, but the examples
become longer.) Since for homomorphic operations circuit-depth is at a premium, we are willing to
pay for a smaller depth by somewhat increasing the number of multiplications.

We note that the recursive Paterson-Stockmeyer procedure itself yields near-optimal depth for
each given value of the baby-step parameter s: If computing xs takes depth-d, then using the
Paterson-Stockmeyer procedure for computing a polynomial of degree upto s(2t − 1) takes depth
d+ t (whereas the naive baby-step/giant-step procedure with depth d+ t can evaluate polynomials
of degree upto s2t).

26

We also note that one can always ensure optimal depth by setting the baby-step parameter s
as a power of two (since this is the largest power than can be computed in a given depth). In our
implementation, we therefore always choose s as a power of two; namely, we use

√
deg(P)/2 rounded

either up or down to a power of two, and use a special case for s(2t − 1) < deg(P) ≤ s(2t − 1). 8

Non-monic polynomials. Handling non-monic polynomials whose leading coefficient is invertible
(modulo the plaintext space p) is simple: we multiply by the inverse, then evaluate the resulting
monic polynomial, and finally multiply the result by the top coefficient.

If the leading coefficient is not invertible mod p then we either add one to it, or add one to a
higher power of X. In either case we then evaluate the polynomial and subtract the appropriate
power Xm from the result. The decision of which power of X to add and subtract is done so as to
minimize the number of extra multiplications that are needed for computing Xm.

Monic polynomials of arbitrary degree. Once we have a monic polynomial P (X) and we
decided on the baby-step parameter s to use, we consider four cases. In all the cases below let t be
the smallest integer such that deg(P) ≤ s · 2t.

• If P is of degree s(2t − 1) then we directly apply the Paterson-Stockmeyer procedure.

• If s(2t − 2) < deg(P) < s(2t − 1) then we add to it Xs(2t+1), evaluate the result using the
Paterson-Stockmeyer procedure, then subtract the power Xs(2t+1). 9

• If s(2t − 1) < deg(P) ≤ s2t then use Paterson-Stockmeyer for the bottom s(2t − 1) part and
compute the top ≤ s terms separately.

Specifically let Plo(X) be the bottom s(2t − 1) coefficients and Plo(X) be the top ones, we set
Qlo(X) = Xs(2t−1)+Plo(X) and evaluate it using the Paterson-Stockmeyer procedure. Also let
Qhi(X) = Phi(X)− 1 and evaluate it using the baby-step powers that we computed. Then we
also compute the power Xs(2t−1) (in minimum depth by multiplying t of the giant-step powers)
and finally set P (X) = Qhi(X) ·Xs(2t−1) +Qlo(X).

It is easy to verify that this procedure takes depth exactly t+ log s, which is optimal.

• In any other case, deg(P) ≤ s(2t − 2), we use Paterson-Stockmeyer for the bottom s(2t − 1)
part and compute the top ≤ s terms recursively. This case is very similar to the case above
for s(2t− 1) < deg(P) ≤ s2t, except that we cannot compute Qhi(X) using only the baby-step
powers. Instead simply make a recursive call to evaluate Qhi, noting that it contains less than
half the coefficients of P .

C Why We Didn’t Use Ring Switching

One difference between our implementation and the procedure described by Alperin-Sheriff and
Peikert [1] is that we do not use the ring-switching techniques of Gentry et al. [9] to implement the
tensor decomposition of our Eval transformation and its inverse. There are several reasons why we
believe that an implementation based on ring switching is less appealing in our context, especially
for the smaller parameter settings (say, φ(m) < 30000). The reasoning behind this is as follows:

8A better option, which we did not implement yet, would be to search for all the values of s between the two enclosing
powers of two, and use the value that minimized the number of multiplications subject to keeping the smallest depth.

9Of course we handle this case together with the non-invertible top coefficient from above, so that we never add two
power of X.

27

Rough factorization of m. Since the non-linear part of our recryption procedure takes at least
seven levels, and we target having around 10 levels left at the end of recryption, it means that for
our smaller examples we cannot afford to spend too many levels for the linear transformations.
Since every stage of the linear transformation consumes at least half a level,10 then for such
small parameters we need very few stages. In other words, we have to consider fairly coarse-
grained factorization of m, where the factors have sizes mε for a significant ε (as large as

√
m

in some cases).

Using large rings. Recall that the first linear transformation during recryption begins with the
fresh ciphertext in the public key (after multiplying by a constant). That ciphertext has very
low noise, so we have to process it in a large ring to ensure security.11 This means that we
must switch up to a much larger ring before we can afford to drop these rough factors of m.
Hence we will be spending most of our time on operations in very large rings, which defeats
the purpose of targeting these smaller sub-30000 rings in the first place.

We also note that in our tests, the recryption time is dominated by the non-linear part, so our
implantation seems close to optimal there. It is plausible that some gains can be made by using ring
switching for the second linear transformation, after the non-linear part, but we did not explore this
option in our implementation. And as we said above, there is not much to be gained by optimizing
the linear transformations.

10Whether or not we use ring-switching, each stage of the linear transformation has depth of at least one multiply-
by-constant, which consumes at least half a level in terms of added noise.

11More specifically, the key-switching matrices that allow us to process it must be defined in a large ring.

28

