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Abstract

Gentry’s bootstrapping technique is still the only known method of obtaining fully homomor-
phic encryption where the system’s parameters do not depend on the complexity of the evaluated
functions. Bootstrapping involves a recryption procedure where the scheme’s decryption algo-
rithm is evaluated homomorphically. Prior to this work there were very few implementations of
recryption, and fewer still that can handle “packed ciphertexts” that encrypt vectors of elements.

In the current work, we report on an implementation of recryption of fully-packed ciphertexts
using the HElib library for somewhat-homomorphic encryption. This implementation required
extending previous recryption algorithms from the literature, as well as many aspects of the
HElib library. Our implementation supports bootstrapping of packed ciphertexts over many
extension fields/rings. One example that we tested involves ciphertexts that encrypt vectors of
1024 elements from GF(216). In that setting, the recryption procedure takes under 3 minutes (at
security-level ≈ 80) on a single core, and allows a multiplicative depth-11 computation before the
next recryption is needed.

This report updates the results that we reported in Eurocrypt 2015 in several ways. Most
importantly, it includes a much more robust method for deriving the parameters, ensuring that
recryption errors only occur with negligible probability. Many aspects of this analysis are proven,
and for the few well-specified heuristics that we made, we report on thorough experimentation to
validate them. The procedure that we describe here is also significantly more efficient than in the
previous version, incorporating many optimizations that were reported elsewhere (such as more
efficient linear transformations) and adding a few new ones. Finally, our implementation now also
incorporates Chen and Han’s techniques from Eurocrypt 2018 for more efficient digit extraction
(for some parameters), as well as for “thin bootstrapping” when the ciphertext is only sparsely
packed.
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1 Introduction

Homomorphic Encryption (HE) [35, 16] enables computation of arbitrary functions on encrypted
data without knowing the secret key. All current HE schemes follow Gentry’s outline from [16],
where fresh ciphertexts are “noisy” to ensure security and this noise grows with every operation
until it overwhelms the signal and causes decryption errors. This yields a “somewhat homomorphic”
scheme (SWHE) that can only evaluate low-depth circuits, which can then be converted to a “fully
homomorphic” scheme (FHE) using bootstrapping. Gentry described a recryption operation, where
the decryption procedure of the scheme is run homomorphically, using an encryption of the secret key
that can be found in the public key, resulting in a new ciphertext that encrypts the same plaintext
but has smaller noise.

The last decade saw a large body of work improving many aspects of homomorphic encryption
in general and recryption in particular, as well as a multitude of implementations of practically
usable homomorphic encryption. Some of those implementations even support bootstrapping, most
of which were subsequent to the initial report of this work. Early implementations of recryption
prior to our work include the Gentry-Halevi implementation of Gentry’s cryptosystem [17, 16], the
implementation of Coron et al. of the DGHV scheme over the integers [11, 6, 12, 14], and the
Rohloff-Cousins implementation of the NTRU-based cryptosystem [36, 29, 31].

Here we report on our implementation of recryption for the cryptosystem of Brakerski, Gentry
and Vaikuntanathan (BGV) [4]. We implemented recryption on top of the open-source library HElib

[26, 23], which implements the ring-LWE variant of BGV. Our implementation includes both new
algorithmic designs as well as re-engineering of some aspects of HElib. As noted in [23], the choice of
homomorphic primitives in HElib was guided to a large extent by the desire to support recryption,
but nonetheless in the course of our implementation we had to extend the implementation of some
of these primitives (e.g., matrix-vector multiplication), and also implement a few new ones (e.g.,
polynomial evaluation).

The HElib library is “focused on effective use of the Smart-Vercauteren ciphertext packing tech-
niques [38] and the Gentry-Halevi-Smart optimizations [19],” so in particular we implemented recryp-
tion for “fully-packed” ciphertexts. Specifically, our implementation supports recryption of cipher-
texts that encrypt vectors of elements from extension fields (or rings). Importantly, our recryption
procedure itself has sufficiently low depth so as to allow significant processing between recryptions
while keeping the lattice dimension reasonable to maintain efficiency.

Our experimental results are described in Section 7. Some example settings include: encrypting
vectors of 1024 elements from GF(216) with a security level of 80 bits, where recryption takes under 3
minutes and allows additional computations of multiplicative depth 11 between recryptions; and en-
crypting vectors of 960 elements from GF(224) with a security level of 80 bits, where recryption takes
under 5 minutes and allows additional computations of multiplicative depth 15 between recryptions.1

Compared to the previous recrypt implementations, ours offers several advantages in both flex-
ibility and speed. Our implementation supports packed ciphertexts that encrypt vectors from the
more general extension fields (and rings) already supported by HElib. Some examples that we tested
include vectors over the fields GF(216), GF(225), GF(224), GF(236), GF(1740), and GF(12736), as
well as degree-21 and degree-30 extensions of the ring Z256.

1.1 Concurrent and subsequent work

Concurrently with our work, Ducas and Micciancio described a new bootstrapping procedure [15].
This procedure is applied to Regev-like ciphertexts [34] that encrypt a single bit, using a secret key

1The latter setting is conducive to homomorphic AES, see, e.g., the long version of [20].
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encrypted similarly to the new cryptosystem of Gentry at al. [22]. They reported on an implemen-
tation of their scheme, where they can perform a NAND operation followed by recryption in less
than a second. This was later improved and extended by Chillotti et al. [9, 10] that implemented
bootstrapping in the TFHE library achieving a single-bit recryption speed of 13 milliseconds. While
this wall-clock time is much faster than our work, our implementation is about ten times faster in
terms of amortized per-bit running time (see below). It remains a very interesting open problem to
combine those techniques with ours, achieving a “best of both worlds” implementation.

Another notable subsequent line of work is bootstrapping for the CKKS approximate-number
scheme [8, 7, 28, 27], some of which use optimizations that were introduced in the initial version of
the current work.

1.1.1 Improvements subsequent to the Eurocrypt 2015 paper

Since the original publication of our bootstrapping techniques in Eurocrypt 2015 [24], we have made a
number of improvements, incorporating many optimizations that were reported elsewhere and adding
a few new ones. For example, we have improved our matrix multiplication algorithms significantly,
as reported in [25]. We have also significantly improved the overall robustness and efficiency of the
noise management in HElib. Some of these techniques are specific to bootstrapping, and we report
those here (see Section 6).

We have also adapted techniques of Chen and Han [5]. In particular, we adapted their techniques
for “digit extraction”, which can allow for more noise-efficient bootstrapping (for some parameters).
In addition, we adapted their techniques for “thin bootstrapping”, where each slot contains an
element of the base field (or ring), rather than an extension field (or ring). This can be advantageous
in applications where there is no natural way to exploit the extension field (or ring) structure of
the slots. We implemented a variant of their technique, details of which may be found in [25]. We
ran various experiments with this “thin bootstrapping” algorithm. For the examples above with
plaintext space GF(216) and GF(224) examples mentioned above, if we restrict the plaintext space
to GF(2), the running times drop to 15 and 19 seconds, respectively. In addition, we calculated the
“amortized time” for thin bootstrapping, in which we took the total bootstrapping time, divided
that by the number of slots, and divided that by the number of usable multiplicative levels between
recryptions. In the two examples mentioned above, the “amortized time” of bootstrapping associated
with one multiplication GF(2) is about 1.1 milliseconds. If we add to this the amortized time of the
multiplication itself (i.e., the multiplication time divded by the number of slots), the total amortized
running time per multiplication in GF(2) is about 1.3 milliseconds. In another example, for the
plaintext space Z28 , we can achieve an amortized time for bootstrapping of 2.1 milliseconds. If we
add to this the amortized time of the multiplication itself, the total amortized running time per
multiplication in Z28 is about 2.4 milliseconds.

We have also added support for multi-threading to HElib, and have implemented our bootstrap-
ping routine to exploit multiple cores when available. In our experiments, with up to 8 cores, we get
nearly linear speedup for our bootstrapping routine. For thin bootstrapping, we get somewhat less
speedup (see more details in Section 7.2).

1.2 Algorithmic Aspects

Our recryption procedure follows the high-level structure introduced by Gentry et al. [21], and uses
the tensor decomposition of Alperin-Sheriff and Peikert [1] for the linear transformations. However,
those two works only dealt with characteristic-2 plaintext spaces so we had to extend some of their
algorithmic components to deal with characteristics p > 2, see Section 5.

Also, to get an efficient implementation, we had to make the decomposition from [1] explicit,
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specialize it to cases that support very-small-depth circuits, and align the different representations
to reduce the required data-movement and multiplication-by-constant operations. These aspects are
described in Section 4. One significant difference between our implementation and the procedure of
Alperin-Sheriff and Peikert [1] is that we do not use the ring-switching techniques of Gentry et al.
[18] (see discussion in Appendix 8).

1.3 Organization

We describe our notations and give some background information on the BGV cryptosystem and
the HElib library in Section 2. In Section 3 we provide an overview of the high-level recryption
procedure from [21] and our variant of it. We then describe in detail our implementation of the
linear transformations in Section 4 and the non-linear parts in Section 5. In Section 5.4 we explain
how all these parts are put together in our implementation. In Section 6 we describe how various
parameters are chosen to ensure a low probability of error. In Section 7 we discuss our performance
results. We conclude with directions for future work in Section 9.

2 Notations and Background

For integer z, we denote by [z]q the reduction of z modulo q into the interval [−q/2, q/2), except that
for q = 2 we reduce to (−1, 1]. This notation extends to vectors and matrices coordinate-wise, and
to elements of other algebraic groups/rings/fields by reducing their coefficients in some convenient
basis.

For an integer z (positive or negative) we consider the base-p representation of z and denote its
digits by z〈0〉p, z〈1〉p, · · · . When p is clear from the context we omit the subscript and just write
z〈0〉, z〈1〉, · · · . When p = 2 we consider a 2’s-complement representation of signed integers (i.e., the
top bit represents a large negative number). For an odd p we consider balanced mod-p representation
where all the digits are in [−p−1

2 , p−12 ].
For indexes 0 ≤ i ≤ j we also denote by z〈j, . . . , i〉p the integer whose base-p expansion

is z〈j〉 · · · z〈i〉 (with z〈i〉 the least significant digit). Namely, for odd p we have z〈j, . . . , i〉p =∑j
k=i z〈k〉p

k−i, and for p = 2 we have z〈j, . . . , i〉2 = (
∑j−1

k=i z〈k〉2
k−i) − z〈j〉2j−i. The properties

of these representations that we use in our procedures are the following:

• For any r ≥ 1 and any integer z we have z = z〈r − 1, . . . , 0〉 (mod pr).

• If the representation of z is dr−1, . . . , d0 then the representation of z ·pr is dr−1, . . . , d0,

r zeros︷ ︸︸ ︷
0, · · · , 0.

• If p is odd and |z| < pe/2 then the digits in positions e and up in the representation of z are
all zero.

• If p = 2 and |z| < 2e−1, then the bits in positions e− 1 and up in the representation of z, are
either all zero if z ≥ 0 or all one if z < 0.

2.1 The BGV Cryptosystem

The BGV ring-LWE-based somewhat-homomorphic scheme [4] is defined over a ring R
def
=

Z[X]/(Φm(X)), where Φm(X) is the mth cyclotomic polynomial. For an arbitrary integer mod-

ulus N (not necessarily prime) we denote the ring RN
def
= R/NR. We often identify elements in R

(or RN ) with their representation is some convenient basis, e.g., their coefficient vectors as polynomi-
als. When dealing with RN , we assume that the coefficients are in [−N/2, N/2) (except for R2 where
the coefficients are in {0, 1}). We discuss these representations in some more detail in Section 4.1.
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As implemented in HElib, the native plaintext space of the BGV cryptosystem is Rpr for a
prime power pr. The scheme uses a large number of different moduli, and a ciphertext relative to
one of these moduli q is a vector ct ∈ (Rq)

2. At any point, a ciphertext is defined relative to one
modulus, but that modulus keeps changing throughout the computation via mod-up and mod-down
operations.

The secret keys are elements s ∈ R with “small” coefficients (chosen in {0,±1} in HElib), and
we view s as the second element of the 2-vector sk = (1, s) ∈ R2. A ciphertext ct = (c0, c1) encrypts
a plaintext element m ∈ Rpr with respect to sk = (1, s) and modulus q if we have [〈sk, ct〉]q =
[c0 + s · c1]q = m + pr · e (in R) for a small noise term pr · e (with norm � q).

The noise term grows with homomorphic operations of the cryptosystem, and switching from q
to q′ < q is used to decrease the noise term roughly by the ratio q′/q. Once we have a ciphertext ct
relative to the smallest modulus, we can no longer use that technique to reduce the noise. To enable
further computation, we need to use Gentry’s bootstrapping technique [16], whereby we “recrypt”
the ciphertext ct, to obtain a new ciphertext ct∗ that encrypts the same element of Rpr with respect
to a larger modulus.

In HElib, each modulus q is a product of a number of machine-word sized primes. Elements of
the ring Rq are typically represented in DoubleCRT format: as a vector of polynomials modulo each
small prime t, where each of these polynomials is represented by its evaluation at the primitive mth
roots of unity in Zt. In DoubleCRT format, elements of Rq may be added and multiplied in linear
time. Conversion between DoubleCRT representation and the more natural coefficient representation
may be effected in quasi-linear time using the FFT.

2.2 Encoding Vectors in Plaintext Slots

As observed by Smart and Vercauteren [38], an element of the native plaintext space α ∈ Rpr can be
viewed as encoding a vector of “plaintext slots” containing elements from some smaller ring extension
of Zpr via Chinese remaindering. In this way, a single arithmetic operation on α corresponds to the
same operation applied component-wise to all the slots.

Specifically, suppose the factorization of Φm(X) modulo pr is Φm(X) ≡ F1(X) · · ·Fk(X)
(mod pr), where each Fi has the same degree d, which is equal to the order of p modulo m. (This
factorization can be obtained by factoring Φm(X) modulo p and then Hensel lifting.) From the CRT
for polynomials, we have the isomorphism

Rpr ∼=
k⊕
i=1

(Z[X]/(pr, Fi(X)).

Let us now define E
def
= Z[X]/(pr, F1(X)), and let ζ be the residue class of X in E, which is a

principal mth root of unity, so that E = Z/(pr)[ζ]. The rings Z[X]/(pr, Fi(X)) for i = 1, . . . , k
are all isomorphic to E, and their direct product is isomorphic to Rpr , so we get an isomorphism
between Rpr and Ek. HElib makes extensive use of this isomorphism, representing it explicitly as
follows. It maintains a set S ⊂ Z that forms a complete system of representatives for the quotient
group Z∗m/〈p〉, i.e., it contains exactly one element from every residue class. Then we use a ring
isomorphism

Rpr →
⊕
h∈S

E

α 7→ {α(ζh)}h∈S .
(1)

Here, if α is the residue class a(X) + (pr,Φm(X)) for some a(X) ∈ Z[X], then α(ζh) = a(ζh) ∈ E,
which is independent of the representative a(X).
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This representation allows HElib to effectively pack k
def
= |S| = |Z∗m/〈p〉| elements of E into

different “slots” of a single plaintext. Addition and multiplication of ciphertexts act on the slots of
the corresponding plaintext in parallel.

2.3 Hypercube structure and one-dimensional rotations

Beyond addition and multiplications, we can also manipulate elements in Rpr using a set of auto-
morphisms on Rpr of the form a(X) 7→ a(Xj), or in more detail

τj : Rpr → Rpr

a(X) + (pr,Φm(X)) 7→ a(Xj) + (pr,Φm(X)).
(j ∈ Z∗m)

We can homomorphically apply these automorphisms by applying them to the ciphertext elements
and then performing “key switching” (see [4, 19]). As discussed in [19], these automorphisms induce a
hypercube structure on the plaintext slots, where the hypercube structure depends on the structure
of the group Z∗m/〈p〉. Specifically, HElib keeps a hypercube basis g1, . . . , gn ∈ Z∗m, together with
orders `1, . . . , `n ∈ Z>0, and then defines the set S of representatives for Z∗m/〈p〉 (which is used for
slot mapping Eqn. (1)) as

S
def
= {ge11 · · · g

en
n : 0 ≤ ei < `i, i = 1, . . . , n}. (2)

Note that `i need not be the order of gi in Z∗m. This basis defines an n-dimensional hypercube
structure on the plaintext slots, where slots are indexed by tuples (e1, . . . , en) with 0 ≤ ei < `i.
If we fix e1, . . . , ei−1, ei+1, . . . , en, and let ei range over 0, . . . , `i − 1, we get a set of `i slots, in-
dexed by (e1, . . . , ei, . . . en), which we refer to as a hypercolumn in dimension i (and there are k/`i
such hypercolumns). Using automorphisms, we can efficiently perform rotations in any dimension;
a rotation by v in dimension i maps a slot indexed by (e1, . . . , ei, . . . , en) to the slot indexed by
(e1, . . . , ei + v mod `i, . . . , en). Below we denote this operation by ρvi .

We can implement ρvi by applying either one automorphism or two: if the order of gi in Z∗m is `i,
then we get by with just a single automorphism, ρvi (α) = τgvi (α). If the order of gi in Z∗m is different
from `i then we need to implement this rotation using two shifts: specifically, we use a constant “0-1
mask value” mask that selects some slots and zeros-out the others, and use two automorphisms with
exponents e = gvi mod m and e′ = gv−`ii mod m, setting

ρvi (α) = τe(mask · α) + τe′((1−mask) · α).

In the first case (where one automorphism suffices) we call i a “good dimension”, and otherwise we
call i a “bad dimension”.

2.4 Frobenius and linearized polynomials

We define σ
def
= τp, which is the Frobenius map on Rpr . It acts on each slot independently as the

Frobenius map σE on E, which sends ζ to ζp and leaves elements of Zpr fixed. (When r = 1, σ is
the same as the pth power map on E.) For any Zpr -linear transformation on E, denoted M , there

exist unique constants θ0, . . . , θd−1 ∈ E such that M(η) =
∑d−1

f=0 θfσ
f
E(η) for all η ∈ E. When r = 1,

this follows from the general theory of linearized polynomials (see, e.g., Theorem 10.4.4 on p. 237 of
[37]), and these constants are readily computable by solving a system of equations mod p; the case of
r > 1 is similar, and can be thought of as Hensel-lifting these mod-p solutions to a solution mod pr.

In the special case where the image of M is the sub-ring Zpr of E, the constants θf are obtained as

θf = σfE(θ0) for f = 1, . . . , d−1; again, this is standard field theory if r = 1, and is easily established
for r > 1 as well.
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Using linearized polynomials, we may effectively apply a fixed linear map to each slot of a plaintext
element α ∈ Rpr (either the same or different maps in each slot) by computing

∑d−1
f=0 κfσ

f (α), where
the κf ’s are Rpr -constants obtained by embedding appropriate E-constants in the slots.

3 Overview of the Recryption Procedure

Recall that the recryption procedure is given a BGV ciphertext ct = (c0, c1), defined relative to
secret-key sk = (1, s), modulus q, and plaintext space pr, namely, we have [〈sk, ct〉]q ≡ m (mod pr)
with m being the plaintext. Also we have the guarantee that the noise in ct is still rather small.

The goal of the recryption procedure is to produce another ciphertext ct∗ that encrypts the same
plaintext element m relative to the same secret key, but relative to a much larger modulus Q� q and
with a much smaller relative noise. Our implementation uses roughly the same high-level structure
for the recryption procedure as in [21, 1], below we briefly recall the structure from [21] and then
describe our variant of it.

3.1 The GHS Recryption Procedure

The recryption procedure from [21] (for plaintext space p = 2) begins by using modulus-switching to
compute another ciphertext that encrypts the same plaintext as ct, but relative to a specially chosen
modulus q̃ = 2e + 1 (for some integer e).

Denote the resulting ciphertext by ct′, the rest of the recryption procedure consists of homomor-
phic implementation of the decryption formula m← [[〈sk, ct′〉]q̃]2, applied to an encryption of sk that
can be found in the public key. Note that in this formula we know ct′ = (c′0, c

′
1) explicitly, and it is sk

that we process homomorphically. It was shown in [21] that for the special modulus q̃, the decryption
procedure can be evaluated (roughly) by computing u← [〈sk, ct′〉]2e+1 and then m← u〈e〉 ⊕ u〈0〉.2

To enable recryption, the public key is augmented with an encryption of the secret key s, relative
to a (much) larger modulus Q� q̃, and also relative to a larger plaintext space 2e+1. Namely this is
a ciphertext c̃t such that [〈sk, c̃t〉]Q = s (mod 2e+1). Recalling that all the coefficients in ct′ = (c′0, c

′
1)

are smaller than q̃/2 < 2e+1/2, we consider c′0, c
′
1 as plaintext elements modulo 2e+1, and compute

homomorphically the inner-product u← c′1 · s + c′0 (mod 2e+1) by setting

c̃t
′ ← c′1 · c̃t + (c′0, 0).

This means that c̃t
′
encrypts the desired u, and to complete the recryption procedure we just need to

extract and XOR the top and bottom bits from all the coefficients in u, thus getting an encryption
of (the coefficients of) the plaintext m. This calculation is the most expensive part of recryption,
and it is done in three steps:

Linear transformation. First apply homomorphically a Z2e+1-linear transformation to c̃t
′
, con-

verting it into ciphertexts that have the coefficients of u in the plaintext slots.

Bit extraction. Next apply a homomorphic (non-linear) bit-extraction procedure, computing two
ciphertexts that contain the top and bottom bits (respectively) of the integers stored in the slots. A
side-effect of the bit-extraction computation is that the plaintext space is reduced from mod-2e+1 to
mod-2, so adding the two ciphertexts we get a ciphertext whose slots contain the coefficients of m
relative to a mod-2 plaintext space.

2This is a slight simplification, the actual formula for p = 2 is m← u〈e〉 ⊕ u〈e− 1〉 ⊕ u〈0〉, see Lemma 5.1.
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Inverse linear transformation. Finally apply homomorphically the inverse linear transformation
(this time over Z2), obtaining a ciphertext ct∗ that encrypts the plaintext element m.

An optimization. The deepest part of recryption is bit-extraction, and its complexity — both
time and depth — increases with the most-significant extracted bit (i.e., with e). The parameter e
can be made somewhat smaller by choosing a smaller q̃ = 2e + 1, but for various reasons q̃ cannot
be too small, so Gentry et al. described in [21] an optimization for reducing the top extracted bit
without reducing q̃.

After modulus-switching to the ciphertext ct, we can add multiples of q̃ to the coefficients of
c′0, c

′
1 to make them divisible by 2e

′
for some moderate-size e′ < e. Let ct′′ = (c′′0, c

′′
1) be the resulting

ciphertext, clearly [〈sk, ct′〉]q̃ = [〈sk, ct′′〉]q̃ so ct′′ still encrypts the same plaintext m. Moreover, as
long as the coefficients of ct′′ are sufficiently smaller than q̃2, we can still use the same simplified
decryption formula u′ ← [〈sk, ct′′〉]2e+1 and m← u′〈e〉 ⊕ u′〈0〉.

However, since ct′′ is divisible by 2e
′

then so is u′. For one thing this means that u′〈0〉 = 0 so the
decryption procedure can be simplified to m← u′〈e〉. But more importantly, we can divide ct′′ by 2e

′

and compute instead u′′ ← [〈sk, ct′′/2e′〉]2e−e′+1 and m← u′〈e− e′〉. This means that the encryption

of s in the public key can be done relative to plaintext space 2e−e
′

and we only need to extract e− e′
bits rather than e.

3.2 Our Recryption Procedure

We optimize the GHS recryption procedure and extend it to handle plaintext spaces modulo arbitrary
prime powers pr rather than just p = 2, r = 1. The high-level structure of the procedure remains
roughly the same.

To reduce the complexity as much as we can, we use a special recryption key s̃k = (1, s̃), which
is chosen as sparse as possible (subject to security requirements). As we elaborate in Section 6, the
number of nonzero coefficients in s̃ plays an extremely important role in the complexity of recryption.

To enable recryption of mod-pr ciphertexts, we include in the public key a ciphertext c̃t that
encrypts the secret key s̃ relative to a large modulus Q and plaintext space mod-pe+r for some e > r.
Then given a mod-pr ciphertext ct to recrypt, we perform the following steps:

Modulus-switching. Convert ct into another ct′ relative to the special modulus q̃ = pe + 1. We
prove in Lemma 5.1 that for the special modulus q̃, the decryption procedure can be evaluated by
computing u← [〈sk, ct′〉]pe+r and then m← u〈r − 1, . . . , 0〉p − u〈e+ r − 1, . . . , e〉p (mod pr).

Optimization. Add multiples of q̃ to the coefficients of ct′, making them divisible by pe
′

for some
r ≤ e′ < e without increasing them too much. This is described in Section 5.2. The resulting cipher-
text, which is divisible by pe

′
, is denoted ct′′ = (c′′0, c

′′
1). It follows from the same reasoning as above

that we can now compute u′ ← [〈sk, ct′′/pe′〉]pe−e′+r and then m ← −u′〈e− e′ + r − 1, . . . , e− e′〉p
(mod pr).

Multiply by encrypted key. Evaluate homomorphically the inner product (divided by pe
′
),

u′ ← (c′1 · s + c′0)/p
e′ (mod pe−e

′+r), by setting c̃t
′ ← (c′1/p

e′) · c̃t + (c′0/p
e′ , 0). The plaintext space of

the resulting c̃t
′

is modulo pe−e
′+r.

Note that since we only use plaintext space modulo pe−e
′+r, then we might as well use the same

plaintext space also for c̃t, rather than encrypting it relative to plaintext space modulo pe+r as
described above.
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Linear transformation. Apply homomorphically a Zpe−e′+r -linear transformation to c̃t
′
, convert-

ing it into ciphertexts that have the coefficients of u′ in the plaintext slots. This linear transformation,
which is the most intricate part of the implementation, is described in Section 4. It uses a tensor
decomposition similar to [1] to reduce complexity, but pays much closer attention to details such as
the mult-by-constant depth and data movements.

Digit extraction. Apply a homomorphic (non-linear) digit-extraction procedure, computing r
ciphertexts that contain the digits e−e′+r−1 through e−e′ of the integers in the slots, respectively,
relative to plaintext space mod-pr. This requires that we generalize the bit-extraction procedure from
[21] to a digit-extraction procedure for any prime power pr ≥ 2, this is done in Section 5.3. Once we
extracted all these digits, we can combine them to get an encryption of the coefficients of m in the
slots relative to plaintext space modulo pr.

Inverse linear transformation. Finally apply homomorphically the inverse linear transforma-
tion, this time over Zpr , converting the ciphertext into an encryption ct∗ of the plaintext element m
itself. This too is described in Section 4.

Thin bootstrapping. For “thin bootstrapping”, where each slot contains just an integer, we use
the Chen-Han procedure [5], which has a somewhat different structure. See Section 7.1 for a brief
description.

4 The Linear Transformations

In this section we describe the linear transformations that we apply during the recryption procedure
to map the plaintext coefficients into the slots and back. Central to our implementation is imposing
a hypercube structure on the plaintext space Rpr = Zpr [X]/(Φm(X)) with one dimension per factor
of m, and implementing the second (inverse) transformation as a sequence of multi-point polynomial-
evaluation operations, one for each dimension of the hypercube. We begin with some additional
background.

4.1 Algebraic Background

Let m denote the parameter defining the underlying cyclotomic ring in an instance of the BGV
cryptosystem with native plaintext space Rpr = Zpr [X]/(Φm(X)). Throughout this section, we
consider a particular factorization m = m1 · · ·mt, where the mi’s are pairwise co-prime positive
integers. We write CRT(h1, . . . , ht) (with hi ∈ {0, . . . ,mi−1}) for the unique element h ∈ {0, . . . ,m−
1} satisfying h ≡ hi (mod mi) (i = 1, . . . , t) for all i = 1, . . . , t.

Lemma 4.1 Let p,m and the mi’s be as above, where p is a prime not dividing any of the mi’s. Let
d1 be the order of p modulo m1 and for i = 2, . . . , t let di be the order of pd1···di−1 modulo mi. Then

the order of p modulo m is d
def
= d1 · · · dt.

Moreover, suppose that S1, . . . , St are sets of integers such that each Si ⊆ {0, . . . ,mi − 1} forms

a complete system of representatives for Z∗mi
/〈pd1···di−1〉. Then the set S

def
= CRT(S1, . . . , St) forms

a complete system of representatives for Z∗m/〈p〉.

Proof. It suffices to prove the lemma for t = 2. The general case follows by induction on t.

The fact that the order of p modulo m
def
= m1m2 is d

def
= d1d2 is clear by definition. The cardinality

of S1 is φ(m1)/d1 and of S2 is φ(m2)/d2, and so the cardinality of S is φ(m1)φ(m2)/d1d2 = φ(m)/d =
|Z∗m/〈p〉|. So it suffices to show that distinct elements of S belong to distinct cosets of 〈p〉 in Z∗m.
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To this end, let a, b ∈ S, and assume that pfa ≡ b (mod m) for some nonnegative integer f . We
want to show that a = b. Now, since the congruence pfa ≡ b holds modulo m, it holds modulo m1 as
well, and by the defining property of S1 and the construction of S, we must have a ≡ b (mod m1).
So we may cancel a and b from both sides of the congruence pfa ≡ b (mod m1), obtaining pf ≡ 1
(mod m1), and from the defining property of d1, we must have d1 | f . Again, since the congruence
pfa ≡ b holds modulo m, it holds modulo m2 as well, and since d1 | f , by the defining property of
S2 and the construction of S, we must have a ≡ b (mod m2). It follows that a ≡ b (mod m), and
hence a = b. �

The powerful basis. The linear transformations in our recryption procedure make use of the
same tensor decomposition that was used by Alperin-Sheriff and Peikert in [1], which in turn relies
on the “powerful basis” representation of the plaintext space, due to Lyubashevsky et al. [32, 33].
The “powerful basis” representation is an isomorphism

Rpr = Z[X]/(pr,Φm(X)) ∼= R′pr
def
= Z[X1, . . . , Xt]/(p

r,Φm1(X1), . . . ,Φmt(Xt)),

defined explicitly by the map

PowToPoly : f(X1, . . . , Xt)→ f(Xm/m1 , . . . , Xm/mt),

namely PowToPoly : R′pr → Rpr sends (the residue class of) Xi to (the residue class of) Xm/mi .
Recall that we view an element in the native plaintext space Rpr as encoding a vector of plaintext

slots from E, where E is an extension ring of Zpr that contains a principal mth root of unity ζ.

Below let us define ζi
def
= ζm/mi for i = 1, . . . , t. It follows from the definitions above that for

h = CRT(h1, . . . , ht) and α = PowToPoly(α′), we have α(ζh) = α′(ζh11 , . . . , ζhtt ).
Using Lemma 4.1, we can generalize the above to multi-point evaluation. Let S1, . . . , St and S

be sets as defined in the lemma. Then evaluating an element α′ ∈ R′pr at all points (ζh11 , . . . , ζhtt ),
where (h1, . . . , ht) ranges over S1× · · · ×St, is equivalent to evaluating the corresponding element in
α ∈ Rpr at all points ζh, where h ranges over S.

4.2 The Evaluation Map

With the background above, we can now describe our implementation of the linear transformations.
Recall that these transformations are needed to map the coefficients of the plaintext into the slots
and back. Importantly, it is the powerful basis coefficients that we put in the slots during the first
linear transformation, and take from the slots in the second transformation.

Since the two linear transformations are inverses of each other (except modulo different powers
of p), then once we have an implementation of one we also get an implementation of the other. For
didactic reasons we begin by describing in detail the second transformation, and later we explain
how to get from it also the implementation of the first transformation.

The second transformation begins with a plaintext element β that contains in its slots the
powerful-basis coefficients of some other element α, and ends with the element α itself. Important
to our implementation is the view of this transformation as multi-point evaluation of a polynomial.
Namely, the second transformation begins with an element β whose slots contain the coefficients of
the powerful basis α′ = PowToPoly(α), and ends with the element α that holds in the slots the values

α(ζh) = α′(ζh11 , . . . , ζhtt )

where the hi’s range over the Si’s from Lemma 4.1 and correspondingly h range over S. Crucial
to this view is that the CRT set S from Lemma 4.1 is the same as the representative-set S from
Eqn. (2) that determines the plaintext slots.
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Choosing the representatives. Our first order of business is therefore to match up the sets S
from Eqn. (2) and Lemma 4.1. To facilitate this (and also other aspects of our implementation),
we place some constraints on our choice of the parameter m and its factorization.3 Recall that we
consider the factorization m = m1 · · ·mt, and denote by di the order of pd1···di−1 modulo mi.

I. In choosing m and the mi’s we restrict ourselves to the case where each group Z∗mi
/〈pd1···di−1〉 is

cyclic of order ki, and let its generator be denoted by (the residue class of) g̃i ∈ {0, . . . ,mi−1}.
Then for i = 1, . . . , t, we set Si

def
= {g̃ei mod mi : 0 ≤ e < ki}.

We define gi
def
= CRT(1, . . . , 1, g̃i, 1, . . . , 1) (with g̃i in the ith position), and use the gi’s as

our hypercube basis with the order of gi set to ki. In this setting, the set S from Lemma 4.1
coincides with the set S in Eqn. (2); that is, we have S =

{∏t
i=1g

ei
i mod m : 0 ≤ ei < ki

}
=

CRT(S1, . . . , St).

II. We further restrict ourselves to only use factorizations m = m1 · · ·mt for which d1 = d. (That
is, the order of p is the same in Z∗m1

as in Z∗m.) With this assumption, we have d2 = · · · = dt = 1,
and moreover k1 = φ(m1)/d and ki = φ(mi) for i = 2, . . . , t.

Note that with the above assumptions, the first dimension could be either good or bad, but the other
dimensions 2, . . . , t are always good. This is because pd1···di−1 ≡ 1 (mod m), so also pd1···di−1 ≡ 1
(mod mi), and therefore Z∗mi

/〈pd1···di−1〉 = Z∗mi
, which means that the order of gi in Z∗m (which is

the same as the order of g̃i in Z∗mi
) equals ki.

Packing the coefficients. In designing the linear transformation, we have the freedom to choose
how we want the coefficients of α′ to be packed in the slots of β. Let us denote these coefficients by
cj1,...,jt where each index ji runs over {0, . . . , φ(mi)− 1}, and each cj1,...,jt is in Zpr . That is, we have

α′(X1, . . . , Xt) =
∑

j1,j2,...,jt

cj1,...,jtX
j1
1 X

j2
2 · · ·X

jt
t =

∑
j2,...,jt

(∑
j1

cj1,...,jtX
j1
1

)
Xj2

2 · · ·X
jt
t .

Recall that we can pack d coefficients into a slot, so for fixed j2, . . . , jt, we can pack the φ(m1)
coefficients of the polynomial

∑
j1
cj1,...,jtX

j1
1 into k1 = φ(m1)/d slots. In our implementation we

pack these coefficients into the slots indexed by (e1, j2, . . . , jt), for e1 = 0, . . . , k1 − 1. That is, we
pack them into a single hypercolumn in dimension 1.

4.2.1 The Eval Transformation

The second (inverse) linear transformation of the recryption procedure beings with the element β
whose slots pack the coefficients cj1,...,jt as above. The desired output from this transformation is
the element whose slots contain α(ζh) for all h ∈ S (namely the element α itself). Specifically, we
need each slot of α with hypercube index (e1, . . . , et) to hold the value

α′
(
ζ
g
e1
1

1 , . . . , ζ
g
et
t
t

)
= α

(
ζg

e1
1 ···g

et
t
)
.

Below we denote ζi,ei
def
= ζ

g
ei
i
i . We transform β into α in t stages, each of which can be viewed as

multi-point evaluation of polynomials along one dimension of the hypercube.

3As we discuss in Section 7, there are still sufficiently many settings that satisfy these requirements.
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Stage 1. This stage begins with the element β, in which each dimension-1 hypercolumn with index

(?, j2, . . . , jt) contains the coefficients of the univariate polynomial Pj2,...,jt(X1)
def
=
∑

j1
cj1,...,jtX

j1
1 .

We transform β into β1 where that hypercolumn contains the evaluation of the same polynomial in
many points. Specifically, the slot of β1 indexed by (e1, j2, . . . , jt) contains the value Pj2,...,jt(ζ1,e1).

By definition, this stage consists of parallel application of a particular Zpr -linear transformation
M1 (namely a multi-point polynomial evaluation map) to each of the k/k1 hypercolumns in dimension
1. In other words, M1 maps (k1 · d)-dimensional vectors over Zpr (each packed into k1 slots) to k1-
dimensional vectors over E. We elaborate on the efficient implementation of this stage later in this
section.

Stages 2, . . . , t. The element β1 from the previous stage holds in its slots the coefficients of the k1
multivariate polynomials Ae1(·) (for e1 = 0, . . . , k1 − 1),

Ae1(X2, . . . , Xt)
def
= α′(ζ1,e1 , X2, . . . , Xt) =

∑
j2,...,jt

(∑
j1

cj1,...,jtζ
j1
1,e1

)
︸ ︷︷ ︸

slot (e1,j2,...,jt)=Pj2,...,jt
(ζ1,e1 )

·Xj2
2 · · ·X

jt
t .

The goal in the remaining stages is to implement multi-point evaluation of these polynomials at all
the points Xi = ζi,ei for 0 ≤ ei < ki. Note that differently from the polynomial α′ that we started
with, the polynomials Ae1 have coefficients from E (rather than from Zpr), and these coefficients are
encoded one per slot (rather than d per slot). As we explain later, this makes it easier to implement
the desired multi-point evaluation. Separating out the second dimension we can write

Ae1(X2, . . . , Xt) =
∑
j3,...,jt

(∑
j2

Pj2,...,jt(ζ1,e1)Xj2
2

)
Xj3

3 · · ·X
jt
t .

We note that each dimension-2 hypercolumn in β1 with index (e1, ?, j3, . . . , jt) contains the E-

coefficients of the univariate polynomial Qe1,j3,...,jt(X2)
def
=
∑

j2
Pj2,...,jt(ζ1,e1)Xj2

2 . In Stage 2, we
transform β1 into β2 where that hypercolumn contains the evaluation of the same polynomial in
many points. Specifically, the slot of β2 indexed by (e1, e2, j3 . . . , jt) contains the value

Qe1,j3,...,jt(ζ2,e2) =
∑
j2

Pj2,...,jt(ζ1,e1) · ζj22,e2 =
∑
j1,j2

cj1,...,jtζ
j1
1,e1

ζj22,e2 ,

and the following stages implement the multi-point evaluation of these polynomials at all the points
Xi = ζi,ei for 0 ≤ ei < ki.

Stages s = 3, . . . , t proceed analogously to Stage 2, each time eliminating a single variable Xs

via the parallel application of an E-linear map Ms to each of the k/ks hypercolumns in dimension
s. When all of these stages are completed, we have in every slot with index (e1, . . . , et) the value
α′(ζ1,e1 , . . . , ζt,et), as needed.

Implementation and complexity of Eval. The linear transformations Ms for s = 1, . . . , t are
implemented using the MatMul1D and BlockMatMul1D routines that are implemented in HElib, and
which are described in detail in [25].

The linear transformation M1 is implemented using the BlockMatMul1D routine. The running
time of this routine depends on a number of factors, but will typically be dominated by the running
time of at most c1

√
φ(m1) +O(1) automorphism operations and c2φ(m1) constant-ciphertext multi-

plications, where c1 ∈ [1, 3] and c2 ∈ [1, 2]. The depth of the computation is one constant-ciphertext
multiplication.
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For s = 2, . . . , t, the linear transformationMs is implemented using the MatMul1D routine. Again,
the running time of this routine depends on a number of factors, but will typically be dominated by
the running time of at most

√
φ(ms)+O(1) automorphism operations and φ(ms) constant-ciphertext

multiplications. The depth of the computation is one constant-ciphertext multiplication.
The total running time of Eval will be dominated by the running time of at most

c1
√
φ(m1) +

√
φ(m2) + · · ·+

√
φ(mt) +O(t)

automorphism operations and

c2φ(m1) + φ(m2) + · · ·+ φ(mt).

constant-ciphertext multiplications. The depth of the Eval computation is t.

4.2.2 The Transformation Eval−1

The first linear transformation in the recryption procedure is the inverse of Eval. This transformation
can be implemented by simply running the above stages in reverse order and using the inverse linear
maps M−1s in place of Ms. The complexity estimates are identical.

4.3 Unpacking and Repacking the Slots

In our recryption procedure we have the non-linear digit extraction routine “sandwiched” between
the linear evaluation map and its inverse. However the evaluation map transformations from above
maintain fully-packed ciphertexts, where each slot contains an element of the extension ring E (of
degree d), while our digit extraction routine needs “sparsely packed” slots containing only integers
from Zpr .

Therefore, before we can use the digit extraction procedure we need to “unpack” the slots, so as
to get d ciphertexts in which each slot contains a single coefficient in the constant term. Similarly,
after digit extraction we have to “repack” the slots, before running the second transformation.

Unpacking. Consider the unpacking procedure in terms of the element β ∈ Rpr . Each slot of β

contains an element of E which we write as
∑d−1

i=0 aiζ
i with the ai’s in Zpr . We want to compute

β(0), . . . , β(d−1), so that the corresponding slot of each β(i) contains ai. To obtain β(i), we need to
apply to each slot of β the Zpr -linear map Li : E → Zpr that maps

∑d−1
i=0 aiζ

i to ai.

Using linearized polynomials, as discussed in Section 2.4, we may write β(i) =
∑d−1

f=0 κi,fσ
f (β),

for constants κi,f ∈ Rpr . Given an encryption of β, we can compute encryptions of all of the
σf (β)’s and then take linear combinations of these to get encryptions of all of the β(i)’s. This takes
the time of d − 1 automorphisms and d2 constant-ciphertext multiplications, and a depth of one
constant-ciphertext multiplication.

While the cost in time of constant-ciphertext multiplications is relatively cheap, it cannot be
ignored, especially as we have to compute d2 of them. In our implementation, the cost is dominated
the time it takes to convert an element in Rpr to its corresponding DoubleCRT representation. It
is possible, of course, to precompute and store all d2 of these constants in DoubleCRT format, but
the space requirement is significant: for typical parameters, our implementation takes about 4MB
to store a single constant in DoubleCRT format, so for example with d = 24, these constants take
up almost 2.5GB of space.

This unappealing space/time trade-off can be improved considerably using somewhat more sophis-
ticated implementations. Suppose that in the first linear transformation Eval−1, instead of packing
the coefficients a0, . . . , ad−1 into a slot as

∑
i aiζ

i, we pack them as
∑

i aiσ
i
E(θ), where θ ∈ E is a
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normal element. Further, let L′0 : E → Zpr be the Zpr -linear map that sends η =
∑

i aiσ
i
E(θ) to

a0. Then we have L′0(σ
−j(η)) = aj for j = 0, . . . , d − 1. If we realize the map L′0 with linearized

polynomials, and if the plaintext γ has the coefficients packed into slots via a normal element as
above, then we have β(i) =

∑d−1
f=0 κf · σf−i(γ), where the κf ’s are constants in Rpr . So we have only

d constants rather than d2.
To use this strategy, however, we must address the issue of how to modify the Eval transformation

so that Eval−1 will give us the plaintext element γ that packs coefficients as
∑

i aiσ
i
E(θ). As it turns

out, in our implementation this modification is for free: recall that the unpacking transformation
immediately follows the last stage of the inverse evaluation map Eval−1, and that last stage applies
Zpr -linear maps to the slots; therefore, we simply fold into these maps the Zpr -linear map that takes∑

i aiζ
i to

∑
i aiσ

i
E(θ) in each slot.

It is possible to reduce the number of stored constants even further: since L′0 is a map from E
to the base ring Zpr , then the κf ’s are related via κf = σf (κ0). Therefore, we can obtain all of the
DoubleCRTs for the κf ’s by computing just one for κ0 and then applying the Frobenius automor-
phisms directly to the DoubleCRT for κ0. We note, however, that applying these automorphisms
directly to DoubleCRTs leads to a slight increase in the noise of the homomorphic computation. We
did not use this last optimization in our implementation.

Repacking. Finally, we discuss the reverse transformation, which repacks the slots, taking
β(0), . . . , β(d−1) to β. This is quite straightforward: if ζ̄ is the plaintext element with ζ in each
slot, then β =

∑d−1
i=0 ζ̄

iβ(i). This formula can be evaluated homomorphically with a cost in time of
d constant-ciphertext multiplications, and a cost in depth one constant-ciphertext multiplication.

5 Recryption with Plaintext Space Modulo p > 2

Below we extend the treatment from [21, 1] to handle plaintext spaces modulo p > 2. In Sections 5.1
through 5.3 we generalize the various lemmas to p > 2. In Section 5.4 we explain how these lemmas
are put together in the recryption procedure. In Section 6 we discuss the choice of parameters.

5.1 Simpler Decryption Formula

We begin by extending the simplified decryption formula [21, Lemma 1] from plaintext space mod-2
to any prime-power pr. Recall that we denote by [z]q the mod-q reduction into [−q/2, q/2) (except
when q = 2 we reduce to (−1, 1]). Also z〈j, . . . , i〉p denotes the integer whose mod-p expansion
consists of digits i through j in the mod-p expansion of z (and we omit the p subscript if it is clear
from the context).

Lemma 5.1 Let p > 1, e > r ≥ 1, and q = pe + 1 be integers. Also let z be an integer such that
both z/q and [z]q are sufficiently smaller than q in magnitude, specifically |z/q|+ |[z]q| ≤ (q − 1)/2.

• If p is odd then [z]q = z〈r − 1, . . . , 0〉 − z〈e+ r − 1, . . . , e〉 (mod pr).

• If p = 2 then [z]q = z〈r − 1, . . . , 0〉 − z〈e+ r − 1, . . . , e〉 − z〈e− 1〉 (mod 2r).

Proof. We begin with the odd-p case. Denote z0 = [z]q, then z = z0 + kq (or in other words
k = (z − z0)/q). Denoting w = z0 + k, we therefore have

|w| = |z0(1− 1/q) + z/q| < |z0|+ |z/q| ≤ (q − 1)/2 = pe/2. (3)

This means that the mod-p representation of w has only 0’s in positions e and up. Writing

z = z0 + k(pe + 1) = z0 + k + pek = w + pek, (4)
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we conclude that the digits e, e + 1, . . . in z are the same as the digits 0, 1, . . . in k (since no carry
digits are generated by w). Namely k〈r − 1, . . . , 0〉 = z〈e+ r − 1, . . . , e〉. On the other hand, we
have z0 = z − k − pek = z − k (mod pr), so it follows that

z0〈r − 1, . . . , 0〉 = z〈r − 1, . . . , 0〉 − k〈r − 1, . . . , 0〉 = z〈r − 1, . . . , 0〉 − z〈e+ r − 1, . . . , e〉 (mod pr).

The proof for the p = 2 case is similar, but we no longer have the guarantee that the high-order bits
of the sum w = z0 + k are all zero. From Eqn. (4) we can still deduce that z〈e− 1〉 = w〈e− 1〉 and

z〈e+ r − 1, . . . , e〉 = w〈e+ r − 1, . . . , e〉+ k〈r − 1, . . . , 0〉 (mod 2r).

Since |w| < 2e−1, then the bits in positions e− 1 and up in w are either all zero if w ≥ 0, or all
one if w < 0. In particular, this means that

w〈e+ r − 1, . . . , e〉 =

{
0 if w ≥ 0
−1 if w < 0

}
= − w〈e− 1〉 = − z〈e− 1〉 (mod 2r).

Concluding, we therefore have

z0〈r − 1, . . . , 0〉 = z〈r − 1, . . . , 0〉 − k〈r − 1, . . . , 0〉
= z〈r − 1, . . . , 0〉 −

(
z〈e+ r − 1, . . . , e〉 − w〈e+ r − 1, . . . , e〉

)
= z〈r − 1, . . . , 0〉 − z〈e+ r − 1, . . . , e〉 − z〈e− 1〉 (mod 2r). �

Remark. Lemma 5.1 improves upon the corresponding lemma (also Lemma 5.1) in our report from
Eurocrypt 2015 [24]. In that lemma, instead of |z/q|+ |[z]q| ≤ (q−1)/2, we had a pair of inequalities
|z/q| ≤ q/4− 1 and |[z]q| ≤ q/4.

5.2 Making an Integer Divisible By pe
′

As sketched in Section 3, we use the following lemma to reduce the number of digits that needs to
be extracted, hence reducing the time and depth of the digit-extraction step.

Lemma 5.2 Let e′ ≥ 1 and q > p > 1 be integers such that q ≡ 1 (mod pe
′
). Then for every

integer z there exist an integer v such that |v| ≤ pe′/2, such that

z + v · q ≡ 0 (mod pe
′
).

Proof. Let v = −[z]pe′ , so |v| ≤ pe′/2. Moreover, since q ≡ 1 (mod pe
′
), we have

0 ≡ z + v ≡ z + v · q (mod pe
′
). �

Remark. Lemma 5.2 is much simpler than the corresponding lemma (also Lemma 5.2) in our
report from Eurocrypt 2015 [24]. In that lemma, we added both multiples of q and of pr to z to
make it divisible by pe

′
. However, because of the improved Lemma 5.1, this is no longer helpful.

Moreover, in the analysis in Section 6, adding multiples of pr leads to somewhat worse bounds on
error probabilities.
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Discussion. Recall that in our recryption procedure we have a ciphertext ct that encrypts some
m with respect to modulus q and plaintext space mod-pr, and we use the lemma above to convert it
into another ciphertext ct′ that encrypts the same thing but is divisible by pe

′
, and by doing so we

need to extract e′ fewer digits in the digit-extraction step.
Considering the elements u ← 〈sk, ct〉 and u′ ← 〈sk, ct′〉 (without any modular reduction), since

sk is integral then adding multiples of q to the coefficients of ct does not change [u]q, and so ct and
ct′ still encrypt the same plaintext. However in our recryption procedure we need more: to use our
simpler decryption formula from Lemma 5.1, we need to ensure that |u′/q|+ |[u′]q| ≤ (q−1)/2, where
| · | denotes the `∞-norm on the powerful basis.

5.3 Digit-Extraction for Plaintext Space Modulo pr

The bit-extraction procedure that was described by Gentry et al. in [21] and further optimized by
Alperin-Sheriff and Peikert in [1] is specific for the case p = 2e. Namely, for an input ciphertext
relative to mod-2e plaintext space, encrypting some integer z (in one of the slots), this procedure
computes the ith top bit of z (in the same slot), relative to plaintext space mod-2e−i+1. Below we
show how to extend this bit-extraction procedure to a digit-extraction also when p is an odd prime.

The main observation underlying the original bit-extraction procedure, is that squaring an integer
keeps the least-significant bit unchanged but inserts zeros in the higher-order bits. Namely, if b is
the least significant bit of the integer z and moreover z = b (mod 2e), e ≥ 1, then squaring z we get
z2 = b (mod 2e+1). Therefore, z−z2 is divisible by 2e, and the LSB of (z−z2)/2e is the eth bit of z.

Unfortunately the same does not hold when using a base p > 2. Instead, we show below that for
any exponent e there exists some degree-p polynomial Fe(·) (but not necessarily Fe(X) = Xp) such
that when z = z0 (mod pe) then Fe(z) = z0 (mod pe+1). Hence z − Fe(z) is divisible by pe, and the
least-significant digit of (z−Fe(z))/pe is the eth digit of z. The existence of such polynomial Fe(X)
follows from the simple derivation below.

Lemma 5.3 For every prime p and exponent e ≥ 1, and every integer z of the form z = z0 + pez1
(with z0, z1 integers, z0 ∈ [p]), it holds that zp = z0 (mod p), and zp = zp0 (mod pe+1).

Proof. The first equality is obvious, and the proof of the second equality is just by the binomial
expansion of (z0 + pez1)

p. �

Corollary 5.4 For every prime p there exist a sequence of integer polynomials f1, f2, . . ., all of
degree ≤ p − 1, such that for every exponent e ≥ 1 and every integer z = z0 + pez1 (with z0, z1
integers, z0 ∈ [p]), we have

zp = z0 +
e∑
i=1

fi(z0)p
i (mod pe+1).

Proof. From Lemma 5.3 we know that the mod-p digits of zp modulo-pe+1 depend only on z0, so there
exist some polynomials in z0 that describe them, fi(z0) = zp〈i〉p. Since these fi’s are polynomials
from Zp to itself, then they have degree at most p− 1. Moreover, by the 1st equality in Lemma 5.3
we have that the first digit is exactly z0. �

Corollary 5.5 For every prime p and every e ≥ 1 there exist a degree-p polynomial Fe, such that
for every integers z0, z1 with z0 ∈ [p] and every 1 ≤ e′ ≤ e we have Fe(z0 + pe

′
z1) = z0 (mod pe

′+1).

Proof. Denote z = z0 + pe
′
z1. Since z = z0 (mod pe

′
) then fi(z0) = fi(z) (mod pe

′
). This implies

that for all i ≥ 1 we have fi(z0)p
i = fi(z)p

i (mod pe
′+1), and of course also for i ≥ e′ + 1 we have
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Digit-Extractionp(z, e): // Extract eth digit in base-p representation of z

1. w0,0 ← z
2. For k = 0 to e− 1
3. y ← z
4. For j = 0 to k
5. wj,k+1 ← Fe(wj,k) // Fe from Corollary 5.5, for p = 2, 3 we have Fe(X) = Xp

6. y ← (y − wj,k+1)/p
7. wk+1,k+1 ← y

8. Return we,e

Figure 1: The digit extraction procedure

fi(z)p
i = 0 (mod pe

′+1). Therefore, setting Fe(X) = Xp −
∑e

i=1 fi(X)pi we get

Fe(z) = zp −
e∑
i=1

fi(z)p
i = zp −

e′∑
i=1

fi(z0)p
i = z0 (mod pe

′+1). �

We know that for p = 2 we have Fe(X) = X2 for all e. One can verify that also for p = 3 we have
Fe(X) = X3 for all e (when considering the balanced mod-3 representation), but for larger primes
Fe(X) 6= Xp.

The digit-extraction procedure. Just like in the base-2 case, in the procedure for extracting the
eth base-p digit from the integer z =

∑
i zip

i proceeds by computing integers wj,k (k ≥ j) such that
the lowest digit in wj,k is zj , and the next k − j digits are zeros. The code in Figure 1 is purposely
written to be similar to the code from [1, Appendix B], with the only difference being in Line 5 where
we use Fe(X) rather than X2.

In our implementation we compute the coefficients of the polynomial Fe once and store them
for future use. In the procedure itself, we apply a homomorphic polynomial-evaluation procedure to
compute Fe(wj,k) in Line 5. We note that just as in [21, 1], the homomorphic division-by-p operation
is done by multiplying the ciphertext by the constant p−1 mod q, where q is the current modulus.
Since the encrypted values are guaranteed to be divisible by p, then this has the desired effect and
also it reduces the noise magnitude by a factor of p. Correctness of the procedure from Figure 1 is
proved exactly the same way as in [21, 1], the proof is omitted here.

5.3.1 An optimization for p = 2, r ≥ 2.

As it turns out, for p = 2 we can sometimes extract several consecutive bits a little cheaper than
what the procedure above implies. Specifically, it turns out that for p = 2, e ≥ 0 and r ≥ 2 we can
compute the integer z〈e+ r, . . . , e〉 by extracting only e + r − 1 bits (rather than e + r of them).
Specifically, when applying the procedure from Figure 1 (which for p = 2 is identical to the one from
[1, Appendix B]), it turns out that we get

z〈e+ r, . . . , e〉 =

e+r−1∑
j=r

2j−rwj,e+r−1 (mod 2e+r+1).

Note: the above would have been an immediate corollary from the correctness of the bit-extraction
procedure if we added the terms 2j−rwj,e+r and let the index j go up to e + r, but in this case we
can stop one step earlier and the result still holds.

To see why this works, observe that (by correctness), when we assign wk+1,k+1 ← y in line 7
then it must be the case that LSB(y) = z〈k + 1〉, and in subsequent iterations we just square wk+1
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so as to get more zeros in higher-order bits, without changing the LSB. Recall also that squaring
indeed has the desired effect since for any i ≥ 1 and any bit b and integer n we have (b+ 2in)2 = b
(mod 2i+1). To prove the optimization, we need two additional observations:

Observation 1. For any bit b and integer n we have (b+ 2n)4 = b (mod 16).

Note that this is not a corollary of the squaring property above — that property only gives b (mod 8),
but in fact for this particular case we get one extra zero. (This property holds only for that particular
step, for later steps we only get one additional zero per squaring.)

Observation 2. After line 7 in Figure 1, we always have z =
∑k+1

j=0 2jwj,k+1.

This can be verified by inspection: we start in line 3 from y = z, and at every step we subtract one
wj and divide by two, so adding them back with their respective powers of two gives back z.

Correctness now follows: Let us denote wj
def
= wj,e+r−1 so we will not have to carry this extra

index everywhere. Because of the first observation, the wj ’s for j = 0, 1, ..., e + r − 3 have an extra
zero bit, so for these wj ’s we have wj = z〈j〉 (mod 2e+r−j+1), not just (mod 2e+r−j). Denoting
vj = 2jwj , this means that the only vj ’s that potentially have a nonzero bit in position e + r are
ve+r−2 and ve+r−1. Also by correctness, for lower bit positions j < e + r, only vj potentially has
nonzero bit in position j, and all the other vj ’s have zero in that position. Namely, we have

bit position: ? e+ r e+ r − 1 e+ r − 2 e+ r − 3 . . . 1 0

v0 = w0 = ? 0 0 0 0 0 z〈0〉
v1 = 2w1 = ? 0 0 0 0 z〈1〉 0

...
...

ve+r−3 = 2e+r−3we+r−3 = ? 0 0 0 z〈e+ r − 3〉 0 0
ve+r−2 = 2e+r−2we+r−2 = ? σ 0 z〈e+ r − 2〉 0 0 0
ve+r−1 = 2e+r−1we+r−1 = ? τ z〈e+ r − 1〉 0 0 0 0

for some two bits σ, τ (where the ?’s are bits above position e+ r, which we do not care about).
This means that when adding

∑e+r−1
j=0 vj , we have no carry bits up to position e+ r. But by the

second observation the sum of all these vj ’s is z, so the two top bits σ, τ must satisfy σ⊕τ = z〈e+ r〉.
We conclude that when adding

∑e+r−1
j=e vj , we get all the bits z〈e+ r, . . . , e〉 which is what we needed

to prove.

5.4 Putting Everything Together

Having described all separate parts of our recryption procedure, we now explain how they are com-
bined in our implementation.

Initialization and parameters. Given the ring parameter m (that specifies the mth cyclotomic
ring of integers R = Z[X]/(Φm(X))) and the plaintext space pr, we compute the recryption pa-
rameters as explained in Section 6. That is, we set the exponents e, e′ from Lemmas 5.1. We
also precompute some key-independent tables for use in the linear transformations, with the first
transformation using plaintext space pe−e

′+r and the second transformation using plaintext space pr.

Key generation. During key generation we choose in addition to the “standard” secret key sk
also a separate secret recryption key s̃k = (1, s̃). We include in the secret key both a key-switching
matrix from sk to s̃k, and a ciphertext c̃t that encrypts s̃ under key sk, relative to plaintext space
pe−e

′+r.
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The recryption procedure itself. Given a mod-pr ciphertext ct relative to the “standard” key sk,
we first key-switch it to s̃k and modulus-switch it to q̃ = pe + 1, then make its coefficients divisible
by pe

′
using the procedure from Lemma 5.2, thus getting a new ciphertext ct′ = (c′0, c

′
1). We then

compute the homomorphic inner-product divided by pe
′
, by setting ct′′ = (c′1/p

e′) · c̃t + (0, c′0/p
e′).

Next we apply the first linear transformation (the map Eval−1 from Section 4.2), moving to the
slots the coefficients of the plaintext u′ that is encrypted in ct′′. The result is a single ciphertext
with fully packed slots, where each slot holds d of the coefficients from u′. Before we can apply
the digit-extraction procedure from Section 5.3, we therefore need to unpack the slots, so as to put
each coefficient in its own slot, which results in d “sparsely packed” ciphertexts (as described in
Section 4.3).

Next we apply the digit-extraction procedure from Section 5.3 to each one of these d “sparsely
packed” ciphertexts. For each one we extract the digits up to e + r − e′ (or up to e + r − e′ − 1 if
p = 2 and r > 2), and combine the top digits as per Lemma 5.1 to get in the slots the coefficients
of the plaintext polynomial m (one coefficient per slot). The resulting ciphertexts all have plaintext
space mod-pr.

Next we re-combine the d ciphertext into a single fully-packed ciphertext (as described in Sec-
tion 4.3) and finally apply the second linear transformation (the map Eval described in Section 4.2).
This completes the recryption procedure.

6 Parameters for Recryption

Here we explain our choice of parameters for the recryption procedure, in particular e and e′. To a
large degree, the running time and depth of the digit extraction procedure depends on the size of
e−e′, and so the goal is to minimize e−e′ while keeping the probability of an error acceptably small.
The choice of e and e′ depends on several other parameters:

• m, which defines the ring F = R[X]/(Φm(X)), and the number of distinct prime factors of m,
denoted by t,

• the plaintext space pr,

• the Hamming weight h of the secret key, and

• a parameter k that controls the error probability (which should be thought of as a “number of
standard deviations”).

6.1 Multiplying the Secret Key by a Random Element

Driving our parameter selection is a heuristic high-probability bound on the size of the element
w · s ∈ F , where s is the recryption secret key and w is a “random element”, whose coefficients in
the powerful basis are chosen independently from a zero-mean distribution with bounded variance.
The recryption secret key s in HElib is generated as follows:

• we choose coefficients s0, . . . , sm−1, where a randomly chosen subset of h coefficients is set to
±1 uniformly and independently, and the remaining m− h coefficients are set to zero;

• we then form the polynomial
∑m−1

i=0 siX
i, and s is the image of this polynomial in F , i.e. the

element in F whose power-basis representation is (
∑m−1

i=0 siX
i) mod Φm(X).

Let |x| denote the `∞ norm of a ring element x ∈ F in the powerful basis. Our heuristic analysis
in Section 6.1.1 below, which is validated by experiments, establishes a high-probability bound on
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|ws| where w, s are chosen as above. Namely, if the coefficients of w are chosen independently from
a zero-mean distribution with variance bounded by σ2, it suggests that

Pr
[
|ws| > B · σ

]
/ φ(m) · erfc(k/

√
2), (5)

where B is the size bound

B
def
= k · 2t/2 ·

√
h ·
√
φ(m)

m
, (6)

and erfc is the complementary error function (so erfc(k/
√

2) is the probability that a normal random
variable takes a value that is more than k standard deviations away from its mean). A useful special
case is when the coefficients of w are chosen uniformly at random in [−1

2 ,+
1
2 ], in which case we have

σ2 = 1/12 and we get the bound Pr
[
|ws| > B∗

]
/ φ(m) · erfc(k/

√
2), with the size bound

B∗
def
=

B

2
√

3
= k · 2t/2

2
√

3
·
√
h ·
√
φ(m)

m
.

In our implementation, we use a default value of k = 10, for that value of k we have erfc(k/
√

2) ≈
2−76. By Eqn. (5), this will keep the probability that |ws| exceeds B bounded by ≈ 2−60 for all
reasonable values of m (with φ(m) bounded by 216).

6.1.1 Justifying the Bound (5)

The analysis below considers the powerful basis for F with respect to the factorization into prime
powers4 m = m1 · · ·mt. We want to bound |ws|, where | · | denotes the `∞-norm in the powerful
basis, and where w and s are chosen as described above.

The multiply-by-s matrix. Fix s, and let Ms denote the matrix representing the multiplication-
by-s map on the powerful basis. That is, if ~w = (w1, . . . , wφ(m))

ᵀ is the powerful basis coordinate
vector of w, then the coordinate vector of ws is Ms · ~w. The following lemma ties the structure of
the matrix Ms to the number of prime-power factors of m:

Lemma 6.1 Recall that s was chosen in terms of the coefficients s0, . . . , sm−1. Each entry in Ms is
the sum of 2t distinct coefficients (or their negations). Moreover, for any row of Ms, each coefficient
si contributes to at most 2t different entries in that row.

Proof. As a warm up, consider the case where m is itself a prime (so t = 1 and the powerful basis is
the same as the usual power basis). In this case, the matrix Ms looks like this:

Ms =


s0 − sm−1 sm−1 − sm−2 · · · s2 − s1
s1 − sm−1 s0 − sm−2 · · · s3 − s1

...
...

...
...

sm−2 − sm−1 sm−3 − sm−2 · · · s0 − s1

 .

The jth column of Ms is the coefficient vector of s · Xj mod Φm(X). It can be obtained by first
rotating the vector (s0, . . . , sm−2, sm−1)

ᵀ by j positions, corresponding to multiplication of s by Xj

mod Xm − 1, then reducing modulo Φm(X) = 1 + · · ·+Xm−2 +Xm−1.

4The analysis in Section 4 considered a more general notion of powerful basis, with respect to arbitrary pairwise
co-prime factorizations of m. The analysis here does not apply to this more general notion.
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The rotation yields the coefficient vector (s−j , . . . , sm−2−j , sm−1−j)
ᵀ, with subscripts computed

modulo m. By virtue of the congruence

Xm−1 ≡ −(1 + · · ·+Xm−2) (mod Φm(X)),

we have that reducing modulo Φm(X) is tantamount to subtracting sm−1−j from the first m − 1
entries of the rotated vector (and deleting the last entry). Hence the resulting coefficient vector is
(s−j − sm−1−j , . . . , sm−2−j − sm−1−j)ᵀ. One can verify by direct inspection that the claims of the
lemma are satisfied in this case.

In the case of general m = m1 · · ·mt, where mi = ueii , one can proceed in a similar fashion.
As a preliminary matter, we shall work with the coordinate vector of s in the natural basis for the
R-algebra

A = R[X]/(Xm1
1 − 1, . . . , Xmt

t − 1),

which consists of the monomials Xj1
1 , . . . , X

jj
t , where

j1 = 0, . . . ,m1 − 1, . . . , jt = 0, . . . ,mt − 1.

Note that A is isomorphic to R[X]/(Xm − 1) by the isomorphism that sends Xi to Xm/mi . Because
of this isomorphism, the entries of the coordinate vector of s with respect to the standard power
basis for R[X]/(Xm − 1) are just a permutation of the entries with respect to the natural (tensor)
basis for A.

Let ~j = (j1, . . . , jt) index a particular column of Ms, corresponding to multiplication by the
monomial Xj1

1 · · ·X
jt
t in A. That column of Ms is obtained by first permuting the coordinate vector

of s, and then reducing modulo Φm1(X1), . . . ,Φmt(Xt).
The coordinate vector of s is naturally viewed as a t-dimensional hypercube, and multiplying by

Xj1
1 · · ·X

jt
t (modulo Xm − 1) correspond to rotating this hypercube by amounts j1, . . . , jt in each

dimension: if s[i1, . . . , it] denotes one entry in the coordinate vector for s, then the corresponding
entry in the coordinate vector of s′ = s·Xj1

1 · · ·X
jt
t mod (Xm−1) is s′[i1, . . . , it] = s[i1−j1, . . . , it−jt]

(where each index ir−jr is reduced modulo the corresponding modulus mr), this s′ has degree m−1.
To get the coordinate vector of s · Xj1

1 · · ·X
jt
t ∈ F with respect to the powerful basis, we need to

reduce this s′ modulo each of Φm1(X1), . . . ,Φmt(Xt).

Let us denote L(a, b)
def
= (a mod b) − b ∈ [−b,−1]. Reducing modulo the first polynomial

Φm1(X1) = 1 +X
m1/u1
1 +X

2m1/u1
1 + · · ·+X

(u1−1)m1/u1
1 , the (i1, . . . , it)-entry becomes

s′′[i1, i2, . . . , it] = s′[i1, i2, . . . , it]− s′[i′1, i2, . . . , it],

where i′1 = L(i1,
m1
u1

). (Note that when m1 is itself prime, so m1 = u1, we have i′1 = L(i1,
m1
u1

) = −1.)
Further reducing modulo Φm2(X2), the (i1, . . . , it)-entry becomes

s′′[i1, i2, . . . , it]− s′′[i1, L(i2,
m2
u2

), . . . , it]

= s′[i1, i2, . . . , it]− s′[L(i1,
m1
u1

), i2, . . . , it]− s′[i1, L(i2,
m2
u2

), . . . , it] + s′[L(i1,
m1
u1

), L(i2,
m2
u2

), . . . , it]

= s[i1 − j1, i2 − j2, . . . , it − jt]− s[L(i1,
m1
u1

)− j1, i2 − j2, . . . , it − jt]
−s[i1 − j1, L(i2,

m2
u2

)− j2, . . . , it − jt] + s[L(i1,
m1
u1

)− j1, L(i2,
m2
u2

)− j2, . . . , it − jt].

Continuing in this way, the (i1, . . . , it)-entry in the powerful basis of s · Xj1 . . . Xjt (with 0 ≤ ir ≤
φ(mr)− 1) is ∑

τ1,...,τt

(−1)τ1+···+τts
[
∆τ1(i1, L(i1,

m1
u1

))− j1, . . . , ∆τt(it, L(it,
mt
ut

))− jt
]
, (7)
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where the sum is over all (τ1, . . . , τt) ∈ {0, 1}t, and ∆τ (a, b) is defined to be a if τ = 0 and b if τ = 1.
One row of the matrix Ms, then, is comprised of the entries (7) for all the columns (j1, . . . , jt) (with
0 ≤ jr ≤ φ(mr) − 1). For this row, any one value s[k1, . . . , kt] appears as a term in those columns
that are indexed by (j1, . . . , jt) such that

j1 ∈ { i1 − k1 mod m1, L(i1,
m1
u1

)− k1 mod m1 },
. . . ,

jt ∈ { it − kt mod mt, L(it,
mt
ut

)− kt mod mt }.
(8)

That proves the lemma in the case of a general m. �

The coefficients of ws. Consider now a single coefficient g of ws in the powerful basis, namely
an entry in the vector Ms · ~w. This coefficient can be expressed as a sum of random variables

g = e1w1 + · · ·+ eφ(m)wφ(m),

where the wi’s are coefficients of w and the ei’s are entries in one row of Ms. Recalling that the
coefficients wi’s are independent zero-mean random variables with variance σ2 and conditioning on
a fixed s, the random variable g is the sum of independent random variables of bounded variance.
By Lemma 6.1, the `1-norm of this row of Ms is bounded by 2th. It follows that for this fixed s the
variance of g itself is at most 22th · σ2.

Thus, we could apply the Central Limit Theorem to argue that for this fixed s, the distribution
of g closely approximates a zero-mean Normal random variable with variance at most 22th · σ2, and
hence for B′ = k · 2t

√
h, we have Pr[|g| > B′ · σ] / erfc(k/

√
2). The approximate inequality (5), for

this value of B′, would then follow from the union bound.
Note, however, that this argument is quite pessimistic, and B′ = k · 2t

√
h is significantly larger

than the value given in (6). We next argue (a bit heuristically) that the approximate probability
bound (5) should indeed hold with the smaller size bound B as defined in (6).

Note that while the wi’s are assumed independent, the ei’s (for s chosen at random as above) are
not, and hence the terms eiwi are not independent. Nonetheless, they appear “almost independent”
(which is backed up by experiments). Hence we compute below the sum of variances

∑
i Var[eiwi]

and treat it as if it were the variance of the sum Var[
∑

i eiwi].

Lemma 6.2 For s, w chosen at random as described above, we have∑
i

Var[eiwi] =
φ(m)

m
· 2t · h · σ2.

Proof. Recall that s is generated at random to have h nonzero coefficients, where each nonzero
coefficient is chosen uniformly from {−1, 1}. We can think of these nonzero coefficients of s as being
generated in a series of h rounds: for ` = 1, . . . , h, in the `th round, we choose the position of the `th
nonzero coefficient of s uniformly from {0, . . . ,m−1}, repeating as necessary until finding a position
that has not already been chosen in one of the previous rounds, and then we choose the value of the
`th nonzero coefficient unformly from {−1, 1}.

For ` = 1, . . . , h, we define X` to be the number of ei’s to which the `th nonzero coefficient of s
contributes.

Now, instead of conditioning on a fixed value of s, as we did above, let us instead condition on
a fixed choice C of h positions where coefficients of s are nonzero (and uniform in {−1, 1}). We can
compute the sum of the individual variances, conditioned on the particular choice C:∑

i

Var[eiwi | C] =
∑
i

Var[ei | C]Var[wi] = σ2
∑
i

Var[ei | C] = σ2
∑
`

E[X` | C].
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The first equality follows from independence. The last equality holds because for each i, the value
Var[ei | C] is equal to the number of nonzero coefficients of s that contribute to ei. Averaging over
all choices C, we have∑

i

Var[eiwi] =
∑
C

Pr[C] ·
∑
i

Var[eiwi | C] =
∑
C

Pr[C] · σ2
∑
`

E[X` | C] = σ2
∑
`

E[X`].

Now, for each individual ` = 1, . . . , h, the position of the `th nonzero coefficient of s is uni-
formly distributed over {0, . . . ,m − 1}, and so it follows that the corresponding coordinate vector
~k = (k1, . . . , kt) in the t-dimensional hypercube introduced in the proof of Lemma 6.1 is uniformly
distributed over this hypercube. There are at most 2t row entries to which this nonzero coefficient
contributes, namely the ones corresponding to tuples ~j = (j1, . . . , jt) that satisfy Eqn. (8). But some
of these tuples have jr > φ(mr) (for some r), and hence are not valid. In fact for a uniformly chosen
coordinate vector ~k in the hypercube, each one of these ~j tuple has only φ(m)/m probability of also
satisfying 0 ≤ jr ≤ φ(mr) for all r. Hence the expected number of valid tuples to which a uniform ~k
contributes is exactly

E[X`] = 2t · φ(m)

m
,

and the lemma follows. �

We stress that while Lemma 6.2 gives the precise value of the sum of variances S =
∑

i Var[eiwi],
this may not be equal to the variance of the sum Var[g] = Var[

∑
i eiwi], since the terms eiwi are not

independent. Nevertheless, based on this analysis, and the results of extensive experimentation, we
believe that the distribution of g is well approximated by a normal random variable with variance S.
Hence with the size bound B as given in (6), the approximate probability bound from (5) is fairly
accurate.

6.2 Using the Bound (5)

The recryption input. Going into the recryption procedure, after key-switching to the recryption
key and mod-switching to q = pe + 1, we have a ciphertext (c0, c1). Denoting

x = c0 + c1s

(without mod-q reduction), we recall that for Lemma 5.1 we would need to bound the expression
|x′/q|+ |[x′]q|. We use the analysis from above to bound both terms.

• Eqn. (5) can be used directly to bound the size of c1s: if we model the powerful-basis coefficients
of c1 as uniformly and independently distributed over the continuous interval [− q

2 ,+
q
2 ], then

we get a heuristic high-probability bound |c1s| ≤ qB∗ and therefore |x|/q ≤ |c0|/q + |c1s|/q ≤
(B∗ + 0.5). While the coefficients of c1 are integers (and hence not continuous in [±q/2]), we
show in Section 6.2.1 that this discretization introduced at most another small multiplicative
factor of (1 + 1/q2) to this bound

|x|/q ≤
(

1 +
1

q2

)
(B∗ + 0.5). (9)

• The term |[x]q|, corresponds to the noise in the ciphertext (c0, c1), which is dominated by the
mod-switching additive noise term ε0 + ε1s, with the εi’s the rounding terms. With plaintext
space modulo pr, we can approximately model the coefficients of ε1 as uniform in the continuous
interval [±pr/2], so Eqn. (5) yields a heuristic high-probability bound |ε0 + ε1s| ≤ pr(B∗+ 0.5).
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For the term [x]q, we have another contribution due to the scaled noise from before the modulus
switching, but as we explain in Section 6.2.1, this term will be smaller so the overall bound is
less than doubled

|[x]q| ≤ 2pr(B∗ + 0.5). (10)

The make-divisible operation. After making the ciphertext divisible by pe
′

using Lemma 5.2,
we have a new ciphertext (c′0, c

′
1) = (c0, c1) + q(v0, v1). Let y = v0 + v1s. Modeling the coefficients

of (c0, c1) as independently uniform in [±q/2], it is reasonable to model the coefficients of (v0, v1) on
the powerful basis as independently uniform in [±pe′/2], and we get from Eqn. (5) a heuristic high-
probability bound |y| ≤ pe′(B∗ + 0.5), with another small multiplicative factor due to discretization

|y| ≤ pe′(1 + δ)(B∗ + 0.5), (11)

where δ = 1/p2e
′

if p = 2 and δ = 1/q if p is odd.

Satisfying the conditions of Lemma 5.1. Denoting x′ = c′0+c′1s = x+qy, applying Lemma 5.1
requires that we satisfy |x′/q|+ |[x′]q| ≤ (q−1)/2 = pe/2. Since |x′/q| ≤ |x/q|+ |y| and |[x′]q| = |[x]q|,
then applying the bounds in (9)–(11) we get the heuristic high-probability bound

|x′/q|+ |[x′]q| ≤ |x/q|+ |y|+ |[x]q| ≤ (B∗ + 0.5) ·
(
pe
′
(1 + δ) + 2pr + 1 +

1

q2

)
Our parameter-setting procedure for recryption attempts to minimize e − e′ (which corresponds to
the recryption depth) subject to the constraint

(B∗ + 0.5) ·
(
pe
′
(1 + δ) + 2pr + 1 +

1

q2

)
≤ pe/2, (12)

and also keeping pe < 230 to avoid integer overflow problems.

6.2.1 Low-level details of the analysis

Two details of the analysis that we still need to address are the discretization effect (since the
coefficients must be integers rather than uniformly in some continuous interval), and the initial
ciphertext noise from before bootstrapping.

Discretization: the symmetric distribution mod M . Let M ≥ 2 be an integer, and consider
the following probability distribution over the integers in the range [±M/2]: If M is odd, then
the symmetric distribution mod M is simply the uniform distribution on this set of integers Z ∩
[−bM/2c,+bM/2c]. If M is even, then the symmetric distribution mod M assigns probability mass
1/2M to the integers ±M/2, while the integers of magnitude strictly smaller than M/2 are each
assigned probability mass 1/M . Note that for the symmetric distribution mod M , each residue class
mod M is equally likely, and the distribution is symmetric about zero (and in particular, its mean
is zero). Instead of the variance M2/12 for the continuous distribution on [±M/2], we have:

Lemma 6.3 Let M ≥ 2 be an integer and X be a random variable that is symmetrically distributed
mod M . Then Var[X] ≤ M2

12 if M is odd and Var[X] ≤ M2

12 ·
(
1 + 2

M2

)
if M is even.

Proof. Let N = bM/2c. If M is odd then we have Var[X] = 2
2N+1 ·

∑N
i=1 i

2 ≤ M2

12 , and if M is even

then Var[X] = N2

2N + 2
2N ·

∑N−1
i=1 i2 = M2

12

(
1 + 2

M2

)
. �
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We therefore replace the assumption that the coefficients of c0, c1 are uniform in the continuous
interval [±q/2], by the symmetric distribution mod q, which increases the standard deviation used

for Eqn. (9) by at most a factor of
√

1 + 2
q2
≤ 1 + 1

q2
. The factor (1 + δ) from Eqn. (11) and the

factor 2 from Eqn. (10) are explained next.

Modular reduction of the symmetric distribution and the bound (11). Recall from the
proof of Lemma 5.2 (on Page 14) that the terms v0, v1 in the make-divisible operation are set as
vi = −ci mod pe

′
. The coefficients of the ci’s are assumed to be symmetrically distributed mod q, and

our goal is to get a bound on the variance of the coefficients of vi’s (which we can use in Eqn. (6)).
Specifically, we are taking an integer coefficient c, which is symmetrically distributed mod q, and

reducing it symmetrically mod pe
′

to get another value d. (If p is even then this reduction chooses
between the two endpoints ±pe′/2 at random.) We claim that the value d thus obtained has zero

mean and standard deviation is bounded by pe
′

2
√
3
· (1 + δ), where δ = 1/p2e

′
if p = 2 and δ = 1/q if p

is odd.

Case 1: p = 2. Recall that q− 1 is divisible by pe
′

(since q = pe + 1 for some e ≥ e′). Conditioned
on c 6= 0, the residue class c mod pe

′
is therefore uniformly distributed over the residue classes mod

pe
′

(while conditioned on c = 0 we have d = 0). The distribution of d is thus a convex combination
of the symmetric distribution mod pe

′
and the constant zero (which both have zero mean). Hence d

has zero mean, and its variance is no more than that of the symmetric distribution mod pe
′
, which

is p2e
′
/12 · (1 + 2/p2e

′
), so the standard deviation is at most pe

′

2
√
3
· (1 + 1

p2e′
).

Case 2: p odd. In this case, q = pe+1 is even and pe
′
is odd. Conditioned on c 6= ±q/2, the residue

class c mod pe
′

is uniformly distributed over the residue classes mod pe
′
; therefore, the distribution of

d is symmetric mod pe
′
, and by Lemma 6.3 its variance is at most p2e

′
/12. Conditioned on c = ±q/2,

d is uniform over {±bpe′/2c}, which has variance p2e
′
/4. Hence d has zero mean, and since c = ±q/2

with probability 1/q, then

σ2 = Var[d] ≤ p2e
′

12
·
(

1− 1

q

)
+
p2e
′

4
· 1

q
=
p2e
′

12

(
1 +

2

q

)
.

The standard deviation is thus bounded by pe
′

2
√
3
· (1 + 1

q ).

The ciphertext noise and the bound (10). During the computation in HElib we keep track
of the `∞-norm of the canonical embedding of the noise. Below we denote this canonical-embedding
norm of an element x ∈ F by |x|c. For bootstrapping, however, we are interested in the `∞-norm of
x on the powerful basis, which is denoted |x|.

Heading into recryption, after key-switching to the recryption key but before modulus switching
to q = pe+1, we have a decryptable ciphertext (c̃0, c̃1) ∈ RQ (for some Q� q) with noise magnitude
η in the canonical embedding. Namely we have

x̃
def
= [c̃0 + c̃1s]Q with η

def
= |x̃|c � Q.

To get a handle on the noise magnitude in the powerful basis after modulus switching, we begin by
bounding |x̃| in terms of |x̃|c. Let tan(·) be the tangent function, and for a real number u define

P (u)
def
=

2

u · tan(π/2u)
.
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Below we use the values of P (u) at prime numbers u. One can verify that P (u) approaches 4/π ≈
1.273 from below as u→∞, and the (approximate) values of P (u) for the first few primes are:

u 2 3 5 7 11

P (u) 1 1.155 1.231 1.252 1.265

The following lemma generalizes Lemma 5 in [13]. For completeness, we give a self-contained
proof.

Lemma 6.4 For all w ∈ F , we have |w| ≤ |w|c ·
∏

prime u | m P (u).

Proof. We first prove the lemma in the case where m is itself prime, where the powerful basis is
the same as the standard power basis. Consider the (m− 1)× (m− 1) matrix CRTm, representing
the linear map that evaluates a polynomial of degree less than m − 1 at the m − 1 primitive mth
roots of unity. To prove the lemma for this case, it suffices to show that the `∞-norm of this matrix,
N = N∞(CRT−1m ), is equal to P (m). Recall that if CRT−1m = (aij), then the `∞ norm of CRTm is

N = max
i

∑
j

|aij |.

We first calculate the entries aij of CRT−1m explicitly. Let DFTm be the m×m matrix corresponding

the Discrete Fourier Transform, i.e., DFTm = (ωijm), where the indices i and j range over {0, . . . ,m−
1}, and ωm = exp(2πi/m). The matrix CRTm is obtained by deleting row 0 and column m− 1 from
DFTm. We know that DFT−1m = m−1(ω−ijm ). From this, we can apply general results that express
the inverse of a submatrix in terms of the inverse of a matrix. For example, Theorem 2.1 of [30]
implies that for i 6= m− 1 and j 6= 0, we have

aij =
1

m
(ω−ijm − ωjm) =

ωjm
m

(ω−(i+1)j
m − 1) =⇒ |aij | =

1

m
· |ω−(i+1)j

m − 1|.

For every i 6= m− 1, summing over all j > 0 we get
∑

j>0 |aij | =
1
m ·
∑

j>0 |ω
j
m − 1|, and hence

N =
1

m

∑
j>0

|ωjm − 1|.

Each term |ωjm− 1| is the length of the chord of the unit circle corresponding to the angle 2πj/m
(which is 2 sin(πjm )). That is,

|ωjm − 1| = 2 sin(πj/m) = 2=(ωj2m),

✓ = 2⇡j/m

2 sin(⇡/2)

!j
m

✓
1

where ω2m = exp(2πi/2m) and =(c) is the imaginary part of the complex number c. If follows that

mN = 2

m−1∑
j=1

sin(πj/m) = 2=

m−1∑
j=0

ωj2m

 = 2=
(
ωm2m − 1

ω2m − 1

)
= 2=

(
−2

ω2m − 1

)

= −4=
(

ω−12m − 1

|ω2m − 1|2

)
=

sin( πm)

sin2( π
2m)

=
2 sin( π

2m) cos( π
2m)

sin2( π
2m)

= 2/ tan( π
2m).
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The penultimate equality above uses the standard formula sin(2α) = 2 sin(α) cos(α). This completes
the proof for the case where m is a prime.

When m = ue is a prime power, the lemma follows from the result for prime u, along with the
fact (see [33, Sec 3]) that CRT−1m can be expressed as a product of several matrices:

• a block diagonal matrix with CRT−1u on the diagonal,

• a block diagonal matrix with DFT−1m/u on the diagonal,

• a diagonal matrix with roots of unity on the diagonal, and

• several permutations matrices,

The first matrix has `∞-norm P (u), and the remaining matrices have `∞-norm 1. By the sub-
multiplicativity of the `∞-norm, it follows that the `∞-norm of CRT−1m is at most P (u). (Experi-
mentally, the `∞-norm of CRT−1m appears to be equal to P (u).)

When m = m1 · · ·mt is the product of several prime powers, the result follows from the result
for prime powers, and the fact (see [33, Sec 3]) that CRTm can be expressed as a product of several
matrices:

• for each i = 1, . . . , t, one block diagonal matrix with CRT−1mi
on the diagonal, and

• several permutation matrices.

The lemma follows from the sub-multiplicativity of the `∞-norm. �

Back to recryption, recall that before modulus-switching we have a ciphertext (c̃0, c̃1) with noise
x̃ = [c̃0 + c̃1s]Q of magnitude η = |x̃|c � Q. We then modulus-switch it down to the bootstrapping
modulus q to obtain a ciphertext (c0, c1) such that ci = d qQ c̃ic = q

Q c̃i + εi, where εi ∈ [±pr/2] is a
rounding term. The noise term after modulus switching is therefore

[x]q = [c0 + c1s]q =
q

Q
x̃+ ε0 + ε1s,

and we seek a high-probability upper bound on the norm |[x]q| (in the powerful basis). The canonical-
embedding norm of the first term on the right-hand side is q

Q · η, and by Lemma 6.4 we can bound
its powerful-basis norm by ∣∣∣ q

Q
x̃
∣∣∣ ≤ q

Q
· η ·Dm

where Dm
def
=
∏

prime u | m P (u) ≤ (4/π)t (with t the number of primes that divide m).
When Q is large enough, the coefficients of the rounding terms εi can be heuristically modeled

as independent random variables, each uniform in the continuous interval [±pr/2], hence we get the
heuristic high-probability bound |ε0 + ε1s| ≤ pr(B∗ + 0.5). If the initial noise magnitude η is small
enough so as

q

Q
· η ·Dm ≤ pr(B∗ + 0.5), (13)

then the total noise magnitude is bounded by 2pr(B∗ + 0.5) as needed for the bound in Eqn. (10).
Currently, HElib checks that (13) holds during bootstrapping, and prints a warning if this is not the
case (which for typical parameters never happens).
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6.3 Experimental validation

There are a several steps in the above analysis that are heuristic:

1. We assumed that certain ciphertext coefficients were essentially independently and uniformly
distributed.

2. Beyond just assuming the coefficients of w are independently and uniformly distributed, we
modeled the individual coefficients of ws as having a normal distribution with a certain variance.
This involves two heuristic steps:

(a) we expressed each coefficient as a sum of random variables of bounded variance, and
calculated the sum of variances, but we ignored the fact that the terms in this sum are
not independent;

(b) even if the terms in this sum were independent, and we could apply the Central Limit
Theorem, we did not use a quantitative version of the Central Limit Theorem.

The heuristics 1 and 2(a) in particular involve assuming that many variables “behave as is they
were independent” for the purpose of noise growth, and the only way we could justify these assump-
tions is experimentally.

6.3.1 Coefficient sizes of ws for random w’s

Perhaps the most questionable assumption that we made is assuming that the various terms in∑
eiwi behave independently when the wi’s are independent and the ei’s are taken from a row

of the multiply-by-s matrix (cf. Section 6.1.1), so we ran extensive experiments to validate this
assumption. We generated 75 random values of m ∈ {25,000, . . . , 45,000} with 1 through 5 prime
factors (15 random m’s for each number of prime factors). For each of these m’s, we ran 100,000
trials, each proceeding as follows:

1. Choose a random secret key s and element w.

The secret key was chosen with hamming weight h = 120, and the coefficients of w on the
powerful basis were independently and symmetrically distributed mod 220 + 1.

2. Compute x = ws, then choose one coefficient of x on the powerful basis at random, and output
that coefficient.

That gave us 100,000 samples for each value of m, and we computed a few statistics to check if
these samples are consistent with a normal random variable with variance σ2 =

∑
i Var[eiwi] from

Lemma 6.2:

• For each value of m, we calculated the fraction of the 100,000 samples that fell within 1, 2, and
3 times the predicted standard deviation σ. We got the following results:

lowest m predicted fraction highest m

1× σ 0.6792 0.682689 0.6859

2× σ 0.9530 0.954499 0.9562

3× σ 0.9968 0.997300 0.9978

• For each m, we calculated the sample variance of the 100,000 samples, and compared it to the
predicted variance σ2. Of these 75 m’s, the highest sample variance was 1.0116 · σ2, the lowest
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was 0.9906 · σ2, and the median was 1.00108 · σ2. The corresponding p-values5 are roughly
1/206, 1/57, and 0.40404. Aggregating these 75 experiments into one large experiment, the
sample variance is 1.000586σ2, which has a p-value of 0.128243.

• For each m, we computed the maximum Z-score of the 100,000 samples (i.e., the maximum ab-
solute value of the samples, scaled by the predicted standard deviation σ). These 75 maximum
Z-scores had a high of 5.2130, a low of 4.0923, and a median of 4.5202. The corresponding p-
values are 1/54, 0.986, and 0.461. Aggregating these 75 experiments into one large experiment,
the highest Z-score has a p-value of 0.75181.

• For each m, we computed the Anderson-Darling statistic [2] of the 100,000 samples. Among
these 75 statistics, the two smallest p-values were 1/1028 and 1/24, the largest was 0.98279,
and the median was 0.521062.

6.3.2 Coefficient sizes in actual bootstrapping

For experimental evidence to justify heuristic step 1, we collected analogous statistics during runs of
the actual bootstrapping routine. The w that we used for this purpose was the ring element v1 that
arises in making the ciphertext divisible by pe

′
(see discussion above just after (10)). The value of

|v1s| is really the most critical in the correctness of recryption.
For this experiment, we used 49 odd values of m, in the range 25,000 and 40,000, with between

2 and 4 prime-power factors. For each of these m’s, we ran 250 trials, and in each trial we did the
following:

1. Choose a random secret key s and compute the element v1 of the bootstrapping process.

The secret key was chosen with hamming weight h = 120, and the element v1 was computed as
in the “make divisible” operation (see Section 6.2) on a ciphertext with plaintext space p = 2.

2. Compute x = v1s, then choose one coefficient of x on the powerful basis at random, and output
that coefficient.

That gave us 250 samples for each value of m, and we computed the same statistics as above to check
if these samples are consistent with a normal random variable with variance σ2 =

∑
i Var[eiwi] from

Lemma 6.2:

• For each value of m, we calculated the fraction of the 250 samples that fell within 1, 2, and 3
times the predicted standard deviation σ. We got the following results:

lowest m predicted fraction highest m

1× σ 0.612 0.682689 0.752

2× σ 0.912 0.954499 0.980

3× σ 0.988 0.997300 1.000

• For each m, we calculated the sample variance of the 250 samples, and compared it to the
predicted variance σ2. Of these 49 m’s, the highest sample variance was 1.2472σ2, the lowest
was 0.83913σ2, and the median was 0.99649σ2. The corresponding p-values are 1/207, 1/33,
and 0.496316. Aggregating these 49 experiments into one large experiment, the sample variance
is 0.9986248σ2, which has a p-value of 0.458818.

5The p value of a statistic is the probability of seeing this value under the distribution that we want to test for (i.e.,
normal with variance σ2 in our case).
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• For each m, we computed the maximum Z-score of the 250 samples (i.e., the maximum absolute
value of the samples, scaled by the predicted standard deviation σ). These 49 maximum Z-
scores had a high of 3.74436, a low of 2.51453, and a median of 2.95041. The corresponding
p-values are 0.04421, 0.95010, and 0.54826. Aggregating these 49 experiments into one large
experiment, the highest Z-score has a p-value of 0.89092.

• For each m, we computed the Anderson-Darling statistic [2] of the 250 samples. Among these
49 statistics, the smallest two p-values were 1/117, and 1/36, the largest was 0.977831, and the
median was 0.519054.

6.3.3 Conclusions

The worst p-value we saw for any of the statistics we collected was 1/1028, which was for the
Anderson-Darling statistic in the first test suite. As the Anderson-Darling p-values are themselves
uniformly distributed, the probability of seeing such a low p-value among all 75 + 49 = 124 such
p-values (in both test suites) is about 1/9, which is not unreasonable.

Arguably, the most important statistic is the maximum Z-value, as this bears directly on the
correctness of recryption. As we saw, the aggregate maximum Z-value for the first test suite had a
p-value of 0.75181, and for the second, a p-value of 0.89092. These are very reasonable.

Finally, we went back to the values of m that gave rise to the smallest p-values that we saw, and
wanted to test if there are any “algebraic reasons” that make these m’s particularly bad. Hence we
re-ran the tests on the values of m and got the following results:

• For the first suite of tests with a uniform w, the high sample variance (with p-value 1/306)
occurred with m = 32939, which is a prime. We re-ran the experiment for that m, and got a
sample variance of 1.00347 · σ2, with p-value of 0.218725.

The Anderson-Darling statistic for this test suite that had the smallest p-value (of 1/1028) came
from a run with m = 3 ·5 ·7 ·13 ·29. We note that we generated random m’s with replacement,
and had that very same m appear twice more in our data set. For the other occurrences of this
value of m, the corresponding Anderson-Darling p-values were 0.209769 and 0.694718.

• For the second suite of tests with w coming from actual bootstrapping, the p-value 1/207 in
the empirical variance test occurred with m = 3 · 7 · 23 · 67. We re-ran the experiment for that
m and got a sample variance of 0.98939σ2, which has a p-value of 0.4645803.

The 1/117 p-value for the Anderson-Darling statistic came from a run with m = 7 · 23 · 199.
We re-ran this test and got a p-value of 0.184049.

These results seem to indicate that the low p-values for those m’s are not due to algebraic reasons.
Summing up, we feel that the results of these experiments provide good evidence to justify our

heuristic assumptions.

7 Implementation and Performance

As discussed in Section 4.2, our algorithms for the linear transformations rely on the parameter m
having a fairly special form. Moreover, the analysis in Section 6 imposes even more restrictions on m
(specifically, we must restrict to prime-power factorizations of m, rather than just pairwise-coprime
factorizations as in Section 4.2). Luckily, there are quite a few such m’s, which we found by brute-
force search. We ran a simple program that searches through a range of possible m’s (odd, not
divisible by p, not prime). For each such m, we first compute the order d of p mod m. If this exceeds
a threshold (we chose a threshold of 100), we skip this m. Next, we compute the factorization of m
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into prime powers as m = m1 · · ·mt. We then find all indexes i such that p has order d mod mi.
If we find none, we skip this m; otherwise, we choose one such index (if there is more than one, we
choose one that makes the linear transforms as fast as possible), and the other prime power factors
are ordered arbitrarily.

cyclotomic ring m 21845 18631 28679 35113
=257·5·17 =601·31 =241·7·17 = 37·13·73

lattice dim. φ(m) 16384 18000 23040 31104
plaintext space GF(216) GF(225) GF(224) GF(236)
number of slots 1024 720 960 864
recrypt params e/e′ 12/4 16/9 12/4 12/4
before capacity 492 489 578 820
after capacity 174 237 252 495
min capacity 6.3 10.3 6.3 6.2
bits per level 15.2 15.4 15.8 15.9
usable levels 11 14 15 30
linear transforms (sec) 23 15 17 16
total recrypt (sec) 163 167 294 842
space usage (GB) 2.7 3.3 4.0 4.1

Table 1: Experimental results with plaintext space GF(2d)

cyclotomic ring m 45551 51319 42799 42799 49981 49981
=41·11·101 =73·19·37 = 337·127 w/o Chen-Han =331·151 w/o Chen-Han

lattice dim. φ(m) 40000 46656 42336 49500
plaintext space GF(1740) GF(12736) R(256, 21) R(256, 30)
number of slots 1000 1296 2016 1650
recrypt params e/e′ 4/2 3/1 23/16 23/16
before capacity 1019 1178 1092 1288
after capacity 573 422 681 563 872 758
min capacity 7.5 9.2 10.3 10.3
bits per level 19.7 22.1 23.1 23.1
usable levels 28 18 29 23 37 32
linear transforms (sec) 29 36 60 75
total recrypt (sec) 1584 3636 2146 1883 4034 3590
space usage (GB) 7.7 10.3 15.6 21.6

Table 2: Experimental results with other plaintext spaces

For example, with p = 2, we processed all potential m’s between 16,000 and 64,000. Among
these, there were a total of 192 useful m’s with 15, 000 ≤ φ(m) ≤ 60, 016, with a fairly even spread.
So while such useful m’s are relatively rare, there are still plenty to choose from. We ran this
parameter-generation program to find potential settings for plaintext-space modulo p = 2, p = 17,
p = 127, and pr = 28, and manually chose a few of the suggested values of m for our tests.

For each of these values of m, p, r, we then ran a test in which we chose a random key, and
performed recryption once per key. These tests were run on an Intel Xeon CPU E5-2698 v3 (Haswell
architecture) at 2.30GHz. We ran our tests single-threaded, although HElib can also be run multi-
threaded to obtain faster speeds. Tables 1 and 2 summarize the results from our experiments. We
chose parameters so that the security level, taken from [20, Eqn.(8)], was 80 bits (or just a little
more). For all tests we chose a hamming weight of 120 for the secret key (both the bootstrapping
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cyclotomic ring m 21845 18631 28679 35113
=257·5·17 =601·31 =241·7·17 = 37·13·73

lattice dim. φ(m) 16384 18000 23040 31104
plaintext space GF(2) GF(2) GF(2) GF(2)
number of slots 1024 720 960 864
recrypt params e/e′ 12/4 16/9 12/4 12/4
before capacity 491 489 578 820
after capacity 247 298 329 580
min capacity 41.1 34.2 41.9 32.6
bits per level 15.2 15.4 15.8 15.9
usable levels 13 17 18 34
linear transforms (sec) 4 3 4 10
total recrypt (sec) 15 11 19 40
amortized time (ms) 1.1 0.9 1.1 1.4
space usage (GB) 1.8 1.8 1.6 3.5

Table 3: Experimental results with plaintext space GF(2d) – thin bootstrapping

cyclotomic ring m 45551 51319 42799 49981
=41·11·101 =73·19·37 = 337·127 =331·151

lattice dim. φ(m) 40000 46656 42336 49500
plaintext space GF(17) GF(127) Z256 Z256

number of slots 1000 1296 2016 1650
recrypt params e/e′ 4/2 3/1 23/16 23/16
before capacity 1019 1178 1091 1288
after capacity 682 551 768 962
min capacity 42.9 67.3 48.8 48.6
bits per level 19.7 22.1 23.1 23.1
usable levels 32 21 31 39
linear transforms (sec) 17 19 19 27
total recrypt (sec) 66 125 130 173
amortized time (ms) 2.1 4.6 2.1 2.7
space usage (GB) 6.4 9.0 8.3 11.5

Table 4: Experimental results with other plaintext spaces — thin bootstrapping

key and the regular decryption key). For all but the m = 21845 and m = 18631 experiments, we
chose the default parameter of 3 for the number of “columns” used in the “break into digits” logic
of key switching; for m = 21845, we replaced 3 by 9, and for m = 18631, we replaced 3 by 5; these
non-default settings trade increase security but reduce speed. This “columns” parameter is briefly
described in the full version of [20].

In each table, the first row gives m and its factorization into primes. The first factor shows the
value that was used in the role of m1 (as in Section 4.2). The second row gives φ(m). The third row
gives the plaintext space, i.e., the field/ring that is embedded in each slot (here, R(pr, d) means a
ring extension of degree d over Zpr). The fourth row gives the number of slots packed into a single
ciphertext. The fifth row gives the recryption parameters e and e′ that were used. The sixth row
gives the capacity of the ciphertext just after we perform the homomorphic inner product, and just
before we perform the first linear transformation. Here, capacity is defined as log2(Q/η), where Q is
the current modulus, and η is the current noise bound (measured as the `∞-norm of the canonical
embedding).
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The seventh row gives the capacity of the ciphertext after recryption. The eighth row gives the
minimum capacity that a ciphertext can have before it is bootstrapped.6 Thus, the difference between
the “after capacity” and “min capacity” in the tables is the residual capacity that can be used to
perform real work before we need to bootstrap again. The ninth row gives the “bits per level”, which
is the number of capacity bits consumed by one squaring operation (determined experimentally).
Based on the data in rows 7–9, we compute the number of “usable levels”, which is the number of
squarings that can be performed between the end of one recryption operation and the start of the
next one. The last three rows give the running time (in seconds) of the linear map operations, the
total running time (in seconds) of one recryption operation, and the total memory (in gigabytes)
used during recryption.

The Chen-Han Digit Extraction Procedure. Currently, HElib employs the Chen-Han op-
timization for digit extraction (cf. [5]) when working with plaintext moduli pr with r > 1.7 In
Table 2, we ran the last two examples, which work with pr = 28, either with the Chen-Han opti-
mization (which is the default), or without. One can see that using Chen-Han slows things down a
bit, but the noise control is better. By comparing the ratios of the usable levels to the ratios of the
running times, one sees that in terms of amortized performance, Chen-Han is faster.

7.1 Thin bootstrapping

Tables 3 and 4 summarize the results from analogous experiments using the “thin bootstrapping”
technique. Recall that for thin bootstrapping, the assumption is that each slot contains an element
of the base field (or ring), rather than an extension field (or ring). HElib implements a variant
of the technique for thin bootstrapping introduced in [5]. Details of this variant are given in [25].
Briefly, instead of d executions of the digit extracting routine, we only need one execution; moreover,
there is no packing or unpacking (which saves a bit of noise, as we avoid a constant-multiplication),
and the linear transformations are somewhat more efficient (as we do not need to use the more
expensive BlockMatMul1D routine). Note that with this technique, one must perform one of the
linear transformations before mod switching to the special bootstrapping modulus. Thus, we have
added the estimated loss in capacity for this linear transformation (determined experimentally) to
the minimum capacity at which a ciphertext should be bootstrapped. Thus, the difference between
the “after capacity” and “min capacity” in the tables is still the “residual capacity” that can be used
to perform “real work”. We also added a row “amortized time”, which measures the amortized time
(in milliseconds) for the bootstrapping overhead associated per slot and per multiplication. This is
computed by taking the total recryption time, and dividing by the number of slots times the number
of usable levels.

7.2 Multi-threading

HElib supports multi-threading. When multi-threading is activated, the general strategy is to par-
allelize at the highest level possible. For example, in the bootstrapping routine, we have to perform
d different digit extractions, and these can all be done parallel. Linear transformations can also be
parallelized: to a large degree, the automorphisms that these transformations need to execute can be
run in parallel. In the digit extraction routine (see Figure 1), the computations on lines 5 (for fixed
k and j = 0, . . . , k) can be run in parallel, and the cheaper computations on line 6 (for fixed k and
j = 0, . . . , k) can then be run sequentially. If none of these higher-level operations are parallelized,

6For this, we used a slightly more conservative bound than (13), with 2
3
pr(B∗ + 0.5) on the right-hand side.

7The implementation employs a heuristic method, choosing Chen-Han when it appears that it should save on noise.
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conversions between DoubleCRT and polynomial representation are parallelized: integer CRT oper-
ations are parallelized across coefficients, and FFT operations are parallelized across small primes.
Based on our experiments, parallelizing at the highest level possible yields the best speedup.

Consider the m = 21845 bootstrapping example (see the first column of Table 1). On a single
core, the running time was 163s. With 4 cores, the running time fell to 45s, and with 8 cores, the
running time fell to 26s. So with 4 cores, we attain 90% of the potential speedup, and with 8 cores,
we attain 78% of the potential speedup.

Next, consider the m = 21845 thin bootstrapping example (see the first column of Table 3). On
a single core, the running time was 21s. With 4 cores, the running time fell to 7.9s, and with 8 cores,
the running time fell to 5.9s. So with 4 cores, we attain 66% of the potential speedup, and with 8
cores, we attain 45% of the potential speedup. Thus, while we do get some speedup, it is not as
effective for thin bootstrapping as it is for bootstrapping.

8 Why We Didn’t Use Ring Switching

One difference between our implementation and the procedure described by Alperin-Sheriff and
Peikert [1] is that we do not use the ring-switching techniques of Gentry et al. [18] to implement the
tensor decomposition of our Eval transformation and its inverse. There are several reasons why we
believe that an implementation based on ring switching is less appealing in our context, especially
for the smaller parameter settings (say, φ(m) < 30000). The reasoning behind this is as follows:

Rough factorization of m. Since the non-linear part of our recryption procedure takes at least
seven levels, and we target having around 10 levels left at the end of recryption, it means that for
our smaller examples we cannot afford to spend too many levels for the linear transformations. Since
every stage of the linear transformation consumes at least half a level,8 then for such small parameters
we need very few stages. In other words, we have to consider fairly coarse-grained factorization of m,
where the factors have sizes mε for a significant ε (as large as

√
m in some cases).

Using large rings. Recall that the first linear transformation during recryption begins with the
fresh ciphertext in the public key (after multiplying by a constant). That ciphertext has very low
noise, so we have to process it in a large ring to ensure security.9 This means that we must switch
up to a much larger ring before we can afford to drop these rough factors of m. Hence we will be
spending most of our time on operations in very large rings, which defeats the purpose of targeting
these smaller sub-30000 rings in the first place.

We also note that in our tests, the recryption time is dominated by the non-linear part, so our
implantation seems close to optimal there. It is plausible that some gains can be made by using ring
switching for the second linear transformation, after the non-linear part, but we did not explore this
option in our implementation. And as we said above, there is not much to be gained by optimizing
the linear transformations.

9 Conclusions and Future work

In this report we described our implementation of bootstrapping in HElib, which can be made to run
as fact as amortized 1.3 millisecond per bit. At this rate, we expect fully homomorphic encryption
with bootstrapping to already be fast enough for some real applications.

One technical direction to explore is to try to find a better way to represent constants. In HElib,
the most compact way to store constants in Rpr is also the most natural: as coefficient vectors of

8Whether or not we use ring-switching, each stage of the linear transformation has depth of at least one multiply-
by-constant, which consumes at least half a level in terms of added noise.

9More specifically, the key-switching matrices that allow us to process it must be defined in a large ring.

33



polynomials over Zpr . However, in this representation, a surprisingly significant amount of time
may be spent in homomorphic computations converting these constants to DoubleCRT format. One
could precompute and store these DoubleCRT representations, but this can be quite wasteful of
space, as DoubleCRT’s occupy much more space than the corresponding polynomials over Zpr . We
may state as an open question: is there a more compact representation of elements of Zpr [X] that
can be converted to DoubleCRT format in linear time?

Another, more challenging, direction is to find efficient routines to convert between different
homomorphic encryption schemes. (In particular between the CKKS approximate number scheme
and any of the packed fixed-point scheme such as BGV or B/FV.) While it is obvious that one can
use bootstrapping for that purpose, we currently have no effective method for doing this. Some
progress along these lines was made recently by Boura et al. [3], but their techniques essentially
unpack each ciphertext of one scheme, and bootstrap each bit separately to pack it in the other
scheme. A fully optimized cross-scheme bootstrapping is an intriguing possibility that we believe
will find many practical applications.
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