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Abstract. A protection circuit can be added into cryptographic systems to detect both soft errors
and injected faults required by Differential Fault Analysis (DFA) attacks. While such protection
can improve the reliability of the target devices significantly and counteract DFA, they will also
incur extra power consumption and other resource overhead. In this paper, we analyze the side-
channel power leakage of AES protection methods against fault attacks and quantify the amount.
We implement six different schemes and launch correlation power analysis attacks on them. The
results show that the protection circuits have all increased the power leakage and therefore make
the system more vulnerable to power analysis attacks. We further compare different protection
schemes in terms of power consumption, area, fault coverage, and side-channel leakage. Our results
demonstrate trade-offs among multiple design metrics, and suggest that reliability, security, and
costs have to be all considered together in the design phase of cryptographic systems.
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1 introduction

Cryptographic operations have been the security engine for many critical systems and infrastructure.
However, their reliability and security are subject to unintentional soft errors and intentionally introduced
transient faults which can either disrupt the important security operations or even be used to infer the
secret key to crack the entire system. As the process technology keeps shrinking and the supply voltage
scales down, the probability of transient errors in circuits, including Single Event Transients (SETs) and
Single Event Upsets (SEUs), is rapidly increasing [1]. These soft errors reduce the reliability of systems
significantly. If these errors and other faults can be controlled by attackers to impose on cryptographic
circuits, statistical analysis can be performed on the correct and faulty outputs to retrieve the key, which
is called Differential Fault Analysis Attack [2].

DFA was first introduced by Biham et. al. on the Data Encryption Standard (DES) algorithm [2]. It
was applied to the AES later and work [3] shows that only two pairs of correct and faulty ciphertexts
are needed to break the AES-128, if a single byte fault occurs anywhere between the 8-th round and 9-th
round MixColumn operations. The fault model is relaxed to be a random fault anywhere in one of the
four diagonals of the state matrix at the input of the 8-th round of the cipher [4].

Meanwhile there are many different methods developed to physically inject faults into circuits. In [5],
the authors used magnetic pulses to inject transient faults into an RISC micro-controller running AES.
Other commonly used fault injection methods alter the supply voltage or system clocks. Work [4] shows
that clock glitches can be used to inject faults into cryptographic devices. The work in [6] demonstrates
the effectiveness of frequency injection attacks on both a microcontroller and an FPGA chip.

To protect cryptographic devices from such DFA attacks or improve the reliability of the system, many
fault detection and correction schemes have been presented [1,7,8,9,10,11,12,13,14,15]. Some of them
exploit the algebraic feature of the cryptographic algorithms. For example, some linear error detection
codes are added to the AES system to detect the injected faults [11,12]. Other work relies on a redundant
copy of the AES to detect random faults on the working copy [1]. Because DFA attacks inject faults
only into the last several rounds of the AES for possible cryptanalysis, some works propose to implement
reverse operations of encryption/decryption to check the results [10].
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As any error detection scheme adds some circuit to the original cryptographic system, such protection
circuit would increase the power consumption, area, or latency of the system. Such addition may incur
extra power leakages in cryptographic systems, which means while designing a scheme for protecting
against a given attack (fault injection attacks), the implemented countermeasure would also affect other
types of side-channel attacks. This problem was first discussed in [16]. The authors analyzed the impact
of four error detection codes on the power analysis resistance. Their gate-level simulation results show
that the power analysis vulnerability depends on the particular error detection code used.

In [17,18], the authors ran SPICE simulations of several protection schemes to obtain power con-
sumption estimations, and then ran correlation power analysis (CPA) on their data. They showed that
the presence of a parity check circuitry has a negative impact on the resistance of the device to CPAs,
and the resistance decreases with the number of check bits used for error detection.

In [19], the authors employed information-theoretic measures to evaluate the relationship between re-
liability enhancements and the induced side-channel effects. They demonstrated that different EDC/ECC
schemes impose different effects on memory security under statistical power analysis.

All the previous works [16,17,18,19] rely on simulation results instead of real implementation results
for analysis. However, power simulations are based on simplified models compared to real implementations
and do not precisely reflect power consumptions of crypto devices. What’s more, previous works [17,18]
only focus on simple protection schemes on S-Box, while many widely used protection schemes protect
all steps in AES round operations and they are more efficient and complex. Therefore, we see the need of
evaluating the power leakage of real implementations of protection schemes on AES, which will provide
accurate results to secure system designers.

In this work, we perform a thorough analysis of the additional power leakage and quantify its effect
on the success rate of power analysis attacks. We choose several different protection schemes that protect
all steps of AES round operations instead of only S-Box. We implement all the schemes in real hardware
systems (on FPGA) and measure the power consumption. Our analysis will provide a good understanding
of the source and amount of the induced extra power leakages. The discussion and results of this work
will provide good guidelines for designing secure and reliable AES implementation.

The rest of the paper is organized as follows. In Section 2, we introduce the protection methods
on AES which we use to evaluate the side-channel leakages in this paper. In Section 3, we present the
side-channel leakage model. In Section 4, we implement six different AES schemes and run side-channel
attacks on them, and show the attack results. Finally we conclude the paper in Section 5.

2 Background: AES Protection Schemes

In this section, we give the background on the AES protection schemes that we have implemented. We
introduce some commonly used error detection methods used in AES. The protection methods that we
choose not only protect the S-Box, but also all other operations. They include both parity check codes
and other complex ones.

One commonly used system protection method is redundancy, which duplicates critical components
or functions of a system and compares their results at run-time to detect errors. In this paper, we denote
the simple AES error detection scheme of a complete copy and comparison circuit after each step as
Duplicate.

Other early error detection schemes exploit the inverse relationship existing between encryption and
decryption at algorithm level. For example, work [10] performs a decryption after each encryption or
computes the inverse operation after each step of the ciphering process. Many cryptographic engines
already include both encryption and decryption modules, and therefore this scheme can make use of the
hardware without introducing extra error detection hardware.

In [11], different error detection modules are added for the linear and nonlinear blocks of AES hard-
ware implementation. For each of the linear modules, including the Affine transformation of the S-Box
computation, ShiftRows, MixColumns, and AddRoundKey operations, error detection based on (n+1, n)
cyclic redundancy check (CRC) codes over GF (28) (where n ∈ {4, 8, 16}) is implemented. CRC codes
are demonstrated to be scalable and have very high fault coverage. The basic structure of CRC code
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error detection is shown in Fig. 1. An n-bit input message S = {s0, s1, · · · , sn−1} is transformed into
another message {t1, t2, · · · , tn} by an AES operation, and t0 is predicted from the parity of the message
S and form a syndrome with {t1, t2, · · · , tn}. If the syndrome is not zero, there are errors happening in
the operation and detected. In this paper, we implement CRC (9, 8) and CRC (5, 4) as described in [11]
for all the four linear modules separately and denote them as CRC8 and CRC4, respectively. In these
implementations, the nonlinear module, the inverse computation of the S-Box operation, is protected
by inverting the output of the module and comparing it with the original input to detect faults in the
nonlinear module, utilizing the algebraic feature of the nonlinear (inverting) module in AES.

Fig. 1. The block diagram of CRC code error detection used in [11].

In [12], further improvement is done on protecting the linear modules. Instead of implementing CRC
code error detection for each of the four linear modules separately, one single error detection is added for
all the modules at once, as shown in Fig. 2. In this implementation, the linear compressor sums part of
the round output (32-bit) to generate an 8-bit value, and the linear predictor generates an 8-bit signature
for each 32-bit input. If these two 8-bit values do not match, an error is detected in the original linear
computation module. [12] is actually a compressed and combined version of [11]. For every 32 bits, the
scheme in [12] generates 8 bits for checking, while CRC (5, 4) in [11] generates 1 extra bit for every 4 bits
input for each linear module. We implement the scheme of [12] and denoted it as Linear in this paper,
where the nonlinear module protection remains the same as in [11].

To improve the fault coverage, in [13], the authors proposed to use a new nonlinear error detection
code and this method can significantly improve the fault coverage. Two cubic modules are added to
increase the challenge for the attacker to inject a fault that can bypass the detection modules. We denote
this method as Robust scheme in this paper.

Performance of various protection schemes has been evaluated and compared in previous works such
as [1] and the metrics include fault coverage, execution time overhead, area and power overhead. In this
paper, we choose several commonly used error detection schemes described above, implement them on an
SASEBO-GII board [20,21], and analyze their side-channel power leakages in this paper. Note that the
unprotected official implementation is from [22] with the S-Box implementation referred to [23,24,25].
For the induced error detection modules, we add them according to the details in [11,12,13] without
modifying the original circuits. We sampled all the traces using an Agilent MSOX4104A oscilloscope
with the AES system running at 3 MHz.
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Fig. 2. Linear protection scheme of AES [12]

3 Power Leakage Model

For cryptographic devices, a commonly used linear Hamming-weight power leakage model is:

L = c+ εV + σr (1)

where the power leakage L at a time point consists of a deterministic component and a random com-
ponent. The deterministic power component is determined by the select function, V = V (X, kc), on
the intermediate data Z that depends on the known input X and the secret key kc. In many hardware
systems, V is the Hamming weight (or distance) of Z. ε is the unit power consumption of one switching.
The random power component is assumed to follow the Gaussian distribution, with a mean power c and
a standard deviation σ. The constant mean power, c, is independent of both operations and data and
represents the base level power consumption of the system. r is a standard Gaussian noise, N(0, 1). σ
represents the noise from both the measurement apparatus and other parts of the device that are not
related to the intermediate data Z. The side-channel signal-to-noise ratio (SNR) is defined as δ = ε/σ
[26,27], which is a system-inherent side-channel leakage parameter.

Fig. 3 shows the hardware implementation of one AES round with protection circuits. Take the last
round operation as example, at the edge of the 10th round clock, the register’s content is updated from
Din to D′in. In the following cycle, the inputs to the combinational logic also change from Din to D′in, and
will also incur extra power consumption in the error correction circuits with a possible delay comparing
with the register’s change.
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For the AES hardware implementations without error detection circuits, V is the Hamming distance
of the intermediate data stored in registers, denoted as HW (D,D′), in which D and D′ are the content of
the register before and after the clock edge. For the AES last round power analysis attack, the Hamming
distance of register j, (j = 0, 1, · · · , 15) is:

HDj = HD(SubBytes−1(ShiftRows−1(ci ⊕ ki)), cj) (2)

in which c is the ciphertext and k is the last round key input while i and j are decided by the ShiftRows
operation. We note here that the state register is divided into 16 bytes for power analysis in this paper.

Simple error detection modules are mainly composed of combinational logic. To evaluate the power
leakages of the error detection circuits, we assume the protection circuits incur extra noise and leakage
and denote them as σd and εd, respectively, and the power model becomes:

L′ = c+ εV + σr + cd + εdV + σdr = c′ + ε′V + σ′r (3)

The new SNR is redefined as:

δ = (ε+ εd)/(σ + σd) = ε′/σ′. (4)

According to [27], the success rate (SR) of side-channel attacks and the number of traces needed
for attack are directly determined by the SNR of a system. The addition of the protection circuits will
therefore affect the SR of power analysis attacks on the protected AES. In Section 4.1, we will implement
side-channel attacks based on power signals to verify the above assumptions.
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4 Power Analysis Attacks on Protected AES Implementations

4.1 Side-Channel Attacks Results

In this section, we run CPA on the last round of the AES circuits with different protection circuits
described in Section 2 and analyze the attack results. Besides Duplicate, Linear, Robust, CRC8 and
CRC4 schemes described in Section 2, we denote the original AES implementation without protection
circuits as Original and will use it as the baseline for comparison.
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Fig. 4. Success rate of different protection implementations.

Table 1. Comparison between different protection schemes

Protection FPGA implementation results (number) ASIC implementation results Fault
SNR

ε
Schemes Slice Slice Regs LUTs LUT FFs Area(um2) Power(mW ) Coverage (10−5)

Original 872 748 2206 2481 13987.9 20.4 0% 0.0615 6.95

Duplicate 1341 742 3449 3760 25893.0 65.18 100% 0.0618 6.96

Linear 1303 744 3267 3558 18299.5 30.61 90% − 99% 0.0774 9.96

Robust 1578 764 3998 4308 36711.2 136.7 1 − 2−56 0.0788 9.12

CRC4 1415 745 3436 3771 19504.5 52.01 97.5% − 100% 0.0771 9.03

CRC8 1503 764 3386 3735 19804.5 52.97 97.5% − 100% 0.0717 8.40

The above 6 schemes have different circuits and would incur different amount of side-channel power
leakages. The CPA results are shown in Fig. 4. From the results we can see that:

– The SR curves of Duplicate and Original are very close. This is because the Duplicate scheme has
another copy of every module in Original scheme. Both the leakage and noise are doubled and
therefore the SNR is not changed.

– The SR curves of the other four schemes, Linear, Robust, CRC4 and CRC8, are higher than the
Original and Duplicate schemes. We therefore anticipate higher SNRs introduced by the protection
circuits.
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– The success rate of CRC8 is a little lower than other three, Linear, Robust and CRC4. This is caused
by the size of the protection circuits. For CRC8, the redundancy is 1 bit for each 8 bits while this
ratio is 1 bit for each 4 bits in Linear, Robust and CRC4 schemes. The compression rate of CRC8
is higher and the width of the protection circuit is smaller. Thus the amount of additional leakage is
smaller than the other protection circuits.
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Fig. 5. Comparison of different protection implementations in terms of correlation, and SNR.

The above analysis can also be verified using the Pearson correlation and SNR results shown in
Fig. 5(a), (b). The Pearson correlation factor is between the power measurements at the leakage point
and the Hamming distances of the 16th byte of the last round state register calculated with 100, 000
traces. We run regression analysis on the power measurements using the model given in Equation (3)
and obtain the signal strength ε and noise level σ to calculate the SNR. Similarly, Fig. 5(a) and Fig. 5(b)
show that the results can be categorized into three groups: Original and Duplicate schemes have the
smallest correlation and SNR, Linear, Robust and CRC4 schemes have the highest, and CRC8 is in the
middle.

While σ almost keeps the same for these schemes, the results of ε are presented in the last column
of Table 1. ε in Original and Duplicate schemes are similar and much smaller than the value in Linear,
Robust and CRC4, CRC8. CRC8 has a smaller ε than the other three schemes. The ε results show that
for the same number of switching activities, the dynamic power consumption is different for the above
schemes. CRC8 has lower dynamic power consumption at the leakage point because the width of its
protection circuits is smaller than the other 3 schemes.

4.2 Metrics for the Selection of Protection Schemes

We also evaluate different protection methods in terms of power consumption, area, and fault coverage.
We use Xilinx ISE 14.6 to implement the above 6 schemes and get the resource results shown in Table 1.
The results include the number of slices, slice registers (slice Regs), slice look-up tables (LUTs) and the
number of slice LUT-Flip Flop pairs (LUT FFs). To better understand the incurred extra power leakages,
the six AES implementations (with or without protections) are also modeled in Verilog and synthesized
in Cadence Encounter RTL Compiler with the NanGate 45nm Opencell library version v2009 07 [28].
The designs were placed and routed using Cadence Encounter. The power and area overhead of the pro-
tection schemes were estimated using Concurrent Current Source (CCS) model under typical operation
conditions assuming a supply voltage of 1.1V and a temperature of 25 Celsius degree. The synthesis re-
sults for the schemes (area and power) are also shown in Table 1 and Fig. 6. The fault detection coverage
results are from [1,11,12,13].
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Fig. 6. ASIC implementation overhead comparison of protection schemes.

We note here that the implementations include control logic, interconnections and other overhead,
thus the size of Duplicate is not just the double of Original. Meanwhile, the power includes both dynamic
power and static power, thus the power consumption of Robust scheme is much higher than other schemes.
We also note here that fault coverage results shown in Table 1 are based on random fault model, which
means the faults are all randomly generated. For fault models in which the attackers can control the
injected faults and injection positions, the fault coverage results will be very different, and Robust scheme
will have much higher fault coverage than the other schemes.

The results show that no one is better than others in terms of all the design metrics. Take Linear and
Robust protection schemes as example, they have similar side-channel power leakages, but the Robust
scheme has higher fault detection coverage at the cost of more power and area than the Linear protection
scheme. For CRC8 and CRC4, CRC4 has a higher fault detection coverage and a little lower resource
overhead, but also has a higher power leakage.

This demonstrates that no scheme dominates others, because one scheme can have a higher security
level under one attacker models while has higher vulnerability under other attacker models. Therefore,
when designing AES systems with protection, the trade-off among multiple aspects has to be explored
so as to strike a balance between resource overhead, reliability, and side-channel attack resilience. At the
same time, countermeasures against power analysis attacks can be applied to improve the side-channel
resistance of the system. Countermeasures such as modified S-Box [29] and random masking [30,31]
have been evaluated in previous papers and it’s shown that they can effectively increase the difficulty of
side-channel attacks.

5 Conclusion

This paper is motivated by the fact that protection circuits used to detect faults in cryptographic
systems normally incur extra power consumption. Such power consumption may contain secret-related
information, i.e., leakage, and results in increasing the vulnerability of cryptosystems against power
analysis attacks. We analyze such extra power leakage, implement different protection schemes of the
AES on FPGA, and run power based CPA attacks on them. The results show that protection circuits all
increase the power leakage and the amount of leakage is related to the type of codes used and the number
of checking bits of the protection circuits. Our analysis and experimental results provide guidelines for
system designers to choose the best protection scheme, so as to meet requirements of multiple design
considerations, including resource constraint, reliability, and resilience to both power analysis attacks
and DFAs.
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