
UCE+LTDFs: Efficient, Subversion-Resistant PKE

in the Standard Model

Mihir Bellare1 Viet Tung Hoang2

September 29, 2014

Abstract

This paper provides the first efficient, standard-model, fully-secure schemes for some related and
challenging forms of public-key encryption (PKE), namely deterministic and hedged PKE. These forms
of PKE defend against subversion of random number generators, an end given new urgency by recent
revelations on the nature and extent of such subversion. We resolve the (recognized) technical chal-
lenges in reaching these goals via a new paradigm that combines UCEs (universal computational
extractors) with LTDFs (lossy trapdoor functions). Crucially, we rely only on a weak form of UCE,
namely security for statistically (rather than computationally) unpredictable sources. We then de-
fine and achieve unique-ciphertext PKE as a way to defend against implementation subversion via
algorithm-substitution attacks.

1 Department of Computer Science & Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla,
California 92093, USA. Email: mihir@eng.ucsd.edu. URL: http://cseweb.ucsd.edu/~mihir/. Supported in part by NSF
grants CNS-0904380, CCF-0915675, CNS-1116800 and CNS-1228890.

2 Department of Computer Science, University of Maryland, College Park, and Department of Computer Science,
Georgetown University, 37th and O Streets, NW, Washington, DC 20057, USA. Email: tvhoang@umd.edu. URL:
http://csiflabs.cs.ucdavis.edu/~tvhoang/. Supported in part by NSF grants CNS-0904380, CCF-0915675, CNS-
1116800 and CNS-1228890.

1



Contents

1 Introduction 3

2 Preliminaries 7

3 Efficient, fully IND secure D-PKE 10

4 Fully secure Hedged PKE 13

5 Efficiency and comparisons with prior schemes 19

A Proof of Proposition 3.1 23

B Proof of Theorem 3.2 25

C Proof of Lemma 4.1 26

D Proof of Theorem 4.2 27

E Proof of Theorem 4.3 32

F Proof of Lemma 4.4 37

G Proof of Theorem 4.5 37

H Unique-ciphertext PKE 42

I Practical output-length extension for UCE 43

2



1 Introduction

Recent revelations about the prevalence of mass-surveillance and subversion raise new challenges for
cryptography. This paper is concerned with subversion of public-key encryption (PKE). We first consider
randomness-subversion attacks, namely ones that undermine randomness-generation processes. Forms of
PKE resisting these have in fact already been defined, namely deterministic public-key encryption (D-
PKE) [4] and hedged public-key encryption (H-PKE) [5]. However, good schemes —we mean efficient ones
providing full security in the standard model— are not only lacking but a recognized challenge [50]. With
the new impetus and urgency arising from the subversion perspective, we revisit these goals to provide
such schemes. We achieve our ends via a new PKE paradigm in which universal computational extractors
(UCEs) [7] —of the weaker ilk requiring only statistical rather than computational unpredictability— are
combined with lossy trapdoor functions (LTDFs) [45].

We then turn to defending against subversion of encryption implementations via algorithm-substitution
attacks [11, 53]. Here we follow [11] to define the new goal of unique ciphertext public-key encryption
(U-PKE) and then reach it generically and efficiently from D-PKE.

Deterministic PKE. Technically, conceptually and historically, D-PKE is the core goal in this domain,
and we begin there. The encryption algorithm of a D-PKE scheme takes public encryption key ek and
message m to deterministically return a ciphertext c. We use the IND formalization of [6] which they
show equivalent to the PRIV formalization of [4]. These formalizations capture the best possible privacy,
namely semantic security for unpredictable messages that do not depend on the public key.

The core IND requirement asks for privacy when messages are individually unpredictable but may be
arbitrarily correlated. We call this full IND security for emphasis. Full security is important in practice.
For example, I might upload an encrypted file, then make a small edit to the file, re-encrypt and re-
upload, so that the messages underlying the successive ciphertexts are very similar. It is thus the desired
goal.

The EwH —encrypt with hash— D-PKE scheme of [4] encrypts message m under a (any) randomized
IND-CPA scheme RE with the coins set to a hash of m. When the hash function is a random oracle,
they showed EwH achieves full IND security. Achieving full IND security in the standard model however
seemed out of reach. Many standard-model D-PKE schemes, using sophisticated techniques [16, 6, 18, 31,
10, 46, 28], have been proposed, but the security they achieve is not full. They only achieve security for
block sources, where each message is assumed unpredictable even given prior ones, which is not realistic
in practice.

The elusiveness of full security in the standard model was explained by Wichs [50], who showed that
it could not be achieved under any single-stage assumption. To achieve full security one thus needs a
multi-stage assumption. However most assumptions are single stage and it was not immediately clear
what would even be a candidate for a suitable multi-stage assumption.

Such a candidate emerged with the UCE class of assumptions of security for hash functions of
BHK1 [7]. The latter showed that the RO in EwH could be securely instantiated with a function family H
that is UCE[Scup] —UCE-secure for computationally unpredictable sources— to yield a standard model,
fully IND secure D-PKE scheme. Unfortunately, soon after, Brzuska, Farshim and Mittelbach (BFM) [20]
showed that UCE[Scup]-security is not achievable if indistinguishability obfuscation (iO) [3, 32, 33] is pos-
sible. BFM [20] and BHK1 [7] independently proposed to instead use UCE[Ssup]— UCE-security for
statistically unpredictable sources. BFM [20] give some evidence that their attacks will not extend to
UCE[Ssup] and that this assumption is weaker.

This raises several questions. Can one show that EwH is secure under UCE[Ssup]? If not, can one
provide a new, different D-PKE scheme that achieves full IND-security under UCE[Ssup]?

Results for D-PKE. Our first result is negative. We show that if iO is possible then the RO in EwH is
not universally instantiable. In more detail, given any family of functions H —in particular a UCE[Ssup]
one— we build a (pathological and H-dependent) randomized PKE scheme RE such that (1) RE is IND-

3



CPA secure, but (2) An attack shows that the D-PKE scheme EwH[H,RE] given by the EwH transform
is not IND-secure. The starting point is ideas of BFM [20], but several new ideas are needed, including
several applications of a variable-output-length PRF to allocate randomness for the iO and a base PKE
scheme in such a way that both (1) and (2) are possible.

Let H be a UCE[Ssup] function family. Then our negative result rules out showing an analogue of
BHK1 [7], namely that EwH[H,RE] is fully IND secure for any IND-CPA RE. But there is a loophole,
namely that the negative result does not preclude showing this for a particular choice of RE. We exploit
this loophole to arrive at the desired goal of a fully IND secure D-PKE scheme under UCE[Ssup], as follows.
We take the ROM BR93 PKE scheme [12], instantiate its trapdoor function with a lossy trapdoor function
(LTDF) [45, 30], and instantiate its RO with H, to get a standard-model PKE scheme RE. Next, we
take the D-PKE scheme EwH[H,RE], which has two uses of H, under two independent keys. Our D-PKE
scheme DE1 is obtained by implementing these two uses of H with a single key. We prove that DE1 is
fully IND secure assuming the LTDF is secure and H is UCE[Ssup]. We remark that using a single H key
is important to prove security under UCE[Ssup], not just an efficiency optimization.

The connection of LTDFs to D-PKE was first made by Boldyreva, Fehr and O’Neill (BFO) [16]. Their
LTDF-based D-PKE schemes however only achieve security for block sources, not full IND security. The
block source restriction seems quite inherent in their methods, and indeed due to Wichs [50] we do not
expect to achieve fully IND secure D-PKE using LTDFs alone. Our approach combines LTDFs with
UCE[Ssup] to surmount this obstacle.

DE1 is the first D-PKE scheme that is fully IND secure in the standard model. Beyond that, however,
it has the following important practical attributes: it is competitive on short messages, very fast on
long messages, and supports variable-length messages directly. These practical attributes are a first for
standard-model D-PKE schemes.

LTDFs and UCE[Ssup] are a productive and (in retrospect) natural match. Intuitively, LTDFs allow
us to move to a game with information-theoretic guarantees, at which point it becomes possible to exploit
UCE under statistical unpredictability. We view DE1 as a relatively simple illustration of the power of
the UCE+LTDF method. H-PKE brings new challenges, which we surmount via non-trivial extensions
of the basic method. We believe the UCE+LTDF method will have applications beyond this as well.

Hedged PKE. The encryption algorithm of a H-PKE scheme takes public encryption key ek, message
m and randomness r to deterministically return a ciphertext c. The H-IND requirement of BBNRSS [5]
has two parts: (1) standard IND-CPA security if r is good, meaning uniform and independent across
encryptions, and (2) semantic security of m if the pair (m, r) is unpredictable and does not depend on
the public key. This second requirement is formalized as indistinguishability under chosen-distribution
attack (IND-CDA) [5].

H-IND-secure PKE aims to provide the best possible privacy in the face of untrusted randomness. If
the randomness is good, it does as well as standard IND-CPA encryption. But, whereas schemes providing
only IND-CPA can fail spectacularly under poor randomness [19, 43, 5], H-IND PKE will not. It will
compensate for poor randomness by also exploiting any available entropy in the message, protecting the
latter as long as the message and randomness together are unpredictable. This is as good as it can get,
since if the message-randomness pair is predictable, trial re-encryption on candidate pairs will recover
the message underlying a target ciphertext. IND-CDA is an extension of IND that coincides with the
latter if the randomness has no entropy at all.

In practice the most desirable form of IND-CDA is, again, full, meaning privacy when message-
randomness pairs, although individually unpredictable, may be arbitrarily correlated. By full H-IND, we
mean IND-CPA plus full IND-CDA. In the ROM, fully H-IND PKE is achieved by an extension of EwH
called REwH that encrypts m under an IND-CPA scheme with the coins set to the hash of m ‖ r [5]. In
the standard model, things are more difficult. Providing a fully IND-CDA PKE scheme is harder than
providing a fully IND D-PKE scheme because the unpredictability pertains to (m, r) not just m and also,
more importantly, because IND-CDA is formalized in [5] as an adaptive requirement. Additionally, while

4



IND-CPA is easy in isolation, it is not in combination with IND-CDA. The reason is subtle, namely that
IND-CDA breaks when m depends on the public key, but IND-CPA must remain secure in this case.
This butting of heads of the IND-CPA and IND-CDA conditions doubles the challenge of achieving fully
H-IND PKE compared to fully IND D-PKE.

These technical difficulties are reflected in the landscape of standard-model schemes, where fully
H-IND PKE has not been achieved under any assumption. BBNRSS [5] build standard-model H-IND
PKE schemes by composition of standard-model D-PKE and IND-CPA schemes, and also directly via
anonymous LTDFs, but these schemes achieve IND-CDA only for block sources. (The latter now means
that message-randomness pairs are assumed to be unpredictable even given prior ones.) It is instructive
that full H-IND PKE has not even been achieved under UCE[Scup]. To elaborate, recall that BHK1 [7]
showed that UCE[Scup]-instantiating the RO in EwH results in a fully IND secure standard-model D-PKE
scheme. We can correspondingly UCE[Scup]-instantiate the RO in REwH. But, even if the resulting
scheme can be shown fully IND-CDA, there seems no reason it is IND-CPA. The reason is the difficulty
alluded to above. Namely, a UCE hash function may not provide security on messages that are a function
of the hashing key, but the latter is part of the public key and IND-CPA requires security for messages
depending on the public key.

But the bar for us is even higher: due to the BFM attacks [20] on UCE[Scup], we want to use the
weaker UCE[Ssup] assumption, just as we did for DE1. We thus face at least two difficulties. The first is to
achieve full IND-CDA under UCE[Ssup]. Here the main challenge is handling adaptivity. But beyond that
the fundamental above-mentioned difficulty of achieving IND-CPA in the same scheme remains, because
no form of UCE guarantees security for messages that depend on the hashing key.

Results for H-PKE. We surmount the technical difficulties discussed above to provide the first standard-
model, fully H-IND PKE schemes. We specify three schemes, HE1,HE2 and HE3. All efficiently achieve
our security goals, the second and third handle variable-length messages, and the third further adds
better concrete security.

Recall that we obtained DE1 as EwH[H,BR93[LT,H]], where H is UCE[Ssup] and LT is a LTDF. A
natural idea is to similarly get H-PKE as REwH[H,BR93[LT,H]]. (In both cases we use one hash key
rather than two.) We are able to show this achieves full IND-CDA. This is significant since handling
adaptivity required anonymous LTDFs in [5] which we do not need. But we then hit the problem above,
namely UCE[Ssup] security of H may not be enough to provide IND-CPA. We resolve this by building a
particular, suitable UCE[Ssup] family H. We first build a particular family U of AU (almost universal) hash
functions and then obtain H by applying the AU-then-Hash transform of BHK2 [8] to a fixed-input-length
UCE[Ssup] family H and our U. We refer to the resulting PKE scheme as HE1. We are able to show that
it is full IND-CDA as well as IND-CPA assuming UCE[Ssup] security of H and security of the LTDF.

This achieves, for the first time, the security goal of fully H-IND PKE in the standard model, which
we consider already significant. But in terms of practicality, HE1 is not ideal because it can only handle
fixed-length messages. HE2 efficiently encrypts variable and arbitrary length messages while retaining full
H-IND security. It uses a variable-output-length PRF in addition to the primitives used by HE1. Finally,
HE3 exploits some combinatorial techniques to obtain better security bounds, as a result of which it offers
security for lower values of the message min-entropy than the other schemes.

Speed. Our D-PKE and H-PKE schemes are the first to achieve full security in the standard model,
which we believe is a significant theoretical contribution. However, beyond that, they have important
practical attributes, summarized above and expanded on below and in Section 5.

It is well known that asymmetric primitives are orders of magnitude less efficient than symmetric
ones. Central to making standard IND-CPA encryption efficient is hybrid encryption as represented by
the KEM-DEM paradigm [23]. Encryption generates a random asymmetrically-protected per-message
symmetric key and then symmetrically encrypts the message under the latter, leading to cheap encryption
of long messages. But for standard model D-PKE and H-PKE the hybrid encryption paradigm breaks
down, because, with the constraint of being deterministic or not trusting the randomness, it is not clear

5



how to even pick the per-message key. This difficulty is recognized and seems quite fundamental and
hard to bypass. As a result, prior standard-model D-PKE and H-PKE schemes fix the message length
and rely only on asymmetric operations. Their cost in asymmetric operations becomes exorbitant on
long messages and they also cannot encrypt variable-length messages.

Our methods break these efficiency bottlenecks to recover hybrid-encryption like performance. Our
DE1,HE2 and HE3 schemes handle messages of variable and arbitrary length, and the asymmetric cost
is fixed independent of the message length, so that we pay only in hashing as the message length grows.
Placing us in a particularly good position to exploit this is the speed of UCE[Ssup] functions. Direct
constructions based on HMAC-SHA-256 [7, 42] are already efficient, but in fact still more efficient and
even parallelizable constructions are given in BHK2 [8], along with software implementations and cost
comparisons. Meanwhile LTDFs can be efficiently instantiated in a variety of ways [45, 30, 40, 37], making
the asymmetric component competitive. This leads overall to performance comparable to existing IND-
CPA schemes while providing protection against randomness subversion.

In practice concrete security is important to know how to set parameters. Good bounds are important
so that one may use smaller parameters. (The cost of the asymmetric operations is usually cubic in the
key length so cutting the latter by one-half yields a factor eight speedup.) For this reason we not only
state in our theorems the concrete security bounds of the reductions but also try to obtain good ones.

Unique-ciphertext PKE. In an algorithm-substitution attack (ASA) [11, 53], the prescribed encryption
algorithm is replaced with a malicious one that may attempt to leak information about the message to
“big brother” based on a shared key. BPR [11] formalize the attacker goal in an ASA as compromising
privacy without detection. BPR [11] and ACMPS [1] indicate that randomized encryption will be subject
to successful attack. In the symmetric setting, BPR [11] show that ASAs can be protected against by a
form of deterministic encryption they call unique-ciphertext symmetric encryption.

We analogously define unique-ciphertext PKE. U-PKE requires that for every key pair (ek,dk) and
message m, there is at most one ciphertext c that decrypts to m under dk. A U-PKE scheme is thus
deterministic, but not every D-PKE scheme is U-PKE. For example, appending to a D-PKE ciphertext a
zero bit ignored by decryption leaves D-PKE intact but violates U-PKE. In Appendix H we show however
how to achieve U-PKE in a simple and generic way from D-PKE. Combining this with our efficient D-PKE
scheme above yields efficient U-PKE, allowing us to better defend against ASAs.

Discussion and related work. In a world of subversion, there are no panaceas. As with BPR [11],
our goals are deliberately restricted in scope. We aim to provide better (not perfect) security in the
face of some (not all) subversion threats. Thus, we restrict attention to randomness-subversion attacks
and algorithm-substitution attacks. We assume that key-generation, being one-time, can leverage good
randomness.

We might view IND-CPA as the optimistic view (the randomness is excellent, use it), D-PKE as the
pessimistic view (the randomness may be bad so, to be safe, ignore it) and H-IND PKE as the pragmatic
view (I don’t know how good the randomness is but I will just get the best out of it that I can). We
would expect the extent and nature of randomness subversion to vary rather than be ubiquitous and
total, in part because subversion will aim to evade detection. In this light H-IND PKE emerges as the
best defense in the face of randomness subversion.

Failures of randomness-generation processes [22, 38, 41, 26, 27, 36] have in the past been attributed to
error. Now we know better, namely that some should be attributed to subversion. This makes practical
defenses more urgent and increases the motivation for work like ours that delivers such defenses.

We do not expect or aim to maintain, under subversion, the high level of security we can achieve
in its absence. Security will unavoidably degrade. Our goal with H-IND PKE is for it to degrade as
little as possible rather than disappear. This philosophy sets us apart from most of the related work on
randomness subversion we will discuss in the next paragraph, which either aims to understand under what
limitations on the class of attacks one can achieve the same security one would under perfect randomness,
or shows that such security is not possible.

6



Yilek [52] studies randomness-reset attacks, where the randomness is uniform but the adversary
can force its re-use across different encryptions. Paterson, Schuldt and Sibborn [44] introduce related-
randomness attacks, where encryption is under adversary-specified functions of some initial uniform
randomness, providing negative results, as well as positive results for some classes of attacks. Birrell,
Chung, Pass and Telang [14] and Hemenway and Ostrovsky [37] study the encryption of randomness-
dependent messages. Austrin, Chung, Mahmoody, Pass and Seth [1] show that encryption is insecure
under even quite weak adversarial tampering of randomness. Authenticated key-exchange with bad
randomness is studied in [51, 29]. Negative results for cryptography with imperfect randomness are
provided by [25, 17, 24]. Kamara and Katz [39] study symmetric encryption providing semantic security
under good coins in the face of chosen-plaintext attacks involving bad coins.

Ristenpart and Yilek [47] study the use of H-IND PKE in real systems. Brakerski and Segev [18]
study D-PKE security in the presence of auxiliary information about messages. Raghunathan, Segev and
Vadhan [46] study security of D-PKE when the message may depend on the public key. Vergnaud and
Xiao [49] study IND-CDA when the message and randomness may depend on the public key. In the
symmetric setting, Rogaway and Shrimpton’s misuse-resistant authenticated encryption [48] represents a
form of hedging.

2 Preliminaries

We review basic notation and definitions including games, function families, VOL PRFs, LTDFs and
UCE.

Notation. By λ ∈ N we denote the security parameter. If n ∈ N then 1n denotes its unary representation.
We denote the size of a finite set X by |X|, the number of coordinates of a vector x by |x|, and the length
of a string x ∈ {0, 1}∗ by |x|. We let ε denote the empty string. If x is a string then x[i] is its i-th bit
and x[1, `] = x[1] . . . x[`]. By x‖y we denote the concatenation of strings x, y. If X is a finite set, we let
x←$X denote picking x uniformly at random from X. Algorithms may be randomized unless otherwise
indicated. Running time is worst case. “PT” stands for “polynomial-time,” whether for randomized
algorithms or deterministic ones. If A is an algorithm, we let y ← A(x1, . . . ; r) denote running A with
randomness r on inputs x1, . . . and assigning the output to y. We let y←$A(x1, . . .) be the resulting
of picking r at random and letting y ← A(x1, . . . ; r). We let [A(x1, . . .)] denote the set of all possible
outputs of A when invoked with inputs x1, . . .. We say that f : N → R is negligible if for every positive
polynomial p, there exists np ∈ N such that f(n) < 1/p(n) for all n > np. An adversary is an algorithm
or a tuple of algorithms.

Games. We use the code based game playing framework of [13]. (See Fig. 1 for an example.) By
GA(λ)⇒ y we denote the event that the execution of game G with adversary A and security parameter λ
results in output y, the game output being what is returned by the game. We abbreviate GA(λ)⇒ true
by GA(λ), the occurrence of this event meaning that A wins the game.

For concrete security assessments, we adopt the notation of [9]. Let the number of queries of A to an
oracle Proc be the function QProc

A that on input λ returns the maximum number of queries that A makes
to Proc when executed with security parameter λ, the maximum over all coins and all possible replies
to queries to all oracles of A. Time assessments are simplified by the convention that running time is
that of the game rather than merely the adversary, and we let T(GA1,A2,...) denote the function of λ that
returns the maximum execution time of game G with adversaries A1, A2, . . . and security parameter λ,
the maximum over all coins, and the time being all inclusive, meaning the time taken by game procedures
to compute replies is included.

Function families. Our syntax for function families follows [7], in particular allowing variable output
lengths. This is important in our applications to encrypt messages of variable length, which in turn is
important in practice. A family of functions H specifies the following. On input the unary representation

7



Game CPAA
PKE(λ)

(ek,dk)←$ PKE.Kg(1λ)

b←$ {0, 1}
(m0,m1, t)←$A(1λ, ek)

c←$ PKE.Enc(ek,mb)

b′←$A(1λ, t, c)

Return (b = b′)

Game PRFAF (λ)

b←$ {0, 1} ; fk←$ {0, 1}F.kl(λ)
b′←$ARR(1λ) ; Return (b = b′)

RR(x, 1`)

If b = 1 then y ← F.Ev(1λ, fk, x, 1`)

Else y←$ {0, 1}`
Return y

Game LossyALT(λ)

(ek,dk)←$ LT.EKg(1λ)

lk←$ LT.LKg(1λ)

b←$ {0, 1}
If b = 1 then K ← ek

Else K ← lk

b′ ← A(1λ,K)

Return (b′ = b)

Figure 1: Left: Game CPA defining IND-CPA security of a PKE scheme PKE. Middle: Game PRF
defining the PRF security of a variable-output-length function family F. Right: Game Lossy defining
the security of a lossy trapdoor function LT.

1λ of the security parameter λ ∈ N, key generation algorithm H.Kg returns a key hk ∈ {0, 1}H.kl(λ), where
H.kl: N→ N is the key length function associated to H. The deterministic, PT evaluation algorithm H.Ev
takes 1λ, key hk an input x ∈ {0, 1}∗ with |x| ∈ H.IL(λ), and a unary encoding 1` of an output length
` ∈ H.OL(λ) to return H.Ev(1λ,hk, x, 1`) ∈ {0, 1}`. Here H.IL is the input-length function associated to H,
so that H.IL(λ) ⊆ N is the set of allowed input lengths, and similarly H.OL is the output-length function
associated to H, so that H.OL(λ) ⊆ N is the set of allowed output lengths. The latter allows us to cover
functions of variable output length. If H has fixed input length then let H.il denote the function such that
H.IL(λ) = {H.il(λ)} for every λ ∈ N. If H has fixed output length, define H.ol likewise.

Variable output length PRFs. A variable output length (VOL) PRF is a function family F such that

F.Kg returns a uniformly distributed key in {0, 1}F.kl and AdvprfF,A(λ) = 2 Pr[PRFAF (λ)] − 1 is negligible

for every PT adversary A, where game PRFAF is defined in the middle panel of Fig. 1. In this game
the adversary is given an oracle RR that either implements a random oracle or F.Ev(1λ, fk, ·, ·), where
fk←$ {0, 1}F.kl(λ) is a random key. We assume that A doesn’t repeat a prior RR query, and any RR
query (x, 1`) must satisfy x ∈ F.IL(λ) and ` ∈ F.OL(λ). This extends [34] to VOL families. A practical
construction of a VOL PRF from a blockcipher is given in [15].

Public-key encryption. A PKE scheme PKE defines PT algorithms PKE.Kg,PKE.Enc,PKE.Dec, the

last deterministic. Algorithm PKE.Kg takes as input 1λ and outputs a public encryption key ek ∈
{0, 1}PKE.ekl(λ) and a secret decryption key dk, where PKE.ekl: N → N is the public-key length of PKE.
Algorithm PKE.Enc takes as input 1λ, ek and a message m with |m| ∈ PKE.IL(λ) to return a ciphertext c,
where PKE.IL is the input-length function associated to PKE, so that PKE.IL(λ) ⊆ N is the set of allowed
input (message) lengths. Algorithm PKE.Dec takes 1λ,dk, c and outputs m ∈ {0, 1}∗ ∪ {⊥}. Correctness
requires that PKE.Dec(1λ, dk, c) = m for all λ ∈ N, all (ek, dk) ∈ [PKE.Kg(1λ)] all m with |m| ∈ PKE.IL(λ)

and all c ∈ [PKE.Enc(1λ, ek,m)]. Scheme PKE is IND-CPA secure [35] if Advind-cpaPKE,A (λ) = 2[CPAA
PKE(λ)]−1

is negligible for every PT adversary A, where game CPA is defined in the left panel of Fig. 1. We require
that the messages m0,m1 output by A have the same length |m0| = |m1| ∈ PKE.IL(λ). Let PKE.rl: N→ N
denote the randomness-length function of PKE, meaning PKE.Enc(1λ, ·, ·) draws its coins at random from
{0, 1}PKE.rl(λ). We say that PKE has input length PKE.il: N → N if PKE.IL(λ) = {PKE.il(λ)} for all
λ ∈ N, and refer to this as a PKE scheme that only allows fixed length messages. Our goal will be
to allow variable and arbitrary-length messages, ideally PKE.IL(·) = N, but at least some large subset
thereof.

Lossy trapdoor functions. A lossy trapdoor function [45] LT specifies PT algorithms LT.EKg, LT.LKg,
LT.Ev, LT.Inv, the last two deterministic, as well as an input length LT.il: N → N and an output length
LT.ol: N → N. Key-generation algorithm LT.EKg takes 1λ and returns an “injective” key ek and a
decryption key dk. Evaluation algorithm LT.Ev takes 1λ, ek and x ∈ {0, 1}LT.il(λ) to return a LT.ol(λ)-

8



Game UCES,DH (λ)

b←$ {0, 1} ; hk←$ H.Kg(1λ)

L←$ SHash(1λ)

b′←$D(1λ,hk, L)

Return (b′ = b)

Hash(x, 1`)

If T [x, `] = ⊥ then

If b = 0 then T [x, `]←$ {0, 1}`
Else T [x, `]← H.Ev(1λ,hk, x, 1`)

Return T [x, `]

Game PredPS (λ)

Q← ∅ ; L←$ SHash(1λ)

Q′←$ P (1λ, L)

Return (Q′ ∩Q 6= ∅)

Hash(x, 1`)

If T [x, `] = ⊥ then

T [x, `]←$ {0, 1}`
Q← Q ∪ {x}
Return T [x, `]

Game ResetRS (λ)

Dom← ∅ ; L←$ SHash(1λ) ; b←$ {0, 1}
If b = 0 then // reset the array T

For all (x, `) ∈ Dom do

T [x, `]←$ {0, 1}`
b′ ← RHash(1λ, L) ; Return (b′ = b)

Hash(x, 1`)

If T [x, `] = ⊥ then T [x, `]←$ {0, 1}`
Dom← Dom ∪ {(x, `)} ; Return T [x, `]

Figure 2: Games UCE (left), Pred (middle), and Reset (right) to define UCE security.

bit string. Inversion algorithm LT.Inv takes 1λ,dk and y ∈ {0, 1}LT.ol(λ) to return a LT.il(λ)-bit string.
The correctness requirement demands that LT.Inv(1λ, dk, LT.Ev(1λ, ek, x)) = x for every λ ∈ N, every
(ek, dk) ∈ [LT.EKg(1λ)] and every x ∈ {0, 1}LT.il(λ). Algorithm LT.LKg, given 1λ, returns a “lossy” key lk.
Let τ : N→ N be a function such that 2−τ(·) is negligible. We say that LT is τ -lossy if the size of the set
{LT.Ev(1λ, lk, x) | x ∈ {0, 1}LT.il(λ)} is at most 2LT.il(λ)−τ(λ) for every λ ∈ N and every lk ∈ [LT.LKg(1λ)].
Security of an LTDF demands two things. First, lossy and injective keys are indistinguishable. Formally,
AdvltdfLT,A(λ) = 2 Pr[LossyALT(·)] − 1 must be negligible for every PT adversary A, where game Lossy is

defined in the right panel of Fig. 1. Second, LTDF is τ -lossy for some τ such that 2−τ(·) is negligible. To
simplify concrete security analyses, we assume that LT.LKg’s worst-case running time is at most that of
LT.EKg.

There are by now many constructions of LTDFs known [45, 30, 40, 37]. As an example, RSA is shown
to be lossy [40] under the Φ-hiding assumption of [21]. For a 2048-bit modulus, one may choose τ = 430
for 80-bit security.

UCE. We recall the Universal Computational Extractor (UCE) framework of BHK1 [7]. Let H be a
family of functions as defined above. Let S be an adversary called the source and D an adversary called
the distinguisher. We associate to them and H the game UCES,DH (λ) at the left panel of Fig. 2. The source
has access to an oracle Hash and we require that any query (x, 1`) made to this oracle satisfy |x| ∈ H.IL(λ)
and ` ∈ H.OL(λ). When the challenge bit b is 1 (the “real” case) the oracle responds via H.Ev under
a key hk that is chosen by the game and not given to the source. When b = 0 (the “random” case) it
responds as a random oracle. The source then leaks a string L to its accomplice distinguisher. The latter
does get the key hk as input and must now return its guess b′ ∈ {0, 1} for b. The game returns true iff
b′ = b, and the uce-advantage of (S,D) is defined for λ ∈ N via AdvuceH,S,D(λ) = 2 Pr[UCES,DH (λ)]− 1. If S
is a class (set) of sources, we say that H is UCE[S]-secure if AdvuceH,S,D(·) is negligible for all sources S ∈ S
and all PT distinguishers D. Trivial attacks from [7] show that UCE[S]-security is not achievable if S is
the class of all PT sources. To obtain meaningful notions of security, BHK1 [7] impose restrictions on the
source. There are many ways to do this; below we’ll focus on what they call statistically unpredictable
and reset-secure sources.

A source is unpredictable if it is hard to guess the source’s Hash queries even given the leakage, in the
random case of UCE game. Formally, let S be a source and P an adversary called a predictor. Consider
game PredPS (λ) in the middle panel of Fig. 2. Given the leakage, P outputs a set Q′; we require that |Q′|
is polynomially bounded. The predictor wins if this set contains a Hash-query of the source. For λ ∈ N
we let AdvpredS,P (λ) = Pr[PredPS (λ)]. We say that S is statistically unpredictable if AdvpredS,P (·) is negligible
for all (even computationally unbounded) predictors P . We say that H is UCE[Ssup]-secure if AdvuceH,S,D(·)
is negligible for all statistically unpredictable PT sources and all PT distinguishers.

The second restriction on sources from [7] is reset security. Let S be a source and R an adversary called

9



Game INDA
DE(λ)

b←$ {0, 1}
(ek,dk)←$ DE.Kg(1λ)

(m0,m1)←$A1(1λ)

For i = 1 to |m0| do

c[i]←$ DE.Enc(1λ, ek,mb[i])

b′←$A2(1λ, ek, c)

Return (b = b′)

DE.Kg(1λ)

(ek,dk)←$ RE.Kg(1λ) ; hk←$ H.Kg(1λ)

Return ((ek,hk),dk)

DE.Enc(1λ, (ek,hk),m)

r ← H.Ev(1λ,hk, ek ‖m, 1RE.rl(λ))
c← RE.Enc(1λ, ek,m; r) ; Return c

DE.Dec(1λ,dk, c)

m← RE.Dec(1λ,dk, c) ; Return m

Game IOA
G (λ)

(C0, C1, t)←$A(1λ)

b←$ {0, 1}
P ←$ G.Ob(1λ, Cb)

b′←$A(t, P )

Return (b = b′)

Figure 3: Left: Game defining IND security of D-PKE scheme DE. Middle: D-PKE scheme DE =
EwH[H,RE]. Right: Game defining iO security of an indistinguishability obfuscator G.

a reset adversary. The source again is executed with its Hash being a random oracle. The reset adversary
is either given access to the same random oracle or to an independent one. The requirement is that it
should not be able to tell which. Consider game ResetRS (λ) at the right panel of Fig. 2; we require that R
make only polynomial number of queries to Hash. For λ ∈ N we let AdvresetS,R (λ) = 2 Pr[ResetRS (λ)] − 1.
We say S is statistically reset-secure if AdvresetS,R (·) is negligible for all reset adversaries R. We say that H
is UCE[Ssrs]-secure if AdvuceH,S,D(·) is negligible for all statistically reset-secure PT sources and all PT
distinguishers.

BHK1 [7] show that UCE[Ssrs]-security of H implies UCE[Ssup]-security of H. BFM [20] show that
if indistinguishability obfuscation for all circuits is possible then UCE[Scup] —UCE for computationally
unpredictable sources— is not achievable in the standard model. However UCE[Ssup] and UCE[Ssrs] are
not subject to their attack and emerge as weaker and plausible assumptions. Moving to the statistical
versions was independently suggested by BHK1 [7] and BFM [20]. These statistical assumptions will be
the basis of our constructs.

While UCE[Ssup] and UCE[Ssrs] may seem like strong assumptions, we know that multi-stage assump-
tions are necessary to reach our goals [50]. There are very few candidate multi-stage assumptions and
amongst them the ones we use are the more plausible.

UCE[Ssup] and UCE[Ssrs] families may be efficiently instantiated via HMAC-SHA-256 [7, 42] or super-
efficiently via [8], which we will exploit for efficient schemes.

3 Efficient, fully IND secure D-PKE

This section begins with a negative result —that assuming iO the random oracle (RO) in EwH is not
universally instantiable— and then provides a complementary positive result —that there is a particular
instantiation of the RO and IND-CPA scheme in EwH that results in a fully IND secure D-PKE scheme.
The latter, which is the main result of this section, showcases our UCE+LTDF method and brings a new
D-PKE scheme with two attributes: (1) On the theoretical front, it is the first D-PKE scheme shown
fully IND secure in the standard model, and (2) On the practical front, it encrypts variable-input length
messages and achieves hybrid-encryption like efficiency on long messages.

D-PKE and EwH. We say that a PKE scheme DE is a deterministic public-key encryption (D-PKE) [4]
if the encryption algorithm DE.Enc is deterministic. We use the IND formalization of security of BFOR [6],
which they show equivalent to the PRIV formalization of [4]. Game IND defining the IND notion
is shown in the left panel of Fig. 3. An IND adversary A = (A1, A2) is a pair of PT algorithms,
where A1 on input 1λ returns a pair of message vectors (m0,m1). We require that (i) there be a
polynomial v such that |m0| = |m1| ≤ v(λ) and |m0[i]| = |m1[i]| ∈ DE.IL(λ), for every i ≤ |m0|, and
(ii) messages m0[1], . . . ,m0[|m0|] are distinct and also messages m1[1], . . . ,m1[|m1|] are distinct. The

10



guessing probability GuessA(·) of A is the function that on input λ ∈ N returns the maximum, over all
b,m, i, of Pr[mb[i] = m], the probability over (m0,m1)←$A1(1

λ). We say that A has high min-entropy
if GuessA(·) is negligible. We let AdvindDE,A(λ) = 2 Pr[INDA

DE(λ)] − 1 and say that DE is IND-secure if

AdvindDE,A(·) is negligible for all PT A of high min-entropy.

We stress that this definition captures full security because the messages in the message vectors may
be arbitrarily correlated. This is what is needed in practice. In contrast, security for block sources [16]
requires that each message in each vector has high min entropy even given prior ones. This is often not
true in practice and security only for block sources is quite weak, yet prior standard-model schemes have
only been able to achieve this.

EwH [4] is a simple and natural transform that takes a family of functions H and a randomized PKE
scheme RE to return the D-PKE scheme DE = EwH[H,RE] whose algorithms are shown in the middle
panel of Fig. 3. We let DE.IL = RE.IL. We require that RE.rl(λ) ∈ H.OL(λ) and RE.ekl(λ) + ` ∈ H.IL(λ)
for all λ ∈ N and all ` ∈ RE.IL(λ).

Indistinguishability obfuscation. We recall the definition of [32], which extends that of [3] to allow
auxiliary information. We say that circuits C0 and C1 are functionally equivalent, denoted C0 ≡ C1, if
they have the same size, the same number n of inputs, and C0(x) = C1(x) for every input x ∈ {0, 1}n. An
indistinguishability obfuscator (iO) G defines PT algorithms G.Ob,G.Ev and a randomness length function
G.rl: N→ N. Algorithm G.Ob takes as input 1λ and a circuit C, and outputs a string P using randomness
of length G.rl(λ). Deterministic algorithm G.Ev takes as input strings P, x and returns y ∈ {0, 1}∗ ∪ {⊥}.
We require that for any circuit C, any input x for C any λ ∈ N, and any P ∈ [G.Ob(1λ, C)], it holds that
G.Ev(P, x) = C(x). An adversary A is well-formed if Pr[C0 6≡ C1 : (C0, C1, t)←$A(1λ)] is negligible. We
say that G is iO-secure if AdvioG,A(λ) = 2 Pr[IOA

G(λ)]−1 is negligible for every PT well-formed adversary A,
where game IO is defined at the right panel of Fig. 3.

Implausibility of universal instantiation of EwH. BBO [4] showed that if H is implemented via a
RO then EwH[H,RE] is IND-secure for any IND-CPA RE. A basic theoretical and practical question is
whether the RO in this result can be securely instantiated. The most desirable instantiation is universal,
by which we mean there is a function family H such that EwH[H,RE] is IND-secure for any IND-CPA RE.
Here we show that if iO exists then there is no such universal instantiation. Given any function family H
we build an IND-CPA PKE scheme RE such that EwH[H,RE] is not IND-secure. We stress that this does
not preclude providing specific H,RE such that EwH[H,RE] is IND-secure, and indeed it is in this way
that we will later obtain our positive result.

Our findings strengthen, and are consistent with, prior work. BHK1 [7] showed that a UCE[Scup]
family will provide a universal instantiation of EwH, but UCE[Scup] is ruled out under iO by BFM [20], so
there is no contradiction. However, following BFM, it remained possible that some other class of function
families might be able to universally instantiate EwH. Under iO, we rule this out.

We let H be a function family with input length H.il and output length H.ol. We will build the
counter-example PKE scheme RE from H and the following auxiliary primitives: an arbitrary, base IND-
CPA scheme RE, a VOL PRF F and an iO scheme G. The result is as follows.

Proposition 3.1 Let H be a function family with input length H.il and output length H.ol. Let F be a
VOL PRF with F.IL = F.OL = N. Assume F.kl ≤ H.ol. Let RE be an IND-CPA PKE scheme with fixed
input length RE.il and public key length RE.pkl satisfying RE.il+RE.pkl = H.il. Let G be an iO-secure iO
scheme. Define PKE scheme RE as follows. Let RE.il = RE.il. Let RE.Kg = RE.Kg. Let the encryption
and decryption algorithms of RE be as shown in Fig. 4. Then (1) EwH[H,RE] is not IND-secure, but
(2) RE is IND-CPA secure.

The proof of Proposition 3.1 is in Appendix A. Here we will sketch the ideas. An encryption c = (c′, P )
of a message m under RE with public key ek will have two parts. The first, c′, is an encryption of m
under RE with ek. The second, P , is an obfuscated circuit that will (1) help attack DE = EwH[H,RE]

11



Circuit C1λ,x,y(hk)

// Input length is H.kl(λ)

// Output length is |x|
r ← H.Ev(1λ,hk, x, 1H.ol(λ))

fk ← r[1,F.kl(λ)]

u← F.Ev(1λ, fk, 0F.il(λ), 1F.kl(λ)+λ)

If y = u then return x

Return 0|x|

RE.Enc(1λ, ek,m; r)

fk ← r[1,F.kl(λ)]

y ← F.Ev(1λ, fk, 0F.il(λ), 1F.kl(λ)+λ)

r1 ← F.Ev(1λ, fk, 0 ‖ 1F.il(λ)−1, 1G.rl(λ))

r2 ← F.Ev(1λ, fk, 1F.il(λ), 1RE.rl(λ))

P ← G.Ob(1λ, C1λ,x,y; r1)

c′ ← RE.Enc(1λ, ek,m; r2) ; x← ek ‖m
c← (c′, P ) ; Return c

RE.Dec(1λ,dk, c)

(c′, P )← c

Return RE.Dec(1λ,dk, c′)

Figure 4: Middle, Right: Encryption and decryption algorithm of the counter-example PKE scheme
RE for Proposition 3.1. Left: Circuit constructed and obfuscated in RE.Enc.

yet (2) not compromise IND-CPA security of RE. The question is how to construct RE to ensure both
properties. (Ensuring either alone is trivial.)

The starting idea, inspired by BFM [20], is to have RE.Enc, given 1λ, ek,m and coins r, create the
following circuit:

C1λ,ek,m,r(hk) : If H(1λ,hk, ek‖m, 1RE.rl(λ)) = r then return m else return 0|m|.

The input to the circuit is a key hk for H, and the hardwired values 1λ, ek,m, r are the inputs to the
algorithm RE.Enc that creates the circuit. Now RE.Enc lets P be an obfuscation of this circuit. Pretend
for now that the obfuscation process is deterministic, which of course is not true, and also that no coins are
used to create c′, which is also not true. Under these assumptions, if an attacker has an EwH ciphertext
(c′, P ) = DE.Enc(1λ, (ek, hk),m), and also has the public key (ek,hk) of DE, then it can run P on hk
which, due to the structure of EwH and the construction of C1λ,ek,m,r, returns m, breaking the IND-
security of DE. But there are a number of difficulties. One is that there seems no reason that this RE
retains IND-CPA security assuming only iO security of the obfuscation. Another is that the obfuscation
and RE are randomized, and RE has to provide coins for both from r yet be able to create P to allow the
attack when r is produced via the hash in EwH.

We will use the VOL PRF F to allocate pseudorandom coins for the obfuscation process and RE. The
key for F will be a prefix fk ← r[1,F.kl(λ)] of the coins r provided to RE.Enc. Recall that in our definition
of a VOL PRF, the key generation always samples fk←$ {0, 1}F.kl(λ), so if r is truly random then we give F
a correctly generated key. Instead of hardwiring r to the circuit, we hardwire y ← F.Ev(1λ, fk, 0F.il(λ), 1`)
for an appropriate `. We also hardwire x = ek‖m rather than ek,m separately. Our circuit C1λ,x,y is
shown in the left panel of Fig. 4. We need (1) an attack on DE = EwH[H,RE] and (2) a proof that RE is
IND-CPA. For (1) our claim is that if C1λ,ek‖m,y is produced by RE.Enc within DE then C1λ,ek‖m,y(hk)
will return ek‖m, and thus running an obfuscation P of C1λ,ek‖m,y on hk will return the same. For (2), r
is truly random so C1λ,ek‖m,y as produced during encryption is indistinguishable from C1λ,ek‖m,u with u
a random `-bit string, by PRF security of F. To use iO security, we want that when u is random the
probability that there exists a H.kl(λ)-bit z such that C1λ,ek‖m,u(z) 6= 0|ek ‖m| is negligible. This is
established via a counting argument which relies on having set ` to be large enough. See Appendix A for
details.

The DE1 scheme. We now provide our positive result on D-PKE, namely an efficient, fully IND stan-
dard model scheme under UCE[Ssup]. Let H be a UCE[Ssup] function family with H.IL(·) = H.OL(·) = N.
From the above we know that EwH[H,RE] will not be IND for all IND-CPA RE. We consider instead a
particular choice of IND-CPA RE. Recall that BR93 [12] present a simple TDF-based PKE scheme proven
IND-CPA in the ROM. We instantiate their TDF with a LTDF and then instantiate the RO with H to
get a standard-model PKE scheme we denote RE = BR93[LT,H]. We now consider the standard-model
D-PKE scheme EwH[H,RE]. In this scheme, H is used twice, with two independent keys. Our final DE1

12



DE1.Kg(1λ)

(ek,dk)←$ LT.EKg(1λ)

hk←$ H.Kg(1λ)

Return ((ek,hk), (dk,hk))

DE1.Enc(1λ, (ek,hk),m)

r ← H.Ev(1λ,hk,m, 1LT.il(λ))

trap ← LT.Ev(1λ, ek, r)

c← m⊕H.Ev(1λ,hk, r, 1|m|)

Return (trap, c)

DE1.Dec(1λ, (dk,hk), (trap, c))

r ← LT.Inv(1λ,dk, trap)

Return c⊕H.Ev(1λ,hk, r, 1|c|)

Figure 5: The algorithms of our DE1 D-PKE scheme.

D-PKE scheme is obtained by using the same key for both invocations of H. The algorithms of this
scheme are shown in Fig. 5. Importantly, DE1.IL(·) = H.OL(·) = N, meaning we can encrypt messages of
arbitrary and varying length. We note that using a single H key is not only an optimization in key size
but also avoids using multi-key variants of UCE [7] and is important to prove security under UCE[Ssup].
The following says that DE1 is IND-secure.

Theorem 3.2 Let LT be a lossy trapdoor function and H a UCE[Ssup] function family with H.IL(·) =
H.OL(·) = N. Let DE1 be constructed as in Fig. 5. Then

Asymptotic result: DE1 is IND-secure.

Concrete result: Let A be an adversary and P a predictor. We can construct an adversary B, a source S,
and a distinguisher D such that

AdvindDE1,A(·) ≤ 2AdvltdfLT,B(·) + 2AdvuceH,S,D(·) +
3v2

2LT.il
(1)

AdvpredS,P (·) ≤ 1.5v2

2LT.il
+ qv ·GuessA(·) +

qv

2τ
(2)

where q is the maximum of the size of P ’s output in the execution of PredPS , v is the maximum of
the size of A’s message vector in the execution of INDA

DE, and τ is the lossiness of LT. Furthermore,

T(UCES,DH ) ≤ T(INDA
DE1); QHash

S ≤ v; and T(LossyBLT) ≤ T(INDA
DE1).

The proof is in Appendix B. Briefly, we exploit the security of the LTDF by moving to a game where ek
is a lossy key, which involves constructing B attacking LT. A source S and distinguisher D are then
constructed so that Equation (1) holds. To show that the RHS is negligible, however, we must show
that S is statistically unpredictable. This, represented by Equation (2), exploits the lossiness and takes
a few steps.

In Section 5 we discuss how, under appropriate instantiations of the UCE[Ssup] family, DE1 is extremely
efficient compared to prior standard-model D-PKE schemes.

4 Fully secure Hedged PKE

In this section we provide the first fully H-IND PKE schemes in the standard model. Additionally our
schemes are efficient. HE1 is our base scheme encrypting fixed-length messages; HE2 encrypts variable-
length messages; HE3 has a tighter security analysis. Our schemes provide pragmatic and effective defense
against subversion of encryption randomness.

Hedged PKE. To achieve standard IND-CPA security, PKE schemes demand truly random coins. Many
well-known PKE schemes fail spectacularly, allowing message recovery from the ciphertext, if the latter
is created with even somewhat weak coins [19, 43, 5]. BBNRSS [5] introduce security under chosen-
distribution attack (IND-CDA) to provide meaningful security when bad randomness is used. A secure
hedged PKE scheme must provide IND-CPA security when the coins are truly random, and fall back to
IND-CDA security when bad coins are provided. Formally, for a PKE scheme HE, we say that HE is

13



Game CDAA
HE(λ)

(ek, dk)←$ HE.Kg(1λ) ; b←$ {0, 1} ; t←$ALR
2 (1λ) ; b′←$A2(t, ek) ; Return (b = b′)

LR(d)

(m0,m1, r)←$A1(1
λ, d)

For i = 1 to |r| do c[i]← HE.Enc(1λ, ek,mb[i]; r[i])
Return c

Figure 6: Game defining IND-CDA security of PKE scheme HE.

H-IND secure if (1) HE is IND-CPA secure, and (2) HE is IND-CDA secure. Game CDA defining the IND-
CDA notion is given in Fig. 4. An IND-CDA adversary A = (A1, A2) is a pair of algorithms. In the first
part of the attack, A2 can adaptively query oracle LR, each query taking a distribution-specifier string d
and returning a challenge ciphertext vector c. In this phase A2 does not get ek. Once this stage ends, it
gets ek and must then render its decision. Algorithm A1 defines a distribution over triples (m0,m1, r)
that is a function of d. We require that (i) there be a polynomial v such that |m0| = |m1| = |r| ≤ v(λ), (ii)
|m0[i]| = |m1[i]| ∈ HE.IL(λ) and |r[i]| = HE.rl(λ) for every i ≤ |r|, and (iii) for each b ∈ {0, 1} the |r| pairs
(mb[i], r[i]) are distinct, where 1 ≤ i ≤ |r|. Let GuessA(·) be the function that on input λ ∈ N returns the
maximum, over all b, i,m, r, d, of Pr[(mb[i], r[i]) = (m, r)], the probability over (m0,m1, r)←$A1(1

λ, d).
We say that A has high min-entropy if GuessA(·) is negligible. We say that HE is IND-CDA-secure if
AdvcdaHE,A(·) = 2 Pr[CDAA

HE(·)] − 1 is negligible for every PT adversary A of high min-entropy. We stress
that this captures full IND-CDA since the messages in the message vectors may be arbitrarily correlated.

The HE1 scheme. Recall we obtained our D-PKE scheme DE1 via a BR93-based instantiation of EwH.
In analogy it is natural to try to obtain an H-IND scheme via a similar BR93-based instantiation of
the REwH transform of BBNRSS [5]. This results in the candidate scheme Hedge[H, LT], associated
to a function family H and LTDF LT, whose algorithms are shown in the left panel of Fig. 7. Here
Hedge[H, LT].IL(·) = H.OL(·), meaning we can encrypt messages of length matching the allowed output
lengths of H.

We first ask if one can show IND-CDA security of Hedge[H, LT] assuming UCE[Ssup] security of H.
This involves two new difficulties relative to Theorem 3.2. The first, more minor, is the presence of the
randomness. The second is more major, namely that the IND-CDA notion is adaptive. To address this,
BBNRSS [5] needed quite involved techniques including anonymous LTDFs and an adaptive LHL, and
yet only achieved security for block sources, not the full IND-CDA security that we target. However we
are able to show that Hedge[H, LT] does achieve (full) IND-CDA assuming only that LT is a (standard)
LTDF and H is UCE[Ssup].

But recall that H-IND requires also that Hedge[H, LT] is IND-CPA. But it is quite unclear why this
would be true under UCE[Ssup] security of H. The reason is that UCE guarantees nothing for inputs de-
pending on hk but messages in IND-CPA can depend on the public key, which contains hk. This difficulty
is quite fundamental and at first seemed impossible to circumvent within the UCE framework. We resolve
it by using a particular UCE[Ssup] family H. Let H be a fixed input length UCE[Ssup] family. Recall that
the AU-then-Hash transform of BHK2 [9] takes an AU (almost universal) family U and H to return a
variable input length family H = AU-then-Hash[U,H] that they show is itself UCE[Ssup]. We will take an
(arbitrary) AU family U and construct another, special AU family U = Hash-then-Mask[U] via a transform
called Hash-then-Mask that we introduce. Then our UCE[Ssup] family is H = AU-then-Hash[U,H]. With
this choice we will be able to show that HE1 = Hedge[H, LT] —this is our scheme— is IND-CPA. In
conjunction with our prior claim, HE1 is then H-IND as desired.

We now detail this. We recall some definitions from BHK2 [8]. Let V be a fixed output length (FOL)

14



Hedge[H, LT].Kg(1λ)

hk←$ H.Kg(1λ)

(ek,dk)←$ LT.EKg(1λ)

Return ((ek,hk), (dk,hk))

Hedge[H, LT].Enc(1λ, (ek,hk),m; r)

x← H.Ev(1λ,hk, r ‖m, 1LT.il(λ))
trap ← LT.Ev(1λ, ek, x)

c← H.Ev(1λ,hk, x, 1|m|)⊕m
Return (trap, c)

Hedge[H, LT].Dec(1λ, (dk,hk), (trap, c))

x← LT.Inv(1λ,dk, trap)

m← H.Ev(1λ,hk, x, 1|c|)⊕c
Return m

H.Kg(1λ)

uk←$ U.Kg(1λ)

hk←$ H.Kg(λ)

hk ← (hk,uk)

Return hk

H.Ev(1λ,hk, x, 1`)

(hk,uk)← hk

u← U.Ev(1λ,uk, x)

y ← H.Ev(1λ,hk, u, 1`)

Return y

U.Kg(1λ)

uk←$ U.Kg(1λ)

mk←$ {0, 1}U.ol(λ)
rk←$ GF(2U.ol(λ))\{0U.ol(λ)}
Return (uk, rk,mk)

U.Ev(1λ, (uk, rk), x)

If |x| < U.ol(λ) then

Return mk⊕(x ‖ 10U.ol(λ)−|x|)

x1 ← x[1,U.ol(λ)]

x2 ← x[U.ol(λ) + 1, |x|]
y ← U.Ev(1λ,uk, x2)⊕(x1 × rk)

Return y

Figure 7: Left: The PKE scheme Hedge[H, LT] associated to function family H and LTDF LT. Middle:
The H = AU-then-Hash[U,H] VIL UCE[Ssup] family built from an AU hash U and a FIL UCE[Ssup]
family H. Right: The U = Hash-then-Mask[U] AU family built from an AU family U. The operator
× is multiplication in the finite field GF(2U.ol(λ)) and the string 0U.ol(λ) encodes the zero element of
GF(2U.ol(λ)). HE1: Our HE1 PKE scheme is obtained from an LTDF LT, a FIL UCE[Ssup] family H and
an AU family U as HE1 = Hedge[H, LT] with H = AU-then-Hash[U,H] and U = Hash-then-Mask[U].

function family. Let λ,m ∈ N. Let

Coll1V(λ,m) = max {Pr[y = V.Ev(1λ, vk, x)] : |y| = V.ol(λ) and |x| ≤ m }

Coll2V(λ,m0,m1) = max {Pr[V.Ev(1λ, vk, x0) = V.Ev(1λ, vk, x1)] : |x0| ≤ m0, |x1| ≤ m1 and x0 6= x1 }
CollV(λ,m0,m1) = max {Coll2V(λ,m0,m1), Coll1V(λ,min{m0,m1}) } .

In the first and second equations, the probability is over vk←$ V.Kg(1λ). A FOL family V is almost
universal (AU) if for all polynomials M0,M1: N→ N the function fM0,M1 is negligible, where for λ ∈ N
we let fM0,M1(λ) = CollV(λ,M0(λ),M1(λ)).

Now let U be a (FOL) AU family having U.IL = N. We introduce a transform called Hash-then-Mask
that given U returns the family U = Hash-then-Mask[U] defined in the right panel of Fig. 7. It has
U.ol = U.ol and U.IL = N. Lemma 4.1 below shows that U is itself an AU family.

Lemma 4.1 Let U be a (FOL) AU hash with U.IL = N. Let U = Hash-then-Mask[U]. Then for

any λ,m,m′ ∈ N we have (a) Coll1U(λ,m) ≤ Coll1U(λ,m) + 2−U.ol(λ) and (b) Coll2U(λ,m,m′) ≤
Coll2U(λ,m,m′) + 2/2U.ol(λ).

The proof of Lemma 4.1 is in Appendix C. Note that BHK2 [8] provide an extremely fast construction
of an AU family U, running at 0.4 cycles per byte. Our Hash-then-Mask does not degrade speed much,
and thus the family U = Hash-then-Mask[U] used in our scheme is also fast.

Now let H be a function family with FIL H.il and with H.OL = N. Let U be a FOL AU function family
with U.ol = H.il and with U.IL = H.OL = N. The AU-then-Hash transform of BHK2 [8] takes U,H and
returns the family H = AU-then-Hash[U,H] shown in the middle panel of Fig. 7. It has H.OL = H.IL = N.
BHK2 [8] show that if H is UCE[Ssup] then so is H.

We are finally ready to define our HE1 scheme. Let H be a function family with FIL H.il and with
H.OL = N. Let U be a (FOL) AU family having U.IL = N. Let LT be an LTDF. Let `: N → N be a
polynomial. Then let HE1 = Hedge[H, LT] with H = AU-then-Hash[U,H] and U = Hash-then-Mask[U]. A
subtle point is that we set HE1.il = `, meaning HE1 is restricted to encrypt messages of length `. Why

15



this is needed is not evident from the scheme description but will be needed in the proof of security.
We also set HE1.rl = U.ol. Theorem 4.2 below shows that HE1 is H-IND secure. The concrete security
statements refer to

AdvcollU (λ, p, σ) = max
{ k∑

i=1

k′∑
j=1

CollU(λ,mi,m
′
j) : k ≤ p, k′ ≤ p,

k∑
i=1

mi ≤ σ,
k′∑
i=1

m′i ≤ σ
}
.

Theorem 4.2 Let H be a UCE[Ssup] function family with FIL H.il and with H.OL = N. Let U be a
(FOL) AU family having U.IL = N. Let LT be an LTDF. Let `: N → N be a polynomial. Let HE1 be
defined from H,U, LT, ` as above.

Asymptotic result: HE1 is H-IND secure.

Concrete IND-CPA result: Let A be an adversary and P be a predictor. We can construct a source S, a
distinguisher D and an adversary B such that

Advind-cpaHE1,A (·) ≤ 2Advuce
H,S,D

(·) + 2AdvltdfLT,B(·) + 21−U.ol

Advpred
S,P

(·) ≤
√
q

2τ/2
+
√
q ·Coll2U(·, LT.il) +

2
√
q

2U.ol/2

where q is the maximum of the size of P ’s output in the execution of PredP
S

and τ is the lossiness of LT.

Furthermore, T(LossyBLT),T(UCES,D
H

); and QHash
S = 2.

Concrete IND-CDA result: Let A be an adversary and P be a predictor. We can construct a source S, a
distinguisher D and an adversary B such that

AdvcdaHE1,A(·) ≤ 2AdvltdfLT,B(·) + 2Advuce
H,S,D

(·) + 2Advcoll
U

(·, 2p, s) + 3p2 ·GuessA(·) +
19p2

2min{U.ol,LT.il}

Advpred
S,P

(·) ≤
√

2q · Advcoll
U

(·, 2p, s) + 2p
√
q ·GuessA(·) +

6p
√
q

2min{U.ol,τ}/2

where p is the maximum of the total number of messages that A produces in the execution of CDAA
HE1,

s = p · (U.ol + LT.il + `), q is the maximum of the size of P ’s output in the execution of PredP
S

, and τ is

the lossiness of LT. Moreover, T(LossyBLT),T(UCES,D
H

) ≤ T(CDAA
HE1); and QHash

S
≤ 2p.

The proof of Theorem 4.2 is in Appendix D. Here we discuss some of the ideas. For IND-CPA security,
recall that the adversary A makes only a single LR query. The transform Hash-then-Mask ensures that, for
any string m, if r is a random U.ol(λ)-bit string and and uk←$ U.Kg(1λ) then u← U(1λ,uk, r ‖m) is also

uniformly random, independent of m. Therefore, one doesn’t need to know m to sample r←$ {0, 1}U.ol(λ)

and compute x← H.Ev(1λ,hk, r ‖m, 1LT.il(λ)), because one can instead sample u←$ {0, 1}U.ol(λ) and com-
pute x← H.Ev(1λ,hk, u, 1LT.il(λ)). The source will leak H.Ev(1λ,hk, x, 1|m|) so that the distinguisher can
run A to get m and xor the two strings to complete the ciphertext. Still, computing H.Ev(1λ, hk, x, 1|m|)
requires knowing |m|; it’s why HE1 can only handle fixed-length messages. For IND-CDA security, we can
actually prove that Hedge[H, LT] is IND-CDA secure for any UCE[Ssup] H. The source will run A1 and
the first phase of A2 to create the ciphertexts via the Hash oracle. Note that during the first phase, A2

only receives what the source sees, and therefore doesn’t get to learn the hash key hk. UCE then allows
us to switch to a game in which the adversary has to fight an RO-based scheme, and thus its adaptivity is
futile. Moreover, it can only specifies distributions, and thus despite the adaptivity, the chance that the
source repeats a Hash query is about p2 ·GuessA. We again exploit the lossiness of LT to allow statistical
unpredictability.

The HE2 scheme. With HE1 we reach our goal of the first fully H-IND secure PKE scheme in the
standard model. Additionally it is more efficient than prior standard-model schemes that only achieved

16



HE2.Enc(1λ, (ek,hk),m; r)

x← H.Ev(1λ,hk, r ‖m, 1LT.il(λ))
trap ← LT.Ev(1λ, ek, x)

seed ← H.Ev(1λ,hk, x, 1F.kl(λ)+U.ol(λ))

y ← seed[1,U.ol(λ)] ; fk ← seed[U.ol(λ) + 1, |seed|]
mask ← F.Ev(1λ, fk, 0F.il(λ), 1|m|)

c← H.Ev(1λ,hk, y, 1|m|)⊕mask⊕m
Return (trap, c)

HE2.Dec(1λ, (dk,hk), (trap, c))

x← LT.Inv(1λ,dk, trap)

seed ← H.Ev(1λ,hk, x, 1F.kl(λ)+U.ol(λ))

y ← seed[1,U.ol(λ)] ; fk ← seed[U.ol(λ) + 1, |seed|]
mask ← F.Ev(1λ, fk, 0F.il(λ), 1|c|)

m← H.Ev(1λ,hk, y, 1|c|)⊕mask⊕c
Return m

Figure 8: Encryption and decryption algorithms of HE2, where U is an AU family, H is a FIL UCE[Ssup]
family, F is a VOL PRF, LT is a LTDF. Here U = Hash-then-Mask[U] and H = AU-then-Hash[U,H].

non-full security. However, like prior standard-model schemes, it is FIL, meaning only encrypts messages
of a fixed length. We now provide the HE2 scheme that retains the security properties of HE1 but
additionally can encrypt messages of variable and arbitrary length. Furthermore it can do this with
hybrid-encryption like performance, meaning the asymmetric cost is fixed as message length grows.

The additional tool that we need is a VOL PRF F —this means F.OL(·) = N— such that λ ∈ F.IL(λ)
for every λ ∈ N. As before let H be a function family with FIL H.il and with H.OL(·) = N. Let
U be a (FOL) AU family having U.IL(·) = N. Let LT be an LTDF. Let U = Hash-then-Mask[U] and
H = AU-then-Hash[U,H]. The encryption and decryption algorithms of HE2 are specified in Fig. 8.
The key-generation algorithm HE2.Kg is the same as HE1.Kg. We let HE2.rl = U.ol. But this time
HE2.IL(·) = N, meaning we can encrypt messages of any length. Theorem 4.3 below formally confirms
that HE2 is H-IND secure.

Theorem 4.3 Let F be a PRF with F.OL(·) = N and λ ∈ F.IL(λ) for every λ ∈ N. Let H be a UCE[Ssup]
function family with FIL H.il and with H.OL(·) = N. Let U be a (FOL) AU family having U.IL(·) = N.
Let LT be an LTDF. Let HE2 be defined from F,H,U, LT as above.

Asymptotic result: HE2 is H-IND secure.

Concrete IND-CPA result: Let A be an adversary and P be a predictor. We can construct a source S, a
distinguisher D, adversaries B and C such that

Advind-cpaHE2,A (·) ≤ 2Advuce
H,S,D

(·) + 2AdvltdfLT,B(·) + 2AdvprfF,C(·) + 21−U.ol

Advpred
S,P

(·) ≤
√
q

2τ/2
+
√
q ·Coll2U(·, LT.il) +

2
√
q

2U.ol/2

where q is the maximum of the size of P ’s output in the execution of PredP
S

and τ is the lossiness of LT.

Furthermore, T(LossyBLT),T(UCES,D
H

),T(PRFCF ) ≤ T(CPAA
HE3); QRR

C = 1; and QHash
S = 2.

Concrete IND-CDA result: Let A be an adversary and P be a predictor. We can construct a source S, a
distinguisher D, adversary B such that

AdvcdaHE,A(·) ≤ 2AdvltdfLT,B(·) + 2Advuce
H,S,D

(·) + 2Advcoll
U

(·, 3p, s) + 5p2 ·GuessA(·) +
44p2

2min{U.ol,LT.il}

Advpred
S,P

(·) ≤
√

2qAdvcoll
U

(·, 3p, s) + 2.5p
√
q ·GuessA(·) +

9.5p
√
q

2min{U.ol,τ}/2

where p is the maximum of the total number of messages that A produces in the execution of CDAA
HE2, s

is 3p ·max{U.ol, LT.il} plus the maximum of the total length of messages that A produces in the execution

17



of CDAA
HE2, q is the maximum of the size of P ’s output in the execution of PredP

S
, and τ is the lossiness

of LT. Moreover, T(LossyBLT),T(UCES,D
H

) ≤ T(CDAA
HE2); and QHash

S
≤ 3p.

The proof of Theorem 4.3 is in Appendix E. Here we give some intuition about why HE2 can securely
handle variable-length messages. We’ll only discuss the IND-CPA case, in which the message length may
depend on the public key. The source will be responsible for producing a PRF key fk, whose length is
independent of the public key, and will leak it along with some other information. The UCE security
is only used to ensure that fk looks random to the distinguisher. The task of generating the two pads
F.Ev(1λ, fk, 0F.il(λ), 1|m|) and H.Ev(1λ, hk, y, 1|m|) is left to the distinguisher who runs A to get m. Note
that the distinguisher always creates H.Ev(1λ,hk, y, 1|m|) regardless of the challenge bit of game UCE.
We then use the PRF security of F to ensure that the first pad looks random to A. Consequently, in
the string (trap, c) that A receives, the first component is independent of the message, and the second
component is indistinguishable from a random string.

The HE3 scheme. Consider the p
√
q ·GuessA(·) term in the concrete bound for IND-CDA security in

Theorem 4.3. This is worse than the “optimal” bound p(q + p) · GuessA(·) if one uses a random oracle.
Why does this gap matter? Asymptotically, we know that GuessA(·) is negligible, and hence this entire
term is negligible too, under either of the two bounds. But concretely, the first bound means that we must
have more min-entropy in the messages to get security. This is not desirable in practice. For example if
we encrypt passwords, their min-entropy may be borderline. Thus it would be desirable to have a better
bound. Moreover, it would also be desirable to give a simple construction based on a generic UCE-secure
hash. We achieve both goals with our HE3 scheme.

The only ingredients we need this time are a PRF F (with fixed input length F.il and F.OL(·) = N)
a UCE[Ssrs] family H (with H.IL(·) = H.OL(·) = N) and a LTDF LT. We let ρ: N → N be a polynomial
that is a parameter of the scheme. The encryption and decryption algorithms of HE3 are shown in
Fig. 9 and the key-generation algorithm HE3.Kg is the same as HE1.Kg. We let HE3.rl = ρ. We also let
HE3.IL(·) = N, meaning the scheme encrypts variable and arbitrary length messages. While the scheme is
quite simple it’s challenging to find an analysis to match the desired bound p(q+p)·GuessA(·) for the reset-
advantage in the IND-CDA setting. A naive analysis will end up in an inferior bound q2p ·GuessA(·). Let
(m1, r1), . . . , (mp, rp) be the message-coin pairs specified by A’s IND-CDA queries. The reset adversary R
is given a random oracle RO that on input (x, `), returns a random string of length `. Let Bad be the
event that R queries y ← RO(mk, ρ(λ)) and then queries RO(y⊕rk,F.kl(λ) + λ) for some k ≤ p. For HE3
to be IND-CDA secure, Bad must not occur. Suppose that R queries RO(x1, ρ(λ)), . . . ,RO(xbq/2c, ρ(λ)),
and then queries RO(z1,F.kl(λ) + λ), . . . ,RO(zbq/2c,F.kl(λ) + λ). If there are i, j ≤ bq/2c and k ≤ p
such that xi = mk and RO(xi, ρ(λ))⊕zj = rk then Bad occurs. This seems to happen with probability
q2p
4 GuessA(·), because R can adaptively choose zj after seeing RO(x1, ρ(λ)), . . . ,RO(xbq/2c, ρ(λ)).

To tackle this problem, we exploit a combinatorial technique on the coin length ρ—a parameter that we
fully control. From Lemma 4.4 below, the chance that Bad occurs is at most qp ·GuessA(·)+q2p ·2−ρ(λ)/3.
If ρ is large enough, say ρ(λ) ≥ 4.5λ for every λ ∈ N, then this matches the optimal bound. The proof of
Lemma 4.4 is in Appendix F.

Lemma 4.4 Let U, V be random variables over {0, 1}∗ and {0, 1}`, respectively. Assume that the
maximum, over all u, v, of Pr[(U, V ) = (u, v)], is at most ε. Let RO be a random oracle and let
W = RO(U, `)⊕V . For any adversary A that makes at most q queries to RO, the probability that
the first component of one of A’s RO queries is W is at most qε+ q2 · 2−`/3.

Theorem 4.5 below confirms that HE3 is H-IND secure with very good concrete security bounds.
While UCE[Ssup] is enough for IND-CPA security, IND-CDA requires the stronger UCE[Ssrs] assumption.
The proof is in Appendix G.

Theorem 4.5 Let F be a PRF with F.OL(·) = N and fixed input length F.il. Let H be a UCE[Ssrs]
function family with H.IL(·) = H.OL(·) = N. Let LT be an LTDF such that LT.il(λ) ≥ λ for all λ ∈ N.

18



HE3.Enc(1λ, (ek,hk),m; r)

w ← H.Ev(1λ,hk,m, 1|r|)⊕r
x← H.Ev(1λ,hk, w, 1LT.il(λ))

trap ← LT.Ev(1λ, ek, x)

seed ← H.Ev(1λ,hk, x, 1F.kl(λ)+λ)

y ← seed[1, λ] ; fk ← seed[λ+ 1, |seed|]
mask ← F.Ev(1λ, fk, 0F.il(λ), 1|m|)

c← H.Ev(1λ,hk, y, 1|m|)⊕mask⊕m
Return (trap, c)

HE3.Dec(1λ, (dk,hk), (trap, c))

x← LT.Inv(1λ,dk, trap)

seed ← H.Ev(1λ,hk, x, 1F.kl(λ)+λ)

y ← seed[1, λ] ; fk ← seed[λ+ 1, |seed|]
mask ← F.Ev(1λ, fk, 0F.il(λ), 1|c|)

m← H.Ev(1λ,hk, y, 1|c|)⊕mask⊕c
Return m

Figure 9: Encryption and decryption algorithms of HE3, where H is a UCE[Ssrs] family, F is a VOL PRF
and LT is a LTDF.

Let ρ: N → N be a polynomial such that ρ(λ) ≥ λ for all λ ∈ N. Let HE3 be defined from F,H, LT, ρ as
above.

Asymptotic result: HE3 is H-IND secure.

Concrete IND-CPA result: Let A be an adversary and P be a predictor. We can construct a source S, a
distinguisher D, adversaries B and C such that

Advind-cpaHE3,A (·) ≤ 2AdvuceH,S,D(·) + 2AdvltdfLT,B(·) + 2AdvprfF,C(·) + 21−ρ

AdvpredS,P (·) ≤ 2q

2ρ
+

q

2τ

where q is the maximum of the size of P ’s output in the execution of PredPS and τ is the lossiness of LT.
Furthermore, T(LossyBLT),T(UCES,D

H
),T(PRFCF ) ≤ T(CPAA

HE3); QRR
C = 1; and QHash

S = 2.

Concrete IND-CDA result: Let A be an adversary and R be a predictor. We can construct a source S, a
distinguisher D, adversary B such that

AdvcdaHE,A(λ) ≤ 2AdvltdfLT,B(λ) + 2AdvuceH,S,D(λ) + p2 ·GuessA(λ) +
8p2

2λ
+

9p2

2min{τ(λ),ρ(λ)}

AdvresetS,R (λ) ≤ p(p+ q) ·GuessA(λ) +
5p2

2λ
+

5p2

2min{τ(λ),ρ(λ)} +
pq2

2ρ(λ)/3

where p is the maximum of the total number of messages that A produces in the execution of CDAA
HE3,

q = QHash
R , and τ is the lossiness of LT. Furthermore, T(LossyBLT),T(UCES,D

H
) ≤ T(CDAA

HE3); and

QHash
S ≤ 3p.

5 Efficiency and comparisons with prior schemes

Our schemes improve on prior work on both the theoretical and practical fronts. On the theoretical
front, DE1 is the first standard-model D-PKE scheme that is fully IND secure and HE1,HE2,HE3 are the
first standard-model PKE schemes achieving full H-IND, meaning IND-CPA plus full IND-CDA. Prior
standard-model D-PKE (resp. PKE) schemes only achieved IND (resp. IND-CDA) for block sources,
which assumes messages (resp. message-randomness pairs) are unpredictable even given prior ones, which
is unlikely to be true in applications.

On the practical front, prior standard-model schemes fix a message length, create keys depending
on it, and use only asymmetric operations, making them inflexible and inefficient. Our schemes handle
variable input length messages with hybrid-encryption like efficiency, meaning the asymmetric cost is

19



fixed and one pays only in hashing as message length grows. Exploiting fast instantiations of UCE[Ssup]
and UCE[Ssrs] functions [42, 8], this yields high performance.

To elaborate, recall that asymmetric primitives are orders of magnitude more expensive than sym-
metric ones. Crucial to making IND-CPA PKE efficient is the hybrid encryption paradigm as represented
by the KEM-DEM framework [23]. Here, PKE.Enc(1λ, ek,m) uses its coins to generate a random sym-
metric key K along with an encapsulation ca of K under ek, and returns ciphertext (ca, cs) where cs is a
symmetric encryption of m under K. The asymmetric cost is thus fixed regardless of message length and
is amortized out for long messages. Ideally, we would like a similar generic hybrid encryption paradigm
for D-PKE and H-PKE. But, despite interest and search, this has not been found. The reason in part is
the apparently crucial use of randomness in the choice of K. As a result, prior standard-model D-PKE
and H-PKE schemes have used only asymmetric operations. This has resulted not only in fixed message
lengths but in costs that are exorbitant for long messages.

Our methods and schemes change this. Although we do not provide a generic hybrid encryption
paradigm for these domains, our DE1,HE2 and HE3 schemes achieve hybrid-encryption like performance,
meaning the asymmetric cost is fixed regardless of message length, and one pays only in symmetric
operations — in our case this means hashing via the UCE[Ssup] or UCE[Ssrs] functions— as the message
length grows.

To capitalize on this for performance, good and careful instantiation of the UCE hash functions is
needed. We need UCE functions H that are both VIL —variable input length, H.IL(·) = N— and VOL
—variable output length, H.OL(·) = N. We now discuss how best to obtain these.

A simple instantiation of a UCE family is based on HMAC-SHA-256, as suggested in [7] and justified
in [42]. While this yields a VIL family, it is FOL (fixed output length). A method to turn FOL UCE
families into VOL ones is given in [7], but is slow. A better and faster transform is provided in Appendix I.
With this we get UCE[Ssup] and UCE[Ssrs] families with very good performance. These suffice for DE1,HE1
and HE3.

But one can do even better. BHK2 [8] provide a fast FIL, VOL UCE[Ssup] function H based on AES.
They also provide a fast AU family U. Applying their AU-then-Hash transform will return a VIL, VOL
UCE[Ssup] family H that is significantly faster than the HMAC-SHA-256 based instantiation. This suffices
for DE1 and HE1.

Recall HE2 needs a UCE[Ssup] family H of a special form, but it is based on AU-then-Hash and thus
amenable to an efficient instantiation. Start again from H,U from BHK2 as above. This time turn U into
U via our Hash-then-Mask transform —this preserves performance— and apply AU-then-Hash to this to
get H. This UCE[Ssup] family is again exceptionally fast and of the special form required for HE2.

Acknowledgments

References

[1] P. Austrin, K.-M. Chung, M. Mahmoody, R. Pass, and K. Seth. On the impossibility of cryptography with
tamperable randomness. In J. A. Garay and R. Gennaro, editors, CRYPTO 2014, Part I, volume 8616 of
LNCS, pages 462–479. Springer, Aug. 2014. 6, 7

[2] B. Barak, Y. Dodis, H. Krawczyk, O. Pereira, K. Pietrzak, F.-X. Standaert, and Y. Yu. Leftover hash lemma,
revisited. In P. Rogaway, editor, CRYPTO 2011, volume 6841 of LNCS, pages 1–20. Springer, Aug. 2011. 28

[3] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. P. Vadhan, and K. Yang. On the (im)possibility
of obfuscating programs. In J. Kilian, editor, CRYPTO 2001, volume 2139 of LNCS, pages 1–18. Springer,
Aug. 2001. 3, 11

[4] M. Bellare, A. Boldyreva, and A. O’Neill. Deterministic and efficiently searchable encryption. In A. Menezes,
editor, CRYPTO 2007, volume 4622 of LNCS, pages 535–552. Springer, Aug. 2007. 3, 10, 11

20



[5] M. Bellare, Z. Brakerski, M. Naor, T. Ristenpart, G. Segev, H. Shacham, and S. Yilek. Hedged public-key
encryption: How to protect against bad randomness. In M. Matsui, editor, ASIACRYPT 2009, volume 5912
of LNCS, pages 232–249. Springer, Dec. 2009. 3, 4, 5, 13, 14

[6] M. Bellare, M. Fischlin, A. O’Neill, and T. Ristenpart. Deterministic encryption: Definitional equivalences
and constructions without random oracles. In D. Wagner, editor, CRYPTO 2008, volume 5157 of LNCS, pages
360–378. Springer, Aug. 2008. 3, 10

[7] M. Bellare, V. T. Hoang, and S. Keelveedhi. Instantiating random oracles via UCEs. Cryptology ePrint
Archive, Report 2013/424, 2013. Preliminary version in CRYPTO 2013. 3, 4, 5, 6, 7, 9, 10, 11, 13, 20, 43

[8] M. Bellare, V. T. Hoang, and S. Keelveedhi. Cryptography from compression functions: The UCE bridge
to the ROM. In J. A. Garay and R. Gennaro, editors, CRYPTO 2014, Part I, volume 8616 of LNCS, pages
169–187. Springer, Aug. 2014. 5, 6, 10, 14, 15, 20

[9] M. Bellare, V. T. Hoang, and S. Keelveedhi. Cryptography from compression functions: The UCE bridge to
the ROM. In CRYPTO 2014, pages 169–187, 2014. 7, 14, 31, 43

[10] M. Bellare, E. Kiltz, C. Peikert, and B. Waters. Identity-based (lossy) trapdoor functions and applications.
In D. Pointcheval and T. Johansson, editors, EUROCRYPT 2012, volume 7237 of LNCS, pages 228–245.
Springer, Apr. 2012. 3

[11] M. Bellare, K. G. Paterson, and P. Rogaway. Security of symmetric encryption against mass surveillance. In
J. A. Garay and R. Gennaro, editors, CRYPTO 2014, Part I, volume 8616 of LNCS, pages 1–19. Springer,
Aug. 2014. 3, 6, 42, 43

[12] M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing efficient protocols. In
V. Ashby, editor, ACM CCS 93, pages 62–73. ACM Press, Nov. 1993. 4, 12

[13] M. Bellare and P. Rogaway. The security of triple encryption and a framework for code-based game-
playing proofs. In S. Vaudenay, editor, EUROCRYPT 2006, volume 4004 of LNCS, pages 409–426. Springer,
May / June 2006. 7

[14] E. Birrell, K.-M. Chung, R. Pass, and S. Telang. Randomness-dependent message security. In A. Sahai, editor,
TCC 2013, volume 7785 of LNCS, pages 700–720. Springer, Mar. 2013. 7

[15] A. Boldyreva, N. Chenette, Y. Lee, and A. O’Neill. Order-preserving symmetric encryption. In A. Joux,
editor, EUROCRYPT 2009, volume 5479 of LNCS, pages 224–241. Springer, Apr. 2009. 8

[16] A. Boldyreva, S. Fehr, and A. O’Neill. On notions of security for deterministic encryption, and efficient
constructions without random oracles. In D. Wagner, editor, CRYPTO 2008, volume 5157 of LNCS, pages
335–359. Springer, Aug. 2008. 3, 4, 11

[17] C. Bosley and Y. Dodis. Does privacy require true randomness? In S. P. Vadhan, editor, TCC 2007, volume
4392 of LNCS, pages 1–20. Springer, Feb. 2007. 7

[18] Z. Brakerski and G. Segev. Better security for deterministic public-key encryption: The auxiliary-input setting.
In P. Rogaway, editor, CRYPTO 2011, volume 6841 of LNCS, pages 543–560. Springer, Aug. 2011. 3, 7

[19] D. R. L. Brown. A weak-randomizer attack on RSA-OAEP with e = 3. Cryptology ePrint Archive, Report
2005/189, 2005. http://eprint.iacr.org/2005/189. 4, 13

[20] C. Brzuska, P. Farshim, and A. Mittelbach. Indistinguishability obfuscation and UCEs: The case of computa-
tionally unpredictable sources. In J. A. Garay and R. Gennaro, editors, CRYPTO 2014, Part I, volume 8616
of LNCS, pages 188–205. Springer, Aug. 2014. 3, 4, 5, 10, 11, 12

[21] C. Cachin, S. Micali, and M. Stadler. Computationally private information retrieval with polylogarithmic
communication. In J. Stern, editor, EUROCRYPT’99, volume 1592 of LNCS, pages 402–414. Springer, May
1999. 9

[22] S. Checkoway, R. Niederhagen, A. Everspaugh, M. Green, T. Lange, T. Ristenpart, D. J. Bernstein, J. Mask-
iewicz, H. Shacham, and M. Fredrikson. On the practical exploitability of dual EC in TLS implementations.
In Proceedings of the 23rd USENIX Security Symposium, pages 319–335, August 2014. 6

[23] R. Cramer and V. Shoup. Design and analysis of practical public-key encryption schemes secure against
adaptive chosen ciphertext attack. SIAM Journal on Computing, 33(1):167–226, 2003. 5, 20

21

http://eprint.iacr.org/2005/189


[24] Y. Dodis, A. López-Alt, I. Mironov, and S. P. Vadhan. Differential privacy with imperfect randomness. In
R. Safavi-Naini and R. Canetti, editors, CRYPTO 2012, volume 7417 of LNCS, pages 497–516. Springer, Aug.
2012. 7

[25] Y. Dodis, S. J. Ong, M. Prabhakaran, and A. Sahai. On the (im)possibility of cryptography with imperfect
randomness. In 45th FOCS, pages 196–205. IEEE Computer Society Press, Oct. 2004. 7

[26] Y. Dodis, D. Pointcheval, S. Ruhault, D. Vergnaud, and D. Wichs. Security analysis of pseudo-random
number generators with input: /dev/random is not robust. Cryptology ePrint Archive, Report 2013/338,
2013. http://eprint.iacr.org/2013/338. 6

[27] L. Dorrendorf, Z. Gutterman, and B. Pinkas. Cryptanalysis of the windows random number generator. In
P. Ning, S. D. C. di Vimercati, and P. F. Syverson, editors, ACM CCS 07, pages 476–485. ACM Press, Oct.
2007. 6

[28] A. Escala, J. Herranz, B. Libert, and C. Ràfols. Identity-based lossy trapdoor functions: New definitions,
hierarchical extensions, and implications. In H. Krawczyk, editor, PKC 2014, volume 8383 of LNCS, pages
239–256. Springer, Mar. 2014. 3

[29] M. Feltz and C. Cremers. On the limits of authenticated key exchange security with an application to bad
randomness. Cryptology ePrint Archive, Report 2014/369, 2014. http://eprint.iacr.org/2014/369. 7

[30] D. M. Freeman, O. Goldreich, E. Kiltz, A. Rosen, and G. Segev. More constructions of lossy and correlation-
secure trapdoor functions. Journal of Cryptology, 26(1):39–74, Jan. 2013. 4, 6, 9

[31] B. Fuller, A. O’Neill, and L. Reyzin. A unified approach to deterministic encryption: New constructions and a
connection to computational entropy. In R. Cramer, editor, TCC 2012, volume 7194 of LNCS, pages 582–599.
Springer, Mar. 2012. 3

[32] S. Garg, C. Gentry, S. Halevi, M. Raykova, A. Sahai, and B. Waters. Candidate indistinguishability obfuscation
and functional encryption for all circuits. In 54th FOCS, pages 40–49. IEEE Computer Society Press, Oct.
2013. 3, 11

[33] C. Gentry, A. Lewko, A. Sahai, and B. Waters. Indistinguishability obfuscation from the multilinear subgroup
elimination assumption. Cryptology ePrint Archive, Report 2014/309, 2014. http://eprint.iacr.org/2014/
309. 3

[34] O. Goldreich, S. Goldwasser, and S. Micali. How to construct random functions. Journal of the ACM,
33:792–807, 1986. 8

[35] S. Goldwasser and S. Micali. Probabilistic encryption. Journal of Computer and System Sciences, 28(2):270–
299, 1984. 8

[36] Z. Gutterman, B. Pinkas, and T. Reinman. Analysis of the linux random number generator. In 2006 IEEE
Symposium on Security and Privacy, pages 371–385. IEEE Computer Society Press, May 2006. 6

[37] B. Hemenway and R. Ostrovsky. Building lossy trapdoor functions from lossy encryption. In K. Sako and
P. Sarkar, editors, ASIACRYPT 2013, Part II, volume 8270 of LNCS, pages 241–260. Springer, Dec. 2013. 6,
7, 9

[38] N. Heninger, Z. Durumeric, E. Wustrow, and J. A. Halderman. Mining your Ps and Qs: Detection of widespread
weak keys in network devices. In Proceedings of the 21st USENIX Security Symposium, pages 205–220, August
2012. 6

[39] S. Kamara and J. Katz. How to encrypt with a malicious random number generator. In K. Nyberg, editor,
FSE 2008, volume 5086 of LNCS, pages 303–315. Springer, Feb. 2008. 7

[40] E. Kiltz, A. O’Neill, and A. Smith. Instantiability of RSA-OAEP under chosen-plaintext attack. In T. Rabin,
editor, CRYPTO 2010, volume 6223 of LNCS, pages 295–313. Springer, Aug. 2010. 6, 9

[41] A. K. Lenstra, J. P. Hughes, M. Augier, J. W. Bos, T. Kleinjung, and C. Wachter. Public keys. In R. Safavi-
Naini and R. Canetti, editors, CRYPTO 2012, volume 7417 of LNCS, pages 626–642. Springer, Aug. 2012.
6

[42] A. Mittelbach. Salvaging indifferentiability in a multi-stage setting. In P. Q. Nguyen and E. Oswald, editors,
EUROCRYPT 2014, volume 8441 of LNCS, pages 603–621. Springer, May 2014. 6, 10, 20

22

http://eprint.iacr.org/2013/338
http://eprint.iacr.org/2014/369
http://eprint.iacr.org/2014/309
http://eprint.iacr.org/2014/309


[43] K. Ouafi and S. Vaudenay. Smashing SQUASH-0. In A. Joux, editor, EUROCRYPT 2009, volume 5479 of
LNCS, pages 300–312. Springer, Apr. 2009. 4, 13

[44] K. G. Paterson, J. C. N. Schuldt, and D. L. Sibborn. Related randomness attacks for public key encryption.
In H. Krawczyk, editor, PKC 2014, volume 8383 of LNCS, pages 465–482. Springer, Mar. 2014. 7

[45] C. Peikert and B. Waters. Lossy trapdoor functions and their applications. In R. E. Ladner and C. Dwork,
editors, 40th ACM STOC, pages 187–196. ACM Press, May 2008. 3, 4, 6, 8, 9

[46] A. Raghunathan, G. Segev, and S. P. Vadhan. Deterministic public-key encryption for adaptively chosen
plaintext distributions. In T. Johansson and P. Q. Nguyen, editors, EUROCRYPT 2013, volume 7881 of
LNCS, pages 93–110. Springer, May 2013. 3, 7

[47] T. Ristenpart and S. Yilek. When good randomness goes bad: Virtual machine reset vulnerabilities and
hedging deployed cryptography. In NDSS 2010. The Internet Society, Feb. / Mar. 2010. 7

[48] P. Rogaway and T. Shrimpton. A provable-security treatment of the key-wrap problem. In S. Vaudenay,
editor, EUROCRYPT 2006, volume 4004 of LNCS, pages 373–390. Springer, May / June 2006. 7

[49] D. Vergnaud and D. Xiao. Public-key encryption with weak randomness: Security against strong chosen
distribution attacks. Cryptology ePrint Archive, Report 2013/681, 2013. http://eprint.iacr.org/2013/

681. 7

[50] D. Wichs. Barriers in cryptography with weak, correlated and leaky sources. In R. D. Kleinberg, editor, ITCS
2013, pages 111–126. ACM, Jan. 2013. 3, 4, 10

[51] G. Yang, S. Duan, D. S. Wong, C. H. Tan, and H. Wang. Authenticated key exchange under bad randomness.
Cryptology ePrint Archive, Report 2011/688, 2011. http://eprint.iacr.org/2011/688. 7

[52] S. Yilek. Resettable public-key encryption: How to encrypt on a virtual machine. In J. Pieprzyk, editor,
CT-RSA 2010, volume 5985 of LNCS, pages 41–56. Springer, Mar. 2010. 7

[53] A. Young and M. Yung. Kleptography: Using cryptography against cryptography. In W. Fumy, editor,
EUROCRYPT’97, volume 1233 of LNCS, pages 62–74. Springer, May 1997. 3, 6

A Proof of Proposition 3.1

For part (1), consider the following adversary A = (A1, A2). Adversary A1 samples m0←$ {0, 1}λ0
and m1←$ {0, 1}λ1. Adversary A2, given the public key (ek, hk) and the ciphertext c = (c′, P ), will
run z ← G.Ev(P,hk) and output the last bit of z. Let b be the challenge bit of game INDA

DE1. Note
that P is the obfuscated circuit of C1λ,x,y, with x = ek ‖mb, fk = H.Ev(1λ,hk,mb, 1

H.ol(λ))[1,F.kl(λ)], and

y = F.Ev(1λ, fk, 0F.il(λ), 1F.kl(λ)+λ). Then C1λ,x,y(hk) will return x, due to the construction of C1λ,x,y. The
obfuscated circuit P is created by running G.Ob on deterministic coins, but the correctness of iO holds
for any coins, so we’re still able to evaluate P , and thus G.Ev(P,hk) also returns x. Hence the evaluation
result z that A2 obtains is ek ‖mb whose last bit is exactly b. The adversary then wins with advantage 1.

For part (2), let A be an adversary attacking RE. Consider the games H1–H3 in Fig. 10. Game HA
1 (λ)

corresponds to game CPAA
RE(λ). Game HA

2 (λ) is identical to game HA
1 (λ), except that instead of using

pseudorandom strings y, r1, r2, we sample them at random. Consider the adversary B1 in Fig. 11 that
attacks F. It simulates game HA

1 , but calls to F(1λ, fk, ·, ·) are replaced by corresponding queries to B’s
oracle. Let a1 be the challenge bit of game PRFB1

F . Then

Pr[ PRFB1
F (·)⇒ true | a1 = 1 ] = Pr[HA

1 (·)] and Pr[ PRFB1
F (·)⇒ false | a1 = 0 ] = Pr[HA

2 (·)] .

Hence AdvprfF,B1
(·) = Pr[HA

1 (·)] − Pr[HA
2 (·)]. Next, game HA

3 (λ) is identical to game HA
2 (λ), except that

instead of obfuscating circuit C1λ,x,y, we obfuscate a constant circuit R1λ of the same size that always

outputs 0H.il(λ). Consider the adversary B2 attacking G in Fig. 11. It first simulates game HA
2 (λ) to

obtain C1λ,x,y, and outputs (R1λ , C1λ,x,y). It then continues simulating HA
2 (λ) but instead of obfuscating

23

http://eprint.iacr.org/2013/681
http://eprint.iacr.org/2013/681
http://eprint.iacr.org/2011/688


Game HA
1 (λ), HA

2 (λ)

(ek,dk)←$ RE.Kg(1λ) ; (m0,m1, t)←$A(1λ, ek)

b←$ {0, 1} ; fk←$ {0, 1}F.kl(λ) ; x← ek ‖mb

`← F.kl(λ) + λ ; y ← F.Ev(1λ, fk, 0F.il(λ), 1`) ; y←$ {0, 1}`

r1 ← F.Ev(1λ, fk, 0 ‖ 1F.il(λ)−1, 1G.rl(λ)) ; r1←$ {0, 1}G.rl(λ)

r2 ← F.Ev(1λ, fk, 1F.il(λ), 1RE.rl(λ)) ; r2←$ {0, 1}RE.rl(λ)

P ← G.Ob(1λ, Cλ,x,y; r1)

c′ ← RE.Enc(1λ, ek,mb; r2) ; c← (c′, P )

b′←$A(1λ, t, c) ; Return (b = b′)

Game HA
3 (λ)

(ek,dk)←$ RE.Kg(1λ) ; (m0,m1, t)←$A(1λ, ek)

b←$ {0, 1} ; c′←$ RE.Enc(1λ, ek,mb)

P ←$ G.Ob(1λ, R1λ) ; c← (c′, P )

b′←$A(1λ, t, c) ; Return (b = b′)

Figure 10: Games for the proof of Proposition 3.1. Games H2 contains the corresponding boxed
statement, but games H1 doesn’t. In game H3, circuit R1λ has the same size as C1λ,x,y constructed in

games H1 and H2, but always outputs 0H.il(λ).

BRR
1 (1λ)

b←$ {0, 1} ; (ek,dk)←$ RE.Kg(1λ) ; (m0,m1, t)←$A(1λ, ek) ; x← ek ‖mb

y ← RR(0F.il(λ), 1F.kl(λ)+λ) ; r1 ← RR(0 ‖ 1F.il(λ)−1, 1G.rl(λ)) ; r2 ← RR(1F.il(λ), 1RE.rl(λ))

P ← G.Ob(1λ, C1λ,x,y; r1) ; c′ ← RE.Enc(1λ, ek,mb; r2)

c← (c′, P ) ; b′←$A(1λ, t, c)

If (b = b′) then return 1 else return 0

B2(1λ)

b←$ {0, 1} ; (ek,dk)←$ RE.Kg(1λ)

(m0,m1, t)←$A(1λ, ek)

x← ek ‖mb ; y←$ {0, 1}F.kl(λ)+λ

c′←$ RE.Enc(1λ, ek,mb) ; t′ ← (1λ, b, c′, t)

b′←$A(1λ, t, c) ; Return (R1λ , C1λ,x,y, t
′)

B2(t′, P )

(1λ, b, c′, t)← t′ ; c← (c′, P ) ; b′←$A(1λ, t, c)

If (b′ = b) then return 1 else return 0

B3(1λ, ek)

b←$ {0, 1} ; (m0,m1, t)←$A(1λ, ek)

P ←$ G.Ob(1λ, R1λ)

t′ ← (t, P, b) ; Return (m0,m1, t
′)

B3(1λ, t′, c′)

(t, P, b)← t′ ; c← (c′, P )

b′←$A(1λ, t, c)

If (b = b′) then return 1 else return 0

Figure 11: Adversaries B1, B2, and B3 in the proof of Proposition 3.1 that attack F, G, and RE
respectively. Circuit R1λ has the same size as C1λ,x,y but always outputs 0H.il(λ).

C1λ,x,y, it uses the obfuscated circuit P that it receives. We claim that B2 is well-formed. Since F is
deterministic, the set

Set = { z ← F.Ev(1λ, fk, 0F.il(λ), 1F.kl(λ)+λ) : fk ∈ {0, 1}F.kl(λ) }

contains at most 2F.kl(λ) elements. If y←$ {0, 1}F.kl(λ)+λ then the chance that y ∈ Set is at most
2−λ. Hence for y←$ {0, 1}F.kl(λ)+λ, the chance that there exists z ∈ {0, 1}H.kl(λ) such that C1λ,x,y(z) 6=
0|x| is at most 2−λ. In other words, Pr[C1λ,x,y 6≡ R1λ ] ≤ 2−λ, where the probability is taken over

y←$ {0, 1}F.kl(λ)+λ, and thus B2 is well-formed. Let a2 be the challenge bit of game IOB4
G (λ). Then

Pr[ IOB2
G (·)⇒ true | a2 = 1 ] = Pr[HA

2 (·)] and Pr[ IOB2
G (·)⇒ false | a2 = 0 ] = Pr[HA

3 (·)] .

24



SHash(1λ)

lk←$ LT.LKg(1λ) ; (m0,m1)←$A1(1λ) ; b←$ {0, 1}
For i = 1 to |m0| do

r ← Hash(1λ,mb[i], 1
LT.il(λ)) ; trap ← LT.Ev(1λ, lk, r)

c← Hash(1λ, r, 1|mb[i]|)⊕mb[i] ; c[i]← (trap, c)

Return (b, lk, c)

D(1λ,hk, L)

(b, lk, c)← L

b′←$A2(1λ, (lk,hk), c)

Return (b = b′)

B(1λ,K)

(m0,m1)←$A1(1λ) ; hk←$ H.Kg(1λ) ; b←$ {0, 1}
For i = 1 to |m0| do

r ← H.Ev(1λ,hk,mb[i], 1
LT.il(λ)) ; trap ← LT.Ev(1λ,K, r)

c← H.Ev(1λ,hk, r, 1|mb[i]|)⊕mb[i] ; c[i]← (trap, c)

b′←$A2(1λ, (K,hk), c) ; Return (b = b′)

Figure 12: Top: Source S and distinguisher D in the proof of Theorem 3.2. Bottom: Adversary B
attacking LT in the proof of Theorem 3.2.

Game GA1 (λ), GA2 (λ)

(m0,m1)←$A1(1λ) ; hk←$ H.Kg(1λ) ; b←$ {0, 1}
(ek,dk)←$ LT.EKg(1λ) ; ek←$ LT.LKg(1λ)

For i = 1 to |m0| do

r ← H.Ev(1λ,hk,mb[i], 1
LT.il(λ))

c← H.Ev(1λ,hk, r, 1|mb[i]|)⊕mb[i]

trap ← LT.Ev(1λ, ek, r) ; c[i]← (trap, c)

b′←$A2(1λ, (ek,hk), c) ; Return (b = b′)

Game GA3 (λ) , GA4 (λ)

(m0,m1)←$A1(1λ) ; hk←$ H.Kg(1λ)

b←$ {0, 1} ; lk←$ LT.LKg(1λ)

For i = 1 to |m0| do

r ← RO(mb[i], LT.il(λ)) ; c← RO(r, |mb[i]|)⊕mb[i]

trap ← LT.Ev(1λ, lk, r) ; c[i]← (trap, c)

b′←$A2(1λ, (lk,hk), c) ; Return (b = b′)

RO(x, `)

y←$ {0, 1}`

If H[x, `] 6= ⊥ then bad← true ; y ← H[x, `]

H[x, `]← y ; Return y

Figure 13: Games G1–G4 in the proof of Theorem 3.2. Games G2 and G3 contain the corresponding
boxed statements, but games G1 and G4 do not.

Consider adversary B3 in Fig. 11 that attacks RE. Game CPAB3

RE
coincides with game HA

3 . Summing up,

Advind-cpaRE,A (·) = 2 Pr[CPAA
RE(·)]− 1 = 2

(
Pr[HA

1 (·)]− Pr[HA
3 (·)]

)
= 2AdvprfF,B1

(·) + 2AdvioG,B2
(·) + 2Advind-cpa

RE,B3
(·) .

The proposition then follows.

B Proof of Theorem 3.2

Let A = (A1, A2) be an adversary attacking DE1. Consider the source S and distinguisher D in Fig. 12.
They simulate game INDA

DE1, but use a lossy key lk instead of an injective key ek, and calls to H(1λ, hk, ·, ·)
are replaced by corresponding queries to Hash. Consider games G1–G4 in Fig. 13. Game GA1 coincides
with game INDA

DE1. We explain the game chain up to the terminal one. Game GA2 is identical to game
GA1 , except that instead of using an injective key for LT, we use a lossy key. Consider the adversary B in
Fig. 12 that attacks LT. It’s given a key K, which may be either an injective key ek or a lossy key lk. It

25



then simulates game INDA
DE1, but K is used as the encryption key for LT. Then

Pr[GA1 (·)]− Pr[GA2 (·)] = AdvltdfDE1,B(·) .

Game GA3 is identical to game GA2 , except that instead of using H.Ev(1λ,hk, ·, ·), we use a random oracle
RO(·, ·). Then

Pr[GA2 (·)]− Pr[GA3 (·)] ≤ AdvuceH,S,D(·) .

Game GA4 is identical to game GA3 , except that RO now ignores consistency and always returns a fresh
random answer for each query. The games GA3 and GA4 are identical-until-bad, and thus

Pr[GA3 (·)]− Pr[GA4 (·)] ≤ Pr[GA4 (·) sets bad] .

Let v be a polynomial that bound |m0|. Since the strings mb[1], . . . ,mb[|m0|] are distinct, game GA4
sets bad only if (i) some coins r are repeated, which happens with probability at most v2/21+LT.il, or
(ii) some coin r is identical to a message mb[i], which happens with probability at most v2/2LT.il. Hence
Pr[GA4 (·) sets bad] ≤ 3v2/21+LT.il. Finally, Pr[GA4 (·)] = 1/2 because whatever A2 receives is independent
of the challenge bit. Summing up,

AdvindDE1,A(·) = 2 Pr[GA1 (·)]− 1 ≤ 2AdvltdfLT,B(·) + 2AdvuceH,S,D(·) +
3v2

2LT.il
.

What’s left is to show that S is statistically unpredictable. Let P be a statistical predictor, and let q
be a polynomial that bounds the size of P ’s output. Consider game HA,P

1 and HA,P
2 that are identical

to game GA3 and GA4 respectively, except that at the end, we run Q′←$ P (1λ, (b, lk, c)) and then return

(Q ∩Q′ 6= ∅), where Q is the set of coins r and messages mb[i]. Game PredPS is identical to game HA,P
1 ,

and Pr[HA,P
1 (·)] − Pr[HA,P

2 (·)] ≤ 3v2/21+LT.il. On the other hand, in game HA,P
2 , the predictor has no

information of the messages mb[i], and thus the chance that it can guess them is at most qvGuessA(·).
Let τ be the lossiness of LT. The predictor is given the image of the strings r under LT, and thus the
chance that it can guess those strings is at most qv/2τ . Hence Pr[HA,P

2 (·)] ≤ qvGuessA(·) + qv/2τ , and
thus

AdvpredS,P (·) ≤ 3v2

21+LT.il
+ qvGuessA(·) +

qv

2τ
.

Hence S is statistically unpredictable.

C Proof of Lemma 4.1

For part (a), consider arbitrary strings x and y with |x| ≤ m and |y| = U.ol(λ). If |x| < U.ol(λ) then for

uk←$ U.Kg(λ), we have Pr[y = U.Ev(1λ,uk, x)] = 2−U.ol(λ). If |x| ≥ U.ol(λ) then let x1 = x[1,U.ol(λ)]
and x2 = x[U.ol(λ) + 1, |x|]. Then

Pr[y = U.Ev(1λ,uk, x)] ≤ Pr[y⊕(x1 · rk) = U.Ev(1λ,uk, x)] ≤ Coll1U(λ,m);

the probability is taken over uk←$ U.Kg(λ) for the first one, and over uk←$ U.Kg(λ) for the second one.

Hence Coll1U(λ,m) ≤ Coll1U(λ,m) + 2−U.ol(λ) as claimed.

For part (b), consider distinct strings x, x′ with |x| ≤ m, |x′| ≤ m′. By symmetry, there are only three
cases.

Case 1: |x|, |x′| < U.ol(λ). Then

Pr[U.Ev(1λ,uk, x) = U.Ev(1λ, uk, x′)] = Pr
[
x ‖ 10U.ol(λ)−|x| = x′ ‖ 10U.ol(λ)−|x

′|] = 0;

the probability is taken over uk←$ U.Kg(1λ).

26



S
Hash

(1λ)

lk←$ LT.LKg(1λ) ; u←$ {0, 1}U.ol(λ)

x← Hash(u, 1LT.il(λ)) ; uk←$ U.Kg(1λ)

trap ← LT.Ev(1λ, lk, x)

w ← U.Ev(1λ,uk, x, 1U.ol(λ))

mask ← Hash(w, 1`(λ))

Return (lk,uk,mask, trap)

D(1λ,hk, L)

(lk,uk,mask, trap)← L ; hk ← (hk,uk)

(m0,m1, t)←$A(1λ, (lk,hk)) ; b←$ {0, 1}
c← mask⊕mb

b′←$A(1λ, t, (trap, c))

If (b = b′) then return 1 else return 0

B(1λ,K)

u←$ {0, 1}U.ol(λ) ; hk ← H.Kg(1λ) ; (hk,uk)← hk

(m0,m1, t)←$A(1λ, (K,hk)) ; b←$ {0, 1} ; x← H.Ev(1λ,hk, u, 1LT.il(λ))

trap ← LT.Ev(1λ,K, x) ; w ← U.Ev(1λ,uk, x) ; mask ← H.Ev(1λ,hk, w, 1`(λ))

c← mask⊕mb ; b′←$A(1λ, t, (trap, c))

If (b = b′) return 1 else return 0

Figure 14: Top: The source S and distinguisher D in the IND-CPA proof of Theorem 4.2. Bottom:
Adversary B attacking LT in the IND-CPA proof of Theorem 4.2.

Case 2: |x| ≥ U.ol(λ) and |x′| < U.ol(λ). Let x1 = x[1,U.ol(λ)] and x2 = x[U.ol(λ) + 1, |x|]. Then

Pr[U.Ev(1λ, uk, x) = U.Ev(1λ,uk, x′)]

≤ Pr
[
U.Ev(1λ, uk, x2)⊕(x1 × rk) = mk⊕(x′ ‖ 10U.ol(λ)−|x

′|)
]
≤ 2−U.ol(λ);

the probability is taken over uk←$ U.Kg(1λ) for the first one, and over mk←$ {0, 1}U.ol(λ) for the second
one.

Case 3: |x|, |x′| ≥ U.ol(λ). Let x1 = x[1,U.ol(λ)], x2 = x[U.ol(λ) + 1, |x|], x′1 = x′[1,U.ol(λ)] and
x′2 = x′[U.ol(λ) + 1, |x′|]. If x1 6= x′1 then

Pr[U.Ev(1λ, uk, x) = U.Ev(1λ,uk, x′)]

≤ Pr[U.Ev(1λ, uk, x)⊕U.Ev(1λ, uk, x′) = (x1⊕x′1)× rk]

≤ 1

2U.ol(λ) − 1
≤ 2

2U.ol(λ)
;

the probability is taken over uk←$ U.Kg(1λ) for the first one, and over rk←$ GF(2U.ol(λ)\{0U.ol(λ)} for
the second one. If x1 = x′1 then

Pr[U.Ev(1λ, uk, x) = U.Ev(1λ, uk, x′)]

= Pr[U.Ev(1λ, uk, x2) = U.Ev(1λ, uk, x′2)] ≤ Coll2U(λ,m,m′);

the probability is taken over uk←$ U.Kg(λ) for the first one, and over uk←$ U.Kg(λ) for the second one.

Hence Coll2U(λ,m,m′) ≤ Coll2U(λ,m,m′) + 2/2U.ol(λ).

D Proof of Theorem 4.2

IND-CPA security. Let A be an IND-CPA adversary. Consider the source S and distinguisher D
in Fig. 14 that attack the UCE security of H. Instead of sampling r←$ {0, 1}U.ol(λ) and computing

u ← U.Ev(1λ,uk,m)⊕(rk × r), the source directly samples u←$ {0, 1}U.ol(λ), and thus need not know
the message m. Moreover, it samples a lossy key lk instead of an injective key ek. We argue that S is
statistically unpredictable. Consider an arbitrary predictor P . Consider the following games L1 and L2.

Game LS,P1 coincides with game PredP
S

. Game L2 is identical to game L1, except that the oracle Hash

27



Game GA1 (λ), GA2 (λ)

(ek,dk)←$ LT.EKg(1λ) ; K ← ek

K ← lk←$ LT.LKg(1λ) ; b←$ {0, 1}
hk ← H.Kg(1λ) ; (hk,uk)← hk ; r←$ {0, 1}U.ol(λ)

(uk, rk,mk)← uk ; (m0,m1, t)←$A(1λ, (K,hk))

u← U.Ev(1λ,uk,mb)⊕(rk × r)
u←$ {0, 1}U.ol(λ) ; x← H.Ev(1λ,hk, u, 1LT.il(λ))

trap ← LT.Ev(1λ,K, x) ; w ← U.Ev(1λ,uk, x)

mask ← H.Ev(1λ,hk, w, 1`(λ)) ; c← mask⊕mb

b′←$A(1λ, t, (trap, c)) ; Return (b = b′)

Game GA3 (λ) , GA4 (λ)

lk←$ LT.LKg(1λ) ; hk ← H.Kg(1λ) ; (hk,uk)← hk

u←$ {0, 1}U.ol(λ) ; b←$ {0, 1} ; x← RO(u, LT.il(λ))

(m0,m1, t)←$A(1λ, (lk,hk)) ; trap ← LT.Ev(1λ, lk, x)

w ← U.Ev(1λ,uk, x) ; mask ← RO(w, `(λ))

c← mask⊕mb ; b′←$A(1λ, t, (trap, c)) ; Return (b = b′)

RO(x, s)

y←$ {0, 1}s

If H[x, s] 6= ⊥ then bad← true ; y ← H[x, s]

H[x, s]← y ; Return y

Figure 15: Games G1–G4 in the proof of Theorem 4.2. Games G2, G3 contain the corresponding
boxed statements, but games G1, G4 do not.

ignores consistency and always returns a fresh random answer. Recall that S makes only two queries u
and w to Hash, and Pr[u = w] ≤ 2−U.ol. Hence

Pr[LS,P1 (·)]− Pr[LS,P2 (·)] ≤ 2−U.ol .

We now bound the chance that P wins in game L2. Let q be a polynomial that bounds the size of the
output of P . Assume that q ≤ 2U.ol−2; otherwise the concrete claimed bound is trivial. No information
of u←$ {0, 1}U.ol is given to P , and thus the chance that P can guess u is at most q/2U.ol. To bound
the chance that P can guess w, we shall use a result of Barak et al. [2]. We begin by introducing some
definitions. For correlated random variables X,Z ∈ {0, 1}∗, let

H̃∞(X | Z; q) = E
(

max
Q′∈({0,1}∗)q

{
Pr[X ∈ Q′ | Z]

})
be the expected value of the probability that the best (computationally unbounded) adversary can guessX
after q attempts, if it’s given Z. Lemma D.1 below shows a square-root degradation of H̃∞ if one applies
a universal hash to random variable X.

Lemma D.1 [2] Fix λ ∈ N. Let X ∈ {0, 1}s and Z ∈ {0, 1}∗ be correlated random variables. Let U be
a universal hash function and let W ← U.Ev(1λ, uk, X), where uk←$ U.Kg(1λ). Then

H̃∞(W | (Z, uk); q) ≤ q

2U.ol(λ)
+

√
q · H̃∞(X | Z; 1) + q ·Coll2U(λ, s)

for any q ∈ N.

Since LT is τ -lossy, H̃∞(x | trap; 1) ≤ 2−τ . Hence from Lemma D.1, the chance that P can guess w is at
most √

q · 2−τ + q ·Coll2U(·, LT.il) +
q

2U.ol
.

From Lemma 4.1, we have Coll2U(·, LT.il) ≤ Coll2U(·, LT.il) + 2/2U.ol. Combining the results yields

Advpred
S,P

(·) ≤
√
q

2τ/2
+
√
q ·Coll2U(·, LT.il) +

2
√
q

2U.ol/2
.

What remains is to bound Advind-cpaHE1,A (·) via Advuce
H,S,D

(·). Consider adversary B in Fig. 14 that attacks LT.

It is given a key K, which might be either an injective key ek or a lossy key lk. It then simulates game
CPAA

HE1, but uses key K instead of ek. Consider the games G1–G4 in Fig. 15. Game GA1 corresponds

28



SHash(1λ)

b←$ {0, 1} ; lk←$ LT.LKg(1λ) ; t←$ALR
2 (1λ) ; Return (b, lk, t)

LRSim(d)

(m0,m1, r)←$A1(1λ, d)

For i = 1 to |r| do

x← Hash(r[i] ‖mb[i], 1
LT.il(λ)) ; c← Hash(x, 1|mb[i]|)⊕mb[i]

trap ← LT.Ev(1λ, lk, x) ; c[i]← (trap, c)

Return c

D(1λ,hk, L)

(b, lk, t)← L

b′←$A2(t, (lk,hk))

If (b′ = b) then return 1

Else return 0

B(1λ,K)

hk ← H.Kg(1λ) ; b←$ {0, 1}
t←$ALRSim

2 (1λ)

b′←$A2(t, (K,hk))

If (b = b′) then return 1

Else return 0

LRSim(d)

(m0,m1, r)←$A1(1λ, d)

For i = 1 to |r| do

x← H.Ev(1λ,hk, r[i] ‖mb[i], 1
LT.il(λ)) ; trap ← LT.Ev(1λ,K, x)

c← H.Ev(1λ,hk, x, 1|mb[i]|)⊕mb[i] ; c[i]← (trap, c)

Return c

Figure 16: Top: Source S and distinguisher D in the IND-CDA proof of Theorem 4.2. Bottom:
Adversary B attacking LT in the IND-CDA proof of Theorem 4.2.

to game CPAA
HE1 and in game GA4 , whatever the adversary receives is independent of the challenge bit b,

and thus Pr[GA4 (·)] = 1/2. Hence

Advind-cpaHE1,A (·) = 2(Pr[GA1 (·)]− Pr[GA4 (·)]) .

We describe the game chain up to the terminal one. Game G2 is identical to game G1, except for the
following changes. First, instead of sampling r←$ {0, 1}U.ol(λ) and computing

u← U.Ev(1λ,uk,m)⊕(rk × r),

the game directly samples u←$ {0, 1}U.ol(λ). Since rk 6= 0U.ol(λ), this change makes no difference. Next,
instead of sampling an injective key ek, game G2 samples a lossy key lk. Then

Pr[GA1 (·)]− Pr[GA2 (·)] = AdvltdfLT,B(·) .

In game G3, instead of calling H.Ev(1λ,hk, ·, ·) to compute x and mask, we maintain a random oracle
and make the corresponding queries to get x and mask. Then

Pr[GA2 (·)]− Pr[GA3 (·)] = Advuce
H,S,D

(·) .

Game G4 is identical to G3, except that we always sample x and seed at random. The two games are
identical-until-bad, and thus

Pr[GA3 (·)]− Pr[GA4 (·)] ≤ Pr[GA4 (·) sets bad] ≤ 2−U.ol .

Summing up,

Advind-cpaHE1,A (·) ≤ 2Advuce
H,S,D

(·) + 2AdvltdfLT,B(·) + 21−U.ol .

IND-CDA security. Let A = (A1, A2) be an adversary attacking IND-CDA security of HE1. First
consider the source S and distinguisher D in Fig. 16 attacking H; we’ll later translate them to S and D
attacking H. They simulate game CDAA

HE1 but use Hash(·, ·) instead of H.Ev(1λ,hk, ·, ·) and use a lossy
key lk instead of an injective key ek. Consider games H1–H4 in Fig. 17. Game HA

1 corresponds to game
CDAA

HE1. We explain the game chain up to the terminal one. Game H2 is identical to H2, except that
we use a lossy key lk instead of the injective key ek. Consider the adversary B in Fig. 16 attacking LT.
It’s given a key K, which may be either an injective key ek or a lossy key lk. It then simulates game

29



Game HA
1 (λ), HA

2 (λ)

hk←$ H.Kg(1λ) ; b←$ {0, 1}
(K,dk)←$ LT.EKg(1λ) ; K←$ LT.LKg(1λ)

t←$ALR
2 (1λ) ; b′←$A2(t, (ek,hk))

Return (b = b′)

LR(d)

(m0,m1, r)←$A1(1λ, d)

For i = 1 to |r| do

x← H.Ev(1λ,hk, r[i] ‖mb[i], 1
LT.il(λ))

c← H.Ev(1λ,hk, x, 1`(λ))⊕mb[i]

trap ← LT.Ev(1λ,K, x) ; c[i]← (trap, c)

Return c

Game HA
3 (λ) , HA

4 (λ)

hk←$ H.Kg(1λ) ; b←$ {0, 1} ; lk←$ LT.LKg(1λ)

t←$ALR
2 (1λ) ; b′←$A2(t, (ek,hk))

Return (b = b′)

LR(d)

(m0,m1, r)←$A1(1λ, d)

For i = 1 to |r| do

x← RO(mb[i] ‖ r[i], LT.il(λ)) ; c← RO(x, `(λ))⊕mb[i]

trap ← LT.Ev(1λ, lk, x) ; c[i]← (trap, c)

Return c

RO(x, `)

y←$ {0, 1}`

If H[x, `] 6= ⊥ then bad← true ; y ← H[x, `]

H[x, `]← y ; Return y

Figure 17: Games H1–H4 in the proof of Theorem 4.2. Games H2 and H3 contain the corresponding
boxed statements, but games H1 and H4 do not.

CDAA
HE1, but K is used as the encryption key for LT. Then

Pr[HA
1 (·)]− Pr[HA

2 (·)] = AdvltdfLT,B(·) .

Game H3 is identical to game H2, but we maintain a random oracle RO and calls to H.Ev(1λ, hk, ·, ·) are
replaced by the corresponding queries to RO. Then

Pr[HA
2 (·)]− Pr[HA

3 (·)] = AdvuceH,S,D(·) .

In game H4, we ignore consistency among queries to RO, and always give fresh random answers. The
two games H3 and H4 are identical-until-bad, and thus

Pr[HA
3 (·)]− Pr[HA

4 (·)] ≤ Pr[HA
4 (·) sets bad] .

We now bound the chance that game HA
4 sets bad. Let p be the total number of messages that A produces.

There are 2p queries to RO. Each query is either (i) a uniformly random string of length LT.il, or (ii) a
string r[i] ‖m[i] produced by A. There are p queries in category (i), and the chance that they trigger bad
is at most

2p−1∑
j=p

j

2min{U.ol,LT.il}
≤ 1.5p2

2min{U.ol,LT.il}
.

For queries in category (ii), note that A2 can only specify distributions, and within a distribution, it’s
guaranteed that the strings (m[i], r[i]) are distinct. Hence the chance these queries trigger bad is at most

2p−1∑
j=p

j ·GuessA(·) ≤ 1.5p2 ·GuessA(·) .

Summing up,

Pr[HA
4 (·) sets bad] ≤ 1.5p2 ·GuessA(·) +

1.5p2

2min{U.ol,LT.il}
.

30



Finally, in game H4, whatever A receives is independent of the challenge bit, and thus Pr[HA
4 (·)] = 1/2.

Summing up,

AdvcdaHE1,A(·) = 2(Pr[HA
1 (·)]− Pr[HA

4 (·)]) ≤ 2AdvltdfLT,B(·) + 2AdvuceH,S,D(·) + 3p2 ·GuessA(·) +
3p2

2min{U.ol,LT.il}
.

Let σ be the total message length produced by LR queries of A. Then S makes 2p queries to Hash, and
their total length is at most s = p(`+ LT.il + U.ol). We now translate S and D to S and D attacking H
by using a result of BHK2.

Lemma D.2 [9] Let H be a function family of fixed input length, and U be an AU hash function family
with U.ol = H.il and F.IL = N. Let H = AU-then-Hash[U,H].

Asymptotic result: If H is UCE[Ssup]-secure then so is H.

Concrete result: Let S be a source, D a distinguisher, and P a predictor. We can construct a source S, a
distinguisher D, and a predictor P such that

AdvuceH,S,D(·) ≤ Advuce
H,S,D

(·) + AdvcollU (·, p, σ)

Advpred
S,P

(·) ≤
√

2qAdvcollU (·, p, σ) +
√
qAdvpredS,P (·)

where p = QHash
S , q is the maximum of the size of P ’s output in the execution of PredP

S
, and σ is the

maximum of the total length of Hash queries that S makes in UCES,DH . Furthermore, QHash
S

= QHash
S ,

T(UCES,D
H

) ≤ T(UCES,DH ), and P outputs a set of size at most QHash
S .

Let P be a predictor, and let q be a polynomial that bounds the size of the output of P . From Lemma D.2,
there are source S, distinguisher D, and predictor P such that

AdvuceH,S,D(·) ≤ Advuce
H,S,D

(·) + AdvcollU (·, 2p, s)

Advpred
S,P

(·) ≤
√

2qAdvcollU (·, 2p, s) +
√
qAdvpredS,P (·)

where the output of P contains at most 2p elements, QHash
S

= QHash
S , and T(UCES,D

H
) ≤ T(UCES,DH ) ≤

T(CDAA
HE1) + T(LT.LKg). Moreover, from Lemma 4.1,

AdvcollU (·, 2p, s) ≤ Advcoll
U

(·, 2p, s) +
8p2

2U.ol
.

Hence

AdvcdaHE1,A(·) ≤ 2AdvltdfLT,B(·) + 2Advuce
H,S,D

(·) + 2Advcoll
U

(·, 2p, s) + 3p2 ·GuessA(·) +
19p2

2min{U.ol,LT.il}
.

What’s left is to bound AdvpredS,P (·). For i ∈ {3, 4}, let game Ji be identical to game Hi, except for

the following change. Instead of returning (b = b′), we’ll run Q′←$ P (1λ, (b, lk, t)) and then return
(Q ∩ Q′ 6= ∅), where Q is the set of the strings r[i] ‖mb[i], x, and y specified in procedure LR. Game
JA,P3 corresponds to game PredPS , and

Pr[JA,P3 (·)]− Pr[JA,P4 (·)] ≤ Pr[JA,P4 (·) sets bad] ≤ 1.5p2 ·GuessA(·) +
1.5p2

2min{U.ol,LT.il}
.

In game J4, the predictor is given only LT.Ev(1λ, lk, x) and has to guess one of 2p strings x, r[i] ‖mb[i]
within 2p attempts. Then

Pr[JA,P4 (·)] ≤ 2p2 ·GuessA(·) +
2p2

2τ
.

31



S
Hash

(1λ)

lk←$ LT.LKg(1λ) ; u←$ {0, 1}U.ol(λ)

x← Hash(u, 1LT.il(λ)) ; uk←$ U.Kg(1λ)

trap ← LT.Ev(1λ, lk, x)

w ← U.Ev(1λ,uk, x, 1U.ol(λ))

seed ← Hash(w, 1F.kl(λ)+U.ol(λ))

Return (lk,uk, seed, trap)

D(1λ,hk, L)

(lk,uk, seed, trap)← L ; hk ← (hk,uk)

y ← seed[1,U.ol(λ)] ; fk ← seed[U.ol(λ) + 1, |seed|]
(m0,m1, t)←$A(1λ, (lk,hk)) ; b←$ {0, 1}
mask ← F.Ev(1λ, fk, 0F.il(λ), 1|mb|)

c← H.Ev(1λ,hk, y, 1|mb|)⊕mask⊕mb

b′←$A(1λ, t, (trap, c))

If (b = b′) then return 1 else return 0

B(1λ,K)

u←$ {0, 1}U.ol(λ) ; hk ← H.Kg(1λ) ; (hk,uk)← hk

(m0,m1, t)←$A(1λ, (K, hk))

b←$ {0, 1} ; x← H.Ev(1λ,hk, u, 1LT.il(λ))

trap ← LT.Ev(1λ,K, x) ; w ← U.Ev(1λ,uk, x)

seed ← H.Ev(1λ,hk, w, 1F.kl(λ)+U.ol(λ))

y ← seed[1,U.ol(λ)] ; fk ← seed[U.ol(λ) + 1, |seed|]
mask ← F.Ev(1λ, fk, 0F.il(λ), 1|mb|)

c← H.Ev(1λ,hk, y, 1|mb|)⊕mask⊕mb

b′←$A(1λ, t, (trap, c))

If (b = b′) return 1 else return 0

CRR(1λ)

lk←$ LT.LKg(1λ) ; u←$ {0, 1}U.ol(λ)

hk ← H.Kg(1λ) ; (hk,uk)← hk

(m0,m1, t)←$A(1λ, (lk,hk))

b←$ {0, 1} ; x←$ {0, 1}LT.il(λ)

trap ← LT.Ev(1λ, lk, x)

w ← U.Ev(1λ,uk, x)

y←$ {0, 1}U.ol(λ) ; mask ← RR(0F.il(λ), 1|mb|)

c← H.Ev(1λ,hk, y, 1|mb|)⊕mask⊕mb

b′←$A(1λ, t, (trap, c))

If (b = b′) return 1 else return 0

Figure 18: Top: Source S and distinguisher D in the IND-CPA proof of Theorem 4.3. Bottom:
Adversaries B and C attacking LT and F respectively, in the IND-CPA proof of Theorem 4.3.

By summing up and observing that τ ≤ LT.il, we have

AdvpredS,P (·) ≤ 3.5p2 ·GuessA(·) +
3.5p2

2min{U.ol,τ}
.

Combining the results yields

Advpred
S,P

(·) ≤ 2p
√
q ·GuessA +

√
2qAdvcoll

U
(·, 2p, s) +

6p
√
q

2min{U.ol,τ}/2
.

E Proof of Theorem 4.3

IND-CPA security. Let A be an IND-CPA adversary. Consider the source S and distinguisher D
in Fig. 18 that attack the UCE security of H. Instead of sampling r←$ {0, 1}U.ol(λ) and computing

u ← U.Ev(1λ,uk,m)⊕(rk × r), the source directly samples u←$ {0, 1}U.ol(λ), and thus need not know
the message m. Moreover, it samples a lossy key lk instead of an injective key ek. The computation of
H.Ev(1λ,hk, y, 1|m|) and F.Ev(1λ, fk, 0F.il(λ), 1|m|) is left to the distinguisher. We argue that S is statisti-
cally unpredictable. Consider an arbitrary predictor P . Consider the following games L1 and L2. Game

LS,P1 coincides with game PredP
S

. Game L2 is identical to game L1, except that the oracle Hash ignores

consistency and always return a fresh random answer. Recall that S makes only two queries u and w to
Hash, and Pr[u = w] ≤ 2−U.ol. Hence

Pr[LS,P1 (·)]− Pr[LS,P2 (·)] ≤ 2−U.ol .

We now bound the chance that P wins in game L2. Let q be a polynomial that bounds the size of the
output of P . Assume that q ≤ 2U.ol−2; otherwise the concrete claimed bound is trivial. No information
of u←$ {0, 1}U.ol is given to the predictor, and thus the chance that the predictor can guess u is at most

32



Game GA1 (λ), GA2 (λ)

(ek,dk)←$ LT.EKg(1λ) ; K ← ek

K ← lk←$ LT.LKg(1λ) ; b←$ {0, 1}
hk ← H.Kg(1λ) ; (hk,uk)← hk ; r←$ {0, 1}U.ol(λ)

(uk, rk,mk)← uk ; (m0,m1, t)←$A(1λ, (K,hk))

u← U.Ev(1λ,uk,mb)⊕(rk × r)
u←$ {0, 1}U.ol(λ) ; x← H.Ev(1λ,hk, u, 1LT.il(λ))

trap ← LT.Ev(1λ,K, x) ; w ← U.Ev(1λ,uk, x)

seed ← H.Ev(1λ,hk, w, 1F.kl(λ)+U.ol(λ))

y ← seed[1,U.ol(λ)] ; fk ← seed[U.ol(λ) + 1, |seed|]
mask ← F.Ev(1λ, fk, 0F.il(λ), 1|mb|)

c← H.Ev(1λ,hk, y, 1|mb|)⊕mask⊕mb

b′←$A(1λ, t, (trap, c)) ; Return (b = b′)

Game GA3 (λ) , GA4 (λ)

lk←$ LT.LKg(1λ) ; hk ← H.Kg(1λ) ; (hk,uk)← hk

u←$ {0, 1}U.ol(λ) ; b←$ {0, 1} ; x← RO(u, LT.il(λ))

(m0,m1, t)←$A(1λ, (lk,hk)) ; w ← U.Ev(1λ,uk, x)

seed←$ RO(w,F.kl(λ) + U.ol(λ))

y ← seed[1,U.ol(λ)] ; fk ← seed[U.ol(λ) + 1, |seed|]
mask ← F.Ev(1λ, fk, 0F.il(λ), 1|mb|)

c← H.Ev(1λ,hk, y, 1|mb|)⊕mask⊕mb

b′←$A(1λ, t, (trap, c)) ; Return (b = b′)

RO(x, `)

y←$ {0, 1}`

If H[x, `] 6= ⊥ then bad← true ; y ← H[x, `]

H[x, `]← y ; Return y

Game GA5 (λ), GA6 (λ)

lk←$ LT.LKg(1λ) ; hk ← H.Kg(1λ) ; (hk,uk)← hk ; u←$ {0, 1}U.ol(λ) ; b←$ {0, 1}
(m0,m1, t)←$A(1λ, (lk,hk)) ; x←$ {0, 1}LT.il(λ) ; seed←$ {0, 1}F.kl(λ)+U.ol(λ)

w ← U.Ev(1λ,uk, x) ; trap ← LT.Ev(1λ, lk, x)

y ← seed[1,U.ol(λ)] ; fk ← seed[U.ol(λ) + 1, |seed|]
mask ← F.Ev(1λ, fk, 0F.il(λ), 1|mb|) ; mask←$ {0, 1}|mb|

c← H.Ev(1λ,hk, y, 1|mb|)⊕mask⊕mb ; b′←$A(1λ, t, (trap, c)) ; Return (b = b′)

Figure 19: Games G1–G6 in the IND-CPA proof of Theorem 4.3. Games G2, G3, G6 contain the
corresponding boxed statements, but games G1, G4, G5 do not.

q/2U.ol. Since LT is τ -lossy, from Lemma D.1, the chance that P can guess w is at most√
q · 2−τ + q ·Coll2U(·, LT.il) +

q

2U.ol
.

By Lemma 4.1, we have Coll2U(·, LT.il) ≤ Coll2U(·, LT.il) + 2/2U.ol. Combining the results yields

Advpred
S,P

(·) ≤
√
q

2τ/2
+
√
q ·Coll2U(·, LT.il) +

2
√
q

2U.ol/2
.

What remains is to bound Advind-cpaHE2,A (·) via Advuce
H,S,D

(·). Consider the adversary B attacking LT and

adversary C attacking F in Fig. 18. Adversary B is given a key K, which might be either an injective
key ek or a lossy key lk. It then simulates game CPAA

HE2, but uses key K instead of ek. Adversary C

simulates game UCES,D
H

but the strings x and y are always chosen at random and F.Ev(1λ, fk, 0F.il(λ), 1|mb|)

is replaced by RR(0F.il(λ), 1|mb|). Consider the games G1–G6 in Fig. 19. Game GA1 corresponds to game
CPAA

HE2 and in game GA6 , whatever the adversary receives is independent of the challenge bit b, and thus
Pr[GA6 (·)] = 1/2. Hence

Advind-cpaHE2,A (·) = 2(Pr[GA1 (·)]− Pr[GA6 (·)]) .

We describe the game chain up to the terminal one. Game G2 is identical to game G1, except for the
following changes. First, instead of sampling r←$ {0, 1}U.ol(λ) and computing

u← U.Ev(1λ,uk,m)⊕(rk × r),

33



SHash(1λ)

b←$ {0, 1} ; lk←$ LT.LKg(1λ) ; t←$ALR
2 (1λ) ; Return (b, lk, t)

LRSim(d)

(m0,m1, r)←$A1(1λ, d)

For i = 1 to |r| do

x← Hash(r[i] ‖mb[i], 1
LT.il(λ)) ; seed ← Hash(x, 1F.kl(λ)+U.ol(λ))

y ← seed[1,U.ol(λ)] ; fk ← seed[U.ol(λ) + 1, |seed|]
c← Hash(y, 1|mb[i]|)⊕F.Ev(1λ, fk, 0F.il(λ), 1|mb[i]|)⊕mb[i]

trap ← LT.Ev(1λ, lk, x) ; c[i]← (trap, c)

Return c

D(1λ,hk, L)

(b, lk, t)← L

b′←$A2(t, (lk,hk))

If (b′ = b) then return 1

Else return 0

B(1λ,K)

hk ← H.Kg(1λ) ; b←$ {0, 1}
t←$ALRSim

2 (1λ)

b′←$A2(t, (K,hk))

If (b = b′) then return 1

Else return 0

LRSim(d)

(m0,m1, r)←$A1(1λ, d)

For i = 1 to |r| do

x← H.Ev(1λ,hk, r[i] ‖mb[i], 1
LT.il(λ))

seed ← H.Ev(1λ,hk, x, 1F.kl(λ)+U.ol(λ))

y ← seed[1,U.ol(λ)] ; fk ← seed[U.ol(λ) + 1, |seed|]
c← H.Ev(1λ,hk, y, 1|mb[i]|)⊕F.Ev(1λ, fk, 0F.il(λ), 1|mb[i]|)⊕mb[i]

trap ← LT.Ev(1λ,K, x) ; c[i]← (trap, c)

Return c

Figure 20: Top: Source S and distinguisher D in the IND-CDA proof of Theorem 4.3. Bottom:
Adversary B attacking LT in the IND-CDA proof of Theorem 4.3.

the game directly samples u←$ {0, 1}U.ol(λ). Since rk 6= 0U.ol(λ), this change makes no difference. Next,
instead of sampling an injective key ek, game G2 samples a lossy key lk. Then

Pr[GA1 (·)]− Pr[GA2 (·)] = AdvltdfLT,B(·) .

In game G3, instead of calling H.Ev(1λ,hk, ·, ·) to compute x and seed, we maintain a random oracle and
make the corresponding queries to get x and seed. Then

Pr[GA2 (·)]− Pr[GA3 (·)] = Advuce
H,S,D

(·) .

Game G4 is identical to G3, except that we always sample x and seed at random. The two games are
identical-until-bad, and thus

Pr[GA3 (·)]− Pr[GA4 (·)] ≤ Pr[GA4 (·) sets bad] ≤ 2−U.ol .

Game G5 is a simplified version of game G4. In game G6, instead of using F.Ev(1λ, fk, 0F.il(λ), 1|mb|), we
use a uniformly random string. Hence

Pr[GA5 (·)]− Pr[GA6 (·)] = AdvprfF,C(·) .

Summing up,

Advind-cpaHE2,A (·) ≤ 2Advuce
H,S,D

(·) + 2AdvltdfLT,B(·) + 2AdvprfF,C(·) + 21−U.ol .

IND-CDA security. Let A = (A1, A2) be an adversary attacking IND-CDA security of HE2. First
consider the source S and distinguisher D in Fig. 20 attacking H; we’ll later translate them to S and D
attacking H. They simulate game CDAA

HE2 but use Hash(·, ·) instead of H.Ev(1λ,hk, ·, ·) and use a lossy
key lk instead of an injective key ek. Consider games H1–H4 in Fig. 21. Game HA

1 corresponds to game
CDAA

HE2. We explain the game chain up to the terminal one. Game H2 is identical to H2, except that

34



Game HA
1 (λ), HA

2 (λ)

hk←$ H.Kg(1λ) ; b←$ {0, 1}
(K,dk)←$ LT.EKg(1λ) ; K←$ LT.LKg(1λ)

t←$ALR
2 (1λ) ; b′←$A2(t, (ek,hk))

Return (b = b′)

LR(d)

(m0,m1, r)←$A1(1λ, d)

For i = 1 to |r| do

x← H.Ev(1λ,hk, r[i] ‖mb[i], 1
LT.il(λ))

seed ← H.Ev(1λ,hk, x, 1F.kl(λ)+U.ol(λ))

`← |mb[i]| ; y ← seed[1,U.ol(λ)]

fk ← seed[U.ol(λ) + 1, |seed|]
mask ← H.Ev(1λ,hk, y, 1`)

c← mask⊕F.Ev(1λ, fk, 0F.il(λ), 1`)⊕mb[i]

trap ← LT.Ev(1λ,K, x) ; c[i]← (trap, c)

Return c

Game HA
3 (λ) , HA

4 (λ)

hk←$ H.Kg(1λ) ; b←$ {0, 1} ; lk←$ LT.LKg(1λ)

t←$ALR
2 (1λ) ; b′←$A2(t, (ek,hk))

Return (b = b′)

LR(d)

(m0,m1, r)←$A1(1λ, d)

For i = 1 to |r| do

x← RO(mb[i] ‖ r[i], LT.il(λ))

seed ← RO(x,F.kl(λ) + U.ol(λ))

y ← seed[1,U.ol(λ)] ; fk ← seed[U.ol(λ) + 1, |seed|]
c← RO(y, |mb[i]|)⊕F.Ev(1λ, fk, 0F.il(λ), 1|mb[i]|)⊕mb[i]

trap ← LT.Ev(1λ, lk, x) ; c[i]← (trap, c)

Return c

RO(x, `)

y←$ {0, 1}`

If H[x, `] 6= ⊥ then bad← true ; y ← H[x, `]

H[x, `]← y ; Return y

Figure 21: Games H1–H4 in the proof of Theorem 4.3. Games H2 and H3 contain the corresponding
boxed statements, but games H1 and H4 do not.

we use a lossy key lk instead of the injective key ek. Consider the adversary B in Fig. 20 attacking LT.
It’s given a key K, which may be either an injective key ek or a lossy key lk. It then simulates game
CDAA

HE2, but K is used as the encryption key for LT. Then

Pr[HA
1 (·)]− Pr[HA

2 (·)] = AdvltdfLT,B(·) .

Game H3 is identical to game H2, but we maintain a random oracle RO and calls to H.Ev(1λ, hk, ·, ·) are
replaced by the corresponding queries to RO. Then

Pr[HA
2 (·)]− Pr[HA

3 (·)] = AdvuceH,S,D(·) .

In game H4, we ignore consistency among queries to RO, and always give fresh random answers. The
two games H3 and H4 are identical-until-bad, and thus

Pr[HA
3 (·)]− Pr[HA

4 (·)] ≤ Pr[HA
4 (·) sets bad] .

We now bound the chance that game HA
4 sets bad. Let p be the total number of messages that A

produces. There are 3p queries to RO. Each query is either (i) a uniformly random string of length at
least min{U.ol, LT.il}, or (ii) a string r[i] ‖m[i] produced by A. There are 2p queries in category (i), and
the chance that they trigger bad is at most

3p−1∑
j=p

j

2min{U.ol,LT.il}
≤ 4p2

2min{U.ol,LT.il}
.

For queries in category (ii), note that A2 can only specify distributions, and within a distribution, it’s

35



guaranteed that the strings (m[i], r[i]) are distinct. Hence the chance these queries trigger bad is at most

3p−1∑
j=2p

j ·GuessA(·) ≤ 2.5p2 ·GuessA(·) .

Summing up,

Pr[HA
4 (·) sets bad] ≤ 2.5p2 ·GuessA(·) +

4p2

2min{U.ol,LT.il}
.

Finally, in game H4, whatever A receives is independent of the challenge bit, and thus Pr[HA
4 (·)] = 1/2.

Summing up,

AdvcdaHE2,A(·) = 2(Pr[HA
1 (·)]− Pr[HA

4 (·)]) ≤ 2AdvltdfLT,B(·) + 2AdvuceH,S,D(·) + 5p2 ·GuessA(·) +
8p2

2min{U.ol,LT.il}
.

Let σ be the total message length produced by LR queries of A. Then S makes 3p queries to Hash,
and their total length is at most s = σ + 3pmax{U.ol, LT.il}. We now translate S and D to S and D
attacking H. Let P be a predictor and let q be a polynomial that bounds the size of the output of P .
From Lemma D.2, there are source S, distinguisher D, and predictor P such that

AdvuceH,S,D(·) ≤ Advuce
H,S,D

(·) + AdvcollU (·, 3p, s)

Advpred
S,P

(·) ≤
√

2qAdvcollU (·, 3p, s) +
√
qAdvpredS,P (·)

where the output of P contains at most 3p elements, QHash
S

= QHash
S , and T(UCES,D

H
) ≤ T(UCES,DH ) ≤

T(CDAA
HE2) + T(LT.LKg). Moreover, from Lemma 4.1,

AdvcollU (·, 3p, s) ≤ Advcoll
U

(·, 3p, s) +
18p2

2U.ol
.

Hence

AdvcdaHE2,A(·) ≤ 2AdvltdfLT,B(·) + 2Advuce
H,S,D

(·) + 2Advcoll
U

(·, 3p, s) + 5p2 ·GuessA(·) +
44p2

2min{U.ol,LT.il}
.

What’s left is to bound AdvpredS,P (·). For i ∈ {3, 4}, let game Ji be identical to game Hi, except for

the following change. Instead of returning (b = b′), we’ll run Q′←$ P (1λ, (b, lk, t)) and then return
(Q ∩ Q′ 6= ∅), where Q is the set of the strings r[i] ‖mb[i], x, and y specified in procedure LR. Game
JA,P3 corresponds to game PredPS , and

Pr[JA,P3 (·)]− Pr[JA,P4 (·)] ≤ Pr[JA,P4 (·) sets bad] ≤ 2.5p2 ·GuessA(·) +
4p2

2min{U.ol,LT.il}
.

In game J4, the predictor is given only LT.Ev(1λ, lk, x) and has to guess one of 3p strings x, r[i] ‖mb[i], y
within 3p attempts. Then

Pr[JA,P4 (·)] ≤ 3p2 ·GuessA(·) +
3p2

2τ
+

3p2

2U.ol
.

By summing up and observing that τ ≤ LT.il, we have

AdvpredS,P (·) ≤ 5.5p2 ·GuessA(·) +
10p2

2min{U.ol,τ}
.

Combining the results yields

Advpred
S,P

(·) ≤
√

2qAdvcoll
U

(·, 3p, s) + 2.5p
√
q ·GuessA(·) +

9.5p
√
q

2min{U.ol,τ}/2
.

36



F Proof of Lemma 4.4

Assume that q ≤ 2`/3; otherwise the claim is trivial. For each string v ∈ {0, 1}`, we say that it’s a critical
mass if Pr[V = v] ≥ 2−`/3. Let Z be the set of all critical masses and let T = {z1⊕z2 : z1, z2 ∈ Z }. Then
|Z| ≤ 2`/3, and thus |T | ≤ 22`/3. Suppose that A makes q adaptive queries (x1, `1), . . . , (xq, `q) to RO. Let
Q = {x1, . . . , xq}. First, if none of xi hits U then RO(U, `) is independent of Q, and thus the chance that
W ∈ Q is at most q/2` ≤ 0.5q · 2−`/3. What’s left is to bound the chance that both U and W are in Q.
This only happens if there are some i, j ≤ q such that |xi| = `, `j = `, and (xj ,RO(xj , `)⊕xi) = (U, V ).

First consider the pairs (xj ,RO(xj , `)⊕xi), for all i ≤ j ≤ q such that |xi| = ` and `j = `. Since xi
was created before the adversary queries (xj , `) to RO, the adaptivity of A doesn’t help: the string
RO(xj , `)⊕xi is a uniformly random string, and thus it is a critical mass with probability at most |Z|/2` ≤
2−2`/3. Hence the chance that these pairs hit (U, V ) is at most 0.5q2 ·2−2`/3 ≤ 0.5q ·2−`/3. Next, consider
the pairs (xj ,RO(xj , `)⊕xi) for all j < i ≤ q such that |xi| = ` and `j = `. This time A’s adaptivity does
help, because xi is created after A sees RO(xj , `). Let Bad be the event that there are at most q critical
masses among those strings RO(xj , `)⊕xi. We claim that

Pr[Bad] ≤ 0.5q(q − 1) · 2−`/3 .

If Bad doesn’t happen, the chance that the pairs above hit (U, V ) is at most qε+ 0.5q(q − 1) · 2−`/3. To
justify our claim, if Bad occurs then by Pigeonhole Principle, there must be j < k < i ≤ q such that both
RO(xj , `)⊕xi and RO(xk, `)⊕xi are critical masses, and thus RO(xj , `)⊕RO(xk, `) must be in T . On the
other hand, the chance that there are j < k ≤ q such that RO(xj , `)⊕RO(xk, `) ∈ T is at most

q(q − 1)

2
· |T |

2`
≤ 0.5q(q − 1) · 2−`/3 .

Summing up, the chance that both W and U are in Q is at most qε+ (q2 − 0.5q) · 2−`/3, establishing the
result of the lemma.

G Proof of Theorem 4.5

IND-CPA security. Consider the source S and distinguisher D in Fig. 22. Instead of sampling
r←$ {0, 1}ρ(λ) and computing w ← r⊕H.Ev(1λ,hk,m, 1|r|), the source directly samples w←$ {0, 1}ρ(λ)
and thus need not know the message m. Next, the source samples a lossy key lk instead of an injective
key ek. The computation of H.Ev(1λ, hk, y, 1|m|) and F.Ev(1λ, fk, 0F.il(λ), 1|m|) is left to the distinguisher.
We argue that the source S above is statistically unpredictable. Consider an arbitrary predictor P .
Consider game LS,P1 that coincides with game PredPS . Let game LS,P2 be identical to game LS,P1 , except
that the oracle Hash ignores consistency, and always return a fresh random answer for each query, even
a repeated one. Recall that the source makes only two queries w and x to Hash, and Pr[x = w] ≤ 2−ρ.
Hence

Pr[LS,P1 (·)]− Pr[LS,P2 (·)] ≤ 2−ρ .

We now bound the chance that P wins in game L2. Let q be a polynomial that bounds the size of the
output of P and let τ be the lossiness of LT. The chance that the predictor can guess either x or w is
at most q/2ρ + q/2τ . Hence AdvpredS,P (·) ≤ 2q/2ρ + q/2τ . Next, consider the adversary B attacking the
lossiness of LT and adversary C attacking the PRF security of F in Fig. 22. Adversary B is given a key K,
which might be either an injective key ek or a lossy key lk. It then simulates game CPAA

HE3, but uses

key K instead of ek. Adversary C simulates game UCES,DH but the strings x and seed are always chosen
at random and F.Ev(1λ, fk, 0F.il(λ), 1|mb|) is replaced by RR(0F.il(λ), 1|mb|). Consider the games G1–G6 in
Fig. 23. Game GA1 corresponds to game CPAA

HE3 and in game GA6 , whatever the adversary receives is

37



SHash(1λ)

w←$ {0, 1}ρ(λ) ; lk←$ LT.LKg(1λ)

x← H.Ev(1λ,hk, w, 1LT.il(λ))

trap ← LT.Ev(1λ, lk, x)

seed ← H.Ev(1λ,hk, x, 1F.kl(λ)+λ)

Return (trap, seed)

D(1λ,hk, L)

(trap, seed)← L ; y ← seed[1, λ] ; fk ← seed[λ+ 1, |seed|]
(m0,m1, t)←$A(1λ, (lk,hk)) ; b←$ {0, 1}
mask ← F.Ev(1λ, fk, 0F.il(λ), 1|mb|)

c← H.Ev(1λ,hk, y, 1|mb|)⊕mask⊕mb

b′←$A(1λ, t, (trap, c))

If (b = b′) then return 1 else return 0

B(1λ,K)

w←$ {0, 1}ρ(λ) ; hk ← H.Kg(1λ)

(m0,m1, t)←$A(1λ, (K,hk))

b←$ {0, 1} ; x← H.Ev(1λ,hk, w, 1LT.il(λ))

trap ← LT.Ev(1λ,K, x)

seed ← H.Ev(1λ,hk, w, 1F.kl(λ)+λ)

y ← seed[1, λ] ; fk ← seed[λ+ 1, |seed|]
mask ← F.Ev(1λ, fk, 0F.il(λ), 1|mb|)

c← H.Ev(1λ,hk, y, 1|mb|)⊕mask⊕mb

b′←$A(1λ, t, (trap, c))

If (b = b′) return 1 else return 0

CRR(1λ)

lk←$ LT.LKg(1λ) ; w←$ {0, 1}ρ(λ)

hk ← H.Kg(1λ) ; (m0,m1, t)←$A(1λ, (lk,hk))

b←$ {0, 1} ; x←$ {0, 1}LT.il(λ)

trap ← LT.Ev(1λ, lk, x) ; y←$ {0, 1}λ

c← H.Ev(1λ,hk, y, 1|mb|)⊕RR(0F.il(λ), 1|mb|)⊕mb

b′←$A(1λ, t, (trap, c))

If (b = b′) return 1 else return 0

Figure 22: Top: Source S and distinguisher D in the IND-CPA proof of Theorem 4.5. Bottom:
Adversaries B and C attacking LT and F respectively, in the IND-CPA proof of Theorem 4.5.

independent of the challenge bit b, and thus Pr[GA6 (·)] = 1/2. Hence

Advind-cpaHE3,A (·) = 2(Pr[GA1 (·)]− Pr[GA6 (·)]) .

We describe the game chain up to the terminal one. Game G2 is identical to game G1, except for the
following changes. First, instead of sampling r←$ {0, 1}ρ(λ) and computing w ← H.Ev(1λ,hk,m, 1|r|)⊕r,
the game directly samples w←$ {0, 1}ρ(λ). This change makes no difference. Next, instead of sampling
an injective key ek, game G2 samples a lossy key lk. Then

Pr[GA1 (·)]− Pr[GA2 (·)] = AdvltdfLT,B(·) .

In game G3, instead of calling H.Ev(1λ,hk, ·, ·) to compute x and seed, we maintain a random oracle and
make the corresponding queries to get x and seed. Then

Pr[GA2 (·)]− Pr[GA3 (·)] = AdvuceH,S,D(·) .

Game G4 is identical to G3, except that we always sample x and seed at random. The two games are
identical-until-bad, and thus

Pr[GA3 (·)]− Pr[GA4 (·)] ≤ Pr[GA4 (·) sets bad] ≤ 2−ρ .

Game G5 is a simplified version of game G4. In game G6, instead of using F.Ev(1λ, fk, 0F.il(λ), 1|mb|), we
use a uniformly random string. Hence

Pr[GA5 (·)]− Pr[GA6 (·)] = AdvprfF,C(·) .

Summing up,

Advind-cpaHE3,A (·) ≤ 2AdvuceH,S,D(·) + 2AdvltdfLT,B(·) + 2AdvprfF,C(·) + 21−ρ .

IND-CDA security. Let A = (A1, A2) be an adversary attacking IND-CDA security of HE3. Consider
the source S and distinguisher D in Fig. 24. They simulate game CDAA

HE3 but use Hash(·, ·) instead of

38



Game GA1 (λ), GA2 (λ)

(ek,dk)←$ LT.EKg(1λ) ; K ← ek

K ← lk←$ LT.LKg(1λ) ; b←$ {0, 1}
hk ← H.Kg(1λ) ; r←$ {0, 1}ρ(λ)

(m0,m1, t)←$A(1λ, (K, hk))

w ← H.Ev(1λ,hk,mb, 1
|r|)⊕|r| ; w←$ {0, 1}ρ(λ)

x← H.Ev(1λ,hk, w, 1LT.il(λ)) ; trap ← LT.Ev(1λ,K, x)

seed ← H.Ev(1λ,hk, w, 1F.kl(λ)+λ)

y ← seed[1, λ] ; fk ← seed[λ+ 1, |seed|]
mask ← F.Ev(1λ, fk, 0F.il(λ), 1|mb|)

c← H.Ev(1λ,hk, y, 1|mb|)⊕mask⊕mb

b′←$A(1λ, t, (trap, c)) ; Return (b = b′)

Game GA3 (λ) , GA4 (λ)

lk←$ LT.LKg(1λ) ; hk ← H.Kg(1λ)

w←$ {0, 1}ρ(λ) ; b←$ {0, 1}
(m0,m1, t)←$A(1λ, (lk,hk))

x← RO(w, LT.il(λ)) ; seed ← RO(x,F.kl(λ) + λ)

trap ← LT.Ev(1λ, lk, x)

y ← seed[1, λ] ; fk ← seed[λ+ 1, |seed|]
mask ← F.Ev(1λ, fk, 0F.il(λ), 1|mb|)

c← H.Ev(1λ,hk, y, 1|mb|)⊕mask⊕mb

b′←$A(1λ, t, (trap, c)) ; Return (b = b′)

RO(x, `)

y←$ {0, 1}`

If H[x, `] 6= ⊥ then bad← true ; y ← H[x, `]

H[x, `]← y ; Return y

Game GA5 (λ), GA6 (λ)

lk←$ LT.LKg(1λ) ; hk ← H.Kg(1λ) ; w←$ {0, 1}ρU(λ) ; b←$ {0, 1}
(m0,m1, t)←$A(1λ, (lk,hk)) ; x←$ {0, 1}LT.il(λ) ; seed←$ {0, 1}F.kl(λ)+λ

trap ← LT.Ev(1λ, lk, x) ; y ← seed[1, λ] ; fk ← seed[λ+ 1, |seed|]
mask ← F.Ev(1λ, fk, 0F.il(λ), 1|mb|) ; mask←$ {0, 1}|mb|

c← H.Ev(1λ,hk, y, 1|mb|)⊕mask⊕mb ; b′←$A(1λ, t, (trap, c)) ; Return (b = b′)

Figure 23: Games G1–G6 in the proof of Theorem 4.5. Games G2, G3, G6 contain the corresponding
boxed statements, but games G1, G4, G5 do not.

H.Ev(1λ,hk, ·, ·) and use a lossy key lk instead of an injective key ek. Next, consider the adversary B
attacking LT in Fig. 24. It’s given a key K, which may be either an injective key ek or a lossy key lk.
It then simulates game CDAA

HE3, but K is used as the encryption key for LT. Consider games H1–H4 in
Fig. 25. Game HA

1 corresponds to game CDAA
HE3. We explain the game chain up to the terminal one.

Game H2 is identical to H2, except that we use a lossy key lk instead of the injective key ek. Then

Pr[HA
1 (·)]− Pr[HA

2 (·)] = AdvltdfLT,B(·) .

Game H3 is identical to game H2, but we maintain a random oracle RO and calls to H.Ev(1λ, hk, ·, ·) are
replaced by the corresponding queries to RO. We also maintain another interface RO of RO. Queries
RO(mb[i], ρ(λ)) are replaced by RO(mb[i], ρ(λ)). Then

Pr[HA
2 (·)]− Pr[HA

3 (·)] = AdvuceH,S,D(·) .

In game H4, we ignore consistency among queries to RO, giving independent answers, but the code for
RO doesn’t change. The two games H3 and H4 are identical-until-bad, and thus

Pr[HA
3 (·)]− Pr[HA

4 (·)] ≤ Pr[HA
4 (·) sets bad] .

We now bound the chance that game HA
4 sets bad. Let p be the total number of messages that A produces.

There are 3p queries to RO. Each query is either (i) a uniformly random string of length at least λ or (ii)
a string w of the form RO(m)⊕r for some message m and coin r produced by A. There are 2p queries in
category (i), and the chance that they trigger bad is at most

3p−1∑
j=p

j

2λ
≤ 4p2

2λ
.

39



SHash(1λ)

b←$ {0, 1} ; lk←$ LT.LKg(1λ) ; t←$ALR
2 (1λ) ; Return (b, lk, t)

LRSim(d)

(m0,m1, r)←$A1(1λ, d)

For i = 1 to |r| do

w ← Hash(mb[i], 1
ρ(λ))⊕r[i] ; x← Hash(w, 1LT.il(λ))

seed ← Hash(x, 1F.kl(λ)+λ) ; y ← seed[1, λ] ; fk ← seed[λ+ 1, |seed|]
c← Hash(y, 1|mb[i]|)⊕F.Ev(1λ, fk, 0F.il(λ), 1|mb[i]|)⊕mb[i]

trap ← LT.Ev(1λ, lk, x) ; c[i]← (trap, c)

Return c

D(1λ,hk, L)

(b, lk, t)← L

b′←$A2(t, (lk,hk))

If (b′ = b) then return 1

Else return 0

B(1λ,K)

hk ← H.Kg(1λ) ; b←$ {0, 1}
t←$ALRSim

2 (1λ) ; b′←$A2(t, (K,hk))

If (b = b′) then return 1 else return 0

LRSim(d)

(m0,m1, r)←$A1(1λ, d)

For i = 1 to |r| do

w ← H.Ev(1λ,hk,mb[i], 1
ρ(λ))⊕r[i]

x← H.Ev(1λ,hk, w, 1LT.il(λ)) ; trap ← LT.Ev(1λ,K, x)

seed ← H.Ev(1λ,hk, x, 1F.kl(λ)+λ)

y ← seed[1, λ] ; fk ← seed[λ+ 1, |seed|]
c[i]← H.Ev(1λ,hk, y, 1|mb[i]|)⊕F.Ev(1λ, fk, 0F.il(λ), 1|mb[i]|)⊕mb[i]

Return c

Figure 24: Top: Source S and distinguisher D in the IND-CDA proof of Theorem 4.5. Bottom:
Adversary B attacking LT in the IND-CDA proof of Theorem 4.5.

For queries in category (ii), note that A2 can only specify distributions, and within a distribution, it’s
guaranteed that the strings (m, r) are distinct. Let Bad be the event that the (lazily constructed) domains
of RO and RO overlap. Suppose that Bad doesn’t occur. Then RO is a random oracle, and its answers
are not given to A2.

• Consider two queries w = RO(m)⊕r and w′ = RO(m′)⊕r′ within the same distribution. If m = m′

then r 6= r′, and thus w 6= w′. If m 6= m′ then the chance that w = w′ is at most 2−ρ.

• Consider two queries w = RO(m)⊕r and w′ = RO(m′)⊕r′ in different distributions. If m 6= m′ then
the chance that w = w′ is at most 2−ρ. Suppose that m = m′. Then w = w′ if and only if r = r′.
The chance that m = m′ and r = r′ is at most GuessA(·).

• Consider a query in category (ii) and a prior query in category (i). The chance that they are equal
is at most 2−ρ.

Summing up, if Bad doesn’t occur then the chance that queries in category (ii) trigger bad is at most
2.5p2/2ρ+0.5p2 ·GuessA(·). We now bound the chance that Bad occurs. Terminate the game immediately
when Bad occurs; it doesn’t affect the chance that Bad occurs. We then can still consider RO and RO
independent random oracles. Note that A2 only receives (1) the images of strings x under LT on a lossy key,
and (2) random strings independent of the inputs of RO and the outputs of RO. The marginal distribution
of each input to RO is uniformly random, independent of the inputs to RO. Then Pr[Bad] ≤ p2/2τ +p2/2ρ,
where τ is the lossiness of LT. Summing up,

Pr[HA
4 (λ) sets bad] ≤ 0.5p2 ·GuessA(λ) +

4p2

2λ
+

3.5p2

2ρ(λ)
+

p2

2τ(λ)

for all λ ∈ N. Finally, in game H4, whatever A receives is independent of the challenge bit, and thus

40



Game HA
1 (λ), HA

2 (λ)

hk←$ H.Kg(1λ) ; b←$ {0, 1}
(K,dk)←$ LT.EKg(1λ) ; K←$ LT.LKg(1λ)

t←$ALR
2 (1λ) ; b′←$A2(t, (ek,hk))

Return (b = b′)

LR(d)

(m0,m1, r)←$A1(1λ, d)

For i = 1 to |r| do

w ← H.Ev(1λ,hk,mb[i], 1
HE3.rl(λ))⊕r[i]

x← H.Ev(1λ,hk, w, 1LT.il(λ))

seed ← H.Ev(1λ,hk, x, 1F.kl(λ)+λ)

y ← seed[1, λ] ; fk ← seed[λ+ 1, |seed|]
mask ← H.Ev(1λ,hk, y, 1|mb[i]|)

c← mask⊕F.Ev(1λ, fk, 0F.il(λ), 1|mb[i]|)⊕mb[i]

trap ← LT.Ev(1λ,K, x) ; c[i]← (trap, c)

Return c

Game HA
3 (λ) , HA

4 (λ)

hk←$ H.Kg(1λ) ; b←$ {0, 1} ; lk←$ LT.LKg(1λ)

t←$ALR
2 (1λ) ; b′←$A2(t, (ek,hk)) ; Return (b = b′)

LR(d)

(m0,m1, r)←$A1(1λ, d)

For i = 1 to |r| do

w ← RO(mb[i], ρ(λ))⊕r[i] ; x← RO(w, LT.il(λ))

seed ← RO(x,F.kl(λ) + λ) ; y ← seed[1, λ]

fk ← seed[λ+ 1, |seed|] ; mask ← RO(y, |mb[i]|)
c← mask⊕F.Ev(1λ, fk, 0F.il(λ), 1|mb[i]|)⊕mb[i]

trap ← LT.Ev(1λ, lk, x) ; c[i]← (trap, c)

Return c

RO(x, `)

y←$ {0, 1}`

If H[x, `] 6= ⊥ then bad← true ; y ← H[x, `]

H[x, `]← y ; Return y

RO(x, `)

y←$ {0, 1}`

If H[x, `] 6= ⊥ then y ← H[x, `]

H[x, `]← y ; Return y

Figure 25: Games H1–H4 in the proof of Theorem 4.5. Games H2 and H3 contain the corresponding
boxed statements, but games H1 and H4 do not.

Pr[HA
4 (·)] = 1/2. Summing up,

AdvcdaHE,A(λ) = 2(Pr[HA
1 (λ)]− Pr[HA

4 (λ)])

≤ 2AdvltdfLT,B(λ) + 2AdvuceH,S,D(λ) + p2 ·GuessA(λ) +
8p2

2λ
+

9p2

2min{τ(λ),ρ(λ)}

for all λ ∈ N. What remains is to prove that S is statistically reset-secure. Let R be a reset adversary.
Wlog, assume that R never repeats a prior oracle query. Consider the following games J1–J4 in Fig. 26.
Game JA,R1 is identical to game ResetRS with challenge bit a = 1. We explain the game chain up to the
terminal one. Game J2 is identical to game J1, but we ignore consistency among RO queries, giving
independent answers. The two games J1 and J2 are identical-until-bad, and thus

Pr[JA,R1 (λ)]− Pr[JA,R2 (λ)] ≤ Pr[JA,R2 (λ) sets bad] ≤ 0.5p2 ·GuessA(λ) +
4p2

2λ
+

3.5p2

2ρ(λ)
+

p2

2τ(λ)
,

for all λ ∈ N. Game J3 is is a simplified version of game J2. Game J4 is identical to game J3, except for
the following changes. In each game, we maintain the set X of queries to RO. In game J4, if R queries a
string v ∈ X, we’ll return a fresh random answer, instead of giving the value consistent with RO. Games
J3 and J4 are identical-until-bad, and thus

Pr[JA,R3 (λ)]− Pr[JA,R4 (λ)] ≤ Pr[JA,R4 (λ) sets bad]

for all λ ∈ N. Let q be a polynomial that bounds the number of Hash queries of R. To trigger bad, one
of Hash queries of R must hit one of the p strings w = RO(m, ρ(λ))⊕r or 2p uniformly random strings

41



Game JA,R1 (λ) , JA,R2 (λ)

hk←$ H.Kg(1λ) ; b←$ {0, 1} ; lk←$ LT.LKg(1λ)

t←$ALR
2 (1λ) ; b′←$RHash(1λ, (b, lk, t))

Return (b′ = 1)

RO(x, `)

y←$ {0, 1}` ; X ← X ∪ {x}
If H[x, `] 6= ⊥ then bad← true ; y ← H[x, `]

H[x, `]← y ; Return y

RO(x, `)

y←$ {0, 1}`

If H[x, `] 6= ⊥ then y ← H[x, `]

H[x, `]← y ; Return y

Hash(x, 1`)

y←$ {0, 1}`

If H[x, `] = ⊥ then return y else return H[x, `]

Game JA,R3 (λ), JA,R4 (λ)

hk←$ H.Kg(1λ) ; b←$ {0, 1} ; lk←$ LT.LKg(1λ)

t←$ALR
2 (1λ) ; b′←$RHash(1λ, (b, lk, t))

Return (b′ = 1)

RO(x, `)

H[x, `]←$ {0, 1}` ; X ← X ∪ {x} ; Return H[x, `]

RO(x, `)

y←$ {0, 1}`

If H[x, `] 6= ⊥ then y ← H[x, `]

H[x, `]← y ; Return y

Hash(x, 1`)

y←$ {0, 1}`

If H[x, `] = ⊥ then return y

Elsif x ∈ X then bad← true ; return y

Return H[x, `]

Figure 26: Games J1–J4 in the proof of Theorem 4.5. Games J1 and J4 contain the corresponding
boxed statements, but games J2 and J3 do not. The games use the same procedure LR(d) as games H3

and H4 in Fig. 25 and thus the code of this procedure is omitted for simplicity.

x, y, given only LT.Ev(1λ, lk, x). From Lemma 4.4,

Pr[JA,R4 (λ) sets bad] ≤ p
(
q ·GuessA(λ) +

q2

2ρ(λ)/3

)
+

p

2λ
+

p

2τ(λ)

for every λ ∈ N. Note that in game J4, the answers of Hash are uniformly random strings, independent
of the leakage L that R receives. Hence

Pr[JA,R4 (·)] = Pr[ ResetRS (·) | a = 0 ] .

Summing up,

AdvresetS,R (λ) = Pr[JA,R1 (λ)]− Pr[JA,R4 (λ)]

≤ p(p+ q) ·GuessA(λ) +
5p2

2λ
+

5p2

2min{ρ(λ),τ(λ)} +
pq2

2ρ(λ)/3

for all λ ∈ N.

H Unique-ciphertext PKE

In an algorithm-substitution attack (ASA) [11], the prescribed encryption algorithm is replaced with a
subverted one that may attempt to leak information about the message to “big brother.” The latter and
the subverted algorithm may even share a key based on which they communicate. BPR [11] formalize
the attacker goal in an ASA as compromising privacy while evading detection, the latter meaning that
subverted ciphertexts are indistinguishable from real ones even given the decryption key. They focus
on the symmetric setting. They give attacks showing that randomized, stateless schemes will succumb
to attack. They show however that security against ASAs may be achieved by what they call unique
ciphertext symmetric encryption schemes.

BPR [11] initiate the study of ASAs for PKE. Continuing that theme, we define unique ciphertext
PKE. We say that a PKE scheme PKE has unique ciphertexts, or is a U-PKE scheme, if for every λ ∈ N

42



UE.Kg(1λ)

(ek,dk)←$ DE.Kg(1λ)

Return (ek, (ek,dk))

UE.Enc(1λ, ek,m)

c← DE.Enc(ek,m)

Return c

UE.Dec(1λ, (ek,dk), c)

m← DE.Dec(dk, c)

If m 6= ⊥ then

c′ ← DE.Enc(ek,m)

If c′ 6= c then return ⊥
Return m

Figure 27: U-PKE scheme UE = UniqueCtx[DE] constructed from D-PKE scheme DE.

and every (ek, dk) ∈ [PKE.Kg(1λ)] there is at most one c ∈ {0, 1}∗ such that PKE.Dec(1λ,dk, c) 6= ⊥.
Coupled with correctness, this means that for every λ ∈ N, every (ek,dk) ∈ [PKE.Kg(1λ)] and every
m ∈ {0, 1}∗ with |m| ∈ PKE.IL(λ) the set [PKE.Enc(1λ, ek,m)] has size exactly one. The latter means
that a unique ciphertext scheme is deterministic, meaning a D-PKE scheme.

We now ask how to design a U-PKE scheme. The natural thought is that any D-PKE scheme is a
U-PKE scheme. This is not true. As an example, take any IND D-PKE scheme, and modify it so that
encryption pre-pends a bit to the ciphertext that is ignored by decryption. This is still an IND D-PKE
scheme, but it does not have unique ciphertexts, because if c is the encryption of m under 1λ, ek in the
starting D-PKE scheme then both 0 ‖ c and 1 ‖ c are valid ciphertexts in the new D-PKE scheme.

However, we show that one can transform any given D-PKE scheme DE into a U-PKE scheme UE.
The U-PKE public key is the same as the D-PKE one, but the secret key is the pair (ek,dk) consisting
of the D-PKE public key and matching secret key. Encryption is as in D-PKE. U-PKE decryption of
ciphertext c first recovers the candidate message m via D-PKE decryption of c under dk and then checks
that re-encrypting m under ek yields c, rejecting otherwise. UE = UniqueCtx[DE] is is formally specified
in Fig. 27.

The security requirement for U-PKE contains to be IND, meaning a U-PKE scheme is treated just as
a D-PKE scheme in the context of security. Applying our UniqueCtx to DE1 thus yields a very efficient
IND U-PKE scheme.

In the symmetric setting, unique-ciphertext encryption could be stateful and thus attain IND-CPA
type security [11]. Here, a synchronized state is shared between sender and receiver. In the PKE setting,
however, it is does not seem practical to assume that the sender and receiver share a synchronized state.
Indeed, this would go against the spirit of public-key cryptography. As a consequence, for the benefit
of unique ciphertexts, security must drop compared to IND-CPA, meaning we pay in security to protect
against ASAs.

I Practical output-length extension for UCE

So far we have assumed that there is a variable-output-length (VOL) UCE-secure family, which is needed
for both D-PKE and H-PKE. In practice a cryptographic hash such as HMAC-SHA-256 only gives us
up to 512 bits. BHK2 [9] construct a practical FIL, VOL hash and show that it’s UCE[Ssup]-secure in
the random-oracle model. The idea is simple: given the input x and the wanted output length `, we
use, say HMAC-sha-256 to derive an AES key K and then use AES-CTR mode to expand the output;
the payload of AES also consists of an encoding of ` in addition to the counter. Here sha-256 is the
compression function of SHA-256. This construction is as fast as AES-CTR.

In a different direction, BHK1 [7] give a method to turn a FOL UCE-secure hash to a VOL one in the
standard model: they apply the CTR mode on the hash itself, the payload is 1` ‖ 0 ‖ 1i ‖ 0 ‖x, where i
is the counter. This construction is impractical: if one wants to hash m-bit input to get n-bit output,
BHK1’s method will need to process O((m + n)m) bits. In this section, we’ll give a practical variant of
BHK1’s method. Our method is fully parallelizable and processes O(n+m) bits, which is optimal. The

43



H(1λ,hk, x, 1`)

m← d`/H.ol(λ)e ; K ← H.Ev(1λ,hk, ` ‖ 0λ ‖x, 1H.ol(λ))[1, λ]

For i = 1 to m do yi ← H.Ev(1λ,hk, ` ‖ i ‖K, 1H.ol(λ))
y ← y1 ‖ · · · ‖ ym ; Return y[1, `]

Figure 28: Construction of a VOL family H = Extend[H] from a FOL family H. The two families
use the same key generation algorithm. The string ` is encoded as a λ-bit string. The number i ∈
{0, 1, . . . , 2λ − 1} is also encoded as a λ-bit string, with the first bit as the most significant bit.

idea is to use BHK2’s hash-then-CTR paradigm, but using CTR mode on the hash itself instead of AES;
the payload of CTR mode will consist of an encoding of K and `, in addition to the counter. To get a
VIL, VOL hash, one can apply our extension on a VOL hash such as HMAC-SHA-256. Alternatively,
one can apply our extension on HMAC-sha-256 to get a FIL, VOL hash, followed by the AU-then-Hash
transform of BHK2 to make it VIL.

Formally, let H be a function family with 3λ ∈ H.IL(λ) and H.ol(λ) ≥ λ for every λ ∈ N. We’ll construct
a VOL function family H = Extend[H], with H.IL(λ) = {n− 2λ | n ∈ H.IL(λ) and n ≥ 2λ} and H.OL(λ) =
{1, 2, . . . , 2λ − 1} for every λ ∈ N. The construction Extend is specified in Fig. 28. We note that the loop
counter i in the code of Extend is never encoded as 0λ, and thus there is effectively a domain separation
in using H for hashing ` ‖ 0λ ‖x and ` ‖ i ‖K. Theorem I.1 below shows the concrete security bounds in
using Extend for extending the output length of UCE-secure function families.

Theorem I.1 Let H be a function family with 3λ ∈ H.IL(λ) and H.ol(λ) ≥ λ for every λ ∈ N. Let
H = Extend[H].

(a) If H is UCE[Ssup]-secure then so is H. Concretely, let S be a source, D a distinguisher, and P a
predictor. We can construct source S, distinguisher D, and predictor P such that

AdvuceH,S,D(λ) ≤ Advuce
H,S,D

(λ) +
q2

2λ

Advpred
S,P

(λ) ≤ AdvpredS,P (λ) +
p(p+ q)

2λ

for all λ ∈ N, where q = QHash
S and p is the maximum of the size of P ’s output in the execution

of PredP
S

. Furthermore, T(UCES,D
H

) ≤ T(UCES,DH ); the size of the output of P in the execution of

PredPS is at most p; and QHash
S

is at most the maximum of the H.ol-bit blocks in the output length

of S’s queries in UCES,DH .

(b) If H is UCE[Ssrs]-secure then so is H. Concretely, let S be a source, D a distinguisher, and R a reset
adversary. We can construct source S, distinguisher D, and reset adversary R such that

AdvuceH,S,D(λ) ≤ Advuce
H,S,D

(λ) +
q2

2λ

Advreset
S,R

(λ) ≤ AdvresetS,R (λ) +
2(p+ q)2

2λ

for all λ ∈ N, where q = QHash
S and p = QHash

R
. Furthermore, T(UCES,D

H
) ≤ T(UCES,DH ); QHash

R ≤
p; and QHash

S
is at most the maximum of the H.ol-bit blocks of the output length of S’s queries in

UCES,DH .

Proof: Let S be a source and D be a distinguisher. We now construct a source S as follows.

44



S
Hash

(1λ)

L←$ SHashSim(1λ)
Return L

HashSim(x, 1`)

m← d`/H.ol(λ)e ; K ← Hash(` ‖ 0λ ‖x, 1H.ol(λ))[1, λ]

For i = 1 to m do yi ← Hash(` ‖ i ‖K, 1H.ol(λ))
y ← y1 ‖ · · · ‖ ym ; Return y[1, `]

Then

Pr[ UCES,D
H

(·) | a = 1 ] = Pr[ UCES,DH (·) | a = 1 ] .

where a and a are the challenge bits of game UCES,DH and UCES,D
H

respectively. Wlog, assume that S

never repeats an oracle query. Then each query ` ‖ 0λ ‖x of S is never repeated, because the loop counter i

is never encoded as 0λ. Consider games G1–G4 in Fig. 29. Game GS,D1 coincides with game UCES,D
H

for

challenge bit a = 0, and game GS,D4 coincides with game UCES,DH for challenge bit a = 0. We explain

the game chain up to the terminal one. Game GS,D2 is identical to game GS,D1 , except that now we make
sure that K never repeats. Let q be a polynomial that bounds the number of Hash queries of S. Since
games G1 and G2 are identical-until-bad, we have

Pr[GS,D1 (λ)]− Pr[GS,D2 (λ)] ≤ Pr[GS,D1 (λ) sets bad] ≤ q2

2λ+1

for all λ ∈ N. Note that in game G2, each query ` ‖ i ‖K is never repeated. Hence effectively, we always
sample each yi at random. Game G3 makes this explicit; it is still equivalent to game G2. In game G4,
we now sample K at random. Games G3 and G4 are identical-until-bad, and thus

Pr[GS,D3 (λ)]− Pr[GS,D4 (λ)] ≤ Pr[GS,D4 (λ) sets bad] ≤ q2

2λ+1

for all λ ∈ N. Hence

Pr[ UCES,D
H

(λ) | a = 0 ] ≤ Pr[ UCES,DH (λ) | a = 0 ] +
q2

2λ

for all λ ∈ N, and thus

AdvuceH,S,D(λ) ≤ Advuce
H,S,D

(λ) +
q2

2λ

for all λ ∈ N.

Unpredictability. Let P be an arbitrary predictor. Consider the following predictor P .

P (1λ, L)

U ←$ P (1λ, L) ; Q′ ← ∅
For u ∈ U do

If u[λ+ 1, 2λ] = 0λ then x← u[2λ+ 1, |u|] ; Q′ ← Q′ ∪ {x}
Return Q′

For each i ∈ {1, 2, 3, 4}, let gameHS,P
i be identical to gameGS,Di , but instead of running b′←$D(1λ, hk, L)

and returning (b′ = 0), we’ll run U ←$ P (1λ, L) and return U ∩Q 6= ∅. Game HS,P
1 coincides with game

PredP
S

; games HS,P
2 and HS,P

3 are equivalent; and

Pr[HS,P
1 (λ)]− Pr[HS,P

2 (λ)] ≤ Pr[HS,P
1 (λ) sets bad] ≤ q2

2λ+1
, and

Pr[HS,P
3 (λ)]− Pr[HS,P

4 (λ)] ≤ Pr[HS,P
4 (λ) sets bad] ≤ q2

2λ+1

45



Game GS,D1 (λ), GS,D2 (λ)

hk←$ H.Kg(1λ) ; L←$ SHashSim(1λ) ; b′←$D(1λ,hk, L)

Return (b′ = 0)

HashSim(x, 1`)

m← d`/H.ol(λ)e ; K←$ {0, 1}λ

If K ∈ Dom then bad← true ; K←$ {0, 1}λ\Dom
Dom← Dom ∪ {K} ; Q← Q ∪ {` ‖ 0λ ‖x}
For i = 1 to m do

yi ← RO(` ‖ i ‖K) ; Q← Q ∪ {` ‖ i ‖K}
y ← y1 ‖ · · · ‖ ym ; Return y[1, `]

RO(x)

If H[x] = ⊥ then H[x]←$ {0, 1}H.ol(λ)

Return H[x]

Game GS,D3 (λ), GS,D4 (λ)

hk←$ H.Kg(1λ) ; L←$ SHashSim(1λ)

b′←$D(1λ,hk, L) ; Return (b′ = 0)

HashSim(x, 1`)

m← d`/H.ol(λ)e ; K←$ {0, 1}λ

If K ∈ Dom then bad← true ; K←$ {0, 1}λ\Dom
Dom← Dom ∪ {K} ; Q← Q ∪ {` ‖ 0λ ‖x}
For i = 1 to m do

yi←$ {0, 1}H.ol(λ) ; Q← Q ∪ {` ‖ i ‖K}
y ← y1 ‖ · · · ‖ ym ; Return y[1, `]

Figure 29: Games G1–G4 in the proof of Theorem I.1. Games G2 and G3 include the corresponding
boxed statements but games G1 and G4 don’t. Sets are initialized to ∅. The games also lazily implement
a random oracle RO : {0, 1}∗ → {0, 1}H.ol(λ).

Game HS,P
5 (λ), HS,P

6 (λ)

hk←$ H.Kg(1λ) ; L←$ SHashSim(1λ) ; U ←$R(1λ, L)

For u ∈ U do

If |u| = 3λ then Dom← Dom ∪ {u[2λ+ 1, 3λ]}
For (` ‖ 0λ ‖x) ∈ Q do

m← d`/H.ol(λ)e ; K←$ {0, 1}λ

If K ∈ Dom then bad← true ; K←$ {0, 1}λ\Dom
For i = 1 to m do Q← Q ∪ {` ‖ i ‖K}

Return (U ∩Q 6= ∅)

HashSim(x, 1`)

m← d`/H.ol(λ)e ; Q← Q ∪ {` ‖ 0λ ‖x}
For i = 1 to m do yi←$ {0, 1}H.ol(λ)

y ← y1 ‖ · · · ‖ ym ; Return y[1, `]

Game HS,P
7 (λ)

hk←$ H.Kg(1λ) ; L←$ SHashSim(1λ) ; U ←$R(1λ, L)

Return (U ∩Q 6= ∅)

HashSim(x, 1`)

m← d`/H.ol(λ)e ; Q← Q ∪ {` ‖ 0λ ‖x}
For i = 1 to m do yi←$ {0, 1}H.ol(λ)

y ← y1 ‖ · · · ‖ ym ; Return y[1, `]

Figure 30: Games H5–H6 in the proof of Theorem I.1. Game H6 includes the corresponding boxed
statements but game H5 doesn’t. Sets are initialized to ∅.

for all λ ∈ N. Consider games H5–H7 in Fig. 30. Game HS,P
5 is equivalent to game HS,P

4 : instead of
eagerly generating keys K in procedure HashSim, we lazily generate them right after R outputs its set U .

Game HS,P
6 is identical to game HS,P

5 , but we sample K so that no element of U can be of the form
` ‖ i ‖K. Let p be a polynomial that bounds |U |. Games H5 and H6 are identical-until-bad, and thus

Pr[HS,P
5 (λ)]− Pr[HS,P

6 (λ)] ≤ Pr[HS,P
5 (λ) sets bad] ≤ pq

2λ

for all λ ∈ N. Game HS,P
7 is equivalent to game HS,P

6 : since no element of U can hit ` ‖ i ‖K, there is no

46



RHash(1λ, L)

b′←$R
HashSim

(1λ, L)

Return b′

HashSim(u, 1H.ol(λ))

r←$ {0, 1}H.ol(λ)

If (|u| ≥ 2λ) ∧ (u[λ+ 1, 2λ] = 0λ) then

`← u[1, λ] ; x← u[2λ+ 1, |u|] ; K←$ {0, 1}λ

pad←$ {0, 1}H.ol(λ)−λ ; H[K, `]← x ; Return K ‖ pad

If |u| = 3λ then

`← u[1, λ] ; i← x[λ+ 1, 2λ] ; K ← u[2λ+ 1, 3λ]

If (i > d`/H.ol(λ)e) ∨ (H[K, `] = ⊥) then return r

x← H[K, `] ; pad←$ {0, 1}H.ol(λ)−(` mod H.ol(λ)) ; y ← Hash(x, 1`) ‖pad

Return y[(i− 1) · H.ol(λ) + 1, i · H.ol(λ)]

Return r

Figure 31: Constructed reset adversary R for the proof of Theorem I.1.

need to generate strings K and add ` ‖ i ‖K to Q. On the other hand, since game HS,P
7 coincides with

game PredPS , it follows that Advpred
S,P

(λ) ≤ AdvpredS,P (λ) + p(p+q)
2λ

.

Reset security. Let R be an arbitrary reset adversary. Consider the reset adversary R in Fig. 31.
Wlog, assume that adversary R never repeats an oracle query. Consider games J1–J6 in Fig. 32. Game

JS,R1 corresponds to game ResetRS with challenge bit b = 0, and game JS,R6 corresponds to game ResetR
S

with challenge bit b = 0. We explain the game chain up to the terminal one. Let p be a polynomial

that bounds the number of oracle queries of R. Game JS,R2 is identical to game JS,R1 , except that the
strings K are ensured to be distinct. The two games are identical-until-bad, and thus

Pr[JS,R1 (λ)]− Pr[JS,R2 (λ)] ≤ Pr[JS,R2 (λ) sets bad] ≤ p2

2λ+1

Note that in game J2, the answer to each HashSim query, generated by the second if-statement, is a fresh
random string. To justify this, note that in the second if-statement, the return value is a H.ol-bit block of
RO2(x, `) (with random padding if necessary). Since the strings K don’t repeat, each K corresponds to
at most one pair (`, x). Hence the blocks we give to R never overlap, and thus are independent random

strings. Game JS,R3 makes this explicit; it’s equivalent to game JS,R2 . Game JS,R4 is identical to game

JS,R3 , except that it forgoes the condition that the strings K are distinct, and thus HashSim always
returns a fresh random string. Then

Pr[JS,R3 (λ)]− Pr[JS,R4 (λ)] ≤ Pr[JS,R4 (λ) sets bad] ≤ p2

2λ+1

for all λ ∈ N. Game JS,R5 simplifies procedure HashSim, and also unrolls the implementation of the
variable-output-length random oracle RO1(·, ·) in Hash procedure, by querying a fixed-output-length
random oracle RO3(·,H.ol(λ)). The queries to RO3 are distinct, and thus the answers of Hash are still

independent random strings. Hence JS,R5 is equivalent to JS,R4 . Game JS,R6 is identical to game JS,R5 ,
except that it modifies procedure Hash, choosing the strings K independently instead of making them
distinct. The two games are identical-until-bad, and thus

Pr[JS,R5 (λ)]− Pr[JS,R6 (λ)] ≤ Pr[JS,R5 (λ) sets bad] ≤ q2

2λ+1

for all λ ∈ N. Summing up,

Pr[ ResetRS (λ) | b = 0 ] ≤ Pr[ ResetR
S

(λ) | b = 0 ] +
q2 + p2

2λ

for all λ ∈ N.

47



Game JS,R1 (λ), JS,R2 (λ)

L←$ SHash(1λ) ; b′←$R
HashSim

(1λ, L) ; Return (b′ = 0)

Hash(x, 1`)

Return RO1(x, `)

HashSim(u, 1H.ol(λ))

r←$ {0, 1}H.ol(λ)

If (|u| ≥ 2λ) ∧ (u[λ+ 1, 2λ] = 0λ) then

`← u[1, λ] ; x← u[2λ+ 1, |u|] ; K←$ {0, 1}λ

If K ∈ Dom then bad← true ; K←$ {0, 1}λ\Dom
Dom← Dom ∪ {K} ; H[K, `]← x ; pad←$ {0, 1}H.ol(λ)−λ ; Return K ‖ pad

If |u| = 3λ then

`← u[1, λ] ; i← x[λ+ 1, 2λ] ; K ← u[2λ+ 1, 3λ]

If (i > d`/H.ol(λ)e) ∨ (H[K, `] = ⊥) then return r

x← H[K, `] ; pad←$ {0, 1}H.ol(λ)−(` mod H.ol(λ)) ; y ← RO2(x, `) ‖pad

Return y[(i− 1) · H.ol(λ) + 1, i · H.ol(λ)]

Return r

Game JS,R3 (λ), JS,R4 (λ)

L←$ SHash(1λ) ; b′←$R
HashSim

(1λ, L)

Return (b′ = 0)

Hash(x, 1`)

Return RO1(x, `)

HashSim(u, 1H.ol(λ))

r←$ {0, 1}H.ol(λ)

If (|u| ≥ 2λ) ∧ (u[λ+ 1, 2λ] = 0λ) then

K←$ {0, 1}λ ; pad←$ {0, 1}2λ

If K ∈ Dom then bad← true ; K←$ {0, 1}λ\Dom
Dom← Dom ∪ {K} ; Return K ‖pad

Return r

Game JS,R5 (λ), JS,R6 (λ)

L←$ SHash(1λ) ; b′←$R
HashSim

(1λ, L)

Return (b′ = 0)

Hash(x, 1`)

m← d`/H.ol(λ)e ; K←$ {0, 1}λ

If K ∈ Dom then bad← true ; K←$ {0, 1}λ\Dom
For i = 1 to m do yi ← RO3(` ‖ i ‖K,H.ol(λ))

Dom← Dom∪{K} ; y ← y1 ‖ · · · ‖ ym ; Return y[1, `]

HashSim(u, 1H.ol(λ))

r←$ {0, 1}H.ol(λ) ; Return r

Figure 32: Games J1–J6 for the proof of Theorem I.1. Games J2, J3, J5 include the corresponding
boxed statements but games J1, J4, J6 don’t, and RO1,RO2,RO3 are independent random oracles.

Consider games L1–L8 in Figures 33–35. We claim that game LS,R1 is equivalent to game ResetRS with
challenge bit b = 1. To justify this, note that R never repeats queries to HashSim, and thus we never
repeat queries to RO2. Hence calling pad ← RO2(u,H.ol(λ))[(` mod H.ol(λ)) + 1,H.ol(λ)] is effectively
sampling pad at random. Moreover, in HashSim, we never repeat queries to Rand, effectively samplingK
at random. Finally, RO2 calls from HashSim and Block are distinct: each call from Block has a nonzero

second λ-bit block, whereas each call from HashSim has a zero second block. Game LS,R2 is identical to

game LS,R1 , except that if R happens to query u = ` ‖ i ‖K such that (K, `) was previously created in
Hash(x, `), then we’ll return the i-th H.ol(λ)-bit block of RO1(x, `) (with random padding if necessary),
instead of returning a random string. The two games are identical-until-bad, and thus for all λ ∈ N, we
have

Pr[LS,R1 (λ)]− Pr[LS,R2 (λ)] ≤ Pr[LS,R1 (λ) sets bad] ≤ pq

2λ
.

48



Game LS,R1 (λ), LS,R2 (λ)

L←$ SHash(1λ) ; b′←$R
HashSim

(1λ, L)

Return (b′ = 0)

Hash(x, 1`)

K ← Rand(x, `) ; U [K, `]← x ; Return RO1(x, `)

Rand(x, `)

If V [x, `] = ⊥ then V [x, `]←$ {0, 1}λ

Return V [x, `]

HashSim(u, 1H.ol(λ))

r←$ {0, 1}H.ol(λ)

If (|u| ≥ 2λ) ∧ (u[λ+ 1, 2λ] = 0λ) then

`← u[1, λ] ; x← u[2λ+ 1, |u|]
pad← RO2(u,H.ol(λ))[λ+ 1,H.ol(λ)]

K ← Rand(x, `) ; H[K, `]← x ; Return K ‖ pad

If |u| = 3λ then

`← u[1, λ] ; i← x[λ+ 1, 2λ] ; K ← u[2λ+ 1, 3λ]

If (i > d`/H.ol(λ)e) then return r

If (H[K, `] 6= ⊥) then

Return Block(u,H[K, `], `, i)

Elsif U [K, `] 6= ⊥ then

bad← true ; r ← Block(u, U [K, `], `, i)

Return r

Block(u, x, `, i)

pad← RO2(u,H.ol(λ))[(` mod H.ol(λ)) + 1,H.ol(λ)]

y ← RO1(x, `) ‖ pad

Return y[(i− 1) · H.ol(λ) + 1, i · H.ol(λ)]

Game LS,R3 (λ), LS,R4 (λ)

L←$ SHash(1λ) ; b′←$R
HashSim

(1λ, L)

Return (b′ = 0)

Hash(x, 1`)

Return RO1(x, `)

RO1(x, `)

K ← Rand(x, `)

If Z[x, `] = ⊥ then Z[x, `]←$ {0, 1}`

Return Z[x, `]

Rand(x, `)

K←$ {0, 1}λ

If V [x, `] = ⊥ then

If K ∈ Dom then bad← true ; K←$ {0, 1}λ\Dom
Dom← Dom ∪ {K} ; V [x, `]← K

Return V [x, `]

HashSim(u, 1H.ol(λ))

r←$ {0, 1}H.ol(λ)

If (|u| ≥ 2λ) ∧ (u[λ+ 1, 2λ] = 0λ) then

pad← RO2(u,H.ol(λ))[λ+ 1,H.ol(λ)] ;

`← u[1, λ] ; x← u[2λ+ 1, |u|] ; K ← Rand(x, `)

Return K ‖ pad

If |u| = 3λ then

`← u[1, λ] ; i← x[λ+ 1, 2λ] ; K ← u[2λ+ 1, 3λ]

Dom← Dom ∪ {K}
If (i > d`/H.ol(λ)e) then return r

If (H[K, `] 6= ⊥) then

Return Block(u,H[K, `], `, i)

Return r

Block(u, x, `, i)

pad← RO2(u,H.ol(λ))[(` mod H.ol(λ)) + 1,H.ol(λ)]

y ← RO1(x, `) ‖ pad

Return y[(i− 1) · H.ol(λ) + 1, i · H.ol(λ)]

Figure 33: Games L1–L4 for the proof of Theorem I.1. Games L2 and L4 include the corresponding
boxed statements but games L1 and L3 don’t, and RO1,RO2 are independent random oracles.

Game LS,R3 is identical to game LS,R2 , except for the following changes. First, we add the code for RO1.
Next, both Hash and HashSim use the same array H, instead of keeping separate arrays H and U . The

two games are equivalent, because in game LS,R2 , writes to H always happen after writes to U , and in
its procedure HashSim, if both H[K, `] and U [K, `] are written then we’ll process according to the value

in H[K, `]. Game LS,R4 is identical to game LS,R3 , except that the return values of Rand are now always
distinct. Then

Pr[LS,R3 (λ)]− Pr[LS,R4 (λ)] ≤ Pr[LS,R3 (λ) sets bad] ≤ (p+ q)2

2λ+1

49



Game LS,R5 (λ)

L←$ SHash(1λ) ; b′←$R
HashSim

(1λ, L)

Return (b′ = 0)

Hash(x, 1`)

Return RO1(x, `)

RO1(x, `)

K ← Rand(x, `) ; m← d`/H.ol(λ)e
For i = 1 to m do yi ← RO2(` ‖ i ‖K,H.ol(λ))

y ← y1 ‖ · · · ‖ ym ; Return y[1, `]

Rand(x, `)

If V [x, `] = ⊥ then

V [x, `]←$ {0, 1}λ\Dom ; Dom← Dom ∪ {V [x, `]}
Return V [x, `]

HashSim(u, 1H.ol(λ))

r←$ {0, 1}H.ol(λ)

If (|u| ≥ 2λ) ∧ (u[λ+ 1, 2λ] = 0λ) then

pad← RO2(u,H.ol(λ))[λ+ 1,H.ol(λ)]

`← u[1, λ] ; x← u[2λ+ 1, |u|] ; K ← Rand(x, `)

Return K ‖ pad

If |u| = 3λ then

`← u[1, λ] ; i← x[λ+ 1, 2λ] ; K ← u[2λ+ 1, 3λ]

Dom← Dom ∪ {K}
If (i > d`/H.ol(λ)e) then return r

If (H[K, `] 6= ⊥) then

Return Block(u,H[K, `], `, i)

Return r

Block(u, x, `, i)

pad← RO2(u,H.ol(λ))[(` mod H.ol(λ)) + 1,H.ol(λ)]

y ← RO1(x, `) ‖ pad

Return y[(i− 1) · H.ol(λ) + 1, i · H.ol(λ)]

Game LS,R6 (λ), LS,R7 (λ)

L←$ SHash(1λ) ; b′←$R
HashSim

(1λ, L)

Return (b′ = 0)

Hash(x, 1`)

K ← Rand(x, `) ; m← d`/H.ol(λ)e
For i = 1 to m do yi ← RO2(` ‖ i ‖K,H.ol(λ))

y ← y1 ‖ · · · ‖ ym ; Return y[1, `]

Rand(x, `)

K←$ {0, 1}λ

If V [x, `] = ⊥ then

If K ∈ Dom then bad← true ; K←$ {0, 1}λ\Dom
Dom← Dom ∪ {K} ; V [x, `]← K

Return V [x, `]

HashSim(u, 1H.ol(λ))

r←$ {0, 1}H.ol(λ)

If (|u| ≥ 2λ) ∧ (u[λ+ 1, 2λ] = 0λ) then

pad← RO2(u,H.ol(λ))[λ+ 1,H.ol(λ)]

`← u[1, λ] ; x← u[2λ+ 1, |u|] ; K ← Rand(x, `)

Return K ‖ pad

If |u| = 3λ then

`← u[1, λ] ; i← x[λ+ 1, 2λ] ; K ← u[2λ+ 1, 3λ]

Dom← Dom ∪ {K}
If (i > d`/H.ol(λ)e) then return r

If (H[K, `] 6= ⊥) then return RO2(u,H.ol(λ))

Return r

Figure 34: Games L5–L7 for the proof of Theorem I.1. Games L7 includes the corresponding
boxed statement but game L6 doesn’t.

for all λ ∈ N. In game LS,R5 , we change the implementation of RO1: we now implement it from CTR-mode
on RO2. Since Rand’s outputs are distinct, RO1 calls on different inputs never have a common RO2 call.
Moreover, while RO1 and Block may make the same RO2 call, they return non-overlapping parts of

RO2’s outputs. Hence game LS,R5 is equivalent to game LS,R4 . Note that due to the new implementation

of RO1, each Block in HashSim effectively calls RO2(u,H.ol(λ)). Game LS,R6 makes this explicit; it is

still equivalent to game LS,R5 . Game LS,R7 modifies Rand, dropping the requirement that the outputs be
distinct. Games L6 and L7 are identical-until-bad, and thus

Pr[LS,R6 (λ)]− Pr[LS,R7 (λ)] ≤ Pr[LS,R7 (λ) sets bad] ≤ (p+ q)2

2λ+1

for all λ ∈ N. In game LS,R8 , we change the implementation of Rand, returning the first λ bits of

50



Game LS,R8 (λ)

L←$ SHash(1λ) ; b′←$R
HashSim

(1λ, L)

Return (b′ = 0)

Hash(x, 1`)

K ← Rand(x, `) ; m← d`/H.ol(λ)e
For i = 1 to m do yi ← RO2(` ‖ i ‖K,H.ol(λ))

y ← y1 ‖ · · · ‖ ym ; Return y[1, `]

Rand(x, `)

Return RO2(` ‖ 0λ ‖x,H.ol(λ))[1, λ]

HashSim(u, 1H.ol(λ))

r←$ {0, 1}H.ol(λ)

If (|u| ≥ 2λ) ∧ (u[λ+ 1, 2λ] = 0λ) then

`← u[1, λ] ; x← u[2λ+ 1, |u|] ; K ← Rand(x, `)

v ← RO2(u,H.ol(λ))[λ+ 1,H.ol(λ)] ; Return K ‖ v
If |u| = 3λ then

`← u[1, λ] ; i← x[λ+ 1, 2λ] ; K ← u[2λ+ 1, 3λ]

Dom← Dom ∪ {K}
If (i > `) ∨ (i ≤ 0) then return r

If (H[K, `] 6= ⊥) then return RO2(u,H.ol(λ))

Figure 35: Game L8 for the proof of Theorem I.1.

RO2(` ‖ 0λ ‖x,H.ol(λ)). Note that the first if-branch of HashSim and Rand may make the same query

to RO2, but they use non-overlapping parts of the outputs. Then game LS,R8 is equivalent to game LS,R7 .
Summing up,

Pr[ ResetR
S

(λ) | b = 1 ] ≤ Pr[ ResetRS (λ) | b = 1 ] +
(p+ q)2 + pq

2λ

for all λ ∈ N. Hence

Advreset
R,S

(λ) ≤ AdvresetS,R (λ) +
2(p+ q)2

2λ

for all λ ∈ N.

51


	Introduction
	Preliminaries
	Efficient, fully IND secure D-PKE
	Fully secure Hedged PKE
	Efficiency and comparisons with prior schemes
	Proof of Proposition 3.1
	Proof of Theorem 3.2
	Proof of Lemma 4.1
	Proof of Theorem 4.2
	Proof of Theorem 4.3
	Proof of Lemma 4.4
	Proof of Theorem 4.5
	Unique-ciphertext PKE
	Practical output-length extension for UCE

