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Abstract

Recently, the work of Garg et al. (FOCS 2013) gave the first candidate general-purpose ob-
fuscator. This construction is built upon multilinear maps, also called a graded encoding scheme.
Several subsequent works have shown that variants of this obfuscator achieves the highest notion
of security (VBB security) against “purely algebraic” attacks, namely attacks that respect the re-
strictions of the graded encoding scheme. While important, the scope of these works is somewhat
limited due to the strong restrictions imposed on the adversary.

We propose and analyze another variant of the Garg et al. obfuscator in a setting that imposes
fewer restrictions on the adversary that we call the arithmetic setting. This setting captures a
broader class of algebraic attacks than considered in previous works. Most notably, it allows
for unlimited additions across different “levels” of the encoding. In this setting, we present two
results:

• First, in the arithmetic setting where the adversary is limited to creating only multilinear
polynomials, we obtain an unconditional proof of VBB security.

• Second, in the arithmetic setting where the adversary can create polynomials of arbitrary
degree, we prove VBB security under an assumption that is closely related to the Bounded
Speedup Hypothesis of Brakerski and Rothblum (TCC 2014). We also give evidence that
any unconditional proof of VBB security in this model would entail proving the algebraic
analog of P 6= NP.
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1 Introduction

The goal of general-purpose program obfuscation is to make programs “unintelligible”, while preserv-
ing their functionality. This field of research, first formalized in the works of Barak et al. [BGI+12]
and Hada [Had00], is exciting due to its many possible applications [BCPR13, BP13, MR13, BCP14,
ABG+13, MO14, GJKS13, PPS13, GGG+14, BBC+14, BFM14, KNY14, GHRW14, HSW14, BR14a,
BR14b, GGHR14, CGK14]. Of particular interest to us is the recent work of Garg, Gentry, Halevi,
Raykova, Sahai, and Waters [GGH+13b], which gave the first candidate construction of a general
purpose obfuscator.

The heart of the [GGH+13b] construction is an obfuscator for log-depth circuits (NC1), which
can be represented by permutation matrix branching programs [Bar89]. This obfuscator assumes the
existence of a graded encoding scheme whose details we review below; candidate implementations of
such a scheme can be obtained from the candidate multilinear map constructions of Garg, Gentry,
and Halevi [GGH13a] and Coron, Lepoint and Tibouchi [CLT13]. At a high-level, the obfuscator
proceeds by randomizing the matrix branching program using Kilian’s technique [Kil88], and then
encoding each element of each matrix using the graded encoding scheme. (There is a final step which
transforms an obfuscator for NC1 into an obfuscator for all poly-size circuits, but this will not be
our focus here.)

The graded encoding scheme imposes some restrictions on the ways in which encoded matrix
elements may be added and multiplied. These restrictions are motivated by corresponding restrictions
from candidate multilinear map constructions [GGH13a, CLT13]; it is conjectured that in these latter
constructions, operations that violate the restrictions do not reveal “useful” information about the
underlying encoded elements. Thus an important question, posed by [GGH+13b], is whether their
NC1-obfuscator can be proven secure against “purely algebraic” adversaries who are required to obey
the restrictions of the graded encoding scheme.

This question has been addressed by several recent works, which give constructions achieving
Virtual Black Box (VBB) security against specific classes of possible attacks. Roughly speaking,
VBB guarantees that the obfuscated program reveals nothing other than its input-output behavior,
and is the strongest meaningful theoretical notion of obfuscation security. Brakerski and Rothblum
[BR14b] show that a variant of the [GGH+13b] obfuscator achieves VBB security against purely
algebraic attacks, under a new assumption known as the Bounded Speedup Hypothesis. Barak et al.
[BGK+14] remove the need for this assumption, and show unconditionally that another variant of the
[GGH+13b] obfuscator achieves VBB security against purely algebraic attacks. Finally, Ananth et
al. [AGIS14] give a more efficient variant of the [BGK+14] obfuscator and show that it also achieves
VBB security against purely algebraic attacks.

The main drawback of the works [BR14b, BGK+14, AGIS14] is that the algebraic restrictions
imposed by the graded encoding scheme are quite strong. Though these restrictions are motivated
by current multilinear map constructions, it is preferable to prove security while allowing as broad a
set of algebraic operations as possible. In particular, if we delve deeper into existing constructions of
multilinear maps [GGH13a, CLT13], there are several purely algebraic operations that an adversary
can perform in these existing multilinear map constructions that do not correspond to algebraic
operations in the generic graded encoding model. Most notably, in [GGH13a, CLT13], all encodings,
regardless their “level” of the graded algebra, are represented as polynomials in a single ring. Thus,
an adversary can add encodings at disparate levels using an arithmetic operation, and yet this is
not captured in the generic models considered in [BR14b, BGK+14, AGIS14]. If we are able to
deal with broader classes of algebraic attacks, this not only increases confidence in implementations
using current multilinear map constructions, but also allows for greater compatibility with potential
future constructions. For example, in future multilinear maps constructions, it may be possible that
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elements can be zero-tested at any level of the encoding, while in [BR14b, BGK+14, AGIS14] the
adversary is not permitted this flexibility.

Interestingly, and perhaps surprisingly, we show that the loosening of these restrictions is related
to fundamental questions in arithmetic circuit complexity. Specifically, our results below give evidence
that proving VBB security in the most general type of graded encoding scheme would imply the
algebraic analog of P 6= NP, namely VP 6= VNP.

1.1 Our results

We give an obfuscator for NC1 circuits, and show that it achieves VBB security against a broader
class of algebraic attacks than considered in all previous works. The broader class of attacks that we
consider, which we call arithmetic attacks, is directly inspired by models from arithmetic complexity
theory. To explain our results, we first describe the restrictions imposed by the graded encoding
scheme used in [BR14b, BGK+14, AGIS14]. Throughout this section, we let R denote a commutative
ring and U denote a universe set.

Definition 1.1 (Fully restricted graded encoding scheme). A fully-restricted graded encoding scheme
consists of a set of basic elements {(ri, Si)}i where ri ∈ R and Si ⊆ U for each i; three operations +,
−, and ×; and a predicate IsZero defined as follows.

• For (r, S) and (r′, S), we define (r, S) + (r′, S) := (r + r′, S) and (r, S)− (r′, S) := (r − r′, S).

• For (r, S) and (r′, S′) where S ∩ S′ = ∅, we define (r, S) × (r′, S′) := (r × r′, S ∪ S′).

• For (r, S) where S = U, we define IsZero((r, S)) := True iff r is R’s zero element.

There are three restrictions imposed by a fully-restricted graded encoding scheme. First, two
elements cannot be added or subtracted unless they have the same “index-set” S. Second, two
elements cannot be multiplied unless their index-sets are disjoint. Third, only elements whose index-
set is equal to the universe U can be zero-tested.

To describe our two less-restricted graded encoding schemes, we use the following notion of a
valid polynomial.

Definition 1.2. Let {(ri, Si)}i be a set of elements where ri ∈ R and Si ⊆ U for each i. We say that
a polynomial over the set {(ri, Si)}i is valid iff it is multilinear and, for every non-zero monomial and
every (ri, Si), (rj , Sj) that appear in the monomial, Si ∩ Sj = ∅.

In our first new scheme, we only require that pairs of basic elements with intersecting index sets
are never multiplied. In particular, additions, subtractions and zero-testing are always allowed. This
corresponds to allowing any operation that results in a valid polynomial.

Definition 1.3 (Multiplication-restricted graded encoding scheme). Amultiplication-restricted graded
encoding scheme consists of a set of basic elements {(ri, Si)}i and arithmetic circuits defined over
them. The operations +, −, ×, and IsZero are defined as follows. Let e1 and e2 be any arithmetic
circuits over the basic elements (where each basic element is a circuit of size 1).

• e1 + e2 and e1 − e2 are the formal arithmetic circuits computing those expressions.

• For e1 and e2 such that e1 × e2 computes a valid polynomial, e1 × e2 is the formal arithmetic
circuit computing that expression.

• For e1 that computes a valid polynomial, IsZero(e1) := True iff evaluating e1 on the basic
elements produces 0 ∈ R.
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In our second new scheme, we allow all arithmetic operations (even those resulting in invalid
polynomials), but with the caveat that any invalid polynomial is always classified as “non-zero”.

Definition 1.4 (Unrestricted graded encoding scheme). An unrestricted graded encoding scheme
consists of a set of basic elements {(ri, Si)}i and arithmetic circuits defined over them. The operations
+, −, ×, and IsZero are defined as follows. Let e1 and e2 be any arithmetic circuits over the basic
elements (where each basic element is a circuit of size 1).

• e1 + e2, e1 − e2, and e1 × e2 are the formal arithmetic circuits computing those expressions.

• For any e1, we define IsZero(e1) := True iff e1 computes a valid polynomial and evaluating e1
on the basic elements produces 0 ∈ R.

Remark 1.5. Another sensible criterion for evaluating IsZero, inspired by current implementations
of multilinear maps [GGH13a, CLT13], is the following: a valid element e is 0 iff it evaluates to 0 and
further each of its monomials has index set U (where the index set of monomial (r1, S1) · · · (rm, Sm)
is

⋃
i≤m Si). Our results below hold for this variant as well.

We now state our main theorems. We defer until Section 2 the formal definition of VBB security
and an “ideal” graded encoding scheme (the latter is simply a way of formalizing an adversary that
is restricted to the defined set of arithmetic operations).

Our first main theorem shows that in the multiplication-restricted setting, we can achieve the
strongest possible notion of security.

Theorem 1.6 (VBB obfuscator in the multiplication-restricted ideal graded encoding scheme).
For any multiplication-restricted ideal graded encoding scheme, there exists an efficient obfuscator
achieving VBB security against all polynomial-time adversaries.

Our second main theorem shows that, in the unrestricted setting, we can achieve VBB security
under a worst-case assumption that is closely related to the Bounded Speedup Hypothesis of [BR14a,
BR14b]. We defer the details of this hypothesis until Section 5.1, but it exactly corresponds to
replacing 3SAT with (the decision version of) Max-2-SAT in the Bounded Speedup Hypothesis.

Theorem 1.7 (VBB obfuscator in the unrestricted ideal graded encoding scheme). Assume the
Bounded Max-2-SAT-Speedup Hypothesis. Then for any unrestricted ideal graded encoding scheme,
there exists an efficient obfuscator achieving VBB security against all polynomial-time adversaries.

As mentioned above, we give evidence that proving an unconditional version of Theorem 1.7
would entail proving VP 6= VNP; see remark 5.2.

Finally, we note that another active area of research is to show that the [GGH+13b] obfuscator
achieves a different notion of security, known as indistinguishability obfuscation (iO), against all effi-
cient adversaries. (VBB security against all efficient adversaries is known to be impossible in general
[BGI+12].) Recently Gentry et al. [GLSW14] proved iO security for a variant of the [GGH+13b]
obfuscator, which is the first such proof under a single natural hardness assumption.

1.2 Techniques

Our obfuscator in Theorems 1.6 and 1.7 is almost identical to that of [AGIS14], with the primary
difference being that we make use of a stronger notion of “straddling sets” than the ones proposed
in [BGK+14]. Before outlining our proofs we review this construction. (In fact, the construction is
more involved than described here, but this version will suffice for explaining our techniques.)
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Obfuscating the branching program. For a given NC1 function f : {0, 1}ℓ → {0, 1}, we first
construct an oblivious matrix branching program BP with length n = poly(ℓ) and width w = poly(ℓ)
over the field Zp for a prime p = 2Ω(ℓ). BP consists of 2n non-singular w × w matrices over Zp,
denoted {Bi,b | i ∈ [n], b ∈ {0, 1}}, and a function inp : [n]→ [ℓ] specifying which input bit is read in
each layer. (Crucially, the function inp depends only on ℓ and n, and not on f .) For a given input
x ∈ {0, 1}ℓ, let Bx :=

∏n
i=1Bi,xinp(i)

be the product of the matrices corresponding to x. Then we
say that BP computes f if for all x, Bx[1, w] = 0 ⇔ f(x) = 0. In other words, the value of f(x) is
encoded by the top-right entry of Bx. We note that unlike prior works, the construction of BP in
[AGIS14] does not use Barrington’s theorem [Bar89], which is the source of their efficiency gains.

Once the BP is constructed, it is then randomized using Kilian’s technique [Kil88]. Recall that
for this we choose n − 1 non-singular matrices R1, . . . , Rn−1 ∈ Z

w×w
p uniformly at random, and set

B̃i,b := R−1i−1 ·Bi,b ·Ri for each i and b. (For notational brevity we define R0 = Rn = Iw×w.) Next the
obfuscator further randomizes the BP by choosing 2n non-zero scalars αi,b ∈ Zp \ {0} uniformly and

independently, and setting Ci,b := αi,b · B̃i,b. It can be easily verified that the new BP {Ci,b | i, b}
computes the same function as before with probability 1. Building on [Kil88], [AGIS14] show that
for every x ∈ {0, 1}ℓ the marginal distribution on {Ci,xinp(i)

| i ∈ [n]} can be efficiently computed
given only x and f(x).

The final step in the obfuscation is to encode the matrix elements using the graded encoding
scheme. Recall that to do this, we must choose an index set S ⊆ U for each element. For this
overview, the important points are that (1) within a single matrix all entries have the same index-
set; (2) for any i, i′ such that inp(i) = inp(i′), the index-sets for Ci,0 and Ci′,1 have a non-empty
intersection; and (3) for any x ∈ {0, 1}ℓ, an element with index set S = U corresponding to the
honest evaluation Cx[1, w] can be efficiently computed using only the fully-restricted graded encoding
scheme operations. Here we differ slightly from [AGIS14], in that their sets do not guarantee (2).
For further details on the set system, see Section 2.2.

Simulating the graded encoding interface. To prove VBB security, we must show that for any
poly-time adversary, the view resulting from its interaction with the graded encoding scheme can be
efficiently simulated using only black-box access to the function f . Since the simulator does not have
access to the branching program computing f , the first step is to simulate the initial elements by
creating a unique formal variable for each entry of each matrix Ci,b and assigning to each variable
the corresponding index-set used by the obfuscator. Note that up to now the simulation is perfect,
because in an ideal graded encoding scheme the adversary sees only random representations of the
encoded elements. (This first step follows the strategy in [BR14b, BGK+14, AGIS14].)

In all prior works, simulating the arithmetic operations +,−,× was trivial, because in a fully-
restricted graded encoding scheme two elements can be checked for compatibility by just looking at
their index-sets. Here, simulating + and − is similarly trivial because these operations are always
valid, but simulating × involves checking whether the product of two arithmetic circuits over the
initial elements computes a valid polynomial. (Recall that a polynomial is valid iff the variables
appearing in each non-zero monomial have pairwise disjoint index-sets.) To solve this we show that
checking validity is reducible to identity-testing, and thus we can use the Schwartz-Zippel lemma to
efficiently check validity up to a negligible error probability. This is done in two steps. First, we use
a result of Fournier, Malod, and Mengel [FMM12] that testing for multilinearity reduces to identity
testing. (Note that any non-multilinear polynomial is not valid.) Second, for each pair of variables
x 6= x′ with intersecting index-sets, we construct a circuit that computes exactly those monomials in
which both x and x′ appear. If all such circuits are identically zero, the multiplication is valid.

We now turn to simulating the zero-test queries, which, as in prior works, makes up the bulk of
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the analysis. The simulator is given an arithmetic circuit e computing a valid polynomial over the
initial elements, and needs to check if e evaluates to 0 on the obfuscated program.

Recall that the obfuscated matrices are computed as Ci,b := αi,b · B̃i,b, where each αi,b is uniform
and independent in Zp \ {0}. Thus we may view e as a multilinear polynomial in the variables αi,b,

where the coefficient of each “α-monomial” is a polynomial in the entries of the corresponding B̃i,b.
This is useful because e evaluates to 0 on the obfuscation iff each of its α-monomials do. Furthermore
the marginal distribution on each valid α-monomial can be simulated with only black-box access to
f . This is because every valid α-monomial contains at most one αi,b for each layer i (because of the
index set construction mentioned above). Thus if it has degree < n then the marginal distribution
on its coefficient is just uniform non-singular matrices, and if it has degree = n then it corresponds
to a single input x and by construction the marginal distribution can be simulated given only f(x).
In summary, if we could efficiently decompose e into its non-zero α-monomials and show that there
are at most poly(n) of them, then the zero-test could be efficiently simulated.

The approach of viewing e in this way was used in the prior works [BR14b, BGK+14, AGIS14].1

Specifically, [BR14b] gives a procedure for decomposing e into its α-monomials which runs in time
proportional to the number of such monomials, and then shows that under the Bounded Speedup Hy-
pothesis the number of α-monomials is at most poly(n). [BGK+14] gives a different procedure (also
used by [AGIS14]) for decomposing e into its degree-n α-monomials; they show that if e was con-
structed using a fully-restricted graded encoding scheme, then the decomposition runs in polynomial
time and further that e only contains degree-n α-monomials.

In our setting, there are a number of obstacles. First, we wish to avoid the Bounded Speedup
Hypothesis when possible. Second, there are elements e in a multiplication-restricted graded encoding
scheme for which the [BGK+14] decomposition algorithm has a super-polynomial running time.
Third, because we allow zero-testing at any level, we can no longer guarantee that e consists only of
degree-n α-monomials.

We overcome these obstacles by giving a new decomposition algorithm, and we show that it
runs in polynomial time on any e constructed in a multiplication-restricted graded encoding scheme.
This decomposition returns a set of elements where each contains at most one degree-n α-monomial;
the degree-n α-monomials can then be fully extracted using the classical algorithm for computing
the homogeneous degree-n portion of an arithmetic circuit. We finally show that the set of all α-
monomials with degree < n can be collectively zero-tested using Schwartz-Zippel, because each is
zero on the obfuscation iff it is the identically zero polynomial.

Unrestricted grading encoding schemes. We now discuss the changes that are needed for
unrestricted graded encoding schemes. In this setting, it turns out that if every valid polynomial-size
element e has a polynomial-size decomposition as above, then VP 6= VNP (Theorem 5.1). Thus we
cannot hope for an unconditional result.

We take the approach of Brakerski and Rothblum [BR14b] and show that, under a new assumption
closely related to their Bounded Speedup Hypothesis, any valid element e contains at most poly(|e|)
full α-monomials. This new assumption corresponds exactly to replacing 3SAT in the Bounded
Speedup Hypothesis with Max-2SAT. We also remark that for a modified version of our construction
in which each layer of a branching program reads 3 bits, we could have instead used the Bounded
Speedup Hypothesis (details omitted).

Once we have this bound on the number of full α-monomials, we apply essentially the algorithm
from [BR14b] for zero-testing. One important difference is that here we cannot guarantee that e
contains only full α-monomials (because we allow zero-testing at any level), but we adapt to this
again by extracting the homogeneous degree-n portion of e to get just the full α-monomials.

1The [BR14b] construction does not have exactly this form, but the analysis is the same in spirit.
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Organization. In Section 2 we give some preliminaries, and in Section 3 we describe the obfuscator.
The analysis of the multiplication-restricted graded encoding scheme, and the proof of Theorem 1.6,
appear in Section 4. In Section 5 we analyze the unrestricted graded encoding scheme and prove
Theorem 1.7.

2 Preliminaries

2.1 Arithmetic circuit tools

We use several tools for analyzing and modifying arithmetic circuits.
We repeatedly make use of the classical algorithm for extracting the homogeneous degree-d portion

of an arithmetic circuit. A proof can be found in, e.g., [Bür00, Lemma 2.14].

Lemma 2.1 (Extract homogeneous polynomial). There is an algorithm that, given an arithmetic
circuit e of size poly(n) on n variables and an integer d, runs in time poly(n, d) and outputs a circuit
of size O(d2 · |e|) that computes the degree-d portion of e.

Each of the following arithmetic circuit testing procedures is based on a reduction to identity-
testing and an application of the Schwartz-Zippel lemma. We remark that these procedures test
properties of the formal expression computed by an arithmetic circuit, and so we can apply the
Schwartz-Zippel lemma over a sufficiently large field to get an algorithm with running time poly(n)
and error probability negl(n).

Lemma 2.2 (Multilinearity check; [FMM12, Prop. 5.1]). There is an algorithm that, given an arith-
metic circuit e of size poly(n) on n variables, runs in time poly(n) and with probability 1 − negl(n)
correctly decides whether e computes a multilinear polynomial.

Lemma 2.3 (Variable appearance check). There is an algorithm that, given an arithmetic circuit
e of size poly(n) on n variables and a variable x of e, runs in time poly(n) and with probability
1− negl(n) correctly decides whether any non-zero monomial of e contains x.

Proof. Let e|x=0 be the circuit obtained from e by setting all instances of x to 0. Let e(x) := e−e|x=0

be the circuit computing exactly the set of non-zero monomials from e in which x appears. Then
e(x) ≡ 0 iff x appears in no non-zero monomial of e.

Lemma 2.4 (Variable multiplication check). There is an algorithm that, given an arithmetic circuit
e of size poly(n) on n variables and two variables x 6= x′ of e, runs in time poly(n) and with probability
1− negl(n) correctly decides whether any non-zero monomial of e contains both x and x′.

Proof. Let e′ := e(x) where e(x) is as in the previous lemma. Then e′(x
′) ≡ 0 iff no non-zero monomial

of e contains both x and x′.

2.2 Strong Straddling Sets

In this section we define the notion of strong straddling set systems, which strengthen the straddling
set systems introduced by Barak et al. [BGK+14] by adding an additional “strong intersection”
property.

Definition 2.5 (Strong straddling set system). A strong straddling set system with n entries is
a collection of sets Sn = {Si,b : i ∈ [n] , b ∈ {0, 1}} over a universe U, such that ∪i∈[n]Si,0 = U =
∪i∈[n]Si,1, and the following holds.
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• (Collision at universe.) If C,D ⊆ Sn are distinct non-empty collections of disjoint sets such
that

⋃
S∈C S =

⋃
S∈D S, then ∃b ∈ {0, 1} such that C = {Si,b}i∈[n] and D = {Si,1−b}i∈[n].

• (Strong intersection.) For every i, j ∈ [n], Si,0 ∩ Sj,1 6= ∅.

We refer to sets of the form Si,0 (Si,1) as “0-sets” (“1-sets”). We can construct a strong straddling
set system for every n, as follows.

Construction 2.6 (Strong straddling set system). Let Sn = {Si,b : i ∈ [n] , b ∈ {0, 1}} over a universe
U =

{
1, 2, ..., n2

}
, where

Si,0 = {n(i− 1) + 1, n(i − 1) + 2, . . . , ni}

Si,1 = {i, n + i, 2n+ i, . . . , n(n− 1) + i}

for all 1 ≤ i ≤ n.

2.3 The Ideal Graded Encoding Model

In this section we describe the ideal graded encoding model which will be used by the obfuscator and
evaluator. This model is exactly analogous to the ideal graded encoding model of [BGK+14], but
with their fully-restricted graded encoding scheme replaced by our two new graded encoding schemes
(Definitions 1.3 and 1.4).

In the ideal graded encoding model, we have an oracle M that implements an idealized version
of a graded encoding scheme. M maintains a list of elements, and allows a user to perform valid
arithmetic operations over these elements. M maintains a table that maps elements to generic
representations called handles. Each handle is generated uniformly at random subject to being
distinct for all other handles. (Note that each handle is distinct even if the same element appears
multiple times in the table.) The user sees only the handles, and may queryM with them to evaluate
the operations of the graded encoding scheme (+, −, ×, and IsZero).
M is initialized with a set of basic elements {(ri, Si)}i, and generates a handle for each basic

element. Then given two handles h1, h2 and an operation ◦ ∈ {+,−,×}, M first looks up the
corresponding elements e1, e2 in the table. If either does not exist, or if e1 ◦ e2 is not permitted by
the graded encoding scheme, the call fails. Otherwise M generates a new handle for e1 ◦ e2, saves
this in the table, and returns the new handle. Calls to IsZero are evaluated analogously, but for these
M returns 0 or 1 instead of a new handle.

2.4 Relaxed Matrix Branching Programs

Our obfuscator will first transform the input formula F into a dual-input, oblivious, relaxed matrix
branching program (RMBP), which will then be obfuscated. RMBPs were introduced in [AGIS14],
who use dual-input oblivious RMBPs towards improving the efficiency of candidate obfuscators.

Definition 2.7 (Dual-input RMBP). LetR be any finite ring. A dual-input relaxed matrix branching
program (over R) of size w and length n for ℓ-bit inputs is given by a sequence:

BP = (inp1, inp2, Bi,b1,b2)i∈[n],b1,b2∈{0,1},

where each Bi,b1,b2 is a w ×w full-rank matrix, and inp1, inp2 : [n]→ [ℓ] are the evaluation functions
of BP. The output of BP on input x ∈ {0, 1}ℓ, denoted by BP(x), is determined as follows:

BP(x) = 1 if and only if
( n∏

i=1

Bi,xinp1(i)
,xinp2(i)

)
[1, w] 6= 0
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We say that a set of dual-input RMBPs is oblivious if the functions inp1, inp2 depend only on n
and ℓ (and not on the function being computed).

2.5 Virtual Black-Box Obfuscation In An Idealized Model

LetM be some oracle. Below we define “Virtual Black-Box” obfuscation in theM-idealized model
taken verbatim from [BBC+14]. In this model, both the obfuscator and the evaluator have access to
the oracleM. However, the function family that is being obfuscated does not have access toM.

Definition 2.8. For a (possibly randomized) oracle M, and a circuit class
{
Cℓ
}
ℓ∈N

, we say that a

uniform PPT oracle machine O is a “Virtual Black-Box” Obfuscator for
{
Cℓ
}
ℓ∈N

in theM-idealized
model, if the following conditions are satisfied:

• Functionality: For every ℓ ∈ N, every C ∈ Cℓ, every input x to C, and for every possible coins
forM:

Pr[(OM(C))(x) 6= C(x)] ≤ negl(|C|) ,

where the probability is over the coins of O.

• Polynomial Slowdown: There exist a polynomial p such that for every ℓ ∈ N and every C ∈ Cℓ,

we have that |OM(C)| ≤ p(|C|).

• Virtual Black-Box: For every PPT adversary A there exists a PPT simulator Sim such that for
all PPT distinguishers D, all ℓ ∈ N, and all C ∈ Cℓ:

∣∣Pr[D(AM(OM(C))) = 1]− Pr[D(SimC(1|C|)) = 1]
∣∣ ≤ negl(|C|)

where the probabilities are over the coins of D, A, Sim, O, andM.

3 Obfuscation In The Ideal Graded Encoding Model

We describe an obfuscator O for NC1 circuits in the ideal graded encoding model. The obfuscator is
identical to the obfuscator of [AGIS14], except that it encodes elements using strong (as opposed to
standard) straddling set systems.

On input an NC1 circuit F : {0, 1}ℓ → {0, 1}, the obfuscator O first converts F into an
oblivious dual-input RMBP as described in [AGIS14, Section 3]. This RMBP is denoted BP =(
inp1, inp2, {Bi,b1,b2}i∈[n],b1,b2∈{0,1}

)
, where inp1, inp2 : [n]→ [ℓ] are evaluation functions, each Bi,b1,b2 ∈

{0, 1}w×w has full rank, and the following holds.

1. inp1 (i) 6= inp2 (i) for every i ∈ [n].

2. For every (j, k) ∈ [ℓ]× [ℓ], there exists an index i ∈ [n] such that inp1 (i) = j ∧ inp2 (i) = k, or
inp1 (i) = k∧ inp2 (i) = j. (That is, every pair of input bits are paired at some layer of the BP.)

3. For every j ∈ [ℓ], let ind (j) := {i ∈ [n] : inp1 (i) = j} ∪ {i ∈ [n] : inp2 (i) = j}. Then there
exists an ℓ′ ∈ N such that |ind (j)| = ℓ′ for every j ∈ ℓ′.
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Randomizing BP. O samples a large enough prime p with Ω (n) bits, and randomizes BP follow-

ing [AGIS14, Section 4]. Specifically, O generates
(
s̃, {Ci,b1,b2}i∈[n],b1,b2∈{0,1} , t̃

)
:= randBP(BP) as

follows.

1. Choose n+1 uniform and independent full-rank matrices R0, ..., Rn ∈ Z
w×w
p , and set B̃i,b1,b2 :=

Ri−1 ·Bi,b1,b2 · R
−1
i , for every i ∈ [n] and b1, b2 ∈ {0, 1}.

2. Choose 4n uniform and independent non-zero scalars αi,b1,b2 ∈ Zp \ {0}, and set Ci,b1,b2 :=
αi,b1,b2 · B̃i,b1,b2 for every i ∈ [n] and b1, b2 ∈ {0, 1}.

3. Set s̃ := e1 ·R
−1
0 and t̃ := Rn · ew.

The obfuscation of F will consist of ideal encodings of the entries of s̃, t̃ and {Ci,b1,b2}i∈[n],b1,b2∈{0,1},
with respect to the following strong straddling set systems.

Encoding the randomized BP. Let U be a universe set, and let Us,Ut,U1, ...,Uℓ be a partition of
U such that |Uj| = 2ℓ′ − 1 for every j ∈ [ℓ]. For j ∈ [ℓ], let Sj be a strong straddling set system with
ℓ′ entries over universe Uj. We associate the sets in S

j with the layers i of the BP that are indexed

by xj (i.e., layers i such that j ∈ {inp1 (i) , inp2 (i)}) as follows: S
j =

{
Sj
k,b : k ∈ ind (j) , b ∈ {0, 1}

}
.

Next, we associate an index-set with every entry of {Ci,b1,b2}i∈[n],b1,b2∈{0,1}, as follows. The set

S (i, b1, b2) := S
inp1(i)
i,b1

∪ S
inp2(i)
i,b2

is associated with Ci,b1,b2 , and will be used to encode the entries
Ci,b1,b2 [k, l] of Ci,b1,b2 (where Ci,b1,b2 [k, l] denotes the (k, l)’th entry of Ci,b1,b2). Us,Ut will encode
the entries of s̃, t̃, respectively. More formally, O initializes the oracle M with the ring Zp, the
universe set U, and the following set of variables:

X =
{
{(s̃i,Us)}i∈[w] ,

{(
t̃i,Ut

)}
i∈[w]

, {(Ci,b1,b2 [k, l] , S (i, b1, b2))}i∈[n],b1,b2∈{0,1},k,l∈[w]

}
,

where by (x, S) we mean that the index-set associated with x is {S}, for S ⊆ U. The oracle M
returns handles to these elements, and O outputs these handles as the obfuscation of F .

4 VBB Security For Multiplication-Restricted Graded Encodings

In this section, we show that given an obfuscation
(
s̃, {Ci,b1,b2}i∈[n],b1,b2∈{0,1} , t̃

)
of an NC1 function F ,

there exists an efficient simulator that can answer the queries of any polynomially-bounded adversary
in an ideal multiplication-restricted graded encoding scheme, such that the simulated answers are
statistically close to the answers given by the ideal oracleM.

The simulator Sim is given 1|F | and a description of the adversary A, and has oracle access to F .
To simulate the obfuscator O, Sim generates formal variables representing each entry of the matrices
{Ci,b1,b2}i∈[n],b1,b2∈{0,1} and the vectors s̃, t̃ (including the index sets described in Section 3), and
generates handles corresponding to these elements. Sim maintains a table of handles, and simulates
A’s oracle calls to M. Addition and subtraction queries can be simulated trivially since there are
no constraints on these operations. Next we describe how Sim simulates multiplication queries and
zero-test queries.

4.1 Simulating Multiplication Queries

To answer a multiplication query the simulator must check, given two arithmetic circuits e1 and e2,
whether the circuit e := e1 × e2 computes a valid polynomial. Recall (Def. 1.2) that a polynomial is
valid if the basic elements appearing in any monomial have pairwise disjoint index sets.
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Let X be the set of all basic elements that appear in either e1 or e2. Then the validity check has
two steps. First we verify that e is multilinear, i.e. that no monomial in e contains multiple copies
of some x ∈ X. This is done using the algorithm from Lemma 2.2. Second we verify that for each
x 6= x′ ∈ X with intersecting index-sets, no monomial of e contains both x and x′. This is done using
the algorithm from Lemma 2.4.

If the query is valid, then Sim generates a new handle h for e, adds it to the handle-set, and returns
h to the adversary as the answer to the query. The proof of the next lemma is immediate given
Lemmas 2.2 and 2.4 (which say that both the multilinearity check and the variable multiplication
check run in time poly(n) and return the correct answer with probability 1− negl(n)).

Lemma 4.1. For every multiplication query e1 × e2 of a polynomially-bounded adversary A, Sim

runs in polynomial time and generates an answer that is (1−negl(n))-close to the real-world answer.

4.2 Simulating Zero-Test Queries

In this section we describe how the simulator Sim answer a single zero-test on an element e. We use
the following terminology, adapted from [BGK+14, AGIS14].

Definition 4.2 (Touching matrices and layers). We say that an element e touches a matrix Ci,b1,b2 , i ∈
[n] , b1, b2 ∈ {0, 1} if some non-zero monomial in e contains a variable representing an entry of Ci,b1,b2 .
We say that e touches layer i if it touches a matrix Ci,b1,b2 for some b1, b2 ∈ {0, 1}.

Next, we define the notion of an input-profile. Intuitively, the input-profile of an element e
represents the partial information that the arithmetic circuit e gives about the input x ∈ {0, 1}ℓ. We
also define single-input elements as elements whose arithmetic circuit depends on formal variables
that all correspond to a single input x.

Definition 4.3 (Input-profiles and single-input elements). For an element e, its input-profile Prof (e) ∈
{0, 1, ∗}ℓ ∪ {⊥} is defined as follows. For j ∈ [ℓ], we say that Prof (e)j is consistent with b ∈ {0, 1}
if e touches any matrix Ci,b1,b2 such that inpl (i) = j and bl = b for some l ∈ {1, 2}. If Prof (e)j is
consistent with b, but not with 1 − b, then we set Prof (e)j := b. If Prof (e)j is not consistent with
either of b, 1 − b then we set Prof (e)j = ∗. If Prof (e)j is consistent with both b, 1 − b, then we say
that e conflicts on index j. If e conflicts on some index j ∈ [ℓ], then we set Prof (e) =⊥, and say that
Prof (e) is invalid.

We say that e is a single-input element if Prof (e) 6=⊥. We say that e has a complete profile if
Prof (e) ∈ {0, 1}ℓ, otherwise we say that Prof (e) is incomplete.

We say that a pair e, e′ of elements conflict on index j if Prof (e)j = 1−Prof (e′)j or either Prof(e)
or Prof(e′) is invalid.

Note that Prof(e) can be computed (up to negligible error probability) in time poly(|e|), by using
the algorithm from Lemma 2.3 that checks which variables appear in e’s non-zero monomials.

At a high level, the simulator answers a zero-test query “e = 0?” as follows. First, it decomposes e
into a list {e1, ..., em} of elements, such that: e =

∑m
i=1 ei, in the sense that both sides of the equation

compute the same function (but, possibly, using different arithmetic circuits); every ei is a single-
input element, or does not touch all layers i ∈ [n]; and m = poly (n). Then, the simulator extracts
the full α-monomials from the single-input elements, and performs a zero-test on each separately.
Finally the simulator performs a zero-test on the remains of e (i.e. on the non-full α-monomials). The
decomposition algorithm is described in Section 4.2.1. The detailed description of the simulation,
given the decomposition of e, is described in Section 4.2.2
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4.2.1 Decomposition Algorithm

In this section we describe a decomposition D (e) of an element e, satisfying the three properties
described in Figure 1.

1. e =
∑

s∈D(e)

s, where equivalence is as a polynomial function.

2. ∀s ∈ D(e): s is either single-input or does not touch every layer.

3. |D(e)| ≤ poly(|e|).

Figure 1: Properties of a valid decomposition D(e)

Theorem 4.4. For any valid element e, there exists a poly(|e|)-time computable decomposition D(e)
satisfying the properties in Figure 1.

Recall that e is given as a fan-in-2 arithmetic circuit. For the decomposition, we instead view e
as a layered unbounded fan-in circuit whose layers alternate between addition (or subtraction) and
multiplication gates, and we assume that all input wires to a layer come from the layer directly below.
Any e can be converted to such a circuit with at most a poly(|e|) increase in size. For the remainder,
we refer to the layers of e as sections to avoid confusion with layers of the branching program.

We compute the decomposition by starting withD(e) = {e}, and then refining until the properties
in Figure 1 are satisfied. We keep two lists GO and STOP, where each list contains pairs of arithmetic
expressions (z, z′). GO contains expressions that need to be further refined, and STOP contains
expressions that do not. We terminate when GO = ∅ and then set D(e) := {zz′ | (z, z′) ∈ STOP}.

Throughout the decomposition, we maintain the invariants shown in Figure 2. Letting m denote
the number of sections in e, we label the sections, starting from 1 at the top, so the mth section
contains the basic elements at e’s input.

1. e =
∑

(z,z′)∈GO

zz′ +
∑

(z,z′)∈STOP

zz′.

2. For each (z, z′) ∈ STOP, zz′ is a valid element that is either single-input or does
not touch every layer.

3. After step i, for each (z, z′) ∈ GO: z is single-input, z′ is a gate in section i, and
zz′ is a valid element that touches every layer and is not single-input. Further, GO
contains at most one (z, z′) for each gate z′ in section i.

4. During step i, |STOP| increases by at most the number of wires leaving section i.

Figure 2: Invariants of the decomposition algorithm
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We remark that the set of layers touched by any expression e can be computed in time poly(|e|)
using the algorithm from Lemma 2.3.

Lemma 4.5. For any algorithm satisfying the invariants in Figure 2, upon termination the decom-
position D(e) = {zz′ | (z, z′) ∈ STOP} satisfies the properties in Figure 1.

Proof. We show that GO = ∅ afterm steps. Then invariants 1, 2, and 4 imply the three decomposition
properties, respectively.

Any gate in section m is a single-input element, and a valid product of two single-input elements
is also single-input by Lemma 4.7. Thus, after step m GO cannot contain any (z, z′) that satisfies
the third invariant, so GO = ∅.

Proof of Theorem 4.4. We give an m-step poly(|e|)-time algorithm satisfying the invariants in Figure
2. In step 1, if e is single-input or does not touch every layer, then we set GO = ∅ and STOP
= {(1, e)}. Otherwise we set GO = {(1, e)} and STOP = ∅.

In step i (2 ≤ i ≤ m), we proceed as follows.
If section (i − 1) contains multiplication gates, then at the start of step i each (z, z′) ∈ GO is of

the form (z, q1 × . . . × qk) for some gates q1, . . . , qk in section i. Lemma 4.8 shows that there is a
unique j∗ such that qj∗ is not single-input, and we can find this j∗ in time poly(|e|) by computing
each Prof(qj). So, we replace each (z, q1 × . . . × qk) ∈ GO with (z ×

∏
j 6=j∗ qj, qj∗). By Lemma 4.7,

we have that z ×
∏

j 6=j∗ qj is single-input. Further qj∗ is a gate in section i, and z ×
∏

j≤k qj touches
every layer and is not single-input by the invariants on step (i−1). Finally, to ensure that there is at
most one (z, z′) ∈ GO for each gate z′ in section i, we repeatedly replace any (z1, z

′), (z2, z
′) ∈ GO

with (z1 + z2, z
′). Lemma 4.9 shows that any such z1 + z2 is a single-input element, so the invariants

remain satisfied.
If section (i−1) contains addition gates, then at the start of step i each (z, z′) ∈ GO is of the form

(z, q1 + · · ·+ qk) for some gates q1, . . . , qk in section i. We first modify the expression (q1 + · · ·+ qk)
by zeroing any basic elements that (q1+ · · ·+ qk) does not touch (in the sense of Definition 4.2), thus
ensuring that zqj is a valid element for each j ≤ k. Then for each such (z, q1 + · · · + qk), we remove
it from GO and set

GO← GO ∪ {(z, qj) | zqj touches every layer and is not single-input}

STOP← STOP ∪ {(z, qj) | zqj does not touch every layer or is single-input}.

This adds at most one pair to STOP for each wire between layers i and i− 1. Thus all invariants are
now satisfied except that GO may contain multiple (z, z′) for each gate z′ in section i; to fix this, we
again replace any (z1, z

′), (z2, z
′) ∈ GO with (z1 + z2, z

′).

We now prove the lemmas that were used in the proof of Theorem 4.4. Given an element e, we
use V (e) to denote the set of variables that appear in e’s non-zero monomials. We need the following
structural result on multilinear polynomials.

Lemma 4.6. Let e1 and e2 be arithmetic circuits computing multilinear polynomials. If e := e1× e2
is multilinear, then for all x ∈ V (e1) and y ∈ V (e2), e has a monomial that contains both x and y.

Proof. We first show that if e is multilinear then V(e1) ∩ V(e2) = ∅. If not, there is some x ∈
V(e1) ∩ V(e2). Then write

e1 = x · e′1 + e′′1 e2 = x · e′2 + e′′2

where e′1, e
′′
1 , e
′
2, e
′′
2 all do not contain x and e′1, e

′
2 6= 0. Then because the x2 · e′1 · e

′
2 term of e is

non-zero and not cancelled by any other term, e is not multilinear.
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We now have that V(e1) ∩ V(e2) = ∅. For any x ∈ V(e1), y ∈ V(e2), write

e1 = x · e′1 + e′′1 e2 = y · e′2 + e′′2

where e′1, e
′′
1 , e
′
2, e
′′
2 all contain neither x nor y and e′1, e

′
2 6= 0. Then similarly e must contain a

monomial with xy.

Lemma 4.7. If e1,e2 are valid single-input elements and e1×e2 is valid, then e1×e2 is single-input.

Proof. If e1×e2 conflicts on some index j, then there are basic sub-elements x1 ∈ V(e1) and x2 ∈ V(e2)
that conflict on index j, and cannot be multiplied. But by Lemma 4.6, x1 and x2 appear together
in some monomial, so e1 × e2 is not valid.

Lemma 4.8. Let e1, . . . , ed be valid elements such that
∏

i≤d ei is valid, touches every layer, and is
not single-input. Then there is a unique i such that ei is not single-input.

Proof. First note that {V(ei) | i ∈ [d]} gives a partition of all layers, identifying a variable with the
layer in which it appears. This is by Lemma 4.6, because any two variables from the same layer
cannot be multiplied.

Pick any i such that ei is not single-input (there must be one by Lemma 4.7). Fix some index
j such that ei conflicts on j. Then ei must touch every layer that reads index j. If not, then some
other ei′ touches a matrix Cl,b1,b2 such that inpk (l) = j (for some k ∈ {1, 2}), and (without loss of
generality) bk = 0, but then ei and ei′ could not be multiplied, because they conflict on index j.

If there is another value i′ 6= i such that ei′ conflicts on index j′ 6= j, then by the same argument
ei′ touches every layer that reads bit j′. But then any layer reading both j and j′ is touched by both
ei and ei′ , which is a contradiction.

Lemma 4.9. Let z1×z′ and z2×z′ be valid elements that touch every layer and are not single-input.
If z1 and z2 are each single-input, then so is z1 + z2.

Proof. Assume for contradiction that z1 and z2 are single-input but z1 + z2 is not. Fix some j such
that z1 + z2 conflicts on index j. Then without loss of generality we have that Prof(z1)j = 0 and
Prof(z2)j = 1. As in the proof of Lemma 4.8, because z1 is single-input we must have that z′ touches
every layer that reads an index on which z1× z′ has a conflict. Since z1× z′ has a conflict on at least
one index, and since each pair of indices are read together in at least one layer, z′ must touch some
layer that reads index j. But then at least one of z1 or z2 must conflict with z′, so either z1 × z′ or
z2 × z′ is invalid.

4.2.2 The Zero-Test Simulator

In this section we describe and analyze the simulator Sim0 that is used to answer a single zero-test.
Recall that an element e is an arithmetic circuit computing a polynomial whose variables are the
entries of s̃, t̃, Ci,b1,b2 for i ∈ [n] , b1, b2 ∈ {0, 1}. However, as Ci,b1,b2 = αi,b1,b2 · B̃i,b1,b2 , we can think
of it as a polynomial in the αi,b1,b2 , with coefficients that are polynomials in the entries of s̃, t̃, and
the B̃i,b1,b2 . Under this viewpoint, we refer to the monomials as “α-monomials”. We associate an
index-set with each αi,b1,b2 and each entry of B̃i,b1,b2 , namely the index-set of Ci,b1,b2 .

Definition 4.10. We say that a monomial in the variables {αi,b1,b2 : i ∈ [n] , b1, b2 ∈ {0, 1}} is full
if it contains, for every i ∈ [n], exactly one of the α’s of layer i (i.e., one of αi,0,0, αi,0,1, αi,1,0, αi,1,1).

Notice that if e is valid then every α-monomial contains at most one α from every layer, because
the index-sets of every pair of layer-i α’s intersect and so they cannot be multiplied. We need the
following simple observation.
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Lemma 4.11. Let e be a valid element and let D(e) be its decomposition given by Theorem 4.4.
Then each s ∈ D(e) contains at most one full α-monomial, and each of e’s full α-monomials appears
in exactly one s ∈ D(e).

Proof. We may assume without loss of generality that each single-input element in D(e) has a unique
profile, by replacing any s 6= s′ ∈ D(e) such that Prof(s) = Prof(s′) 6=⊥ with s+ s′. Then the lemma
holds because (1) any element that does not touch every layer cannot contain a full α-monomial, and
(2) any single-input element s with a complete profile can only contain the unique full α-monomial
corresponding to Prof(s). (Note that (1) includes single-input elements with incomplete profiles.)

Given an element s that contains at most one full α-monomial, we can extract it (if it exists)
by computing the homogeneous degree-n portion of s using the algorithm from Lemma 2.1. This is
because in a valid polynomial, the only monomials of degree n are the full α-monomials. Further, we
show in Lemma 4.16 below that for any element s with no full α-monomials, with high probability
s evaluates to 0 on the obfuscation iff it computes the identically 0 polynomial.

The final ingredient we need is a method of sampling an assignment to the variables of a full α-
monomial that is indistinguishable from the corresponding marginal distribution of the obfuscation.
We use the method of [AGIS14, Thm. 7] (recall that randBP was defined in Section 3).

Theorem 4.12 ([AGIS14]). Let BP be an oblivious dual-input RMBP that computes F : {0, 1}ℓ →
{0, 1}, and let BP′ := randBP (BP). There exists a PPT simulator Sim′ such that for every x ∈ {0, 1}ℓ,{
BP′|x

}
≡

{
Sim′

(
1|F |, F (x)

)}
.

We are now ready to describe the simulator.

Construction 4.13 (Zero-test simulator). The zero-test simulator Sim0 uses the decomposition
algorithm D of Section 4.2.1. On input a valid element e, Sim0 operates as follows.

1. Compute the decomposition D(e).

2. For every single-input element s ∈ D(e) with a complete profile, use Lemma 2.1 to construct
an element α̃s that computes the homogeneous degree-n portion of s. (If s is not single-input
or has an incomplete profile, define α̃s := 0.)

3. For every single-input element s ∈ D(e) with a complete profile, zero-test α̃s as follows: query
the oracle F on x := Prof(s), and evaluate α̃s on Sim′

(
1|F |, F (x)

)
, where Sim′ is the simulator

of Theorem 4.12. If any such evaluation is non-zero, stop and return “e 6= 0”.

4. Construct the element e′ := e −
∑

s∈D(e) α̃s, and test if e′ computes the identically zero poly-
nomial using Schwartz-Zippel. If so then return “e = 0”, otherwise return “e 6= 0”.

Construction 4.13 runs in time poly(n) because each step does. The following theorem shows
its correctness, and completes the proof of Theorem 1.6. We use V real to denote the real-world
distribution of the obfuscated program, and e(V real) ≡ 0 to denote that e evaluates to 0 on the
support of V real.

Theorem 4.14. Let e be a valid element, and let Sim0 be as in Construction 4.13. Then

∣∣∣∣Pr
[
Sim0 (e) = 0

]
− Pr

v←V real
[e (v) = 0]

∣∣∣∣ = negl(n)

where the probabilities are over the randomness of Sim0 and the obfuscator.
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Proof. Lemma 4.15 shows that for any valid element e, if e(V real) 6≡ 0 then Prv←V real [e (v) = 0] =
negl(n). (This is proved exactly as in [BGK+14].) Thus it suffices to prove that, with high probability
over its randomness, Sim0 returns “e = 0” iff e(V real) ≡ 0. Observe further that e(V real) ≡ 0 if and
only if α̃(V real) ≡ 0 for every α-monomial α̃ in e. The “if” direction is clear; for the “only if”
direction, assume that some α-monomials are not identically zero on V real. Then for some sample of
the marginal distribution on {B̃i,b1,b2}i,b1,b2 , e becomes a non-zero polynomial in just the variables
{αi,b1,b2}i,b1,b2 . Then since the marginal distribution on this latter set is uniform conditioned on any

sample of {B̃i,b1,b2}i,b1,b2 , there is some sample v ← V real for which e(v) 6= 0, and thus e(V real) 6≡ 0.
We now show that, with probability 1− negl(n) over its randomness, Sim0 returns “e = 0” iff all

α-monomials α̃ in e satisfy α̃(V real) ≡ 0.
Assume that e contains some full α-monomial α̃s such that α̃s(V

real) 6≡ 0. We claim that, with
probability 1 − negl(n) over the randomness of Sim0, step 3 in Construction 4.13 returns “e 6= 0”.
Indeed, because the call to Sim′ generates exactly the marginal distribution on α̃s’s variables by
Theorem 4.12, the evaluation generates a sample from α̃s(V

real). By Lemma 4.15 this evaluation is
non-zero with probability 1− negl(n) because α̃s(V

real) 6≡ 0, and thus step 3 returns “e 6= 0”.
Now assume that every full α-monomial α̃s satisfies α̃s(V

real) ≡ 0. Then Sim0 reaches step 4 with
probability 1. Notice that e′ contains exactly the non-full α-monomials in e. We show in Lemma
4.16 that for any valid element e′ containing no full α-monomials, e′ computes the identically zero
polynomial iff each of its α-monomials is 0 on V real. Thus, with probability 1 − negl(n) over the
randomness of Sim0, step 4 returns “e = 0” iff each α-monomial α̃ in e satisfies α̃(V real) ≡ 0.

We now prove the lemmas used in Theorem 4.14. The first is [BGK+14, Claim 8]; for completeness
we include a proof in Appendix A.

Lemma 4.15 ([BGK+14]). For any element e, if e(V real) 6≡ 0 then Prv←V real [e(v) = 0] = negl(n).

The next lemma states that if e has no full α-monomials, then it is identically 0 as a formal
polynomial iff each of its α-monomials is 0 on V real.

Lemma 4.16. For any element e with no full α-monomials, e is the identically zero polynomial iff
α̃(V real) ≡ 0 for every α-monomial α̃ in e.

Proof. The “only if” direction is clear. For the “if” direction, we show that for any individual non-full
α-monomial α̃, α̃(V real) ≡ 0 iff α̃ is identically zero (i.e. if its coefficient is identically zero).

Fix any non-full α-monomial α̃. We first show that the marginal distribution on the variables
of {s̃, t̃, B̃i,b1,b2 | i ∈ [n] , b1, b2 ∈ {0, 1}} that appear in α̃’s coefficient consists of uniform non-zero

vectors and uniform non-singular matrices. Let C ⊆
{
Ci,bi1,b

i
2
: i ∈ [n] , bi1, b

i
2 ∈ {0, 1}

}
denote the set

of matrices from which α̃’s variables come. Notice that C contains at most one matrix from every
layer of the RMBP, because if Ci,b1,b2 ∈ B then αi,b1,b2 appears in the monomial α̃, but α̃ contains at
most one αi,b1,b2 from every layer i. Let I ⊂ [n] denote the layers from which C contains a matrix,

and let B =
{
B̃i,bi1,b

i
2
: Ci,bi1,b

i
2
∈ C

}
. Then the marginal distribution of V real on s̃, t̃, and B is

s̃ = e1 ·R
−1
0

B̃i,bi1,b
i
2

= Ri−1 · Bi,bi1,b
i
2
·R−1i , ∀i ∈ I

t̃ = Rn · ew

where each Bi,bi1,b
i
2
∈ Z

w×w
p is a fixed non-singular matrix, and each Ri ∈ Z

w×w
p is a uniform non-

singular matrix. As noted above, there is at most one Ci,bi1,b
i
2
∈ C for each i ∈ I, i.e., at most one

B̃i,bi1,b
i
2
on which α̃ depends, for every i ∈ I. Consequently, the random matrices {Ri | i = 0, . . . , n}
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can be assigned to these equations in a way so that at most one random matrix is assigned to each
equation. (This is because |I| < n because α̃ is not a full monomial, and thus there are ≤ n + 1
equations and there are n+1 random matrices.) Thus, the left-hand side of each equation is uniform
in its support, even conditioned on any fixing of the other left-hand sides. Since the supports are all
non-singular matrices (or all non-zero vectors in the case of s̃ and t̃), we have that when restricted
to these values, the distribution we have generated is identical to V real.

Let V rand denote the distribution over assignments to the variables of α̃, when s̃, t̃ are replaced
with uniform vectors us, ut, and the matrices in B are replaced with uniformly random matrices
M1, ...,M|I|. Because Pru←Zw

p
[u 6= 0w] = 1 − p−w = 1 − negl(n), and because a uniform matrix in

Z
w×w
p is non-singular with probability ≥ 1−w/p = 1−negl(n), the distributions

{
us, ut,M1, ...,M|I|

}

and
{
s̃, t̃, B̃i,bi1,b

i
2
∈ B

}
are negl(n)-close in statistical distance. Thus because applying a deterministic

function to random variables does not increase the statistical distance, we have
∣∣∣∣ Pr
v←V real

[α̃ (v) = 0]− Pr
v←V rand

[α̃ (v) = 0]

∣∣∣∣ = negl (n) . (1)

If α̃(V real) 6≡ 0 then clearly α̃ is not the zero polynomial. If on the other hand α̃(V real) ≡ 0, then
(1) implies Prv←V rand [α̃ (v) = 0] = 1−negl (n). Thus because deg(α̃) < n, the Schwartz-Zippel lemma
implies that α̃ is the zero polynomial.

5 VBB Security For Unrestricted Graded Encodings

We now analyze the security of our construction against a polynomial-time adversary in an unre-
stricted graded encoding scheme. Recall that the difference from a multiplication-restricted graded
encoding scheme is that the adversary is no longer required to only compute elements that corre-
spond to a valid polynomial (in the sense of Def. 1.2). Thus in this setting, simulation of +, −, and
× queries is trivial, since they are always allowed.

As before, the difficulty is in simulating zero-test queries. By definition in this model, elements
e that correspond to invalid polynomials are always non-zero. Because we can efficiently test for
validity as described in Section 4.1, we can restrict ourselves to valid elements e.

Throughout this section we let me denote the number of full α-monomials (in the sense of Def.
4.10) in a given element e. In Section 5.2 we give an algorithm for simulating zero-test queries
that runs in time poly(me, |e|). Thus if every valid element e contains a polynomial number of full
α-monomials, this algorithm is a VBB simulator.

In Section 5.1 we show that the bound me ≤ poly(|e|) follows from a new hypothesis which is
closely related to the Bounded Speedup Hypothesis introduced by Brakerski and Rothblum [BR14a,
BR14b]. Thus under this new hypothesis we get a VBB simulator. However, we also observe that
obtaining an unconditional bound would imply the algebraic analog of P 6= NP.

Theorem 5.1. If me ≤ poly(|e|) for all valid elements e, then VP 6= VNP.

Proof. This just follows from the fact that the polynomial containing all valid full α-monomials is in
VNP, and thus showing it has no polynomial-size circuit implies VP 6= VNP.

Remark 5.2. This theorem gives evidence that proving VBB security in the unrestricted model
for any “natural” algebraic obfuscator will entail proving VP 6= VNP. Indeed, all known algebraic
obfuscators for an arbitrary function f construct, for each input x, a poly-size arithmetic circuit that
evaluates to f(x). Since any (even exponentially-large) sum of these circuits is a VNP function, VBB
security in this setting would seem to entail VP 6= VNP (assuming that an efficient simulator cannot
fool every adversary that depends on an exponential number of outputs f(x)).
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5.1 The Bounded Max-2-SAT Speedup Hypothesis

We first state our new hypothesis. It corresponds exactly to replacing 3SAT with Max-2-SAT in the
Bounded Speedup Hypothesis [BR14a, BR14b], and the proof of Lemma 5.5 below is inspired by
[BR14b, Lemma 3.14]. By Max-2-SAT, we refer to the decision version in which a 2CNF formula
is in Max-2-SAT iff a 7/10 fraction of its clauses can be simultaneously satisfied. This problem is
NP-complete by a standard reduction from 3SAT.

Definition 5.3 (X-Max-2-SAT solver). Consider a set X ⊆ {0, 1}n. We say that an algorithm A is
an X-Max-2-SAT solver if it solves the Max-2-SAT problem restricted to inputs in X. Namely given
a 2CNF formula φ on n variables, A(φ) = 1 iff ∃x ∈ X that satisfies a ≥ 7/10 fraction of φ’s clauses.

Assumption 5.4 (Bounded Max-2-SAT-Speedup Hypothesis). There exists a polynomial p such
that for any X-Max-2-SAT solver that has size t(n), |X| ≤ p(t(n)).

Lemma 5.5. Assume the Bounded Max-2-SAT-Speedup Hypothesis. Then for all valid elements e,
me ≤ poly(|e|).

Proof. Let X ⊆ {0, 1}ℓ be the set of input profiles corresponding to e’s full α-monomials (thus
|X| = me). We give an X-Max-2SAT solver that has size poly(|e|), and thus me = |e|ω(1) would
contradict the Bounded Max-2-SAT-Speedup Hypothesis.

Let a 2CNF formula φ : {0, 1}ℓ → {0, 1} be given. We assume the following without loss of
generality.

• φ contains at most 4ℓ2 clauses (otherwise some are redundant and can be removed).

• In the obfuscated branching program over which e is defined, each pair of input bits is read in
at least 4ℓ2 different layers (we can add this many “dummy layers” to any BP).

• e consists of only full α-monomials (if not, first extract the homogeneous degree-n part of e,
which can be done in time poly(|e|) and has size poly(|e|) by Lemma 2.1).

Fix some clause c in φ, and let (i, j) be the input bits read by c. We modify e so that the degree
of each α-monomial whose profile satisfies c is reduced by 1. To do this, take any layer k reading
(i, j) that has not been used before, and in e set every αk,b1,b2 to 1 except for the one that doesn’t
satisfy c. Note that we can always pick a layer we haven’t used before because there are ≥ 4ℓ2 for
each pair (i, j). In the case that we have i = j, we instead take any unused layer k reading (i, i′) for
some i′ 6= i, and set every αk,b1,b2 to 1 except for the two that don’t satisfy c.

After doing this for each of the m clauses, we have that e contains a monomial of degree ≤
n− 7m/10 iff some x ∈ X satisfies 7m/10 of φ’s clauses. Let e(d) denote the homogeneous degree-d

portion of e, and define e′ :=
∑n−7m/10

d=1 e(d) which can be computed in time poly(|e|) and has size
poly(|e|) by Lemma 2.1. Then e′ 6≡ 0 iff some x ∈ X satisfies 7m/10 of φ’s clauses. Using Schwartz-
Zippel, we can test e′ ≡ 0 up to an arbitrarily small error, and fixing the random coins gives an
X-Max-2SAT solver that has size poly(|e|).

5.2 The Zero-Test Simulator

At a high level, the strategy for simulating zero-test queries is the same as in the previous section
(Construction 4.13). First, we extract from an element e each of its full α-monomials. Then, we
zero-test each full α-monomial individually by evaluating it on the reconstructed branching program,
and we zero-test the remaining portion of e by checking if it is the identically zero polynomial. The
zero-test then returns “e = 0” iff each of these zero-tests did as well.

Lemma 5.6 gives an algorithm that extracts the list of full α-monomials; a similar algorithm was
used in the zero-testing procedure of [BR14b].
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Lemma 5.6. Let e be a circuit computing a valid polynomial that contains me full α-monomials.
Then in time poly(|e|,me) one can produce a list (s1, . . . , sme) of circuits such that si computes the
ith full α-monomial and has size poly(|e|).

Proof. First, replace e by its homogeneous degree-n part, which can be done in time poly(|e|) and has
size poly(|e|) by Lemma 2.1. We define a recursive algorithm R that takes as input (α1, . . . , αk) for
some k ≤ n, where each αi = αi,b1,b2 for some b1, b2 ∈ {0, 1}. R returns a list of all α-monomials in e
that contain

∏
i≤k αi. Given such R, the list of all full α-monomials is given by

⋃
b1,b2∈{0,1}

R(α1,b1,b2).

On input (α1, . . . , αk), if k = n then we simply return
∏

i≤n αi. Otherwise, let e′ be the circuit
obtained from e by setting to 0 each αi,b1,b2 that does not appear in R’s input, for each i ≤ k. Then,
for each variable αk+1,b1,b2 in layer k + 1, check if it is present in any e′ monomial using Lemma 2.3.
For each αk+1,b1,b2 that passes this check, we recursively call R(α1, . . . , αk, αk+1,b1,b2) and return the
union of the ≤ 4 answers.

There is a 1-1 correspondence between the leaves of R’s recursion tree and e’s full α-monomials.
Thus since the depth of each recursion is n ≤ |e| and since each step runs in poly(|e|)-time, overall
R runs in time poly(|e|,me). Finally, we note that for each α-monomial α̃ returned by R, we can
extract it from e (including its coefficient) by setting to 0 all variables that do not appear in α̃.

After running this algorithm, we define the decomposition D(e) := (s1, . . . , sme , e −
∑

i≤me
si).

Note that this satisfies the property that each element contains at most one full α-monomial. Then
the remainder of the zero-test algorithm is identical to Construction 4.13. The proof of correctness
is the same, and the algorithm can be shown to run in time poly(|e|,me). We omit further details,
and this completes the proof of Theorem 1.7.
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A Proof of Lemma 4.15

Proof of Lemma 4.15. As noted in [BGK+14], the claim would follow directly from the Schwartz-
Zippel lemma, if V real had been uniformly distributed, or obtained from uniformly distributed vari-
ables by applying a low-degree polynomial. This is not the case for V real due to the dependency on
the entries of the Ri’s.

Syntactically, e is a polynomial in the entries of the matrices Ci,b1,b2 , but as every entry of Ci,b1,b2

is a multivariate polynomial in αi,b1,b2 and the entries of Ri−1, R
−1
i , we think of e as a polynomial

in the variables αi,b1,b2 , Ri, R
−1
i . (Note that elements from the fixed matrices Bi,b1,b2 in the original

branching program also appear in the polynomial.) We define a new polynomial p′ as follows:
p′ = e · Πi∈[n]det (Ri). Then for every v ∈ V real, p′ (v) = 0 ⇔ e (v) = 0, because R0, ..., Rn are
invertible.

Let mk denote the k’th monomial in e. We define Ik ⊆ {0, ..., n} to be the set of indices such that
mk contains a variable corresponding to an entry of R−1i , and notice that for every i ∈ {0, 1, ..., n},
mk contains at most one variable representing an entry of R−1i . Indeed, the entries of R−1i appear
only in the entries of the matrices Ci,b1,b2 of layer i, whose index-sets intersect, and consequently
their entries cannot be multiplied. We define a new polynomial p̃ as follows. p̃ is obtained from e by
replacing R−1i with the adjugate matrix adj (Ri), and multiplying every mk by Πi/∈Ikdet (Ri). Since
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adj (R) = R−1 · det (R) for every invertible matrix R, and every mk contains at most one variable
representing an entry of R−1i , then p̃, p′ are functionally equivalent.

Notice, however, that p̃ does not depend on variables representing the entries of the R−1i ’s. More-
over, deg (p̃) = poly (deg (e)) = poly (n), because adj (R) is computable from the entries of R by a
polynomial of degree poly (w) (where w is the dimension of R). Let V rand denote the distribution
over assignments to the variables of p̃, when R0, ..., Rn are replaced with uniformly random matri-
ces M0, ...,Mn. The random variables (R0, ..., Rn) , (M0, ...,Mn) are statistically close (as observed
in the proof of Lemma 4.16), so |Prv←V real [p̃ (v) = 0]− Prv←V rand [p̃ (v) = 0]| = negl (n) (because the
statistical distance does not increase when a deterministic function is applied to the random vari-
ables). Moreover, since deg (p̃) = poly (n), then Prv←V rand [p̃ (v) = 0] = negl (n) by the Schwartz-
Zippel lemma. Consequently,

Pr
v←V real

[e (v) = 0] = Pr
v←V real

[
p′ (v) = 0

]
= Pr

v←V real
[p̃ (v) = 0] ≤

≤

∣∣∣∣ Pr
v←V real

[p̃ (v) = 0]− Pr
v←V rand

[p̃ (v) = 0]

∣∣∣∣+
∣∣∣∣ Pr
v←V rand

[p̃ (v) = 0]

∣∣∣∣ = negl (n)
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