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Abstract

Obfuscation, the task of compiling circuits or programs to make the internal computation un-
intelligible while preserving input/output functionality, has become an object of central focus in
the cryptographic community. A work of Garg et al. [FOCS 2013] gave the first candidate obfus-
cator for general polynomial-size circuits, and led to several other works constructing candidate
obfuscators. Each of these constructions is built upon another cryptographic primitive called a
multilinear map, or alternatively a graded encoding scheme.

Several of these candidates have been shown to achieve the strongest notion of security (virtual
black-box, or VBB) against “purely algebraic” attacks in a model that we call the fully-restricted
graded encoding model. In this model, each operation performed by an adversary is required
to obey the algebraic restrictions of the graded encoding scheme. These restrictions essentially
impose strong forms of homogeneity and multilinearity on the allowed polynomials. While impor-
tant, the scope of the security proofs is limited by the stringency of these restrictions.

We propose and analyze another variant of the Garg et al. obfuscator in a setting that imposes
fewer restrictions on the adversary, which we call the arithmetic setting. This setting captures a
broader class of attacks than considered in previous works. We also explore connections between
notions of obfuscation security and longstanding questions in arithmetic circuit complexity. Our
results include the following.

• In the arithmetic setting where the adversary is limited to creating multilinear, but not
necessarily homogenous polynomials, we obtain an unconditional proof of VBB security.
This requires a substantially different analysis than previous security proofs.

• In the arithmetic setting where the adversary can create polynomials of arbitrary degree,
we show that a proof of VBB security for any currently available candidate obfuscator
would imply VP 6= VNP. To complement this, we show that a weaker notion of security
(indistinguishability obfuscation) can be achieved unconditionally in this setting, and that
VBB security can be achieved under a complexity-theoretic assumption related to the ETH.
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1 Introduction

Obfuscation, the task of compiling circuits or programs to make the internal computation unin-
telligible while preserving input/output functionality, has become an object of central focus in the
cryptographic community. The eventual goal of this research is to construct an obfuscation scheme
and prove that no polynomial-size adversarial Boolean circuit can attack it (under plausible notions
of security discussed below). However, we remain very far from being able to prove such results. In
this work, we study relaxations of this problem, and give a clean algebraic construction for which
we can provably rule out wide classes of attacks. Specifically, we consider attacks corresponding to
adversaries that only utilize restricted, but natural, classes of arithmetic circuits. We also explore
connections between notions of obfuscation security and longstanding questions in arithmetic circuit
complexity.

Background. Obfuscation was first formalized in the work of Barak et al. [BGI+12] (see also
Hada [Had00]), who showed that the strongest notion of security is impossible to achieve in general.
This notion, called virtual black-box (VBB) security, requires that an adversary who sees an obfuscated
program gains only negligible advantage in computing any predicate on that program, as compared
to an adversary who has only black-box access. The impossibility result shows that there exist
(contrived) polynomial-time programs for which VBB security cannot be achieved.

In addition to this result, [BGI+12] defined a weaker security notion called indistinguishability
obfuscation (iO), for which no impossibility result is known. iO security instead requires only that an
adversary cannot distinguish between obfuscations of any two functionally-equivalent programs. The
work of Garg, Gentry, Halevi, Raykova, Sahai, and Waters [GGH+13b] gave the first construction
of an obfuscator for general polynomial-time programs that is a candidate for achieving iO security.
This led to several following works constructing candidate obfuscators [BR14b, BGK+14, AGIS14,
Zim15, AB15, BMSZ15], with improvements in both efficiency and security analysis.1 We note that
the set of programs to which the VBB impossibility result applies is not completely understood, and
these obfuscators are also candidates for achieving VBB security whenever it is possible.

Current candidate obfuscators all rely on a cryptographic primitive called a multilinear map or
alternatively a graded encoding scheme (GES); we use the latter term. A GES allows plaintext
elements to be encoded at certain “levels”, and allows algebraic operations on the encodings subject
to restrictions on these levels. (For example, one common restriction allows encodings to be added
or subtracted only if they are at the same level.) A GES also provides a public parameter that allows
for encodings at the “top” level to be zero-tested, which reveals whether the underlying plaintext is
0. There are candidate GES constructions [GGH13a, CLT13, GGH14], and while attacks on these
schemes have been found in some settings [CHL+15, BWZ14, CGH+15, HJ15, BGH+15, Hal15], no
attacks are known on their use in any candidate obfuscator.

Each of the available candidate obfuscators belongs to a category that we call algebraic obfus-
cators. An algebraic obfuscator takes as input a function f : {0, 1}n → {0, 1} (represented as a
poly(n)-size circuit, say), and outputs a poly(n)-size set of encodings {ki}i in some GES. The ob-
fuscator also provides an evaluation circuit E such that, for every x ∈ {0, 1}n, the computation
of E ({ki}i, x) obeys the algebraic restrictions of the GES, and outputs a top-level encoding that
encodes 0 iff f(x) = 0. Thus, in combination with the GES’s zero-testing parameter, E and {ki}i
allow f to be evaluated on any input.

The primary security analyses available for algebraic obfuscators are in a generic model that we
refer to as the fully-restricted GES model. In this model, each operation performed by an adversary

1[GGH+13b], along with a work of Sahai and Waters [SW14], has also led to a large body of research on how iO
can be used to solve a variety of cryptographic problems. However, this will not be our focus here.
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is required to obey the algebraic restrictions of the GES, which is formalized in the standard way by
giving “pointers” to the encoded elements and only permitting certain operations on these pointers.
Several of the candidate obfuscators are shown to unconditionally achieve VBB security in this
model2, which also implies iO security. The model is motivated by the plausible assumption that no
useful information can be extracted from malformed encodings; indeed, even the known GES attacks
all obey the algebraic restrictions. (These attacks exploit extra information that is given by the
zero-test implementation, and require a structured set of 0-encodings that candidate obfuscators do
not appear to permit.)

Algebraic security. As discussed in detail below, the task of proving security in an algebraic
model is dominated by simulating the zero-test procedure. For this, given an arithmetic circuit C
defined over the obfuscation {ki}i, one must decide whether C({ki}i) = 0 (or more precisely, whether
C outputs an encoding of 0), using only black-box access to the function f being obfuscated. Even
iO security can be characterized this way, though in this case the simulator is not required to run in
polynomial time [GGH+13b]. Currently available security proofs crucially rely on the fact that every
gate in the circuit is required to compute a polynomial that obeys the GES’s algebraic restrictions.

The scope of these security proofs is limited by the fact that these algebraic restrictions are quite
strong. Though the restrictions are motivated by current GES constructions, and specifically the
assumption that malformed encodings do not reveal useful information, it would be far preferable
to prove security while allowing a broader set of algebraic operations. Further, understanding the
extent to which the restrictions can be relaxed while still preserving security is a natural question.

In particular, if we delve deeper into existing GES constructions, there are several purely algebraic
operations that an adversary can perform that do not correspond to permitted algebraic operations
in the fully-restricted GES model. For example, in [GGH13a, CLT13], all encodings, regardless of
their level, are represented as elements of a single ring. Thus, encodings at disparate levels can be
added using an arithmetic operation, and yet this is not captured in the fully-restricted GES model.

Indeed, though the assumption that malformed encodings do not reveal useful information may
be plausible, this does not justify the requirement that all intermediate steps an adversary may take
must produce valid encodings. That is, there may well be a poly-size arithmetic circuit whose formal
polynomial over the encodings evaluates to a valid top-level encoding (which could then be used in an
attack), and yet this same polynomial is not computable by any poly-size circuit whose intermediate
gates all obey the restrictions. Previous models do not capture such attacks, while ours do.

This is analogous to the situation with multilinear polynomials in the classical arithmetic setting.
Namely, the best known transformation [NW97, Lem. 2] of a general circuit computing a multilinear
polynomial into one in which every gate computes a multilinear polynomial incurs an exponential
blowup in size. As described in more detail below, the GES’s algebraic restrictions in fact impose a
strong form of multilinearity, so the comparison is particularly apt.

Interestingly, we show that these restrictions are also related to other fundamental questions in
arithmetic circuit complexity. Specifically, one of our results below shows that proving VBB security
for an algebraic obfuscator in the most general GES model would imply the algebraic analog of P 6=
NP, namely VP 6= VNP. In contrast, we give a construction for which iO security in this model can
be proved unconditionally.

Finally, if we are able to deal with broader classes of algebraic attacks, this not only furthers
our understanding of implementations using current GES constructions, but also allows for greater
compatibility with potential future constructions. For example, in future constructions it may be
possible that elements can be zero-tested at any level of the encoding. Our new models allow the
adversary this flexibility, while in all other works this is not permitted.

2Note that this does not contradict [BGI+12] because the adversary is restricted.
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1.1 Our results

We give a new candidate obfuscator for NC1 circuits3, and we show that it achieves VBB security
against a broader class of algebraic attacks than considered in all previous works. The broader class
of attacks that we consider, which we call arithmetic attacks, is directly inspired by models from
arithmetic complexity theory, and (as mentioned above) by actual attack scenarios that could arise
using current GES constructions.

To set up our results, we first describe the restrictions imposed by the GES model used in previous
works, and how our models differ. Throughout this section, we let R denote a commutative ring,
and U denote a universe set. In a GES, each encoding of a plaintext r ∈ R is assigned an “index-set”
S ⊆ U; we denote such an encoding by [r]S .

In the GES model considered by previous works, there are three restrictions. First, two encodings
can be added or subtracted only if they have the same index-set. Second, two encodings can be
multiplied only if their index-sets are disjoint. Third, only encodings whose index-set is the universe
U can be zero-tested. Formally, we have the following.

Definition 1.1 (Fully restricted GES). A fully-restricted graded encoding scheme (GES) consists of
a set of basic elements of the form [r]S where r ∈ R is called the value and S ⊆ U is called the index
set ; three operations +, −, and ×; and a predicate IsZero.

An arithmetic operation ◦ on a pair [r]S, [r
′]S′ , if defined, returns the element [r ◦ r′]S∪S′ . The

operations +,− are defined only if S = S′, and × is defined only if S∩S′ = ∅. Finally, IsZero([r]S) =
True iff r = 0 and S = U.

In discussing our new models, we will use the following notion of a graded-multilinear polynomial.
(This is similar to the notion of a set-multilinear polynomial; cf. [NW97, FLMS14].)

Definition 1.2. We say that a polynomial p over a set {[ri]Si
}i is graded-multilinear if it is multilinear,

and for every [ri]Si
, [rj ]Sj

that appear together in a monomial of p, Si ∩ Sj = ∅.

Notice that in a fully-restricted GES, any element can be viewed as an arithmetic circuit over the
basic elements, where each gate in the circuit is required to compute a graded-multilinear polynomial
whose monomials all have the same index-set (the index-set of monomial [r1]S1 · · · [rm]Sm is defined as⋃

i≤m Si). In our two new models, we relax these requirements on the intermediate gates. Specifically,
in the first new model (Def. 1.3) we do not require that all monomials have the same index-set, though
each intermediate gate is still required to compute a graded-multilinear polynomial. In the second
new model (Def. 1.4), we allow the intermediate gates to compute any polynomial, though zero-
testing is still only meaningful for elements computed by graded-multilinear polynomials. Formally,
we have the following.

Definition 1.3 (Multiplication-restricted GES). A multiplication-restricted graded encoding scheme
(GES) consists of a set of basic elements {[ri]Si

}i; formal arithmetic expressions defined over them
(where basic elements are viewed as expressions of size 1); and a predicate IsZero.

An arithmetic operation ◦ ∈ {+,−,×} on a pair of expressions e1, e2, if defined, outputs the
formal expression e1 ◦e2. The +,− operations are always defined, whereas × is defined only if e1×e2
computes a graded-multilinear polynomial. IsZero(e) returns True iff e computes a graded-multilinear
polynomial whose evaluation on the basic elements has value 0 ∈ R.

Definition 1.4 (Unrestricted GES). An unrestricted graded encoding scheme (GES) consists of a
set of basic elements {[ri]Si

}i; formal arithmetic expressions defined over them (where basic elements
are viewed as expressions of size 1); and a predicate IsZero.

3Thanks to known bootstrapping theorems [GGH+13b, BR14b, App14], proving VBB (or iO) security for NC1

implies the same for all polynomial-size circuits, under standard cryptographic assumptions.
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An arithmetic operation ◦ ∈ {+,−,×} on a pair of expressions e1, e2 is always defined, and
outputs the formal expression e1 ◦ e2. IsZero(e) returns True iff e computes a graded-multilinear
polynomial whose evaluation on the basic elements has value 0 ∈ R.

Remark 1.5. Another sensible criterion for evaluating IsZero, inspired by current GES constructions,
is the following: IsZero(e) = True iff e is a graded-multilinear polynomial that evaluates to 0, and
further each of its monomials has index set U. (This mimics the zero-testing requirement in a
fully-restricted GES.) Our results below hold for this more restricted variant as well.

We now state our results. We defer until Section 2 the formal definition of VBB/iO security
and an “ideal” GES. The latter is a standard formalization of an adversary that is restricted to the
defined set of arithmetic operations, i.e. that cannot use features of the encodings’ representation.

Our first main theorem shows that in the multiplication-restricted setting, we can achieve the
strongest possible notion of security.

Theorem 1.6. There exists a polynomial-time obfuscator that achieves VBB security for all NC1

circuits in the multiplication-restricted ideal GES model.

Turning to the unrestricted GES setting, we show that constructing an algebraic obfuscator that
achieves VBB security would imply VP 6= VNP. (Recall from above that the notion of an algebraic
obfuscator captures all candidates currently available; see Definition 4.3 for a formal definition.)

Theorem 1.7. If there exists a polynomial-time algebraic obfuscator that achieves VBB security for
all NC1 circuits in the unrestricted ideal GES model, then VP 6= VNP.

We complement this with two other results. First, we show that iO security can be achieved
unconditionally in the unrestricted setting.

Theorem 1.8. There exists a polynomial-time obfuscator that achieves iO security for all NC1

circuits in the unrestricted ideal GES model.

Second, we show that VBB security in this setting can be achieved under a complexity-theoretic
assumption (related to one used in [BR14a, BR14b]). We defer the details of this assumption until
Section 4.1, but it is essentially a parameterized strengthening of the Exponential Time Hypothesis.

Theorem 1.9. Assume the p-Bounded Speedup Hypothesis for some function p : N→ N. Then there
is a polynomial-time obfuscator that achieves VBB security for all NC1 circuits in the unrestricted
ideal GES model, where the simulator against time-t adversaries runs in time p(tO(1)).

1.2 Techniques

Our obfuscator in Theorems 1.6, 1.8, and 1.9 is a modified version of the construction due to Ananth
et al. [AGIS14], with the primary difference being that we use a stronger notion of “straddling sets”;
these are defined formally in Section 2.2 and sketched below. Before outlining our proofs, we review
this construction (which in fact is slightly more involved than described here).

Obfuscating the function. For a given NC1 function f : {0, 1}ℓ → {0, 1}, we first construct a
length-n, width-w oblivious matrix branching program (BP) over Zp for a prime p = 2Ω(ℓ). Recall
that this is a set {Bi,b | i ∈ [n], b ∈ {0, 1}} of w × w matrices satisfying Bx[1, w] = 0 ⇔ f(x) = 0,
where Bx :=

∏n
i=1 Bi,xinp(i)

and inp : [n]→ [ℓ] specifies the input bit read in each layer. That is, the
value of f(x) is encoded by the top-right entry of Bx. We note that n, w, and inp depend only on
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the input length ℓ. For this overview one can think of the BP being constructed via Barrington’s
theorem [Bar89], though [AGIS14] in fact uses a more efficient construction.

The BP is then randomized in two steps, the first of which is Kilian’s technique [Kil88]
(cf. [Bab87]). Recall that for this we choose n − 1 non-singular matrices R1, . . . , Rn−1 ∈ Z

w×w
p

uniformly at random, and set B̃i,b := R−1i−1 · Bi,b · Ri for each i and b (where R0 = Rn = Iw×w).
Next, we further randomize by choosing 2n uniform and independent scalars αi,b ∈ Zp \ {0}, and set

Ci,b := αi,b · B̃i,b. It can be easily verified that the new BP {Ci,b | i, b} computes the same function as
before with probability 1. Following [Kil88], it can be shown that for every x ∈ {0, 1}ℓ, the marginal
distribution on {Ci,xinp(i)

| i ∈ [n]} can be efficiently sampled given only x and f(x).
The final step in the obfuscation is to encode the matrix elements using the GES. To do this, we

must choose an index set S ⊆ U for each element. For this overview, the important points are that (1)
within a single matrix all entries have the same index-set; (2) for any i, i′ such that inp(i) = inp(i′),
the index-sets for Ci,0 and Ci′,1 have a non-empty intersection; and (3) for any x ∈ {0, 1}ℓ, an element
with index set S = U corresponding to the honest evaluation Cx[1, w] can be efficiently computed
using only the fully-restricted GES operations. Here we differ slightly from [AGIS14], in that their
sets do not guarantee (2). For further details on the set system, see Section 2.2.

Simulating the graded encoding interface. To prove VBB security, we must show that for
any poly-time adversary, the view resulting from its interaction with the ideal GES can be efficiently
simulated using only black-box access to the function f . Since the simulator does not have access
to the branching program computing f , the first step is to create a unique formal variable for each
entry of each matrix Ci,b, assign to each variable the corresponding index-set used by the obfuscator,
and give these to the adversary. (Up to now the simulation is perfect, because in an ideal GES the
adversary sees only random representations of the encoded elements.)

In all prior works, simulating the arithmetic operations +,−,× was trivial, because in a fully-
restricted GES two elements can be checked for compatibility by just looking at their index-sets. Here,
simulating + and − is similarly trivial because these operations are always valid, but simulating ×
in the multiplication-restricted setting involves checking whether a given arithmetic circuit computes
a graded-multilinear polynomial. To solve this we show that checking for graded-multilinearity is
reducible to identity-testing, so we can use the Schwartz-Zippel lemma to efficiently check up to a
negligible error probability. Specifically, testing for multilinearity [FMM15] and testing whether two
distinct variables appear together in a monomial (Lemma 2.4) both reduce to identity testing.

We now turn to simulating the zero-test queries, which, as in prior works, makes up the bulk of the
analysis. The simulator is given an arithmetic circuit e computing a graded-multilinear polynomial
over the initial elements, and needs to check if e evaluates to 0 on the obfuscated program.

The obfuscated matrices are computed as Ci,b := αi,b · B̃i,b, where each αi,b is uniform and
independent in Zp \ {0}, so we can view e as a multilinear polynomial in the variables αi,b, where

the coefficient of each “α-monomial” is a polynomial in the entries of the corresponding B̃i,b. This
is useful because the independence of the αi,b implies that, with high probability, e evaluates to 0
on the obfuscation iff each of its α-monomials do. Furthermore the marginal distribution on each
α-monomial can be simulated with only black-box access to f , because each can contain at most
one αi,b for each layer i (due to the index-set conditions mentioned above). So, if we can efficiently
decompose e into the formal sum of its α-monomials, and show that there are at most poly(n) of
them, then the zero-test can be efficiently simulated.

The approach of viewing e in this way was used in the prior works [BR14b, BGK+14, AGIS14].
Specifically, [BR14b] gives a procedure for decomposing e into its α-monomials that runs in time
proportional to the number of such monomials, and then shows that under a complexity-theoretic
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assumption there are at most poly(n) of them. [BGK+14] gives a different procedure (also used by
[AGIS14]) for decomposing e into its degree-n α-monomials, and then shows that if e was constructed
using a fully-restricted GES, the decomposition runs in polynomial time and further that e only
contains degree-n α-monomials.

In our setting, there are a number of obstacles. First, we wish to avoid complexity assump-
tions when possible. Second, there are elements e in a multiplication-restricted GES for which the
[BGK+14] decomposition algorithm has a super-polynomial running time. Third, because we allow
zero-testing at any level, we can no longer guarantee that e consists only of degree-n α-monomials.

We overcome these by giving a new decomposition algorithm, and we show that it runs in poly-
nomial time on any e constructed in a multiplication-restricted GES. Our decomposition algorithm
differs from previous works in several ways. One high-level difference is that it does not isolate
each α-monomial by itself, but rather returns a set of polynomials where each contains at most one
degree-n α-monomial (and possibly other lower-degree monomials).

In each step, our decomposition takes a global view of the circuit, while previous algorithms
took an arguably more local view. For example, as the decomposition proceeds downward, we use
arithmetic circuit analysis tools to check whether the expression computed by a given gate contains
any degree-n α-monomials; if not, we do not decompose it further. Further, for a multiplication
gate whose expression does contain degree-n α-monomials, we show that at most one of its children
requires further decomposition, and we again use circuit analysis tools to select the appropriate
child. This crucially prevents the exponential blowup that would be incurred by the [BGK+14]
decomposition in the multiplication-restricted setting. (Addition gates are easier to handle, because
they can be directly absorbed into the decomposition, increasing the number of summands by at
most the number of input wires.) Thus, we are able to efficiently decompose any graded-multilinear
polynomial into a sum over poly(n) sub-polynomials, each of which contains at most a single degree-n
α-monomial.

From the elements returned by the decomposition, the degree-n α-monomials can be fully ex-
tracted using the classical algorithm for computing the homogeneous degree-n portion of a circuit,
and zero-tested using Kilian’s simulation as mentioned above. To complete the zero-testing algo-
rithm, we show that the set of all α-monomials with degree < n can be collectively zero-tested using
Schwartz-Zippel, because with high probability each is zero on the obfuscation iff it is the identically
zero polynomial. This completes the overview of Theorem 1.6.

Unrestricted GES. We now turn to the unrestricted ideal GES model. Here we no longer assume
that every gate in an expression e computes a graded-multilinear polynomial, though we still only
need to simulate the zero-test for expressions whose output gate does.

For the proof of Theorem 1.7, first observe that for any algebraic obfuscator that produces a set
of encodings {ki}i and an evaluation circuit E, the expression

g({ki}i) :=
∑

x∈{0,1}ℓ

E({ki}i, x)

computes a graded-multilinear polynomial and is in VNP. Now consider the distribution on f :
{0, 1}ℓ → {0, 1} where f is identically 0 with probability 1/2, and otherwise f outputs 1 on only
a single, uniform x ∈ {0, 1}ℓ. Because g outputs (an encoding of) 0 or 1 respectively in these two
cases, if VP = VNP then, under any unrestricted GES, there is a poly-time adversary that can
perfectly distinguish them. However, these cases cannot be distinguished in poly-time with more
than negligible probability using only black-box access to f , so VBB security implies VP 6= VNP.

To prove Theorem 1.8, we use the fact that iO security is equivalent to VBB security with an
unbounded-time simulator [GGH+13b]. Thus we can follow the outline of Theorem 1.6, but just
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directly decompose any expression into its (possibly exponential-sized) sum of α-monomials.
To prove Theorem 1.9, we take the approach of Brakerski and Rothblum [BR14a, BR14b] and

bound the number of degree-n α-monomials under a complexity-theoretic assumption related to the
Exponential Time Hypothesis. With this bound, we apply essentially the algorithm from [BR14b]
for zero-testing. One important difference is that here we cannot guarantee that e contains only
degree-n α-monomials (because we allow zero-testing at any level), but we adapt to this again by
extracting the homogeneous degree-n portion of e to get just the full α-monomials.

Organization. In Section 2 we give some preliminaries. The analysis of the multiplication-
restricted GES, and the proof of Theorem 1.6, appear in Section 3. In Section 4 we analyze the
unrestricted GES and prove Theorems 1.7-1.9.

2 Preliminaries

Throughout, poly(n) refers to a function of n that is bounded above by nc for some constant c and
sufficiently large n, and negl(n) refers to a function of n that is bounded above by 1/nc for every
constant c and sufficiently large n.

2.1 Arithmetic circuit tools

We use several tools for analyzing and modifying arithmetic circuits. One is the classical algorithm
for extracting the homogeneous degree-d portion of an arithmetic circuit, a proof of which can be
found in, e.g., [Bür00, Lemma 2.14].

Lemma 2.1 (Extract homogeneous polynomial). There is an algorithm that, given an arithmetic
circuit e of size poly(n) on n variables and an integer d, runs in time poly(n, d) and outputs a circuit
of size O(d2 · |e|) that computes the degree-d portion of e.

The following arithmetic circuit testing procedures are based on a reduction to identity-testing
and an application of the Schwartz-Zippel lemma. We remark that these procedures test properties
of the formal expression computed by an arithmetic circuit, so applying the Schwartz-Zippel lemma
over a sufficiently large field gives a poly(n)-time algorithm with error probability negl(n).

Lemma 2.2 (Multilinearity check; [FMM15, Prop. 5.1]). There is an algorithm that, given an arith-
metic circuit e of size poly(n) on n variables, runs in time poly(n) and with probability 1 − negl(n)
correctly decides whether e computes a multilinear polynomial.

Lemma 2.3 (Variable appearance check). There is an algorithm that, given an arithmetic circuit
e of size poly(n) on n variables and a variable x of e, runs in time poly(n) and with probability
1− negl(n) correctly decides whether any monomial of e contains x.

Proof. Let e|x=0 be the circuit obtained from e by setting all instances of x to 0. Let e(x) := e−e|x=0

be the circuit computing exactly the set of monomials from e in which x appears. Then e(x) ≡ 0 iff
x appears in no monomial of e.

Lemma 2.4 (Variable multiplication check). There is an algorithm that, given an arithmetic circuit
e of size poly(n) on n variables and two variables x 6= x′ of e, runs in time poly(n) and with probability
1− negl(n) correctly decides whether any monomial of e contains both x and x′.

Proof. Let e′ := e(x) where e(x) is as in the previous lemma. Then e′(x
′) ≡ 0 iff no monomial of e

contains both x and x′.
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2.2 Strong straddling sets

Here we define the notion of strong straddling set systems, which strengthen the straddling set
systems introduced by Barak et al. [BGK+14]. These set systems are used in choosing the index-sets
for the graded encoding scheme, as described in Section 1.2.

In particular, the fact that Si,0 ∩ Sj,1 6= ∅ for each i, j ∈ [n] is used to ensure that no graded-
multilinear monomial contains GES elements from matrices corresponding to both “xk = 0” and
“xk = 1” for any k ∈ [ℓ], where x ∈ {0, 1}ℓ is the input to the function being obfuscated. (To see the
intuition for this, think of i and j as two layers in the branching program that both read the same
input bit.) We note however that the actual construction (Section 2.6) uses several straddling set
systems to ensure that, e.g., elements corresponding to “x1 = 0” and “x2 = 1” can be multiplied (as
is necessary for the evaluation of any input whose first two bits are 01).

Definition 2.5 (Strong straddling set system). A strong straddling set system with n entries is
a collection of sets Sn = {Si,b : i ∈ [n] , b ∈ {0, 1}} over a universe U, such that ∪i∈[n]Si,0 = U =
∪i∈[n]Si,1, and the following holds.

• (Collision at universe.) If C,D ⊆ Sn are distinct non-empty collections of disjoint sets such
that

⋃
S∈C S =

⋃
S∈D S, then ∃b ∈ {0, 1} such that C = {Si,b}i∈[n] and D = {Si,1−b}i∈[n].

• (Strong intersection.) For every i, j ∈ [n], Si,0 ∩ Sj,1 6= ∅.

We can construct a strong straddling set system for every n, as follows.

Construction 2.6 (Strong straddling set system). Let Sn = {Si,b : i ∈ [n] , b ∈ {0, 1}} over a universe
U =

{
1, 2, ..., n2

}
, where for all 1 ≤ i ≤ n,

Si,0 = {n(i− 1) + 1, n(i− 1) + 2, . . . , ni} and Si,1 = {i, n + i, 2n + i, . . . , n(n− 1) + i}.

2.3 The ideal graded encoding model

In this section we describe the ideal graded encoding model which is used by the obfuscator and
evaluator. This model is exactly analogous to the ideal graded encoding model of [BGK+14], but
with their fully-restricted GES replaced by our two new GESs (Definitions 1.3 and 1.4).

In the ideal graded encoding model, we have an oracle M that implements an idealized version
of a GES. M maintains a list of elements, and allows a user to perform arithmetic operations over
these elements. M maintains a table that maps elements to generic representations called handles.
Each handle is generated uniformly at random subject to being distinct from all other handles (even
if the same element appears multiple times in the table, distinct handles are used). The user sees
only the handles, and queriesM with them to evaluate the operations of the GES.
M is initialized with a set of basic elements {[ri]Si

}i, and generates a handle for each basic
element. Then given two handles h1, h2 and an operation ◦ ∈ {+,−,×}, M first looks up the
corresponding elements e1, e2 in the table. If either does not exist, or if e1 ◦ e2 is not permitted by
the GES, the call fails. OtherwiseM generates a new handle for e1 ◦ e2, saves this in the table, and
returns the new handle. Calls to IsZero are evaluated analogously, but for these M returns 0 or 1
instead of a new handle.

2.4 Relaxed matrix branching programs

As in [AGIS14], our obfuscator first transforms the input circuit F into a dual-input, oblivious, relaxed
matrix branching program (RMBP), which will then be obfuscated. The differences from standard
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branching programs are that (1) each layer reads two input bits, (2) which input bits are read in
each layer depends only on the input length, and (3) the function’s output is determined by just one
entry of the product matrix.

Definition 2.7 (Dual-input RMBP). Let R be any finite ring. A dual-input relaxed ma-
trix branching program (over R) of width w and length n for ℓ-bit inputs is given by BP =(
inp1, inp2, {Bi,b1,b2}i∈[n],b1,b2∈{0,1}

)
, where each Bi,b1,b2 ∈ R

w×w is full-rank, and inp1, inp2 : [n]→ [ℓ]
select the input bits to be read in each layer.

BP defines a function from {0, 1}ℓ to {0, 1} as follows: BP(x) = 1 if and only if( n∏
i=1

Bi,xinp1(i)
,xinp2(i)

)
[1, w] 6= 0. We say that a set of dual-input RMBPs is oblivious if the func-

tions inp1, inp2 depend only on n and ℓ (and not on the function being computed).

2.5 Obfuscation security notions in an idealized model

We consider two obfuscation security notions: Virtual Black Box (VBB) and Indistinguishability
Obfuscation (iO) in the M-idealized model, where M is some oracle. (These definitions are taken
almost verbatim from [BBC+14].) In this model, the adversary, the obfuscator, and the circuit output
by the obfuscator have access to the oracleM, but the function family that is being obfuscated does
not have access toM.

Definition 2.8 (VBB security). For a randomized oracle M, and a circuit class
{
Cℓ
}
ℓ∈N

, we say

that a uniform PPT oracle machine O achieves VBB security for
{
Cℓ
}
ℓ∈N

in theM-idealized model,
if the following conditions are satisfied:

• Functionality: For every ℓ ∈ N, C ∈ Cℓ, input x to C, and choice of randomness forM:

Pr[C̃M(x) 6= C(x) | C̃ ← OM(C)] = 1

where the probability is over the randomness of O.

• Polynomial Slowdown: For every ℓ ∈ N and C ∈ Cℓ: |O
M(C)| = poly(|C|).

• Virtual Black-Box: For every PPT adversary A there exists a PPT simulator Sim such that for
all PPT distinguishers D, all ℓ ∈ N, and all C ∈ Cℓ:

∣∣Pr[D(AM(OM(C))) = 1]− Pr[D(SimC(1|C|)) = 1]
∣∣ ≤ negl(|C|)

where the probabilities are over the randomness of D, A, Sim, O, andM.

Indistinguishability obfuscation is similar to VBB obfuscation, except that the simulator is not
required to be efficient. This is equivalent to the more well-known definition that requires obfuscations
of any two functionally-equivalent programs to be polynomial-time indistinguishable [GGH+13b].

Definition 2.9 (iO security). For M and
{
Cℓ
}
ℓ∈N

as in Definition 2.8, we say that O achieves iO

security for
{
Cℓ
}
ℓ∈N

in theM-idealized model, if it satisfies the three properties from Definition 2.8,
except that Sim may run for an arbitrary finite amount of time.
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2.6 The obfuscator construction

Our obfuscator O for NC1 circuits in the ideal GES model is identical to the obfuscator of [AGIS14],
except that it encodes elements using strong (as opposed to standard) straddling set systems.

Specifically, on input an NC1 circuit F : {0, 1}ℓ → {0, 1}, the obfuscator O first converts F into
a length-n, width-w oblivious dual-input RMBP as described in [AGIS14, Section 3]. This RMBP

is denoted BP =
(
inp1, inp2, {Bi,b1,b2}i∈[n],b1,b2∈{0,1}

)
, where inp1, inp2 : [n]→ [ℓ] select the input bits

read in each layer, and each Bi,b1,b2 ∈ {0, 1}
w×w has full rank. The exact details of the construction

are not required here, but we will use the following three properties.

1. No input bit is read twice in the same layer. Formally, inp1(i) 6= inp2(i) for every i ∈ [n].

2. Every pair of input bits are paired in some layer. Formally, for every distinct j, k ∈ [ℓ], there
exists i ∈ [n] such that either inp1(i) = j ∧ inp2(i) = k or inp1(i) = k ∧ inp2(i) = j.

3. There exists ℓ′ ≤ n such that every input bit is read in exactly ℓ′ layers. Formally, |ind (j)| = ℓ′

for every j ∈ [ℓ], where ind (j) := {i ∈ [n] : inp1(i) = j ∨ inp2(i) = j}.

Randomizing BP. O samples a large enough Ω(n)-bit prime p, and randomizes BP following

[AGIS14, Sec. 4]. Specifically, O generates
(
s̃, {Ci,b1,b2}i∈[n],b1,b2∈{0,1} , t̃

)
:= randBP(BP) as follows.

1. Choose n+1 uniform and independent full-rank matrices R0, ..., Rn ∈ Z
w×w
p , and set B̃i,b1,b2 :=

Ri−1 ·Bi,b1,b2 · R
−1
i , for every i ∈ [n] and b1, b2 ∈ {0, 1}.

2. Choose 4n uniform and independent non-zero scalars αi,b1,b2 ∈ Zp \ {0}, and set Ci,b1,b2 :=
αi,b1,b2 · B̃i,b1,b2 for every i ∈ [n] and b1, b2 ∈ {0, 1}.

3. Set s̃ := e1 ·R
−1
0 and t̃ := Rn · ew.

The obfuscation of F consists of ideal encodings of the entries of s̃, t̃ and each Ci,b1,b2 , as follows.

Encoding the randomized BP. Let Us,Ut,U1, ...,Uℓ be disjoint sets such that |Us| = |Ut| = 1,
and |Uj| = 2ℓ′ − 1 for every j ∈ [ℓ]. Define U := Us ∪ Ut ∪

⋃
j∈[ℓ]Uj.

For j ∈ [ℓ], let Sj be a strong straddling set system with ℓ′ entries over universe Uj (see Def. 2.5).
We associate the sets in S

j with the layers i of the BP that are indexed by xj (i.e., layers i such

that j ∈ {inp1(i), inp2(i)}) as follows: S
j =

{
Sj
k,b : k ∈ ind (j) , b ∈ {0, 1}

}
. For each i ∈ [n] and

b1, b2 ∈ {0, 1}, we encode each entry of each matrix Ci,b1,b2 with the set

S (i, b1, b2) := S
inp1(i)
i,b1

∪ S
inp2(i)
i,b2

.

Us and Ut are used to encode the entries of s̃, t̃, respectively.
Formally, O initializes the oracle M with the ring Zp, the universe set U, and the following set

of basic elements:
{{

[s̃i]Us

}
i∈[w]

,
{[

t̃i
]
Ut

}
i∈[w]

,
{
[Ci,b1,b2 [k, l]]S(i,b1,b2)

}
i∈[n],b1,b2∈{0,1},k,l∈[w]

}
.

As in the introduction, we use [x]S to denote that x is encoded with the index-set S. M returns
handles for these elements, and O outputs these handles as the obfuscation of F . (We note that the
vectors s̃, t̃ were omitted from the technical overview in Section 1.2, but they are easily incorporated
into the analysis.)
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3 VBB security for multiplication-restricted graded encodings

Let O denote the obfuscator from Section 2.6 when the oracleM is instantiated with the rules of a
multiplication-restricted GES (Def. 1.3). In this section we construct an efficient simulator Sim that,
given black-box access to a function F : {0, 1}ℓ → {0, 1}, simulates the view of AM(OM(F )) for any
polynomial-time adversary A. This will prove Theorem 1.6.

Theorem 1.6. There exists a polynomial-time obfuscator that achieves VBB security for all NC1

circuits in the multiplication-restricted ideal GES model.

Sim is given 1|F |, 1ℓ, and a description of the adversary A, and has oracle access to F . Sim

first generates formal variables representing each entry of each matrix Ci,b1,b2 and of the vectors s̃
and t̃, and simulatesM’s initialization by generating handles corresponding to these variables (using
the same index sets as O). Sim maintains a table of handles, and simulates A’s oracle calls to M.
Addition and subtraction queries can be simulated trivially since there are no constraints on these
operations. Next we describe how Sim simulates multiplication and zero-test queries.

3.1 Simulating multiplication queries

To answer a multiplication query the simulator must check, given two arithmetic circuits e1 and e2,
whether the circuit e := e1 × e2 computes a graded-multilinear polynomial. Recall (Def. 1.2) that a
polynomial is graded-multilinear if it is multilinear, and further the variables appearing in any single
monomial have pairwise disjoint index sets.

Let X be the set of all variables that appear in either e1 or e2. Then the check has two steps.
First, we use the algorithm from Lemma 2.2 to verify that e is multilinear, i.e. that no monomial in
e contains multiple copies of some x ∈ X. Second, we use the algorithm from Lemma 2.4 to verify
that for each x 6= x′ ∈ X with intersecting index-sets, no monomial of e contains both x and x′.

If the query is valid, then Sim generates a new handle h for e, adds it to the handle set, and
returns h to A. The proof of the next lemma is immediate given Lemmas 2.2 and 2.4.

Lemma 3.1. For every multiplication query e1× e2, Sim generates in poly(n)-time an answer whose
distribution is (1− negl(n))-close to that of M’s answer.

3.2 Simulating zero-test queries

In this section we describe how the simulator Sim answers a single zero-test query on an arithmetic
circuit e. We use the following terminology, adapted from [BGK+14, AGIS14].

Definition 3.2 (Touching matrices and layers). We say that e touches a matrix Ci,b1,b2 , for i ∈
[n] and b1, b2 ∈ {0, 1}, if some monomial in (the polynomial computed by) e contains a variable
representing an entry of Ci,b1,b2 . We say that e touches layer i if it touches a matrix Ci,b1,b2 for some
b1, b2 ∈ {0, 1}.

Next, we define the input profile of an arithmetic circuit e, which represents the partial information
that e gives about an input x ∈ {0, 1}ℓ to the obfuscated function. The input profile is a string in
{0, 1, ∗}ℓ whose jth entry indicates whether e touches a matrix that corresponds to “xj = 0”, one
that corresponds to “xj = 1”, or neither. (Circuits that touch conflicting matrices have profile ⊥.)
We also define single-input circuits as those whose variables all correspond to a single input x, i.e.
whose input profile is not ⊥.
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Definition 3.3 (Input-profiles and single-input elements). The input-profile Prof(e) ∈ {0, 1, ∗}ℓ∪{⊥}
of a circuit e is defined as follows.

For j ∈ [ℓ], we say that Prof(e)j is consistent with b ∈ {0, 1} if e touches any matrix Ci,b1,b2 such
that inpl(i) = j and bl = b for some l ∈ {1, 2}. If Prof(e)j is consistent with b, but not with 1−b, then
we set Prof(e)j := b. If Prof(e)j is not consistent with either of b, 1 − b then we set Prof(e)j = ∗. If
Prof(e)j is consistent with both b, 1− b, then we say that e conflicts on index j, and set Prof(e) =⊥;
in this case we say Prof(e) is invalid.

We say e is single-input if Prof(e) 6=⊥, and that it has a complete profile if Prof(e) ∈ {0, 1}ℓ. We
say e and e′ conflict on index j if Prof(e)j = 1− Prof (e′)j , or if either Prof(e) or Prof(e

′) is invalid.

Note that Prof(e) can be computed (up to negligible error probability) in time poly(|e|), by using
the algorithm from Lemma 2.3 that checks which variables appear in e’s non-zero monomials.

The simulator answers a zero-test query “e = 0?” as follows. First, it decomposes e into a list
{e1, ..., ek} of elements, such that: e =

∑k
i=1 ei, with equivalence as polynomials; each ei is either

a single-input element or does not touch all layers i ∈ [n]; and k = poly (n). Then, the simulator
extracts the full α-monomials (i.e. the monomials with degree n) from the single-input elements,
and performs a zero-test on each separately. Finally, it performs a zero-test on the sum of non-full
α-monomials (i.e. the monomials with degree < n). Next, we give the decomposition algorithm.

3.2.1 Decomposition algorithm

We give a decomposition D(e) of a circuit e, satisfying the three properties in Figure 1.

1. e =
∑

s∈D(e)

s, with equivalence as polynomials.

2. ∀s ∈ D(e): s is either single-input or does not touch
every layer.

3. |D(e)| ≤ poly(|e|).

Figure 1: Properties of a valid decomposition D(e)

Theorem 3.4. For any circuit e whose gates each compute a graded-multilinear polynomial, there
exists a poly(|e|)-time algorithm that, with probability 1 − negl(|e|), outputs a decomposition D(e)
satisfying the properties in Figure 1.

For the decomposition, we view e as a layered, unbounded fan-in circuit whose layers alternate
between addition (or subtraction) and multiplication gates. We further assume that all input wires
to a layer come from the layer directly below, and that the top layer is a multiplication gate. Any
e can be converted to such a circuit with at most a poly(|e|) increase in size. For the remainder, we
refer to the layers of e as sections to avoid confusion with layers of the branching program.

We compute the decomposition by starting withD(e) = {e}, and then refining until the properties
in Figure 1 are satisfied. We keep two lists GO and STOP, where each list contains pairs of arithmetic
expressions (z, z′). GO contains expressions that need to be further refined, and STOP contains
expressions that do not. We terminate when GO = ∅ and then set D(e) := {zz′ | (z, z′) ∈ STOP}.
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Throughout the decomposition, we maintain the invariants shown in Figure 2. We let m denote
the number of sections in e, and we number the sections starting from 1 at the top, so the mth section
contains e’s input variables.

1. e =
∑

(z,z′)∈GO

zz′ +
∑

(z,z′)∈STOP

zz′.

2. For each (z, z′) ∈ STOP, zz′ computes a graded-multilinear poly-
nomial that is either single-input or does not touch every layer.

3. After step i, for each (z, z′) ∈ GO: z is single-input, z′ is a gate in
section i, and zz′ computes a graded-multilinear polynomial that
touches every layer and is not single-input. Further, GO contains
at most one (z, z′) for each gate z′ in section i.

4. During step i, |STOP| increases by at most the number of wires
leaving section i.

Figure 2: Invariants of the decomposition algorithm

Lemma 3.5. For any algorithm satisfying the invariants in Figure 2, upon termination the decom-
position D(e) = {zz′ | (z, z′) ∈ STOP} satisfies the properties in Figure 1.

Proof. We show that GO = ∅ afterm steps. Then invariants 1, 2, and 4 imply the three decomposition
properties, respectively.

Any gate in section m is a single-input element, and a valid product of two single-input elements
is also single-input by Lemma 3.7 below. Thus, after step m GO cannot contain any (z, z′) that
satisfies the third invariant, so GO = ∅.

Next, we prove Theorem 3.4. The proof uses a few simple lemmas that are proved afterwards.
We will implicitly use the fact that the set of layers touched by any gate in e, and thus its input
profile, can be efficiently computed (up to a 1− negl(|e|) error) using the algorithm from Lemma 2.3.

Proof of Theorem 3.4. We give an m-step poly(|e|)-time algorithm satisfying the invariants in Figure
2. In step 1, if e is single-input or does not touch every layer, then we set GO = ∅ and STOP
= {(1, e)}. Otherwise we set GO = {(1, e)} and STOP = ∅.

In step i (2 ≤ i ≤ m), we proceed as follows.
If section (i − 1) contains multiplication gates, then at the start of step i each (z, z′) ∈ GO is of

the form (z, q1 × . . . × qk) for some gates q1, . . . , qk in section i. Lemma 3.8 shows that there is a
unique j∗ such that qj∗ is not single-input, and we can find this j∗ in time poly(|e|) by computing
each Prof(qj). So, we replace each (z, q1 × . . . × qk) ∈ GO with (z ×

∏
j 6=j∗ qj, qj∗). By Lemma 3.7,

we have that z ×
∏

j 6=j∗ qj is single-input. Further qj∗ is a gate in section i, and z ×
∏

j≤k qj touches
every layer and is not single-input by the invariants on step (i−1). Finally, to ensure that there is at
most one (z, z′) ∈ GO for each gate z′ in section i, we repeatedly replace any (z1, z

′), (z2, z
′) ∈ GO

with (z1 + z2, z
′). Lemma 3.9 shows that any such z1 + z2 is a single-input element, so the invariants

remain satisfied.
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If section (i−1) contains addition gates, then at the start of step i each (z, z′) ∈ GO is of the form
(z, q1 + · · ·+ qk) for some gates q1, . . . , qk in section i. We first modify the expression (q1 + · · ·+ qk)
by zeroing any basic elements that (q1 + · · · + qk) does not touch (in the sense of Definition 3.2),
thus ensuring that zqj is graded-multilinear for each j ≤ k. Then for each such (z, q1 + · · ·+ qk), we
remove it from GO and set

GO← GO ∪ {(z, qj) | zqj touches every layer and is not single-input}

STOP← STOP ∪ {(z, qj) | zqj does not touch every layer or is single-input}.

This adds at most one pair to STOP for each wire between layers i and i− 1. Thus all invariants are
now satisfied except that GO may contain multiple (z, z′) for each gate z′ in section i; to fix this, we
again replace any (z1, z

′), (z2, z
′) ∈ GO with (z1 + z2, z

′).

Next, we prove a useful structural result on multilinear polynomials, and then prove the lemmas
that were used in Theorem 3.4. We use V(e) to denote the set of variables that appear in the
(non-zero) monomials of the polynomial computed by e; note that this may be a strict subset of the
variables at e’s input gates.

Lemma 3.6. Let e1 and e2 be arithmetic circuits computing multilinear polynomials. If e := e1× e2
is multilinear, then for all x ∈ V (e1) and y ∈ V (e2), e has a monomial that contains both x and y.

Proof. We first show that if e is multilinear then V(e1) ∩ V(e2) = ∅. If not, there is some x ∈
V(e1) ∩ V(e2). Then write

e1 = x · e′1 + e′′1 e2 = x · e′2 + e′′2

where e′1, e
′′
1 , e
′
2, e
′′
2 all do not contain x and e′1, e

′
2 6= 0. Then because the x2 · e′1 · e

′
2 term of e is

non-zero and not cancelled by any other term, e is not multilinear.
We now have that V(e1) ∩ V(e2) = ∅. For any x ∈ V(e1), y ∈ V(e2), write

e1 = x · e′1 + e′′1 e2 = y · e′2 + e′′2

where e′1, e
′′
1 , e
′
2, e
′′
2 all contain neither x nor y and e′1, e

′
2 6= 0. Then similarly e must contain a

monomial with xy.

Lemma 3.7. If e1 and e2 are graded-multilinear and single-input, and e1× e2 is graded-multilinear,
then e1 × e2 is single-input.

Proof. If e1 × e2 conflicts on some index j, then there are variables x1 ∈ V(e1) and x2 ∈ V(e2) that
conflict on index j, and cannot be multiplied. But by Lemma 3.6, x1 and x2 appear together in some
monomial, so e1 × e2 is not graded-multilinear.

Lemma 3.8. Let e1, . . . , ed be graded-multilinear such that
∏

i≤d ei is graded-multilinear, touches
every layer, and is not single-input. Then there is a unique i such that ei is not single-input.

Proof. First note that {V(ei) | i ∈ [d]} gives a partition of all layers, identifying a variable with the
layer in which it appears. This is by Lemma 3.6, because any two variables from the same layer
cannot be multiplied due to the index-set construction.

Pick any i such that ei is not single-input (there must be one by Lemma 3.7). Fix some index
j such that ei conflicts on j. Then ei must touch every layer that reads index j. If not, then some
other ei′ touches a matrix Cl,b1,b2 such that inpk (l) = j (for some k ∈ {1, 2}), and (without loss of
generality) bk = 0, but then ei and ei′ could not be multiplied, because they conflict on index j.

If there is another value i′ 6= i such that ei′ conflicts on index j′ 6= j, then by the same argument
ei′ touches every layer that reads bit j′. But then any layer reading both j and j′ is touched by both
ei and ei′ , which is a contradiction.
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Lemma 3.9. Assume z1 × z′ and z2 × z′ are graded-multilinear, touch every layer, and are not
single-input. If z1 and z2 are each single-input, then so is z1 + z2.

Proof. Assume for contradiction that z1 and z2 are single-input but z1 + z2 is not. Fix some j such
that z1 + z2 conflicts on index j. Then without loss of generality we have that Prof(z1)j = 0 and
Prof(z2)j = 1. As in the proof of Lemma 3.8, because z1 is single-input we must have that z′ touches
every layer that reads an index on which z1× z′ has a conflict. Since z1× z′ has a conflict on at least
one index, and since each pair of indices are read together in at least one layer, z′ must touch some
layer that reads index j. But then at least one of z1 or z2 must conflict with z′, so either z1 × z′ or
z2 × z′ is not graded-multilinear.

3.2.2 The zero-test simulator

In this section we describe and analyze the simulator Sim0 that is used to answer a single zero-test.
Recall that an element e is an arithmetic circuit computing a polynomial whose variables are the
entries of Ci,b1,b2 for i ∈ [n] , b1, b2 ∈ {0, 1}. However, as Ci,b1,b2 = αi,b1,b2 · B̃i,b1,b2 , we can think of it
as a polynomial in the αi,b1,b2 , with coefficients that are polynomials in the entries of B̃i,b1,b2 . Under
this viewpoint, we refer to the monomials as “α-monomials”. We associate an index-set with each
αi,b1,b2 and each entry of B̃i,b1,b2 , namely the index-set of Ci,b1,b2 .

Definition 3.10. We say that a monomial in the variables {αi,b1,b2 : i ∈ [n] , b1, b2 ∈ {0, 1}} is full
if it contains, for every i ∈ [n], exactly one of the α’s of layer i (i.e., one of αi,0,0, αi,0,1, αi,1,0, αi,1,1).

Notice that if e is graded-multilinear then every α-monomial contains at most one α from every
layer, because the index-sets of every pair of layer-i α’s intersect and so they cannot be multiplied.
We need the following simple observation:

Lemma 3.11. Let e be an arithmetic circuit whose gates each compute a graded-multilinear polyno-
mial and let D(e) be its decomposition given by Theorem 3.4. Then each s ∈ D(e) contains at most
one full α-monomial, and each of e’s full α-monomials appears in exactly one s ∈ D(e).

Proof. We may assume without loss of generality that each single-input element in D(e) has a unique
profile, by replacing any s 6= s′ ∈ D(e) such that Prof(s) = Prof(s′) 6=⊥ with s+ s′. Then the lemma
holds because (1) any element that does not touch every layer cannot contain a full α-monomial, and
(2) any single-input element s with a complete profile can only contain the unique full α-monomial
corresponding to Prof(s). (Note that (1) includes single-input elements with incomplete profiles.)

Given an element s that contains at most one full α-monomial, we can extract it (if it exists)
by computing the homogeneous degree-n portion of s using the algorithm from Lemma 2.1. This is
because due to the index-set construction, the only possible monomials of degree n are the full α-
monomials. Further, we show in Lemma 3.16 below that for any element s with no full α-monomials,
with high probability s evaluates to 0 on the obfuscation iff it computes the identically 0 polynomial.

The final ingredient we need is a method of sampling an assignment to the variables of a full α-
monomial that is indistinguishable from the corresponding marginal distribution of the obfuscation.
We use the method of [AGIS14, Thm. 7]. (Recall that randBP was defined in Section 2.6.)

Theorem 3.12 ([AGIS14]). Let BP be an oblivious dual-input RMBP that computes F : {0, 1}ℓ →
{0, 1}, and let BP′ := randBP (BP). There exists a PPT simulator Sim′ such that for every x ∈ {0, 1}ℓ,{
BP′|x

}
≡

{
Sim′

(
1|F |, F (x)

)}
.

We are now ready to describe the simulator.
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Construction 3.13 (Zero-test simulator). The zero-test simulator Sim0 uses the decomposition
algorithm D of Theorem 3.4. On input e, Sim0 operates as follows.

1. Compute the decomposition D(e).

2. For every single-input element s ∈ D(e) with a complete profile, use Lemma 2.1 to construct
an element α̃s that computes the homogeneous degree-n portion of s. (If s is not single-input
or has an incomplete profile, define α̃s := 0.)

3. For every single-input element s ∈ D(e) with a complete profile, zero-test α̃s as follows: query
the oracle F on x := Prof(s), and evaluate α̃s on Sim′

(
1|C|, C (x)

)
, where Sim′ is the simulator

of [AGIS14, Thm. 7]. If any such evaluation is non-zero, stop and return “e 6= 0”.

4. Construct the element e′ := e −
∑

s∈D(e) α̃s, and test if e′ computes the identically zero poly-
nomial using Schwartz-Zippel. If so then return “e = 0”, otherwise return “e 6= 0”.

Construction 3.13 runs in time poly(n) because each step does. The following theorem shows
its correctness, and completes the proof of Theorem 1.6. We use V real to denote the real-world
distribution of the obfuscated program.

Theorem 3.14. Let e be an arithmetic circuit whose gates each compute a graded-multilinear poly-
nomial, and let Sim0 be as in Construction 3.13. Then

∣∣Pr
[
Sim0 (e) = 0

]
− Prv←V real [e (v) = 0]

∣∣ =
negl(n), where the probabilities are over the randomness of Sim0 and the obfuscator.

Proof. Lemma 3.15 shows that for any such e, if e(V real) 6≡ 0 then Prv←V real [e (v) = 0] = negl(n).
(This is proved exactly as in [BGK+14].) Thus it suffices to prove that, with high probability over
its randomness, Sim0 returns “e = 0” iff e(V real) ≡ 0. Observe further that e(V real) ≡ 0 if and
only if α̃(V real) ≡ 0 for every α-monomial α̃ in e. The “if” direction is clear; for the “only if”
direction, assume that some α-monomials are not identically zero on V real. Then for some sample of
the marginal distribution on {B̃i,b1,b2}i,b1,b2 , e becomes a non-zero polynomial in just the variables
{αi,b1,b2}i,b1,b2 . Then since the marginal distribution on this latter set is uniform conditioned on any

sample of {B̃i,b1,b2}i,b1,b2 , there is some sample v ← V real for which e(v) 6= 0, and thus e(V real) 6≡ 0.
We now show that, with probability 1− negl(n) over its randomness, Sim0 returns “e = 0” iff all

α-monomials α̃ in e satisfy α̃(V real) ≡ 0.
Assume that e contains some full α-monomial α̃s such that α̃s(V

real) 6≡ 0. We claim that, with
probability 1 − negl(n) over the randomness of Sim0, step 3 in Construction 3.13 returns “e 6= 0”.
Indeed, because the call to Sim′ generates exactly the marginal distribution on α̃s’s variables by
Theorem 3.12, the evaluation generates a sample from α̃s(V

real). By Lemma 3.15 this evaluation is
non-zero with probability 1− negl(n) because α̃s(V

real) 6≡ 0, and thus step 3 returns “e 6= 0”.
Now assume that every full α-monomial α̃s satisfies α̃s(V

real) ≡ 0. Then Sim0 reaches step 4 with
probability 1. Notice that e′ contains exactly the non-full α-monomials in e. We show in Lemma
3.16 that e′ computes the identically zero polynomial iff each of its α-monomials is 0 on V real. Thus,
with probability 1−negl(n) over the randomness of Sim0, step 4 returns “e = 0” iff each α-monomial
α̃ in e satisfies α̃(V real) ≡ 0.

We now state the lemmas used in Theorem 3.14. The first is [BGK+14, Claim 8]; for completeness
we include a proof in Appendix A.

Lemma 3.15 ([BGK+14]). For any valid element e, if e(V real) 6≡ 0 then Prv←V real [e(v) = 0] =
negl(n).

The next lemma states that if e has no full α-monomials, then it is identically 0 as a formal
polynomial iff each of its α-monomials is 0 on V real.
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Lemma 3.16. If e contains no full α-monomials, then it is the identically zero polynomial iff
α̃(V real) ≡ 0 for every α-monomial α̃ in e.

Proof. The “only if” direction is clear. For the “if” direction, we show that for any individual non-full
α-monomial α̃, α̃(V real) ≡ 0 iff α̃ is identically zero (i.e. if its coefficient is identically zero).

Fix any non-full α-monomial α̃. We first show that the marginal distribution on the variables
of {s̃, t̃, B̃i,b1,b2 | i ∈ [n] , b1, b2 ∈ {0, 1}} that appear in α̃’s coefficient consists of uniform non-zero

vectors and uniform non-singular matrices. Let C ⊆
{
Ci,bi1,b

i
2
: i ∈ [n] , bi1, b

i
2 ∈ {0, 1}

}
denote the set

of matrices from which α̃’s variables come. Notice that C contains at most one matrix from every
layer of the RMBP, because if Ci,b1,b2 ∈ B then αi,b1,b2 appears in the monomial α̃, but α̃ contains at
most one αi,b1,b2 from every layer i. Let I ⊂ [n] denote the layers from which C contains a matrix,

and let B =
{
B̃i,bi1,b

i
2
: Ci,bi1,b

i
2
∈ C

}
. Then the marginal distribution of V real on s̃, t̃, and B is

s̃ = e1 ·R
−1
0

B̃i,bi1,b
i
2

= Ri−1 · Bi,bi1,b
i
2
·R−1i , ∀i ∈ I

t̃ = Rn · ew

where each Bi,bi1,b
i
2
∈ Z

w×w
p is a fixed non-singular matrix, and each Ri ∈ Z

w×w
p is a uniform non-

singular matrix. As noted above, there is at most one Ci,bi1,b
i
2
∈ C for each i ∈ I, i.e., at most one

B̃i,bi1,b
i
2
on which α̃ depends, for every i ∈ I. Consequently, the random matrices {Ri | i = 0, . . . , n}

can be assigned to these equations in a way so that at most one random matrix is assigned to each
equation. (This is because |I| < n because α̃ is not a full monomial, and thus there are ≤ n + 1
equations and there are n+1 random matrices.) Thus, the left-hand side of each equation is uniform
in its support, even conditioned on any fixing of the other left-hand sides. Since the supports are all
non-singular matrices (or all non-zero vectors in the case of s̃ and t̃), we have that when restricted
to these values, the distribution we have generated is identical to V real.

Let V rand denote the distribution over assignments to the variables of α̃, when s̃, t̃ are replaced
with uniform vectors us, ut, and the matrices in B are replaced with uniformly random matrices
M1, ...,M|I|. Because Pru←Zw

p
[u 6= 0w] = 1 − p−w = 1 − negl(n), and because a uniform matrix in

Z
w×w
p is non-singular with probability ≥ 1−w/p = 1−negl(n), the distributions

{
us, ut,M1, ...,M|I|

}

and
{
s̃, t̃, B̃i,bi1,b

i
2
∈ B

}
are negl(n)-close in statistical distance. Thus because applying a deterministic

function to random variables does not increase the statistical distance, we have

∣∣∣∣ Pr
v←V real

[α̃ (v) = 0]− Pr
v←V rand

[α̃ (v) = 0]

∣∣∣∣ = negl (n) . (1)

If α̃(V real) 6≡ 0 then clearly α̃ is not the zero polynomial. If on the other hand α̃(V real) ≡ 0, then
(1) implies Prv←V rand [α̃ (v) = 0] = 1−negl (n). Thus because deg(α̃) < n, the Schwartz-Zippel lemma
implies that α̃ is the zero polynomial.

4 Security for unrestricted graded encoding schemes

We now analyze the security of our construction against a polynomial-time adversary in an unre-
stricted GES. Recall that the difference from a multiplication-restricted GES is that the adversary is
no longer required to construct circuits in which every gate computes a graded-multilinear polyno-
mial. Thus in this setting, simulating +, −, and × queries is trivial, since they are always allowed.
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As before, the difficulty is in simulating zero-test queries. By definition in this model, IsZero only
returns True on circuits that compute graded-multilinear polynomials. Because we can efficiently
test for graded-multilinearity as described in Section 3.1, we can restrict ourselves to such circuits.

Throughout this section we let me denote the number of full α-monomials (in the sense of Def.
3.10) for a given circuit e. In Section 4.2 we give an algorithm for simulating zero-test queries that
runs in time poly(me, |e|). Thus if every graded-multilinear polynomial computed by a polynomial-
size circuit e contains a polynomial number of full α-monomials, this algorithm gives a VBB simulator
(and, in any case, the algorithm gives an iO simulator).

In Section 4.1 we show that a polynomial bound on me follows from a new hypothesis which
is closely related to a parameterized version of the Bounded Speedup Hypothesis introduced by
Brakerski and Rothblum [BR14a, BR14b] (see that section for further discussion). Thus under this
new hypothesis we can achieve VBB security.

However, we first show that unconditionally obtaining a VBB simulator in this model for any
algebraic obfuscator would imply the algebraic analog of P 6= NP, namely VP 6= VNP. Intuitively,
this is because the polynomial summing a function’s outputs over all possible inputs is in VNP, but
this polynomial cannot in general be simulated with only black-box access. This is formalized in the
proof of Theorem 1.7 below; we first state some definitions.

Definition 4.1 (VP [Val79]). Let m (n) = poly(n). A family F =
{
fn : {0, 1}m(n) → {0, 1}

}
n
is in

VP if for every n, deg (fn) = poly (n), and there exists a polynomial p (n), and a family {Cn}n of
arithmetic circuits such that for any n, |Cn| ≤ p (n), and Cn (x) = fn (x) for every x ∈ {0, 1}m(n).

Definition 4.2 (VNP [Val79]). Let m (n) , k (n) = poly(n). A family F ={
fn : {0, 1}m(n) → {0, 1}

}
n
is in VNP if there exists a family G =

{
gn : {0, 1}m(n)+k(n) → {0, 1}

}
n

in VP such that, for every n and every x ∈ {0, 1}m(n), fn (x) =
∑

y∈{0,1}k(n) gn (x, y).

Definition 4.3 (Algebraic obfuscator). An algorithm O that takes as input a circuit f : {0, 1}n →
{0, 1} is an algebraic obfuscator if O(f) = ({ki}i, E), where (1) {ki}i is a poly(|f |)-size set of encodings
in some GES, (2) E is a poly(|f |)-size arithmetic circuit, and (3) for every x ∈ {0, 1}n, the computation
of E ({ki}i, x) obeys the restrictions of the GES and satisfies IsZero(E ({ki}i, x)) = True iff f(x) = 0.

Theorem 1.7. If there exists a polynomial-time algebraic obfuscator that achieves VBB security for
all NC1 circuits in the unrestricted ideal GES model, then VP 6= VNP.

Proof. Assume the existence of an obfuscator O as in the theorem statement, that on input a circuit
to be obfuscated outputs an evaluation circuit E, and a set {ki}i of encodings (namely, O instantiates
the unrestricted ideal GES oracle with these encodings). We use O to construct a function family
F ∈ VNP \ VP. For every n ∈ N, let Cn : {0, 1}n → {0, 1} be the circuit that always outputs 0;
and for every xn0 ∈ {0, 1}

n, let Cxn
0
: {0, 1}n → {0, 1} be the circuit that outputs 1 only on xn0 , i.e.,

Cxn
0
(xn0 ) = 1, and for every xn0 6= x ∈ {0, 1}n, Cxn

0
(x) = 0. Let C = {Cn}n∈N ∪ {Cxn

0
}n∈N,xn

0∈{0,1}
n ,

and assume that for every n ∈ N and xn0 ∈ {0, 1}
n, |Cn| =

∣∣Cxn
0

∣∣. (This is without loss of generality,
since all circuits taking n-bit inputs can be padded to have the same size as the circuit with maximal
size.) For every n ∈ N, let fn ({ki}) =

∑
x∈{0,1}n E ({ki}i, x), and F = {fn}, then F ∈ VNP by

definition. We show that F /∈ VP, by showing that a PPT simulator cannot simulate zero-test
queries to fn ({ki}), where {ki} are the encodings in an obfuscation of a circuit from the family C.
Indeed, if such zero-test queries cannot be simulated then the VBB property of O guarantees that
no polynomial-time adversary can construct circuits computing the functions fn, namely F has no
polynomial-sized circuits.

For a PPT adversary A, let Sim be the PPT simulator whose existence is guaranteed by the
VBB property of O, and let t (n) : N→ N be the polynomial bounding the running time of Sim. In
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particular, when simulating the obfuscation of any Cxn
0
, Sim makes at most t (n) queries to its oracle.

Let xn0 ∈R {0, 1}
n, then the view of Sim when given 1

∣

∣

∣
Cxn

0

∣

∣

∣

, and oracle access to Cxn
0
, is identical to

its view when given 1|Cn|, and oracle access to Cn, unless in any of these simulations, Sim queries its
oracle on xn0 . As this happens with at most t(n)

2n = negl (n) probability, then except with negligible
probability Sim would return the same answer to the zero-test of fn on the obfuscation of Cxn

0
, Cn,

which would be wrong for one of them, in contradiction to the VBB property of O. Therefore, A
cannot construct a circuit computing fn.

4.1 The p-Bounded Speedup Hypothesis

We first state our new hypothesis. which is a worst-case assumption that is inspired by the Bounded
Speedup Hypothesis (BSH) of [BR14a, BR14b]. More specifically, it corresponds exactly to replacing
3SAT with Max-2-SAT in the BSH, and adding a parameter determining the speedup quality. By
Max-2-SAT, we refer to the decision version in which a 2CNF formula is in Max-2-SAT iff a 7/10
fraction of its clauses can be simultaneously satisfied. This problem is NP-complete by a standard
reduction from 3SAT.

Definition 4.4 (X-Max-2-SAT solver). Consider a set X ⊆ {0, 1}n. We say that an algorithm A is
an X-Max-2-SAT solver if it solves the Max-2-SAT problem restricted to inputs in X. Namely given
a 2CNF formula φ on n variables, A(φ) = 1 iff ∃x ∈ X that satisfies a ≥ 7/10 fraction of φ’s clauses.

Assumption 4.5 (p-Bounded Speedup Hypothesis). Let p : N → N. Then for any X-Max-2-SAT
solver that has size t(n), |X| ≤ p (poly (t(n))).

Intuitively, the strongest form of Assumption 4.5, namely when p = poly (n), states that MAX-
2-SAT is exponentially hard even on 2Ω(n)-size subsets of {0, 1}n. The BSH [BR14a, BR14b] states
the same for 3SAT, thus strengthening the well-studied Exponential Time Hypothesis (ETH) intro-
duced by Impagliazzo and Paturi [IP99]. Recall that the ETH states that there exists no 2o(n)-time
algorithm for deciding 3SAT over {0, 1}n, which also implies the same for many other NP complete
problems.

Subsequent to the publication of [BR14a, BR14b], the BSH was shown to be false by Uri Feige
using a SAT-solver based attack [Rot15]. We note that this attack does not directly apply to Assump-
tion 4.5, which uses a different NP-complete problem. (In fact, our construction can be made to work
with other NP-complete problems as well.) Still, in light of the attack, we choose to parameterize
our assumption, such that even if its strongest form is false, weaker forms (e.g., when p = 2poly log(n))
still give a meaningful result.

The proof of the following lemma is inspired by [BR14b, Lemma 3.14]).

Lemma 4.6. Assume the p-Bounded Speedup Hypothesis. Then for any circuit e that computes a
graded-multilinear polynomial, me ≤ p (poly (|e|))).

Proof. Let X ⊆ {0, 1}ℓ be the set of input profiles corresponding to e’s full α-monomials (thus
|X| = me). We give an X-Max-2SAT solver that has size poly(|e|), and thus me = p

(
|e|ω(1)

)
would

contradict the p-Bounded Speedup Hypothesis.
Let a 2CNF formula φ : {0, 1}ℓ → {0, 1} be given. We assume the following without loss of

generality.

• φ contains at most 4ℓ2 clauses (otherwise some are redundant and can be removed).

• In the obfuscated branching program over which e is defined, each pair of input bits is read in
at least 4ℓ2 different layers (we can add this many “dummy layers” to any BP).
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• e consists of only full α-monomials. (If not, first extract the homogeneous degree-n part of e,
which can be done in time poly(|e|) and has size poly(|e|) by Lemma 2.1. We also assume that
e contains at least one such monomial, which we can check using Schwartz-Zippel.)

Fix some clause c in φ, and let (i, j) be the input bits read by c. We modify e so that the degree
of each α-monomial whose profile satisfies c is reduced by 1. To do this, take any layer k reading
(i, j) that has not been used before, and in e set every αk,b1,b2 to 1 except for the one that doesn’t
satisfy c. Note that we can always pick a layer we haven’t used before because there are ≥ 4ℓ2 for
each pair (i, j). In the case that we have i = j, we instead take any unused layer k reading (i, i′) for
some i′ 6= i, and set every αk,b1,b2 to 1 except for the (at most) two that don’t satisfy c.

After doing this for each of the m clauses, we have that e contains a monomial of degree ≤
n− 7m/10 iff some x ∈ X satisfies 7m/10 of φ’s clauses. Let e(d) denote the homogeneous degree-d

portion of e, and define e′ :=
∑n−7m/10

d=1 e(d) which can be computed in time poly(|e|) and has size
poly(|e|) by Lemma 2.1. Then e′ 6≡ 0 iff some x ∈ X satisfies 7m/10 of φ’s clauses. Using Schwartz-
Zippel, we can test e′ ≡ 0 up to an arbitrarily small error. Fixing the random coins and using the
union bound gives an X-Max-2SAT solver that has size poly(|e|).

4.2 The zero-test simulator

At a high level, the strategy for simulating zero-test queries is the same as in the previous section
(Construction 3.13). First, we extract from an element e each of its full α-monomials. Then, we
zero-test each full α-monomial individually by evaluating it on the reconstructed branching program,
and we zero-test the remaining portion of e by checking if it is the identically zero polynomial. The
zero-test then returns “e = 0” iff each of these zero-tests did as well.

Lemma 4.7 gives an algorithm that extracts the list of full α-monomials; a similar algorithm was
used in the zero-testing procedure of [BR14b].

Lemma 4.7. Let e be a circuit computing a graded-multilinear polynomial that contains me full
α-monomials. Then in time poly(|e|,me) one can produce a list (s1, . . . , sme) of circuits such that si
computes the ith full α-monomial and has size poly(|e|).

Proof. First, replace e by its homogeneous degree-n part, which can be done in time poly(|e|) and has
size poly(|e|) by Lemma 2.1. We define a recursive algorithm R that takes as input (α1, . . . , αk) for
some k ≤ n, where each αi = αi,b1,b2 for some b1, b2 ∈ {0, 1}. R returns a list of all α-monomials in e
that contain

∏
i≤k αi. Given such R, the list of all full α-monomials is given by

⋃
b1,b2∈{0,1}

R(α1,b1,b2).

On input (α1, . . . , αk), if k = n then we simply return
∏

i≤n αi. Otherwise, let e′ be the circuit
obtained from e by setting to 0 each αi,b1,b2 that does not appear in R’s input, for each i ≤ k. Then,
for each variable αk+1,b1,b2 in layer k + 1, check if it is present in any e′ monomial using Lemma 2.3.
For each αk+1,b1,b2 that passes this check, we recursively call R(α1, . . . , αk, αk+1,b1,b2) and return the
union of the ≤ 4 answers.

There is a 1-1 correspondence between the leaves of R’s recursion tree and e’s full α-monomials.
Thus since the depth of each recursion is n ≤ |e| and since each step runs in poly(|e|)-time, overall
R runs in time poly(|e|,me). Finally, we note that for each α-monomial α̃ returned by R, we can
extract it from e (including its coefficient) by setting to 0 all variables that do not appear in α̃.

After running this algorithm, we define the decomposition D(e) := (s1, . . . , sme , e −
∑

i≤me
si).

Note that this satisfies the property that each element contains at most one full α-monomial. Then
the remainder of the zero-test algorithm is identical to Construction 3.13. The proof of correctness is
the same, and the algorithm can be shown to run in time poly(|e|,me) (in particular, using p = poly(n)
in the p-Bounded Speedup Hypothesis gives a poly(|e|)-time VBB simulator). We omit further details,
and this completes the proofs of Theorems 1.8 and 1.9.
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[CLT13] Jean-Sébastien Coron, Tancrède Lepoint, and Mehdi Tibouchi. Practical multilinear maps over
the integers. In 33rd Annual Cryptology Conference (CRYPTO), pages 476–493, 2013.

21

http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
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A Proof of Lemma 3.15

In this section we prove Lemma 3.15.

Proof of Lemma 3.15. As noted in [BGK+14], the claim would follow directly from the Schwartz-
Zippel lemma, if V real had been uniformly distributed, or obtained from uniformly distributed vari-
ables by applying a low-degree polynomial. This is not the case for V real due to the dependency on
the entries of the Ri’s.

Syntactically, e is a polynomial in the entries of the matrices Ci,b1,b2 , but as every entry of Ci,b1,b2

is a multivariate polynomial in αi,b1,b2 and the entries of Ri−1, R
−1
i , we think of e as a polynomial
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in the variables αi,b1,b2 , Ri, R
−1
i . (Note that elements from the fixed matrices Bi,b1,b2 in the original

branching program also appear in the polynomial.) We define a new polynomial p′ as follows:
p′ = e · Πi∈[n]det (Ri). Then for every v ∈ V real, p′ (v) = 0 ⇔ e (v) = 0, because R0, ..., Rn are
invertible.

Let mk denote the k’th monomial in e. We define Ik ⊆ {0, ..., n} to be the set of indices such that
mk contains a variable corresponding to an entry of R−1i , and notice that for every i ∈ {0, 1, ..., n},
mk contains at most one variable representing an entry of R−1i . Indeed, the entries of R−1i appear
only in the entries of the matrices Ci,b1,b2 of layer i, whose index-sets intersect, and consequently
their entries cannot be multiplied. We define a new polynomial p̃ as follows. p̃ is obtained from e by
replacing R−1i with the adjugate matrix adj (Ri), and multiplying every mk by Πi/∈Ikdet (Ri). Since
adj (R) = R−1 · det (R) for every invertible matrix R, and every mk contains at most one variable
representing an entry of R−1i , then p̃, p′ are functionally equivalent.

Notice, however, that p̃ does not depend on variables representing the entries of the R−1i ’s. More-
over, deg (p̃) = poly (deg (e)) = poly (n), because adj (R) is computable from the entries of R by a
polynomial of degree poly (w) (where w is the dimension of R). Let V rand denote the distribution
over assignments to the variables of p̃, when R0, ..., Rn are replaced with uniformly random matri-
ces M0, ...,Mn. The random variables (R0, ..., Rn) , (M0, ...,Mn) are statistically close (as observed
in the proof of Lemma 3.16), so |Prv←V real [p̃ (v) = 0]− Prv←V rand [p̃ (v) = 0]| = negl (n) (because the
statistical distance does not increase when a deterministic function is applied to the random vari-
ables). Moreover, since deg (p̃) = poly (n), then Prv←V rand [p̃ (v) = 0] = negl (n) by the Schwartz-
Zippel lemma. Consequently,

Pr
v←V real

[e (v) = 0] = Pr
v←V real

[
p′ (v) = 0

]
= Pr

v←V real
[p̃ (v) = 0] ≤

≤

∣∣∣∣ Pr
v←V real

[p̃ (v) = 0]− Pr
v←V rand

[p̃ (v) = 0]

∣∣∣∣+
∣∣∣∣ Pr
v←V rand

[p̃ (v) = 0]

∣∣∣∣ = negl (n)
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