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Abstract. The security of many lattice-based cryptographic schemes relies on the hardness of
finding short vectors in integral lattices. We propose a new variant of the parallel Gauss sieve
algorithm to compute such short vectors. It combines favorable properties of previous approaches
resulting in reduced run time and memory requirement per node. Our publicly available imple-
mentation outperforms all previous Gauss sieve approaches for dimensions 80, 88, and 96.
When computing short vectors in ideal lattices, we show how to reduce the number of multipli-
cations and comparisons by using a symbolic Fourier transform. We computed a short vector in
a negacyclic ideal lattice of dimension 128 in less than nine days on 1024 cores, more than twice
as fast as the recent record computation for the same lattice on the same computer hardware.
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1 Introduction

Since the late 1990s, there has been increasing interest in constructing cryptographic functions
with security based on the computational hardness of lattice problems, initiated by works
such as [2, 3, 26]. Lattice-based cryptography has become a promising source of cryptographic
primitives for several reasons. One of them is its post-quantum potential (cf. the survey [39]).
Another reason is that it allows new capabilities that are not possible with classical schemes:
e.g. fully homomorphic encryption [21] and multilinear maps [19]. Many of the most recent
lattice-based systems reduce their security to the hardness of the learning with errors (LWE)
problem [47] or its ring variant, the ring-learning with errors (R-LWE) problem [35]. The
latter provides an additional algebraic ring structure and is often preferred for efficiency.
Ideals in the ring Z[X]/(Xn − 1) have already been used in the NTRU cryptosystem [26];
multiplication of polynomials is a cyclic convolution and [26] notes that it can be computed
efficiently with the Fast Fourier Transform (FFT). For R-LWE, the ideals lie in the ring of
integers of a cyclotomic number field. Arithmetic in such a ring is performed in Z[X]/(Φm(X))
where Φm(X) is the m-th cyclotomic polynomial of degree n = ϕ(m). A popular choice is

m = 2k, since then n = 2k−1 and Φ2k(X) = X2k−1
+ 1. This polynomial is maximally sparse

and polynomial arithmetic can be performed efficiently using the FFT [34]. Many lattice-
based constructions (e.g. [11, 51, 10, 9]) and most implementations (e.g. [34, 24, 25, 6, 45, 8, 9])
use this particular instance of a cyclotomic polynomial.

The additional structure raises questions about the security of the resulting schemes. Can
a cryptanalyst use this structure and break the scheme? How hard are these resulting R-LWE
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instances in practice? In this paper, we look to the area of lattice cryptanalysis to answer
these questions.

Lattice Cryptanalysis. There are roughly two research directions in lattice cryptanaly-
sis. One direction is concerned with algorithms that provably solve lattice problems such as
the (approximate) shortest and closest vector problems. Such algorithms include LLL [31],
BKZ [50], enumeration [16, 28], sieving [4, 54], algorithms based on Voronoi-cell computa-
tions [40] and more recently on Discrete Gaussian Sampling [1]. The other direction considers
algorithms based on heuristics which can be used to solve lattice problems efficiently in prac-
tice, trying to push the dimension of the lattice for which the problem can be solved as high
as possible. Here, the aforementioned provable algorithms are often taken and modified ac-
cording to some heuristics to achieve better practical performance. This has been done for
BKZ [13], enumeration [18] and sieving [42, 55, 56, 54, 30]. Recently a novel heuristic algorithm
similar to sieving was proposed that is not based on any provable algorithm [7].

The hardness of the R-LWE problem is related to the difficulty of finding a sufficiently
short non-zero vector in a lattice associated to an ideal in a cyclotomic ring. E.g., the dis-
tinguishing attack from [39] requires a short vector of a certain length to achieve a given
distinguishing advantage. Hence, parameters for R-LWE-based schemes are chosen such that
polynomial run-time exponential-approximation algorithms such as LLL [31] are unlikely to
find such short vectors (cf. [52, 32]). The known algorithms which are capable of finding exact
solutions to the lattice problem all have exponential run time. Furthermore, there seems to
be a disconnect between theory and practice. In theory, enumeration has a super-exponential
asymptotic running-time complexity in the lattice rank, whereas sieving algorithms have only
single-exponential run-time complexities (at the necessary cost of exponential space require-
ments). In practice, enumeration algorithms using heuristic extreme pruning [18] in conjunc-
tion with heuristically improved BKZ [13] seem to perform best as can be seen from the results
of the SVP challenge [49]. Implementations of the heuristic versions of sieving algorithms can-
not reach as high dimensions and take more time for lower dimensions. Also, in the majority
of cryptographic applications an attacker only needs an approximate shortest vector to break
the scheme. Hence, algorithms that give an exact solution such as enumeration and sieving
do more work than necessary, and BKZ appears to be a better option for the cryptanalyst.

So is all then lost for sieving-based algorithms? Under suitable heuristic assumptions, the
asymptotically faster run times still hold, and experimental results suggest that run times lie
on an exponential curve with reasonable constants. This suggests that there exists a cross-over
point in the size of the dimension beyond which sieving algorithms beat enumeration-based
algorithms in practice. While the latter are superior for dimensions we are able to solve in
practice (roughly up to 140), cryptographic schemes typically have parameters far out of
reach of current capabilities [25, 45, 8]. For these, dimensions are at least a factor two larger
and for some applications such as homorphic encryption the dimensions are orders of mag-
nitude greater [22, 52, 32]. Even if the cross-over point turns out to be much higher than the
dimensions for current parameter sets, it is still interesting to determine its exact location to
assess a potential effect on parameter selection. Another reason to look at sieving algorithms
is that algorithms like BKZ and enumeration manipulate the Gram-Schmidt orthogonaliza-
tion, which does not retain the ideal lattice structure due to projection. This prevents such
algorithms from taking advantage of it. As sieving methods work with actual lattice vectors,
they seem to be the only type of algorithm that can take advantage of this structure in order
to find short vectors.
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However, the above reasoning only applies to acquiring vectors of very short length, i.e.,
solving SVP almost exactly. As mentioned, in practical cryptographic applications an approx-
imate solution often suffices (where the approximation factor is generally polynomial in the
dimension). In this setting, BKZ with its heuristic improvements seems to be the better algo-
rithm. Still, we think it is worthwhile to explore the use of the additional structure by sieving
because in the future sieving might become applicable even to cryptographic instances. For
example, [33, Lemma 10] shows that certain sieving algorithms achieve better asymptotic run
times when used as an approximation rather than an exact algorithm. Furthermore, if cryp-
tographic constructions can tighten the approximation factor required to break the scheme,
BKZ will have to use larger block sizes, and hence come closer to exact algorithms.

Related work. One such algorithm that can take advantage of the ideal structure is Gauss
sieve, due to Micciancio and Voulgaris [54] who already observed this property. It was later
examined by Schneider [48] and Ishiguro et al. [27]. It is useful for an implementation to
support efficient parallelization such that it can take advantage of modern hardware architec-
tures. There are three approaches that have been attempted to parallelize Gauss sieve, one
due to Milde and Schneider [41], one due to Ishiguro et al. [27] and more recently one due to
Mariano et al. [37]. The first is a distributed approach which runs into synchronization issues,
which the second aims to solve by using shared memory and a synchronized algorithm. The
third instead uses shared memory combined with special techniques to resolve concurrency
issues.

Contributions. In this paper we take a close look at the Gauss sieve algorithm from a
practical point of view. Our contributions are two-fold. Firstly, we propose yet another variant
of Gauss sieve which is inspired by the ideas from both Milde and Schneider [41] and Ishiguro
et al. [27]. We keep the concept adopted by Milde and Schneider to split up the global list of
vectors across all compute instances and do not use the method of Ishiguro et al. to have all
instances maintain a full copy of the list. This evenly distributes the required storage space
for the list vectors among the instances instead of duplicating it. We deviate from [41] how
sampled and reduced vectors are treated. Instead of sampling vectors locally and propagating
them through the system in a circular fashion, we sample new vectors and collect reduced
vectors globally, to feed them into the system by broadcasting a batch of the same vectors
to all computational units. This approach is closer to [27] and ensures that arbitrary pairs
of vectors from the list are Gauss reduced after each round of computation; this lowers the
global maximum list size and therefore the expected total run time.

Secondly, we extend the approach taken by Schneider [48] and Ishiguro et al. [27] to
use the ideal structure in the ring Z[X]/(Xn + 1). As done previously, we use that one can
represent the n rotations Xi · a (of the same norm as a) by only storing a single vector a,
providing a factor n reduction in storage for the same list size. Beyond that, we use rotations
to improve the efficiency of computing scalar products, which are used to check whether two
vectors are Gauss-reduced. In Section 4, we show how all the scalar products of one vector
with the n rotations of a second vector can be computed at once via the FFT (cf. [34] for
the application in the cryptographic setting). This provides an improvement from O(n2) to
O(n lnn) operations over the naive way of computing all scalar products separately. We also
show that comparing the absolute values of n such products to the square of the norms of the
two original vectors is sufficient to decide whether all n2 pairs of rotations of the two vectors
are Gauss reduced. This decreases the number of comparisons from n2 to n. In Section 4.4
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we point out that our techniques also apply to other special rings such as Z[X]/(Xn − 1) as
used in the NTRU cryptosystem [26].

We have implemented our parallel Gauss sieve variant for general (non-ideal) lattices with
additional stages of optimizations for negacyclic ideal lattices. The first stage uses vector ro-
tations as in previous approaches and the second stage deploys all optimizations mentioned
above, including the FFT to compute scalar products. Our approach is suitable for single
instruction, multiple data (SIMD) platforms and we have optimized our implementation by
using commonly available vector instruction set extensions. The source code of our implemen-
tations is publicly available4 and we hope that it will serve as a basis for more experiments.
The practical benefits of our algorithm are demonstrated by computing short vectors for
generic lattices of dimensions 80, 88, and 96, using a variable number of nodes, clearly indi-
cating the communication overhead. In the ideal lattice setting, we show the practical benefits
of working in Z[X]/(X27 + 1) of dimension 128 by computing the ring multiplication using
Nussbaumer’s symbolic FFT [43].

2 Preliminaries

Consider the Euclidean space Rn with its usual topology. We denote column vectors by bold
letters, the inner product of two vectors by 〈x,y〉 and the Euclidean norm by ‖x‖ =

√
〈x,x〉.

For real numbers r, we define bre = br + 1
2c to be the integer closest to r (rounded up if not

unique). A lattice L is a discrete subgroup of Rn. We only consider full-rank, integral lattices
L ⊂ Zn, represented by a basis B = {b1, . . . ,bn}. The lattice L = L(B) consists of all linear
combinations with integral coefficents of the basis vectors, i.e., L(B) = {

∑n
i=1 λibi : λi ∈ Z} .

We denote by λ1(L) the length of a shortest non-zero vector in L, i.e., λ1(L) = minx∈L\{0} ‖x‖.
The Shortest vector problem (SVP) is defined as follows: given a basis B of a lattice L = L(B),
find a vector v in L such that ‖v‖ = λ1(L).

A central notion for describing the Gauss sieve is that of Lagrange or Gauss reduction. Two
vectors x and y are called Gauss reduced if 2·| 〈x,y〉 | ≤ min{〈x,x〉 , 〈y,y〉}. Equivalently, this
means that ‖x±y‖ ≥ max{‖x‖, ‖y‖} and hence that the two-dimensional lattice spanned by
the basis {x,y} does not contain two linearly independent vectors x′ and y′ such that either
‖x′‖ < min{‖x‖, ‖y‖} or ‖x′‖ ≤ ‖y′‖ < max{‖x‖, ‖y‖}. Any basis {a,b} of a 2-dimensional
lattice can be Gauss reduced by repeating the following two steps until b does not change:

(1) If ‖b‖ < ‖a‖, swap a and b. (2) Replace b by b −
⌊
〈a,b〉
〈a,a〉

⌉
· a. In the remainder of the

paper, we use the following terminology: a vector y can be reduced with respect to a vector
x, if 2 · | 〈x,y〉 | > 〈x,x〉. In this case, reducing y with respect to x means, replacing y by

y−
⌊
〈x,y〉
〈x,x〉

⌉
·x. We sometimes also mean reducing y with respect to x to include checking the

condition 2 · | 〈x,y〉 | > 〈x,x〉, and if it is not satisfied, no further computation takes place
and the vector y remains unchanged.

Ideal lattices are lattices that arise from ideals in a ring R. For example, consider the ring
R = Z[X]/(f), where f is a monic polynomial of degree n, such that R consists of polynomials
with degree at most n − 1. One way of associating a lattice to an ideal is via the so-called
coefficient embedding. A polynomial in R can be identified with its coefficient vector, which is
an element from Zn. Any ideal I ⊆ R is an additive subgroup, and therefore the corresponding
coefficient vectors form a lattice over Zn. Furthermore, an ideal is closed under multiplication

4 See: http://www.joppebos.com/src/ParallelGaussSieve-1.0.tgz.
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with arbitrary ring elements r ∈ R. Hence, the ideal lattice inherits an additional algebraic
structure from the ring multiplication. If f is irreducible, then for any v ∈ R, the coefficient
vectors corresponding to v, X · v, ..., Xn−1 · v mod f are linearly independent and therefore
together span a full-rank lattice. This means that the lattice corresponding to the principal
ideal generated by v can be represented by using only one element v.

Gauss Sieve. The Gauss sieve algorithm was described by Micciancio and Voulgaris in [54]
(see Algorithm 3 in Appendix A for an outline including some modifications). The input to
Gauss Sieve consists of a basis B, a target length µ and a maximum number of collisions
c. Given a pairwise Gauss reduced list of vectors, it samples a new vector vnew and ensures
that it is Gauss reduced with respect to all vectors in the list. This is achieved by reducing
vnew with respect to list vectors shorter than itself and inserting it in the list. Finally, the
(updated) vnew is used to reduce list vectors longer than itself. List vectors that are reduced
are moved to the stack (since it is not guaranteed that they are still Gauss reduced with
respect to all other list vectors). The sampling procedure takes vectors from the stack before
sampling new ones.

The algorithm terminates either when a vector v ∈ L(B) is found such that ‖v‖ ≤ µ
or when the number of collisions is at least c. The motivation for the latter condition is
that we do not have to specify a target length µ. One expects (heuristically) that when a
short vector is found, it is found repeatedly (by subtracting different vectors), resulting in
many collisions, i.e. vectors being “lost” when they are reduced to zero. This reasoning seems
valid in practice, the proportion of collisions appears to increase dramatically, once a shortest
vector of the lattice is in the list. In practice, one typically adapts the algorithm such that
the termination condition depends exclusively either on the target length µ or the collision
bound c.

The maximum list size of Gauss sieve can be bounded using the kissing number, but there
is no provable bound on the run time of the algorithm, mostly because there is no bound on
the number of collisions. Because all pairs of vectors need to be Gauss-reduced, the run time
is at least quadratic in the list size, but practical experiments by Voulgaris and Micciancio
suggest a run time of 20.48n.

3 Parallel Gauss Sieve

In order to tap into the vast wealth of modern computing power, it is preferable that algo-
rithms can be computed on many computational cores concurrently. In this section we briefly
examine previous attempts to compute the Gauss sieve in parallel and propose modifications
resulting in our new variant of the algorithm.

Non-synchronized, circular parallelization. Milde and Schneider [41] split up the prob-
lem into several “instances” and connect each instance in a circular fashion. Each instance is
computed on a separate computational unit and consists of a list, a stack and a queue (all
local). Each instance acts as an independent Gauss sieve, taking new vectors from the queue
(filled by its neighboring instance), stack (filled by its local Gauss sieve) and the sampler in
that order. However, instead of inserting vectors in the list once they are pairwise reduced
with respect to the list (as in Algorithm 3 in Appendix A), they are sent on to the queue of the
next instance. Only vectors that have made a full round across all instances are inserted. In
this scenario, there is no explicit synchronization between nodes. All communication consists
of vectors being sent from one instance to the next.
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The data in [41] shows that this method does not appear to scale well with the number of
parallel instances. It seems that the list sizes vary greatly, and nodes with small lists sample
lots of new vectors, which in turn get stuck in the queues of nodes with bigger lists. Attempts
to work around these traffic jams by relaxing the pairwise reducedness between instances
cause the global list size to increase dramatically. Another side-effect is that a vector inserted
in a local list is not necessarily reduced with respect to vectors in the queue and stack of
other instances. The number of such vectors can be significant and this property increases
the overall list size and hence the run time of the algorithm.

Synchronized parallelization. To resolve this issue, Ishiguro et al. [27] propose to have
a copy of the full global list available to each computational unit (instead of splitting it up
across the units) and instead, process the vectors in batches. This process consists of three
stages: reducing the new batch of vectors with respect to the global list, reducing the new
batch of vectors with respect to each other and reducing the list vectors with respect to the
batch vectors. If at any stage any vector is reduced, it is removed and moved to the (global)
stack, whereas all vectors that “survived” the three stages comprise the new list. Both before
and after these three stages, every pair of vectors in the list is guaranteed to be reduced.
This results in a smaller overall list size and lower run time. In experiments, this approach
was used to solve a 128-dimensional ideal lattice challenge. The obvious drawback is that all
nodes need to have access to the full list.

3.1 A New Parallel Gauss Sieve Approach

We propose a modified version of the parallel Gauss sieve algorithm which combines the best of
both previous approaches. Each node maintains its own local list as in the approach by Milde
and Schneider (reducing the storage per node), but the algorithm consists of synchronized
rounds which ensure that all vectors in the union of all local lists are pairwise reduced as in the
Ishiguro et al. approach (lowering the list size and therefore the run time). Sampling of vectors
is done globally for all nodes at one node. Each vector in a newly sampled batch is reduced
with respect to all vectors in the local list of each node. Then each node reduces a selection of
the batch vectors with respect to the other batch vectors. Next, all nodes communicate which
sample vectors have survived globally, i.e. which vectors are pairwise Gauss reduced with
respect to all list vectors and each other, and what the sizes of their local lists are. The node
with the smallest local list inserts the surviving batch vectors and the next round begins. The
algorithm is depicted in Figure 1. Algorithm 1 is an algorithmic description of this process,
in which the steps that require communication are marked in red and are underlined. Next,
we give a detailed description.

Node layout and splitting of the global list. Let there be N nodes available for the
parallel computation, and denote by Ni the i-th node for 0 ≤ i < N . Each node Ni locally
maintains a list Li, a list of samples Qi, a list of reduced samples Q′i and a stack Si. The union
L =

⋃
i Li of the local lists can be viewed as the global list in the Gauss sieve (in the form of

Algorithm 3, note that Algorithm 1 does not require the lists to be sorted). One node (here
node N0) also maintains the sampling procedure and a global stack S from which vectors are
taken into the global queue Q. The global stack S can be equal to the local stack S0, which
is done in Algorithm 1 and our implementation.

Broadcast of new samples. At the start of each round, the first node N0 compiles a list
Q of k new samples by taking them from the stack S or sampling them using the GPV
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Node 0 Node 1 Node N

L0

Q0

S0 Q′0S

Sample(S)

Q
I⋂

i Qi

jmini |Li|

L1

Q1

S1 Q′1

LN

QN

SN Q′N

. . .

. . .

IQi , |Li|

I⋂Qi
, jmin

Fig. 1. Parallel Gauss Sieve algorithm. Double, dark grey arrows depict the broadcast of vectors; double-sided,
single-line arrows represent mutual Gauss reduction; dashed, single-line arrows stand for removing reduced
vectors. Double, light grey arrows show the sending of stack vectors; dashed, double, light grey arrows show
the sending of minimal representatives. Communication of indices of survivors in the local stacks, local list
sizes and indices of vectors to be inserted are represented by the red arrows.

algorithm [23]. The number of samples k is a parameter of the algorithm. It then broadcasts
Q to all other nodes and each node Ni copies Q into their local sample list Qi.

Reduction phase. Each node now locally compares all pairs of vectors from Qi and Li to see
if they are pairwise reduced and reduces vectors wherever possible. Vectors from Qi that are
reduced are removed and stored in the reduced samples list Q′i, whereas vectors from Li that
are reduced are removed and stored in the local stack Si. When all pairs have been checked,
each node compares the surviving samples that are still in Qi to each other. This is done in
a structured way to split the work between all nodes: each node only checks a predetermined
subset of Q against the rest of Qi. Again, any sample that is reduced during this stage is
removed from Qi and added to Q′i. Note that, although lines 7-8 and 10-11 of Algorithm 1
both list the reduction twice, they require only a single inner product, as they make the two
comparisons 2 · |〈v, l〉| > 〈l, l〉 and 2 · |〈l,v〉| > 〈v,v〉, which share the same left-hand term.

Inserting vectors into the list. At the end of the reduction phase any two vectors from the
set (

⋃
i Li)∪ (

⋂
iQi) are Gauss reduced. This is the case because this set contains exactly the

survivors of the reduction phase, i.e. all vectors that could not be reduced with respect to any
other vector in this set. The surviving sample vectors are the vectors in the set

⋂
iQi which

need to be inserted into the global list L =
⋃

i Li, i.e. the collection of local lists, and it has
to be decided into which local list Li they are inserted. In order to determine this, the nodes
collectively compute

⋂
iQi, i.e. the set of original Q-vectors that have survived, and also which

node holds the smallest list. The first task requires the computation of a collective bitwise
AND on a bitmask that lists the surviving vectors per node. The second requires a gathering of
the list-sizes and a broadcast of the result (both are elementary standard operations available
in any parallel computation library). The node with the smallest list inserts all the surviving



8 Joppe W. Bos, Michael Naehrig, and Joop van de Pol

Algorithm 1 Parallel Gauss sieve variant. Given a basis B, length bound µ, and list of N
nodes Ni, 0 ≤ i < N , return a short vector v with ‖v‖ ≤ µ as soon as it is found. Let
(Li, Qi, Q

′
i, Si) resp. be the list, sample list, non-survivor list and stack of node Ni. Commu-

nication steps are red and underlined.

1: function GaussSieve(B, µ, {Ni}Ni=0)
2: while short vector not found do
3: N0 samples a list Q of k vectors via Sample(S0) (see Algorithm 3)
4: N0 broadcasts Q
5: for i in {0,1,. . . ,N-1} do Qi ← Q, Q′i ← ∅, Si ← ∅
6: for (v, l) ∈ Qi × Li do
7: if Reduce(v, l) then Move v from Qi to Q′i

8: if Reduce(l,v) then Move l from Li to Si

9: for (v, l) ∈ Qi ×Qi do
10: if Reduce(v, l) then Move v from Qi to Q′i

11: if Reduce(l,v) then Move l from Qi to Q′i

12: Compute
⋂

iQi

13: for v ∈
(⋂

iQi

)
do

14: if ‖v‖ ≤ µ then return v

15: Compute index j such that |Lj | is minimal, Lj ← Lj ∪
(⋂

iQi

)
16: for v ∈ Q \

(⋂
iQi

)
=
⋃

iQ
′
i do Add minimal representative of v to S0

17: for v ∈
⋃

i Si do
18: if ‖v‖ ≤ µ then return v

19: for i in {0,1,. . . ,N-1} do Ni sends Si to N0

20: S0 = S0 ∪
(⋃

i Si

)

vectors into its list, which requires no additional communication because the survivors are
exactly those vectors from the original Q that were unchanged by all nodes.

Recycling of reduced vectors. The last step of the round is to gather all vectors that were
reduced in this round in the global stack S. These are the reduced samples in the Q′i, together
with the reduced list vectors in the local stacks Si. Not all vectors in

⋃
iQ
′
i are propagated into

the global stack for sampling because this leads to unnecessary collisions. A vector v which is
reduced at two different nodes Ni and Nj by two different list vectors li and lj , produces two
vectors vi ∈ Q′i and vj ∈ Q′j . If both of them are passed to the next rounds and are inserted
into Q, it is likely that vi will be reduced at node Nj by lj and vj at Ni by li, leading to the
same vector going back to the global stack at the end of the round. This behavior can be (and
has been) observed in practice. Therefore, from all vectors that arise from the same sample
vector by reduction with respect to different list vectors, we only propagate the vector with
the minimal norm. We call this vector the minimal representative of v. For each non-survivor
from the original list Q, this requires a collective computation across all nodes of the vector
with the minimal norm among the vectors in

⋃
iQ
′
i that originate from the same vector in Q.

The node that contains this minimal representative of the non-survivor sends it to the first
node. Finally, the vectors in the local stacks Si are all taken into the next round and each
node sends the vectors from their stack Si to the first node.

4 Sieving in Ideal Lattices

Ideal lattices are ideals in a ring R. We consider lattices which are ideals in the ring of
integers of the cyclotomic number field R = Z[X]/(Φm(X)), where m = 2n is a power
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of 2 such that the cyclotomic polynomial is Φm(X) = Xn + 1. Ideals are invariant under
multiplication by arbitrary ring elements; if a(X) is an element in an ideal, then X · a(X)
also belongs to the ideal. This means that for any vector a in the ideal lattice, one obtains
lattice vectors Xi · a, i ∈ Z. An element a ∈ R is of the form a(X) =

∑n−1
i=0 aiX

i and is
given by its coefficient vector a = (a0, a1 . . . , an−1) ∈ Zn. The coefficient vectors of Xi · a(X)
mod (Xn + 1) are denoted by Xi · a for i ∈ Z, and we call these vectors the rotations of a.
Indeed, the polynomial X · a(X) mod (Xn + 1) corresponds to a negacyclic rotation of the
coefficient vector a: X ·a = (−an−1, a0, . . . , an−2). Conversely, rotating to the left corresponds
to X−1 · a = −Xn−1 · a = (a1, . . . , an−1,−a0).

Schneider [48] and Ishiguro et al. [27] previously have used the fact that an ideal lattice
contains all rotations of a lattice vector. Since a single stored vector actually represents its n
rotations, the list storage is reduced by a factor n. However, these works do not seem to use
the ring structure any further. In this section, we show how to use the relation between ring
multiplication and the scalar products of rotations to further improve the efficiency of Gauss
sieve.

The next lemma (the proof can be found in Appendix B) shows that by computing the n
scalar products 〈a, X`·b〉, 0 ≤ ` < n, one can easily check whether all n2 possible combinations
of two vectors Xi · a and Xj · b, i, j ∈ Z, are Gauss reduced.

Lemma 1. Let a, b ∈ R = Z[X]/(Xn + 1) with coefficient vectors a,b. If 2|〈a, X` · b〉| ≤
min{〈a,a〉, 〈b,b〉} for all 0 ≤ ` < n, then Xi · a and Xj ·b are Gauss reduced for all i, j ∈ Z.

If the condition in Lemma 1 is not satisfied, then either a or b can be reduced by some
rotation of the other vector. Namely, if 2|〈a, X` ·b〉| > 〈b,b〉, then a can be reduced by X` ·b
and if 2|〈a, X` · b〉| > 〈a,a〉, then b can be reduced by Xn−` · a. Note that (by the proof of
Lemma 1 in Appendix B) this is equivalent to saying that, if 2|〈a, X` · b〉| > 〈b,b〉, then any
rotation of a can be reduced by some rotation of b. The same holds for b with the second
condition. The function ReduceRot in Algorithm 2 can be used instead of Reduce in the ideal
lattice setting. When included in Algorithm 1, the checks of the inequalities in 7-8 and 10-11
can be combined as mentioned in Section 3.1 and require only n comparisons. Next, we show
that all n scalar products can be computed by a single ring product. Since the ring product
is a negacyclic convolution, it can be computed via an FFT algorithm in O(n lnn) arithmetic
operations instead of O(n2) for a naive, separate computation of the scalar products.

4.1 Computing n Scalar Products by a Single Ring Product

Given two elements a, b ∈ R, let c(X) = a(X) ·b(X) mod (Xn+1). In this subsection, we de-
scribe the relation of this product to the scalar products of the rotations of the elements a and
b. For a, b, c ∈ R, let a = (a0, a1, . . . , an−1), b = (b0, b1, . . . , bn−1) and c = (c0, c1, . . . , cn−1)
be their coefficient vectors. Define the reflex polynomial of b(X) as b(R)(X) = Xn−1 · b(X−1),
and let b(R) = (bn−1, bn−2, . . . , b0) be its coefficient vector. The coefficients ci are given by
the following equations involving scalar products of a with rotations of b(R):

c0 = a0b0 − a1bn−1 − · · · − an−1b1 = 〈a, (b0,−bn−1, . . . ,−b1)〉 = 〈a,−X · b(R)〉,
c1 = a0b1 + a1b0 − a2bn−1 − · · · − an−1b2 = 〈a, (b1, b0,−bn−1, . . . ,−b2)〉 = 〈a,−X2 · b(R)〉,

...
...

...
...

cn−1 = a0bn−1 + a1bn−2 · · ·+ an−1b0 = 〈a, (bn−1, bn−2, . . . , b0)〉 = 〈a,b(R)〉.
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Algorithm 2 Algorithms for pairwise reducing (a, Xi · b) for all i ∈ {0, . . . , n − 1} The
function ReduceFFT assumes as additional input the precomputed values â = FFT(a) and
b̂(R) = FFT(−X · b(R)).

1: function ReduceRot(a,b)
2: for i = 0, . . . , n− 1 do
3: if 2 ·

∣∣〈a, Xib〉
∣∣ > 〈b,b〉 then

4: a← a−
⌈
〈a,Xib〉
〈b,b〉

⌋
Xib

5: return true
6: return false

7: function ReduceFFT((a, â), (b, b̂(R)))
8: z ← FFT−1(â� b̂(R))
9: for i = 0, . . . , n− 1 do

10: if 2 · |zi| > 〈b,b〉 then
11: a← a−

⌈
zi
〈b,b〉

⌋
Xn−i+1 · b

12: return true
13: return false

In general, this means that we get ci = 〈a,−Xi+1b(R)〉, 0 ≤ i < n. If we replace b by −b(R)(X)
and instead compute c(X) = a(X) · (−b(R)(X)) mod (Xn + 1), we obtain in the coefficients
of c the scalar products ci = 〈a, Xi+1 · b〉 because (b(R))(R)(X) = b(X). Now the last scalar
product is cn−1 = 〈a,−b〉. Using one of the properties in Lemma 3 (in Appendix B) and
computing c as the product with−X ·b(R)(X) instead, we get that c(X) = a(X)·(−X ·b(R)(X))
mod (Xn+1) has coefficients ci = 〈a, Xi·b〉 because the product c(X) = (Xa(X))·(−b(R)(X))
mod (Xn +1) has coefficients ci = 〈X ·a, Xi+1 ·b〉 = 〈a, Xi ·b〉. We have proved the following
lemma.

Lemma 2. Let a,b ∈ Zn be two coefficient vectors corresponding to the elements a, b ∈ R =
Z[X]/(Xn+1). Let c(X) = a(X)·(−X ·b(R)(X)) mod (Xn+1) and let c = (c0, c1, . . . , cn−1) ∈
Zn be its coefficient vector. Then ci = 〈a, Xi · b〉 for 0 ≤ i < n.

This means that on input of two vectors a and b corresponding to polynomials a(X) and
b(X) in R, by reordering the coefficients of b and adjusting the signs to get the polynomial
−X ·b(R)(X) and then computing the ring product c(X) = a(X)·(−X ·b(R)(X)) mod (Xn+1)
using an FFT-algorithm in O(n(lnn)(ln lnn)) bit operations (see the approach described in
Section 4.2), one obtains all scalar products ci = 〈a, Xi · b〉 of a with the rotations of b.

4.2 Nussbaumer’s Algorithm for Negacyclic Convolutions

The product of two polynomials in R, i.e. a product a(X)b(X) mod (Xn + 1) where n is
a power of 2, is a negacyclic convolution and we use Nussbaumer’s symbolic algorithm [43]
to compute it. Appendix C provides a technical description; see [29, Exercise 4.6.4.59] and
[15, Section 9.5.7] for more details. We would like to point out that one can use other types
of number theoretic transforms, e.g. see the fast implementation using vector instructions
from [25].

The algorithm recursively reduces the negacyclic convolution of vectors of length n, by
a re-organization of coefficients, to additions, subtractions and negacyclic convolutions of
shorter vectors. It can be divided into three steps: first, the two polynomials a, b are re-
ordered and split up into sequences A,B of length 2s (half of the entries being zero), each of
which is converted to its DFT. The resulting sequences Ã, B̃ of length 2s are then multiplied
coefficient-wise via negacyclic convolutions, resulting in a sequence C̃. Finally, this sequence
is converted back from the DFT representation and unified into a single polynomial that
corresponds to the negacyclic convolution of the two original polynomials. The second step
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of computing negacyclic convolutions of shorter sequences can be expanded recursively by
splitting each of the 2s coefficients of each sequence into 2s′ pairs themselves, resulting in even
smaller negacyclic convolutions that need to be computed. This is equivalent to expanding
the conversions in the first and third steps to account for the levels of recursion and applying
step two to all 4ss′ sequence elements.

For a vector a corresponding to a ∈ R, we denote the DFT representation of a after the
combined computations of the conversions described above by FFT(a). For two such vectors
a,b, the pairwise negacyclic convolution of these DFT representations in step two above
is denoted by FFT(a) � FFT(b). We denote the representation achieved by computing the
inverse DFT of a vector ĉ in step three by FFT−1(ĉ). Furthermore, let â = FFT(a) and
b̂(R) = FFT(−X · b(R)).

During the (possibly recursive) conversion in step one (when computing â and b̂(R)), the
two polynomials do not interact. Therefore, this step only needs to be performed once and the
result can be stored for each sampled vector in the Gauss sieve (significantly decreasing the
cost of computing these n inner-products at the cost of additional memory). Then, when two
vectors are compared, it only remains to compute the pairwise negacyclic convolutions (ĉ =
â � b̂(R)) and the (possibly recursive) reverse transformation (FFT−1(ĉ)). As a result, these
two latter steps account for most of the computation time during the algorithm. Functionality
to compute such a DFT can be used to speed-up the reduction step in the Gauss sieve as
outlined in the function ReduceFFT in Algorithm 2 and can be used instead of Reduce in the
ideal lattice setting.

4.3 Nussbaumer’s Algorithm Using SSE instructions

We assume that â = FFT(a) and b̂(R) = FFT(−X · b(R)) are precomputed. Hence, the two
most costly steps of Nussbaumer’s algorithm are the negacyclic convolutions ÃiB̃i mod (Zr+
1) and the inverse FFT transformations. We implemented Nussbaumer’s algorithm completely
using SSE instructions to target dimension 128 using two levels of recursion. In this case
n = n1 = 128 = 2k1 = s1 · r1, where k1 = 7, s1 = 2b7/2c = 8 and r1 = 2d7/2e = 16. For the
second level of recursion, we have n2 = 16 = 2k2 = s2 · r2, where k2 = 4, s2 = 2b4/2c = 4
and r2 = 2d4/2e = 4. As a result, step two computes (2s1)(2s2) = 16 · 8 = 128 negacyclic
convolutions in dimension r2 = 4, which corresponds to the following computation:

z0 = x0y0 − x1y3 − x2y2 − x3y1, z1 = x0y1 + x1y0 − x2y3 − x3y2,
z2 = x0y2 + x1y1 + x2y0 − x3y3, z3 = x0y3 + x1y2 + x2y1 + x3y0,

where x = (x0, x1, x2, x3) and y = (y0, y1, y2, y3) are one of the 128 pairs and z = (z0, z1, z2, z3)
is our desired output.

We assume that the size of each vector coefficient is less than 216 such that all coefficients
can be stored in 16 bits. This eases adaptation in our vector instruction based implementation.
The same assumption has also been made in previous implementations of the parallel Gauss
sieve [27] and does not seem to pose any restrictions on the dimensions which are considered
in practice nowadays. Moreover, we assume that the entries of the DFT representations after
the transformation of step one fit in 16 bits. The main reason for this restriction is that in the
second step two of these entries are multiplied together and such values are added which can
be done efficiently using the SSE2 “multiply and add packed integers” instruction PMADDWD

(available as the C-intrinsic mm madd epi16). This instruction takes as input two 4-way SIMD
32-bit registers ((a0, a1), (a2, a3), (a4, a5), (a6, a7)) and ((b0, b1), (b2, b3), (b4, b5), (b6, b7)), where
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the ai, bi are 16-bit values, two of which are stored together in one 32-bit register. It then
computes (c0, c1, c2, c3) such that

c0 = (a0 · b0) + (a1 · b1), c1 = (a2 · b2) + (a3 · b3),
c2 = (a4 · b4) + (a5 · b5), c3 = (a6 · b6) + (a7 · b7).

I.e. it multiplies the 16-bit integers stored in a 32-bit word and adds these results. Hence,
the results are stored as 32-bit entries. This restriction is not a problem since we expect
that the inner-products of the list vectors get smaller while the algorithm progresses. We
always double-check the inner-product with a regular routine without any size restrictions to
catch false-positives: e.g. in case the inner-product of a candidate overflows. This does not
increase the computational time noticeably since a reduction of a list vector happens only
very infrequently (relative to the total number of computed inner-products).

For each of the pairs (x,y) we store

X = (x0, x1, x2, x3, x0, x1, x2, x3),

Y1 = (y0,−y3,−y2,−y1, y1, y0,−y3,−y2),
Y2 = (y2, y1, y0,−y3, y3, y2, y1, y0).

in an SSE register. Now we obtain z by computing the “multiply and add packed integers” on
the pairs (X,Y1) and (X,Y2) after performing the appropriate unpack routines. From this
point on, the DFT is stored in SSE registers with 32 bits per entry. Note that the storage of
the DFT is asymmetric for x and y. In our implementation, we generally store the DFT of
the sampled vectors in the form of X and the DFT’s of list vectors in the form of Y1 and Y2.
This way, we always have one representation of each type when comparing sample vectors to
the list. The third step is implemented along the lines of [29, Exercise 4.6.4.59]. Negacyclic
rotations are performed by using appropriate left and right shifts combined with additions
and subtractions.

4.4 A Note on NTRU Lattices

The NTRU cryptosystem [26], published in 1998 long before the appearance of schemes based
on R-LWE, uses a similar ring structure. The original NTRU setting works with the ring
R = Z[X]/(Xn − 1). An ideal in R containing a also contains Xi · a(X). The corresponding
vectors are cyclic rotations of a and this time there is no sign flip, i.e. Xn ·a = a and the other
properties in Lemma 3 (in Appendix B) hold in this case as well. The analog of Lemma 2 holds
accordingly: Let a,b ∈ Zn with corresponding a, b ∈ R and let c(X) = a(X) · (X · b(R)(X))
mod (Xn−1), then ci = 〈a, Xi ·b〉 for i ∈ {0, . . . , n−1}. This means that one can also obtain
n scalar products for the price of a single ring product.

Multiplication in R corresponds to the standard cyclic convolution of vectors, and can
therefore be carried out with an FFT algorithm. If n is chosen to be a power of 2, we can use
Nussbaumer’s algorithm for cyclic convolution which recursively calls cyclic and negacyclic
convolutions as described above. An implementation using SSE instructions can be done
similarly to what we have described in Section 4.3. But in light of Gentry’s attack [20] on
composite degrees, the parameter n is usually chosen to be prime. In this case, the work
by Rader [46] shows that the DFT can still be computed in O(n lnn) digit operations. For
example, the first approach described by Rader is to separate the computation of the 0-th
coefficient from the others and transform the relevant sequences into sequences of length
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Table 1. Results in seconds and scaling of our parallel Gauss sieve variant for different dimensions on Blue-
Crystal Phase 2 . For a varying number of cores C we state the speedup S with respect to the 8-core setting
and the efficiency E = S · 8/C.

C
80 88 96

tGH tColl S E tGH tColl S E tGH tColl S E

8 1918 3010 - - 28961 45106 - - 506841 654483 - -
16 883 1592 1.9 .95 16794 23994 1.9 .95 252246 336288 2.0 1.0
32 533 820 3.7 .93 10445 14176 3.2 .80 125907 167790 3.9 .98
64 248 455 6.6 .83 4259 6037 7.5 .94 75676 101303 6.5 .81
96 3638 4984 9.1 .76 46774 70740 9.3 .77
128 2292 3392 13.2 .83 41196 54907 11.9 .74
160 2267 3206 14.1 .71 27864 36048 18.2 .91
192 2276 3104 14.5 .60 27038 35179 18.6 .78
224 1960 2849 15.8 .56 24873 33115 19.8 .71
256 1980 2726 16.5 .51 23442 30374 21.5 .67

n − 1. If n − 1 is highly composite or even a power of 2, the DFT can then be computed
by convolutions of length n− 1 on a permutation of the original sequence and a sequence of
corresponding roots of unity. If n− 1 itself has large prime factors, a zero-padding approach
to some dimension n′ > n might be more suitable. A different approach is using discrete
weighted transforms as outlined by Crandall and Fagin [14].

5 Experimental results

In order to assess the viability of the algorithmic techniques presented in this work, we cre-
ated an implementation which allows to be executed concurrently using the message passing
interface standard [38]. In this section, we summarize the experiments we ran and discuss
the results. First, we discuss experiments with our new variant of the parallel Gauss sieve
algorithm (see Section 3.1) in order to establish how it scales when increasing the number of
nodes. Next, we consider the ideal lattice variant using the FFT approach (see Section 4) and
compare this to an ideal lattice variant using rotations only as well as to the regular (non-
ideal) algorithm. All experiments were run on one of two compute clusters, the BlueCrystal
Phase 2 cluster and the BlueCrystal Phase 3 cluster of the Advanced Computing Research
Centre at the University of Bristol.

The nodes in BlueCrystal Phase 2 are equipped with two 2.8 GHz quad-core Intel Harper-
town E5462 processors with 8 GB RAM per node (1 GB per core). They are connected via a
QLogic Infinipath high-speed network. The nodes in BlueCrystal Phase 3 each have two 2.6
GHz Intel Xeon E5-2670 with 16 cores and 64 GB RAM per node (4 GB per core). We had to
use two clusters because the more modern BlueCrystal Phase 3 is dedicated to running larger
and more compute intensive jobs and thus has a much lower availability than BlueCrystal
Phase 2.One benefit of using the latter for experiments on scalability is that it has fewer cores
per node, and therefore demonstrates the need and the impact of communication between
the different threads in our algorithm more quickly than the former. Recently there have
been some heuristic improvements to the (serial) GaussSieve [17]. These serial improvements
should be fully applicable to our parallel (non-ideal) variant, whereas only the improvements
to the sampler can be combined with our DFT-based approach for ideal lattices.

The New Parallel Gauss Sieve Variant. To benchmark our modified parallel Gauss sieve
variant, we ran experiments on BlueCrystal Phase 2 using Goldstein-Mayer lattices from the
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SVP challenge [49] of dimensions 80, 88, and 96. Similar to Ishiguro et al. [27], we also used
BKZ [50] with block size 30 (as implemented in the fplll library [12]) to preprocess the basis
before applying the algorithm. Note that these results are not comparable to Ishiguro et al.,
due to the different computer architecture. We repeated these experiments using a varying
number C of cores, and measured the time tGH(C) in seconds that it took for these C cores to
find a vector with norm smaller than the desired bound, i.e. less than 1.05 times the Gaussian
heuristic, as well as the time tColl(C) it took to generate enough collisions to satisfy the
termination condition. As the baseline we use 8 cores, as a single node in the cluster contains
8 cores, which corresponds to the “shared memory” case. For each higher number of cores,
we computed the speedup S = tColl(C)/tColl(8) and the efficiency E = S · 8/C. Consider
the dimension 96 results from Table 1. When using four nodes (32 cores) the communication
overhead between the nodes is relatively low: we see a factor 3.9 reduction in wall-clock time
compared to the single-node setting, while we can hope for at most a factor four speed-up. This
communication overhead becomes more prominent when using much more compute nodes.
When running on 256 cores we still get a factor 22.5 reduction in wall-clock time while we
can hope for a maximum factor of 32.

The results from [27] are obtained when finding short vectors using their version of the
parallel Gauss sieve algorithm for random and ideal lattices on the AmazonEC2 cluster. One
“instance” in this cluster contains two Intel Xeon E5-2670 processors (containing two times
eight cores and which supports running 32 threads in parallel). Mariano et al. [37] use the same
CPU-chip model, allowing for an easier comparison. To this end, we performed single-machine
experiments on the BlueCrystal Phase 3 cluster, which also has the same CPU-chip model as
the AmazonEC2 cluster used in [27]. Note that Mariano et al. use a different BKZ block size
of 34 to pre-process the basis, which means comparison is not completely straightforward,
since they start with a set of shorter vectors. Ishiguro et al. require 0.9 hours to find a short
vector in a random 80-dimensional lattice when running on a single AmazonEC2 instance,
whereas Mariano et al. require 2896 seconds or about 0.8 hours. Our algorithm requires only
1201 seconds, or 0.33 hours, which is a factor three improvement over Ishiguro et al. and
at least a factor two improvement over Mariano et al. Furthermore, Ishiguro et al. report a
run-time of 200 instance hours for finding a short vector in a 96-dimensional random lattice,
whereas Mariano et al. do not tackle this dimension. Our variant of the parallel Gauss sieve
algorithm can do this without shared memory in 61.4 hours, which is again a speed-up of at
least a factor three. These performance numbers highlight the potential of our approach.

Recently, Laarhoven [30] proposed a similar sieving algorithm that uses locality-sensitive
hashing to achieve better asymptotic run times under heuristic assumptions. Mariano et
al. [36] implement a parallel version using a similar lock-free approach as for the parallel
Gauss sieve. Since our implementation appears to give better results in the Gauss sieve case,
this suggests that it is worth trying a similar approach for the Hash sieve algorithm and
comparing the results.

The Ideal Lattice Setting. To benchmark the ideal Gauss sieve variant, we ran experiments
on BlueCrystal Phase 2 using a power of two cyclotomic lattice of dimension 128 from the
ideal lattice challenge [44]. We used BKZ with block size 30 to preprocess the basis, which is
consistent with the work of Ishiguro et al. [27]. We aim to measure the difference between our
regular parallel variant using no ideal-specific techniques (see Section 3.1), a version which
additionally uses information about the rotations (see the function ReduceRot in Algorithm 2
and the properties in Lemma 3) and a version which uses our FFT approach using SSE
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Fig. 2. The number of vectors in the list against the running time in a power of two cyclotomic ideal lattice
of dimension 128 for three parallel Gauss sieve variants.

instructions (see Section 4.3). While fixing the number of compute cores to 64, we measure
how many vectors are in the (global) list after a certain time. This characteristic is useful
since the size of list provides information on how far the algorithm has proceeded.

Figure 2 shows the results of these experiments. Note that for the versions that use ideal-
specific techniques, the “list” only stores one vector for each 128 vectors in the system because
all the rotations of vectors are taken into account as well. The number of vectors printed in
the graph is the complete number of vectors in the system including rotations, i.e., the total
number of vectors that are all pairwise Gauss reduced. Figure 2 clearly shows the advantage
of the approaches which use the ideal structure over the regular algorithm. After eleven and a
half hours (41 400 seconds) the version using only rotations had completed 19 428 rounds, and
had 288 783 vectors in its system, representing 288 783·128 vectors in total, whereas the version
using FFT achieved the same in about three hours and twenty minutes, or 12 000 seconds,
which corresponds to a speed-up of a factor 3.45. Finally, we applied our FFT implementation
to the same SVP ideal lattice challenge of dimension 128 [44] that Ishiguro et al. [27] solved.
We again used BlueCrystal Phase 3, with central processing units identical to the ones used
in [27]. Again, we used BKZ with block size 30 to preprocess the basis obtained from the ideal
lattice challenge. We ran our software on 64 nodes (1024 cores) and found a short vector after
750 478 seconds wall-clock time (8.69 days). The short vector found is a rotation of the short
vector presented in [27]. In [27], this short vector was obtained after computing 14.88 days
on 1344 cores. Our computation required 24.4 core years, is thus more than twice as fast as
the computation carried out in [27], and shows the practical advantages of our approach and
implementation on conventional compute clusters.

6 Discussion

What should the reader take away from these results? Lattice cryptanalysis is a complex
subject, with different types of algorithms that are combined to find short vectors in lattices.
Some works even claim that LWE-type problems are asymptotically best solved using non-
lattice algorithms [5]. The most recent results of the SVP challenge [49] suggest that in
currently tractable dimensions, a combination of BKZ and (some variant of) enumeration
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appears to give the best results. However, it is not possible to reproduce and verify most
of those results, because too many details of the experiments are not public: including, and
most importantly, in most cases the source code used. This makes comparing the different
algorithms and their results difficult.

In this paper, we have shown that for sieving algorithms such as the Gauss sieve, there
are additional techniques to speed up the search for short vectors in cyclic and negacyclic
lattices. Given the current performance details by various results on the SVP challenge [49],
it seems that our speed-ups are not enough to defeat other SVP-solvers such as enumeration
in tractable dimensions. However, cryptographic applications are not designed to utilize such
relatively small dimensions, and the asymptotic run times of the various algorithms for solving
the shortest vector problem show that sieving-based algorithms will eventually become faster
than enumeration based approaches.

But even then, an approximate solution often suffices for cryptographic applications and
thus it is currently hard to justify that sieving algorithms are practical in this setting. Still,
we feel that examining these techniques and their effect are worthwhile, as it is unknown how
the landscape may change in the future.
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12. D. Cadé, X. Pujol, and D. Stehlé. fplll library, version 4.0.4. Available at http://perso.ens-lyon.fr/

damien.stehle/fplll/, 2013.
13. Y. Chen and P. Q. Nguyen. BKZ 2.0: Better lattice security estimates. In Advances in Cryptology -

ASIACRYPT 2011 - 17th International Conference on the Theory and Application of Cryptology and
Information Security, Seoul, South Korea, December 4-8, 2011. Proceedings, pages 1–20, 2011.

14. R. Crandall and B. Fagin. Discrete weighted transforms and large-integer arithmetic. Mathematics of
Computation, 62(205):305–324, 1994.

15. R. Crandall and C. Pomerance. Prime numbers: a computational perspective. Springer, second edition,
2005.

16. U. Fincke and M. Pohst. Improved methods for calculating vectors of short length in a lattice, including
a complexity analysis. Mathematics of Computation, 44(170):pp. 463–471, 1985.

17. R. Fitzpatrick, C. Bischof, J. Buchmann, O. Dagdelen, F. Gopfert, A. Mariano, and B.-Y. Yang. Tuning
GaussSieve for speed. Cryptology ePrint Archive, Report 2014/788, 2014. http://eprint.iacr.org/788.

18. N. Gama, P. Q. Nguyen, and O. Regev. Lattice enumeration using extreme pruning. In H. Gilbert, editor,
EUROCRYPT, volume 6110 of LNCS, pages 257–278. Springer, 2010.

19. S. Garg, C. Gentry, and S. Halevi. Candidate multilinear maps from ideal lattices. In T. Johansson and
P. Q. Nguyen, editors, EUROCRYPT, volume 7881 of LNCS, pages 1–17. Springer, 2013.

20. C. Gentry. Key recovery and message attacks on NTRU-composite. In B. Pfitzmann, editor, EURO-
CRYPT, volume 2045 of LNCS, pages 182–194. Springer, 2001.

21. C. Gentry. Fully homomorphic encryption using ideal lattices. In M. Mitzenmacher, editor, STOC, pages
169–178. ACM, 2009.

22. C. Gentry, S. Halevi, and N. P. Smart. Homomorphic evaluation of the AES circuit. In R. Safavi-Naini
and R. Canetti, editors, CRYPTO, volume 7417 of LNCS, pages 850–867. Springer, 2012.

23. C. Gentry, C. Peikert, and V. Vaikuntanathan. Trapdoors for hard lattices and new cryptographic con-
structions. In STOC, pages 197–206. ACM, 2008.

24. N. Göttert, T. Feller, M. Schneider, J. Buchmann, and S. A. Huss. On the design of hardware building
blocks for modern lattice-based encryption schemes. In E. Prouff and P. Schaumont, editors, CHES,
volume 7428 of LNCS, pages 512–529. Springer, 2012.
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A Gauss sieve

Algorithm 3 outlines the Gauss sieve algorithm as described by Micciancio and Voulgaris [54]
including some modifications by Voulgaris that were also mentioned in [41], related to the re-
duction condition (e.g. the original condition ‖u±w‖ > ‖w‖ is replaced by 2·|〈u,w〉| > 〈w,w〉
since this can be computed more efficiently when the squared norms of the vectors are stored
with the vectors). The structure has been slightly adapted to reflect current implementations
in practice (e.g. [53] uses a linked list to represent the list of pairwise Gauss reduced vectors).
Note that Algorithm 3 makes use of a sorted linked list L. In practice one could modify it to
use an unsorted array instead. We choose to display the algorithm with a sorted linked list
to ease the explanation.

Algorithm 3 Gauss sieve [54]. Given a basis B and bounds µ, c > 0, return a short vector
v. The algorithm terminates when v, ‖v‖ ≤ µ, is found, or when the number of collisions is
at least c. The i-th vector in the sorted linked-list L is denoted by `i, the cardinality of L by
#L, and S is a stack.
1: function GaussSieve(B, µ, c)
2: L← {0}, S ← {}, K ← 0
3: while K < c do
4: vnew ← Sample(S), i← 0
5: while i < #L and ‖`i‖ ≤ ‖vnew‖ do
6: if Reduce(vnew, `i) then
7: i← −1
8: if ‖vnew‖ == 0 then K ← K + 1, vnew ← Sample(S)

9: if ‖vnew‖ ≤ µ then return vnew

10: i← i+ 1

11: if ‖vnew‖ > 0 then Insert vnew into L at position i, i← i+ 1

12: while i < #L and ‖`i‖ ≥ ‖vnew‖ do
13: if Reduce(`i,vnew) then
14: if ‖`i‖ == 0 then Remove `i from L, i← i− 1, K ← K + 1
15: else
16: if ‖`i‖ ≤ µ then return `i

17: Move `i from L to S

18: i← i+ 1

19: return the smallest `i from L

20: function Sample(S)
21: if S is empty then
22: Sample v 6= 0 (GPV [23])
23: else
24: Pop v from S

25: return v

26: function Reduce(u,w)
27: if 2 · |〈u,w〉| > 〈w,w〉 then
28: u← u−

⌈
〈u,w〉
〈w,w〉

⌋
w

29: return true
30: return false

B Identities for negacyclic rotations and proof of Lemma 1

In the following lemma we collect a few useful identities for negacyclic rotations, which can
be easily proved by explicitly writing them out.
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Lemma 3. Let a, b ∈ R = Z[X]/(Xn + 1) for n a power of 2, let a,b be their coefficient
vectors, and let i, j ∈ Z. Then with notation as above, we have:

Xi · (Xj · a) = Xi+j · a, Xi · (a + b) = Xi · a +Xi · b, Xn · a = −a,
〈Xi · a, Xi · b〉 = 〈a,b〉, 〈Xi · a, Xj · b〉 = 〈a,−Xn−i+jb〉.

Using the above identities, we can now prove Lemma 1 in Section 4.

Proof of Lemma 1. The properties in Lemma 3 show that |〈Xi·a, Xj ·b〉| = |〈a, Xn−i+jb〉| =
|〈a, X`b〉|, where ` = (n− i+ j) mod n, i.e. 0 ≤ ` < n, as well as 〈Xi · a, Xi · a〉 = 〈a,a〉 and
〈Xj · b, Xj · b〉 = 〈b,b〉. Hence the lemma follows. ut

C Details on Nussbaumer’s negacyclic convolution algorithm

The key observation is that the ring extension R = Z[X]/(Xn + 1) of Z can be decomposed
into two extensions as follows. Let n = 2k = s · r where s | r, e.g. s = 2bk/2c and r = 2dk/2e.
Then R ∼= S = T [X]/(Xs − Z), where T = Z[Z]/(Zr + 1).

Note that Zr/s is an s-th root of −1 in T and Xs = Z in S. This isomorphism is expressed
simply by a re-ordering of coefficients. An element a(X) =

∑n−1
i=0 ai−1X

i ∈ R can be written
as an element of S by replacing all powers Xs by Z, which gives

a(X) =

s−1∑
i=0

Ai(Z)Xi, with Ai(Z) = ai + ai+sZ + · · ·+ ai+s(r−1)Z
r−1 ∈ T.

Nussbaumer’s algorithm for computing the negacyclic convolution of two polynomials a, b ∈ R
begins by interpreting the coefficients of a, b as the sequences of elements A0, . . . , As−1 ∈ T
and B0, . . . , Bs−1 ∈ T as above. The result a(X)b(X) mod (Xn + 1) can then be com-
puted as a cyclic convolution of the sequences A = (A0, A1, . . . As−1, 0, . . . , 0) and B =
(B0, B1, . . . Bs−1, 0, . . . , 0) of length 2s. The products of the Ai with the Bj for 1 ≤ i, j < s
are computed in the ring T and are thus negacyclic convolutions of sequences of length r.

The cyclic convolution can be computed by a symbolic fast Fourier transform algorithm
(FFT) using the 2s-th root of unity Zr/s. This means that one computes the discrete Fourier
transforms (DFT) Ã = (Ã0, . . . , Ã2s−1), B̃ = (B̃0, . . . , B̃2s−1) of the sequences of length 2s
above, carries out the coefficient-wise multiplications C̃i = ÃiB̃i, 0 ≤ i < 2s by negacyclic
convolutions of length r in T , and computes the inverse DFT of C̃ = (C̃0, . . . , C̃2s−1) (using
Zr/s) to obtain the result C = (C0, . . . , C2s−1). The final result c(X) = a(X)b(X) mod (Xn+
1) is given by

c(X) =

2s−1∑
i=0

Ci(X
s)Xi mod (Xn + 1) ∈ R

and can be computed by s additions and subtractions in T .


