
Overview of the Candidates for the
Password Hashing Competition

And their Resistance against Garbage-Collector Attacks

Abstract. In this work we provide an overview of the candidates of the Password Hashing Compe-
tition (PHC) regarding to their functionality, e.g., client-independent update and server relief, their
security, e.g., memory-hardness and side-channel resistance, and its general properties, e.g., mem-
ory usage and flexibility of the underlying primitives. Furthermore, we formally introduce two kinds
of attacks, called Garbage-Collector and Weak Garbage-Collector Attack, exploiting the memory
management of a candidate. Note that we consider all candidates which are not yet withdrawn from
the competition.

Keywords: Password Hashing Competition, Overview, Garbage-Collector Attacks

1 Introduction

Typical adversaries against password-hashing algorithms (also called password scramblers) try plenty of
password candidates in parallel, which becomes a lot more costly if they need a huge amount of memory
for each candidate. On the other hand, the defender (the honest party) will only compute a single hash,
and the memory-cost parameters should be chosen such that the required amount of memory is easily
available to the defender.
But, memory-demanding password scrambling may also provide a completely new attack opportunity for
an adversary, exploiting the handling of the target’s machine memory. We introduce the two following
attack models: (1) Garbage-Collector Attacks, where an adversary has access to the internal memory of
the target’s machine after the password scrambler terminated; and (2) Weak Garbage-Collector Attacks,
where the password itself (or a value derived from the password using an efficient function) is written
to the internal memory and almost never overwritten during the runtime of the password scrambler. If
a password scrambler is vulnerable in either one of the attack models, it is likely to significantly reduce
the effort for testing a password candidate.

Up to now, there exist two basic strategies of how to design a memory-demanding password scrambler:

Type-A: Allocating a huge amount of memory which is rarely overwritten.
Type-B: Allocating a reasonable amount of memory which is overwritten multiple times.

The primary goal of the former type of algorithms is to increase the cost of dedicated password-cracking
hardware, i.e., FPGAs and ASICs. However, algorithms following this approach do not provide high re-
sistance against garbage-collector attacks, which are formally introduced in this work. The main goal of
the second approach is to thwart GPU-based attacks by forcing a high amount of cache misses during
the computation of the password hash. Naturally, algorithms following this approach provide some kind
of built-in robustness against garbage-collector attacks.

Remark 1. For our theoretic consideration of the proposed attacks, we assume a natural implementation
of the algorithms, e.g., that some possible mentioned overwriting of the internal state after the invocation
of an algorithm is neglected due to optimization.

2 (Weak) Garbage-Collector Attacks and their Application to ROMix and
scrypt

In this section we first provide a definition of our attack models, i.e., the Garbage-Collector (GC) attack
and the Weak Garbage-Collector (WGC) attack. For illustration, we first show that ROMix (the core
of scrypt [19]) is vulnerable against a GC attack (this was already shown in [11], but without a formal
definition of the GC attack), and second, we show that scrypt is also vulnerable against a WGC attack.

Algorithm 1 The algorithm scrypt [19] and its core operation ROMix.

scrypt

Input:
pwd {Password}
s {Salt}
G {Cost Parameter}

Output: x {Password Hash}
10: x← PBKDF2(pwd , s, 1, 1)
11: x← ROMix(x,G)
12: x← PBKDF2(pwd , x, 1, 1)
13: return x

ROMix

Input: x {Initial State} , G {Cost Parameter}
Output: x {Hash value}
20: for i = 0, . . . , G− 1 do
21: vi ← x

22: x← H(x)
23: end for
24: for i = 0, . . . , G− 1 do
25: j ← x mod G

26: x← H(x⊕ vj)
27: end for
28: return x

2.1 The (Weak) Garbage-Collector Attack

The basic idea of these attacks is to exploit the memory management of password scramblers based
on the handling of the internal state or some single password-dependent value. More detailed, the goal
of an adversary is to find a valid password candidate based on some knowledge gained from observing
the memory used by an algorithm, whereas the test for validity of the candidate requires significantly
less time/memory in comparison to the original algorithm. Next, we formally define the term Garbage-
Collector Attack.

Definition 1 (Garbage-Collector Attack). Let PSG(·) be a memory-demanding password scrambler
that depends on a memory-cost parameter G and let Q be a positive constant. Furthermore, let v denote
the internal state of PSG(·) after its termination. Let A be a computationally unbounded but always
halting adversary conducting a garbage-collector attack. We say that A is successful if some knowledge
about v reduces the runtime of A for testing a password candidate x from O(PSG(x)) to O(f(x)) with
O(f(x)) ≪ O(PSG(x))/Q, ∀x ∈ {0, 1}∗.

In the following we define the Weak Garbage-Collector Attack (WGCA).

Definition 2 (Weak Garbage-Collector Attack). Let PSG(·) be a password scrambler that depends
on a memory-cost parameter G, and let F (·) be an underlying function of PSG(·) that can be efficiently
computed. We say that an adversary A is successful in terms of a weak garbage-collector attack if a value
y = F (pwd) remains in memory during (almost) the entire runtime of PSG(pwd), where pwd denotes the
secret input.

An adversary that is capable of reading the internal memory of a password scrambler during its invoca-
tion, gains knowledge about y. Thus, it can reduce the effort for filtering invalid password candidates by
just computing y′ = F (x) and checking whether y = y′, where x denotes the current password candidate.
Note that the function F can also be given by the identity function. Then, the plain password remains
in memory, rendering WGC attacks trivial (see Section 2.2 for a trivial WGC attack on scrypt).

2.2 (Weak) Garbage-Collector Attacks on scrypt

Garbage-Collector Attack on ROMix. Algorithm 1 describes the necessary details of the scrypt

password scrambler together with its core function ROMix. The pre- and post-whitening steps are given
by one call (each) of the standardized key-derivation function PBKDF2 [15], which we consider as a
single call to a cryptographically secure hash function. The function ROMix takes the initial state x and
the memory-cost parameter G as inputs. First, ROMix initializes an array v of size G · n by iteratively
applying a cryptographic hash function H (see Lines 20-23), where n denotes the output size of H in
bits. Second, ROMix accesses the internal state at randomly computed points j to update the password
hash (see Lines 24-27).
It is easy to see that the value v0 is a plain hash (using PBKDF2) of the original secret pwd (see Lines 10
and 21 for i = 0). Further, from the overall structure of scrypt and ROMix it follows that the internal

2

memory is written once (Lines 20-23) but never overwritten . Thus, all values v0, . . . , vG−1 can be accessed
by a garbage-collector adversary A after the termination of scrypt. For each password candidates pwd ′,
A can now simply compute x′ ← PBKDF2(pwd ′) and check whether x′ = v0. If so, pwd ′ is a valid
preimage. Thus, A can test each possible candidate in O(1), rendering an attack against scrypt (or
especially ROMix) practical (and even memory-less).
As a possible countermeasure, one can simply overwrite v0, . . . , vG−1 after running ROMix. Nevertheless,
this step might be removed by a compiler due to optimization, since it is algorithmically ineffective.

Weak Garbage-Collector Attack on scrypt. In Line 12 of Algorithm 1, scrypt invokes the key-
derivation function PBKDF2 the second time using again the password pwd as input again. Thus, pwd has
to be stored in memory during the entire invocation of scrypt, which implies that scrypt is vulnerable
to WGC attacks.

3 Overview

Before we present the tables containing the comparison of the candidates for the Password Hashing
Competition (PHC), we introduce the necessary notions (see Table 1) to understand the tables.

Identifier Description

Primitives/Structures

BC Block cipher
SC Stream cipher
PERM Keyless permutation
HF Hash function
BRG Bit-Reversal Graph
DBG Double-Butterfly Graph

General Properties

CIU Supports client-independent update
SR Supports server relief
KDF Usable as Key-Derivation Function (requires outputs to be pseudorandom)
FPO Using floating-point operations
Flexible Underlying primitive can be replaced
Iteration Algorithm is based on iterations/rounds

Security Properties

GCA Res. Resistant against garbage-collector attacks (see Definition 1)
WGCA Res. Resistant against weak garbage-collector attacks (see Definition 2)
SCA Res. Resistant against side-channel attacks.
ROM-port Special form of memory hardness [8].
Shortcut Is it possible to bypass the main (memory and time) effort of an algorithm by

knowing additional parameters, e.g., the Blum integers p and q for Makwa which
are used to compute the modulo n.

Table 1. Notations used in Tables 2, 3, and 4.

3

Comments for Table 2. The values in the column ”Memory“ come from the authors recommendation for password hashing or are marked as ‘◦‘ if
no recommendation exists. The entry “A (CF)” denotes that only the compression function of algorithm A is used. An entry A(XR) denotes that an
algorithm A is reduced to X rounds. The scrypt password scrambler is just added for comparison. If an algorithm can only be partially be computed in
parallel, we marked the corresponding entry with ’part.’. Note that POMELO and schvrch do not depend on an existing underlying primitive but on an
own construction.

Algorithm Based On Iteration Memory Usage Parallel Underlying Primitive Underlying Mode
BC/SC/PERM HF

AntCrypt X 32 kB part. - SHA-512 -
ARGON AES X 1 kB - 1 GB X AES (5R) - -
battcrypt X 128 kB - 128 MB part. Blowfish-CBC SHA-512 -
Catena BRG/DBG X 8 MB part. - BLAKE2b -
CENTRIFUGE X 2 MB - AES-256 SHA-512 -

EARWORM X 2 GB (ROM) X AES (1R) SHA-256 PBKDF2 HMAC

Gambit Sponge X 50 MB - Keccakf - -
Lanarea DF X 256 B - - BLAKE2b -
Lyra2 Sponge X 400 MB - 1 GB - BLAKE2b (CF) -
Makwa Squarings X negl. X - SHA-256 HMAC

MCS PHS X negl. - - MCSSHA-8 -
ocrypt scrypt X 1 MB - 1 GB - ChaCha CubeHash -
Parallel X negl. X - SHA-512 -
PolyPassHash Shamir Sec. Sharing - negl. - AES SHA-256 -
POMELO X (8 KB, 8 GB) part. - - -

Pufferfish Blowfish/bcrypt X 4 - 16 kB - Blowfish SHA-512 HMAC
Rig BRG X 15 MB part. - BLAKE2b -
scrypt X 1 GB - Salsa20/8 - PBKDF2
schvrch X 8 MB part. - - -
Tortuga Sponge & rec. Feistel X ◦ Turtle - -

SkinnyCat BRG X ◦ - - SHA-*/BLAKE2* -
TwoCats BRG X ◦ X - SHA-*/BLAKE2* -
Yarn X ◦ part. BLAKE2b (CF), AES - -
yescrypt scrypt X 3 MB (RAM)/3 GB (ROM) part. Salsa20/8 SHA-256 PBKDF2 HMAC

Table 2. Overview of PHC Candidates and their general properties (Part 1).

4

Comments for Table 3. Even if the authors of a scheme do not claim to support client-independent
update (CIU) or server relief (SR), we checked for the possibility and marked the corresponding entry
in the table with ’X’ or ’part.’ if possible or possible under certain requirements, respectively. Note that
we say that an algorithm does not support SR when it requires the whole state to be transmitted to the
server. Moreover, we say that an algorithm does not support CIU if any additional information to the
password hash itself is required. Note that Catena refers to both instantiations, i.e., Catena-BRG and
Catena-DBG.

Algorithm CIU SR FPO Flexible

AntCrypt X - X part.
ARGON X X - X

battcrypt X - - part.
Catena X X - X

CENTRIFUGE - - - X

EARWORM - X - -
Gambit - X opt. part.
Lanarea DF - X - X

Lyra2 X X - part.
Makwa part. - - X

MCS PHS - X - part.
ocrypt - - - X

Parallel X X - X

PolyPassHash X - - X

POMELO X - - -

Pufferfish - X - part.
Rig X X - X

scrypt - - - X

schvrch - - - -
Tortuga - - - -

SkinnyCat - X - X

TwoCats X X - X

Yarn - X - -
yescrypt - X - X

Table 3. Overview of PHC Candidates and their general properties (Part 2).

Comments for Table 4. The column “Type” specifies which type of a memory-demanding design a
certain algorithm satisfies. The types “A” and “B” are as described in Section 1 and marking an algorithm
by “-” denotes that it is not designed to be memory-demanding. An entry supplemented by ’∗’ (as for
Memory-Hardness and Security Analysis), denotes that there exists not sophisticated analysis or proofs
for the given claim/assumption. For SCA Res., ’part.’ (partial) means that only one or more parts (but
not all) provide resistance against side-channel attacks.

Remark 2. Note that we do not claim completeness for Table 4. For example, we defined a scheme not
to be resistant against side-channel attacks if it maintains a password-dependent memory-access pattern.
Nevertheless, there exist several other types of side-channel attacks such as those based on power or
acoustic analysis.

5

Resistance
Algorithm Type Memory-Hardness KDF GCA WGCA SCA Security Analysis Shortcut

AntCrypt B X X X X X X
∗ -

ARGON B X X X X - X -
battcrypt B X X X - X X

∗ -
Catena-BRG B X X - X X X -
Catena-DBG B λ X X X X X -

CENTRIFUGE A X
∗ - - - X X

∗ -
EARWORM B ROM-port - X - X X -
Gambit B X

∗

X X X X X
∗ -

Lanarea DF B X
∗

X X X part. X
∗ -

Lyra2 B X X X X part. X -

Makwa - - X X X part. X X

MCS PHS - - X - X X - -
ocrypt B X

∗

X X X - X
∗ -

Parallel - - X X X X X
∗ -

PolyPassHash - - - - - - X X

POMELO B - - X X part. X
∗ -

Pufferfish B X
∗

X X X - X
∗ -

Rig B λ X X X X X -
scrypt A sequential X - - - X -
schvrch B - - X X X X

∗ -

Tortuga B X
∗

X X X X X
∗ -

SkinnyCat A sequential X - - part. X -
TwoCats B sequential X X X part. X -
Yarn B X

∗ - X - - X
∗ -

yescrypt A ROM-port, sequential X - - - X
∗ -

Table 4. Overview over the security properties of PHC candidates.

4 Resistance of PHC Candidates against (W)GC Attacks

In this section we briefly discuss potential weaknesses of each PHC candidate regarding to garbage-
collector (GC) and weak-garbage collector (WGC) attacks or argue why it provides resistance against
such attacks. Note that we assume the reader to be familiar with the internals of the candidates since we
only concentrate on those parts of the candidates that are relevant regarding to GC/WGC attacks.

AntCrypt [9]. The internal state of AntCrypt is initialized with the secret pwd . During the hashing
process, the state is overwritten outer rounds×inner rounds times, which thwarts GC attacks. More-
over, since pwd is used only to initialize the internal state, WGC attacks are not applicable.

ARGON [3]. First, the internal state derived from pwd is the input to the padding phase. After the
padding phase, the internal state is overwritten by applying the functions ShuffleSlices and SubGroups

at least L times. Based on this structure, and since pwd is used only to initialize the state, ARGON is
not vulnerable against GC/WGC attacks.

battcrypt [24]. Within battcrypt, the plain password is used only once, namely to generate a value
key = SHA-512(SHA-512(salt || pwd)). The value key is then used to initialize the internal state, which
is expanded afterwards. In the Work phase, the internal state is overwritten t cost×m size times using
password-dependent indices. Thus, GC attacks are not applicable.

Note that the value key is used in the three phases Initialize blowfish, Initialize data, and Finish, whereas
it is overwritten in the phase Finish the first time. Thus, key must remain in memory until the final
phase, rendering the following WGC attack possible: For each password candidates x and the known
value salt, compute key′ = SHA512(SHA512(salt || x)) and check whether key′ = key. If so, mark x as
a valid password candidate.

6

Catena [11]. Catena has two instantiations Catena-BRG and Catena-DBG, which are based on a
(G,λ)-Bit-Reversal Graph and a (G,λ)-Double-Butterfly Graph, respectively. Both instantiations use an
array of G elements each as their internal state. This state is overwritten λ− 1 times for Catena-BRG

and (2 log2(G)− 1) ·λ+2 log2(G)− 2 times for Catena-DBG. Hence, when considering Catena-BRG,
a GC adversary with access to the state can reduce the effort for testing a password candidate by a fac-
tor of 1/λ. When considering Catena-DBG, the reduction of the computational cost of an adversary is
negligible. The authors mention this fact by recommending Catena-DBG when considering GC attacks.

For Catena-BRG as well as Catena-DBG, the password pwd is used only to initialize the internal
state. Thus, both instantiations provide resistance against WGC attacks.

CENTRIFUGE [1]. The internal state M of size p mem×outlen byte is initialized with a seed S
derived from the password and the salt as follows: S = H(sL || sR), where sL ← H(pwd || len(pwd))
and sR ← H(salt || len(salt)). Furthermore, S is used as the initialization vector (IV) and the key for
the CFB encryption. The internal M is written once and later only accessed in a password-dependent
manner. Thus, a GC adversary can launch the following attack:

1. receive the internal state M (or at least M [1]) from memory
2. for each password candidate x:

(a) initialization (seeding and S-box)
(b) compute the first table entry M ′[1] (during the build table step)
(c) check whether M ′[1] = M [1]

The final step of CENTRIFUGE is to encrypt the internal state, requiring the key and the IV , which
therefore must remain in memory during the invocation of CENTRIFUGE. Thus, the following WGC
attack is applicable:

1. Compute sR ← H(salt || len(salt))
2. For every password candidate x:

(a) Compute s′
L
← H(x || len(x)) and S′ = H(s′

L
|| sR), and compare if S′ = IV

(b) If yes: mark x as a valid password candidate
(c) If no: go to Step 2

EARWORM [12]. EARWORM maintains an array called arena of size 2m cost×L×W 128-bit blocks,
where W = 4 and L = 64 are recommended by the authors. This read-only array is randomly initialized
(using an additional secret input which has to be constant within a given system) and used as AES round
keys. Since the values within this array do not depend on the secret pwd , knowledge about arena does
not help any malicious garbage collector. Within the main function of EARWORM (WORKUNIT), an
internal state scratchpad is updated multiple times using password-dependent accesses to arena. Thus, a
GC adversary cannot profit from knowledge about scratchpad, rendering GC attacks not applicable.

Within the function WORKUNIT, the value scratchpad tmpbuf is derived directly from the password
as follows:

scratchpad tmpbuf ← EWPRF(pwd , 01 || salt, 16W),

where EWPRF denotes PBKDF2HMAC-SHA256 with the first input denoting the secret key. This
value is updated only at the end of WORKUNIT using the internal state. Thus, it has to be in memory
during almost the whole invocation of EARWORM, rendering the following WGC attack possible: For
each password candidate x and the known value salt, compute y = EWPRF(x, 01 || salt, 16W) and
check whether scratchpad tmpbuf = y. If so, mark x as a valid password candidate.

Gambit [21]. Gambit bases on a duplex-sponge construction [2] maintaining two internal states S and
Mem, where S is used to subsequently update Mem. First, password and salt are absorbed into the
sponge and after one call to the underlying permutation, the squeezed value is written to the internal
state Mem and processed r times (number of words in the ratio of S). The output after the r steps is
optionally XORed with an array lying in the ROM. After that, Mem is absorbed into S again. This step
is executed t times, where t denotes the time-cost parameter. The size of Mem is given by m, the memory-
cost parameter. Continuously updating the states Mem and S thwarts GC attacks. Moreover, since pwd
is used only to initialize the state within the sponge construction, WGC attacks are not applicable.

7

Lanarea DF [18]. Lanarea DF maintains a matrix (internal state) consisting of 16 · 16 · m cost byte
values, where m cost denotes the memory-cost parameter. After the password-independent setup phase,
the password is processed by the internal pseudorandom function producing the array (h0, . . . , h31), which
determines the positions on which the internal state is accessed during the core phase (thus, allowing
cache-timing attacks). In the core phase, the internal state is overwritten t cost × m cost × 16 times,
rendering GC attacks impossible. Moreover, the array (h0, . . . , h31) is overwritten t cost×m cost times
which thwarts WGC attacks.

Lyra2 [14]. The Lyra2 password scrambler (and KDF) is based on a duplex sponge construction main-
taining a state H, which is initialized with the password, the salt, and some tweak in the first step of
its algorithm. The authors indicate that the password can be overwritten from this point on, rendering
WGC attacks impossible. Moreover, Lyra2 maintains an internal state M , which is overwritten (updated
using values from the sponge state H) multiple times. Thus, GC attacks are not applicable for Lyra2.

Makwa [22]. Makwa has not been designed to be a memory-demanding password scrambler. Its
strength is based on a high number of squarings modulo a composite (Blum) integer n. The plain (or
hashed) password is used twice to initialize the internal state, which is then processed by squarings
modulo n. Thus, neither GC nor WGC attacks are applicable for Makwa.

MCS PHS [17]. Depending on the size of the output, MCS PHS applies iterated hashing operations,
reducing the output size of the hash function by one byte in each iteration – starting from 64 bytes. Note
that the memory-cost parameter m cost is used only to increase the size of the initial chaining value T0.
The secret input pwd is used once, namely when computing the value T0 and can be deleted afterwards,
rendering WGC attacks not applicable. Furthermore, since the output of MCS PHS is computed by
iteratively applying the underlying hash function (without handling an internal state which has to be
placed in memory), GC attacks are not possible.

ocrypt [10]. The basic idea of ocrypt is similar to that of scrypt, besides the fact that the random
memory accesses are determined by the output of a stream cipher (ChaCha) instead of a hash function
cascade. The output of the stream cipher determines which element of the internal state is updated, which
consists of 217+mcost 64-bit words. During the invocation of ocrypt, the password is used only twice: (1)
as input to CubeHash, generating the key for the stream cipher and (2) to initialize the internal state.
Neither the password nor the output of CubeHash are used again after the initialization. Thus, ocrypt is
not vulnerable to WGC attacks.
The internal state is processed 217+tcost times, where in each step one word of the state is updated. Since
the indices of the array elements accessed depend only on the password and not on the content, GC
attacks are not possible by observing the internal state after the invocation of ocrypt.

Remark 3. Note that the authors of ocrypt claim side-channel resistance since the indices of the array
elements are chosen in a password-independent way. But, as the password (beyond other inputs) is used
to derive the key of the underlying stream cipher, this assumption does not hold, i.e., the output of the
stream cipher depends on the password, rendering (theoretical) cache-timing attacks possible.

Parallel [25]. Parallel has not been designed to be a memory-demanding password scrambler. Instead,
it is highly optimized to be comuted in parallel. First, a value key is derived from the secret input pwd
and the salt by

key = SHA-512(SHA-512(salt) || pwd).

The value key is used (without being changed) during the Clear work phase of Parallel. Since this
phase defines the main effort for computing the password hash, it is highly likely that a WGC adversary
can gain knowledge about key. Then, the following WGC attack is possible: For each password candidate
x and the known value salt, compute y = SHA-512(SHA-512(salt) || x) and check whether key = y. If so,
mark x as a valid password candidate. Since the internal state is only given by the subsequently updated
output of SHA-512, GC attacks are not applicable for Parallel.

8

PolyPassHash [5]. PolyPassHash denotes a threshold system with the goal to protect an individual
password (hash) until a certain number of correct passwords (and their corresponding hashes) are known.
Thus, it aims at protecting an individual password hash within a file containing a lot of password hashes,
rendering PolyPassHash not to be a password scrambler itself. The protection lies in the fact that one
cannot easily verify a target hash without knowing a minimum number of hashes (this technical ap-
proach is referred to as PolyHashing). In the PolyHashing construction, one maintains a (k, n)-threshold
cryptosystem, e.g., Shamir Secret Sharing. Each password hash h(pwdi) is blinded by a share s(i) for
1 ≤ i ≤ k ≤ n. The value zi = h(pwdi) ⊕ s(i) is stored in a so-called PolyHashing store at index i. The
shares s(i) are not stored on disk. But, to be efficient, a legal party, e.g., a server of a social networking
system, has to store at least k shares in the RAM to on-the-fly compare incoming requests on-the-fly.
Thus, this system only provides security against adversaries which are only able to read the hard disk
but not the volatile memory (RAM).

Since the secret (of the threshold cryptosystem) or at least the k shares have to be in memory, GC attacks
are possible by just reading the corresponding memory. The password itself is only hashed and blinded
by s(i). Thus, if an adversary is able to read the shares or the secret from memory, it can easily filter
wrong password candidates, i.e., makeing PolyPassHash vulnerable against WGC attacks.

POMELO [27]. POMELO contains three update functions F (S, i), G(S, i, j), and H(S, i), where S
denotes the internal state and i and j the indices at which the state is accessed. Those functions update
at most two state words per invocation. The functions F and G provide deterministic random-memory
accesses (determined by the cost parameter t cost and m cost), whereas the function H provides random-
memory accesses determined by the password, rendering POMELO at least partially vulnerable to cache-
time attacks. Since the password is used only to initialize the state, which itself is overwritten about
22·t cost + 2 times, POMELO provides resistance against GC and WGC attacks.

Pufferfish [13]. The main memory used within Pufferfish is given by a two-dimensional array consisting
of 25+m cost 512-bit values, which is regularly accessed during the password hash generation. The first
steps of Pufferfish are given by hashing the password. The result is then overwritten 25+m cost +3 times,
rendering WGC attacks not possible. The state word containing the hash of the password (S[0][0]) is
overwritten 2t cost times. Thus, there does not exist a shortcut for an adversary, rendering GC attacks
impossible.

Rig [6]. Rig maintains two arrays a (sequential access) and k (bit-reversal access). Both arrays are
iteratively overwritten r · n times, where r denotes the round parameter and n the iteration parameter.
Thus, rendering Rig resistant against GC attacks. Note that within the setup phase, a value α is computed
by

α = H1(x) with x = pwd || len(pwd) || . . . ,

Since the first α (which is directly derived from the password) is only used during the initialization phase,
WGC attacks are not applicable.

schvrch [26]. The password scrambler schvrch maintains an internal state of 256 · 64-bit words (2 kB),
which is initialized with the password, salt and their corresponding lengths, and the final output length.
After this step, the password can be overwritten in memory. This state is processed t cost times by a
function revolve(), which affects in each invocation all state words. Next, after applying a function stir()
(again, changing all state entries), it expands the state to m cost times the state length. Each part (of
size state length) is then processed to update the internal state, producing the hash after each part was
processed. Thus, the state word initially containing the password is overwritten t cost · m cost times,
rendering GC attacks impossible. Further, neither the password nor a value directly derived from it is
required during the invocation of schvrch, which thwarts WGC attacks.

Tortuga [23]. GC and WGC attacks are not possible for Tortuga since the password is absorbed to
the underlying sponge structure, which is then processed at least two times by the underlying keyed
permutation (Turtle block cipher [4]), and neither the password nor a value derived from it has to be in
memory.

9

SkinnyCat and TwoCats [7]. SkinnyCat is a subset of the TwoCats scheme optimized for implemen-
tation. Both algorithms maintain a 256-bit state state and an array of 2m cost+8 32-bit values (mem).
During the initialization, a value PRK is computed as follows:

PRK = Hash(len(pwd), len(salt), . . . , pwd , salt).

The value PRK is used in the initialization phase and first overwritten in the forelast step of SkinnyCat
(when the function addIntoHash() is invoked). Thus, an adversary that gains knowledge about the value
PRK is able to launch the following WGC attack: For each password candidates x and the known value
salt, compute PRK ′ = Hash(len(x), len(salt), . . . , x, salt) and check whether PRK = PRK ′. If so,
mark x as a valid password candidate.

Within TwoCats, the value PRK is overwritten at an early state of the hash value generation. TwoCats
maintains a garlic application loop from startMemCost = 0 to stopMemCost, where stopMemCost is a
user-defined value. In each iteration, the value PRK is overwritten, rendering WGC attacks for TwoCats
not possible.

Both SkinnyCat and TwoCats consist of two phases each. The first phase updates the first half of the mem-
ory (early memory) mem[0, . . . ,memlen/(2 · blocklen)− 1], where the memory is accessed in a password-
independent manner. The second phase updates the second half of the memory mem[memlen/(2 ·
blocklen), . . . ,memlen/blocklen − 1], where the memory is accessed in a password-dependent manner.
Thus, both schemes provide only partial resistance against cache-timing attacks. For SkinnyCat, the early
memory is never overwritten, rendering the following GC attack possible:

1. Obtain mem[0, . . . ,memlen/(2 · blocklen)− 1] and PRK from memory
2. Create a state state′ and an array mem′ of the same size as state and mem, respectively
3. Set fromAddr = slidingReverse(1) · blocklen, prevAddr = 0, and toAddr = blocklen
4. For each password candidate x:

(a) Compute PRK ′ as described using the password candidate x
(b) Initialize state′ and mem′ as prescribed using PRK ′

(c) Compute state′[0] = (state′[0] +mem′[1])⊕mem′[fromAddr ++]
(d) Compute state′[0] = ROTATE LEFT(state′[0], 8)
(e) Compute mem′[blocklen+ 1] = state′[0]
(f) Check whether mem′[blocklen+ 1] = mem[blocklen+ 1]
(g) If yes: mark x as a valid password candidate
(h) If no: go to Step 4.

Note that this attack does not work for TwoCats since an additional feature in comparison to SkinnyCat
is that the early memory is overwritten.

Yarn [16]. Yarn maintains two arrays state and memory, consisting of par and 2m cost 16-byte blocks,
respectively. The array state is initialized using the salt. Afterwards, state is processed using the BLAKE2b
compression function with the password pwd as message, resulting in an updated array state1. This array
has to be stored in memory since it is used as input to the final phse of Yarn. The array state is expanded
afterwards and further, it is used to initialize the array memory. Next, memory is updated continuously.
Both memory and state are overwritten continuously. The array state1 is overwritten at the lastest in
the final phase of Yarn. Thus, GC attacks are not possible for Yarn. Nevertheless, the array state1 is
directly derived from pwd and stored until the final phase occurs. Thus, the following WGC attack is
possible:

1. Compute h← Blake2b GenerateInitialState(outlen, salt, pers) as in the first phase of Yarn
2. For each password candidate x:

(a) Compute h′ ← Blake2b ConsumeInput(h, x)
(b) Compute state1’← Truncate(h′, outlen) and check whether state1’ = state1

10

yescrypt [20]. The yescrypt password scrambler maintains two lookup tables V and V ROM , where V
is located in the RAM and V ROM in the ROM. Depending on the flag YESCRYPT RW, the behaviour of
yescrypt for the usage of the memory in RAM can be switched from “write once, read many” to “read-
write”. Nevertheless, yescrypt does not completey overwrite the memory in RAM, rendering similar GC
attacks as for scrypt possible (see Section 2.2). But, such an attack would require a higher effort in
comparison the attack on scrypt since yescrypt overwrites the RAM locations at least partially. Thus,
an adversary must first search for the memory parts which where not overwritten during the invocation
of yescrypt.

When considering WGC attacks, one has to differ between two variants of yescrypt depending whether it
runs in the scrypt compatibility mode or not. In scrypt compatibility mode, obviously the same WGC
as for scrypt is applicable (see Section 2.2). If not running in scrypt compatibility mode, yescrypt
uses the results of the initial call to PBKDF2 in the last step. Thus, the value which has to remain in
memory is given by HMAC-SHA-256(SHA-256(pwd), salt). Since it is also possible to compute HMAC
and SHA-256 efficiently, yescrypt does not provide resistance against WGC attacks.

5 Conclusion

In this work we provided an overview of the first-round candidates of the Password Hashing Competition,
which are not yet withdrawn. Further, we analyzed each algorithm regarding to its vulnerability against
garbage-collector and weak garbage-collector attacks. Even if both attacks require access to the memory
on the target’s machine, they show a potential weakness, which should be taken into consideration.
As a results, we have shown GC attacks on Catena-BRG, CENTRIFUGE, MCS PHS, PolyPassHash,
scrypt, SkinnyCat, and yescrypt. Additionally, we have shown that WGC attacks are applicable to
battcrypt, CENTRIFUGE, EARWORM, PolyPassHash, scrypt, SkinnyCat, Yarn, and yescrypt.

References

1. Rafael Alvarez. CENTRIFUGE – A password hashing algorithm. https://password-
hashing.net/submissions/specs/Centrifuge-v0.pdf, 2014.

2. Guido Bertoni, Joan Daemen, Michael Peeters, and Gilles Van Assche. Duplexing the Sponge: Single-Pass
Authenticated Encryption and Other Applications. In Ali Miri and Serge Vaudenay, editors, Selected Areas

in Cryptography, volume 7118 of Lecture Notes in Computer Science, pages 320–337. Springer, 2011.
3. Alex Biryukov and Dmitry Khovratovich. ARGON v1: Password Hashing Scheme. https://password-

hashing.net/submissions/specs/Argon-v1.pdf, 2014.
4. Matt Blaze. Efficient Symmetric-Key Ciphers Based on an NP-Complete Subproblem, 1996.
5. Justin Cappos. PolyPassHash: Protecting Passwords In The Event Of A Password File Disclosure.

https://password-hashing.net/submissions/specs/PolyPassHash-v0.pdf, 2014.
6. Donghoon Chang, Arpan Jati, Sweta Mishra, and Somitra Kumar Sanadhya. Rig: A simple, secure and

flexible design for Password Hashing. https://password-hashing.net/submissions/specs/RIG-v2.pdf, 2014.
7. Bill Cox. TwoCats (and SkinnyCat): A Compute Time and Sequential Memory Hard Password Hashing

Scheme. https://password-hashing.net/submissions/specs/TwoCats-v0.pdf, 2014.
8. Solar Designer. New developments in password hashing: ROM-port-hard functions.

http://distro.ibiblio.org/openwall/presentations/New-In-Password-Hashing/ZeroNights2012-New-In-
Password-Hashing.pdf, 2012.

9. Markus Dürmuth and Ralf Zimmermann. AntCrypt. https://password-hashing.net/submissions/AntCrypt-
v0.pdf, 2014.

10. Brandon Enright. Omega Crypt (ocrypt). https://password-hashing.net/submissions/specs/OmegaCrypt-
v0.pdf, 2014.

11. Christian Forler, Stefan Lucks, and Jakob Wenzel. The Catena Password-Scrambling Framework.
https://password-hashing.net/submissions/specs/Catena-v2.pdf, 2014.

12. Daniel Franke. The EARWORM Password Hashing Algorithm. https://password-
hashing.net/submissions/specs/EARWORM-v0.pdf, 2014.

13. Jeremi M. Gosney. The Pufferfish Password Hashing Scheme. https://password-
hashing.net/submissions/specs/Pufferfish-v0.pdf, 2014.

14. Marcos A. Simplicio Jr, Leonardo C. Almeida, Ewerton R. Andrade, Paulo C. F. dos Santos, and Paulo S.
L. M. Barreto. The Lyra2 reference guide. https://password-hashing.net/submissions/specs/Lyra2-v1.pdf,
2014.

11

15. B. Kaliski. RFC 2898 - PKCS #5: Password-Based Cryptography Specification Version 2.0. Technical report,
IETF, 2000.

16. Evgeny Kapun. Yarn password hashing function. https://password-hashing.net/submissions/specs/Yarn-
v2.pdf, 2014.

17. Mikhail Maslennikov. PASSWORD HASHING SCHEME MCS PHS. https://password-
hashing.net/submissions/specs/MCS PHS-v2.pdf, 2014.

18. Haneef Mubarak. Lanarea DF. https://password-hashing.net/submissions/specs/Lanarea-v0.pdf, 2014.
19. Colin Percival. Stronger Key Derivation via Sequential Memory-Hard Functions. presented at BSDCan’09,

May 2009, 2009.
20. Alexander Peslyak. yescrypt - a Password Hashing Competition submission. https://password-

hashing.net/submissions/specs/yescrypt-v0.pdf, 2014.
21. Krisztián Pintér. Gambit – A sponge based, memory hard key derivation function. https://password-

hashing.net/submissions/specs/Gambit-v1.pdf, 2014.
22. Thomas Pornin. The MAKWA Password Hashing Function. https://password-

hashing.net/submissions/specs/Makwa-v0.pdf, 2014.
23. Teath Sch. Tortuga – Password hashing based on the Turtle algorithm. https://password-

hashing.net/submissions/specs/Tortuga-v0.pdf, 2014.
24. Steve Thomas. battcrypt (Blowfish All The Things). https://password-

hashing.net/submissions/specs/battcrypt-v0.pdf, 2014.
25. Steve Thomas. Parallel. https://password-hashing.net/submissions/specs/Parallel-v0.pdf, 2014.
26. Rade Vuckovac. schvrch. https://password-hashing.net/submissions/specs/Schvrch-v0.pdf, 2014.
27. Hongjun Wu. POMELO: A Password Hashing Algorithm. https://password-

hashing.net/submissions/specs/POMELO-v1.pdf, 2014.

12

	Overview of the Candidates for the Password Hashing Competition
	Introduction
	(Weak) Garbage-Collector Attacks and their Application to ROMix and scrypt
	The (Weak) Garbage-Collector Attack
	(Weak) Garbage-Collector Attacks on scrypt

	Overview
	Resistance of PHC Candidates against (W)GC Attacks
	Conclusion

