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Abstract. In this work we provide an overview of the candidates of
the Password Hashing Competition (PHC) regarding to their functional-
ity, e.g., client-independent update and server relief, their security, e.g.,
memory-hardness and side-channel resistance, and its general proper-
ties, e.g., memory usage and flexibility of the underlying primitives. Fur-
thermore, we formally introduce two kinds of attacks, called Garbage-
Collector and Weak Garbage-Collector Attack, exploiting the memory
management of a candidate. Note that we consider all candidates which
are not yet withdrawn from the competition.
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1 Introduction

Typical adversaries against password-hashing algorithms (also called password
scramblers) try plenty of password candidates in parallel, which becomes a lot
more costly if they need a huge amount of memory for each candidate. On the
other hand, the defender (the honest party) will only compute a single hash, and
the memory-cost parameters should be chosen such that the required amount of
memory is easily available to the defender.
But, memory-demanding password scrambling may also provide a completely
new attack opportunity for an adversary, exploiting the handling of the target’s
machine memory. We introduce the two following attack models: (1) Garbage-
Collector Attacks, where an adversary has access to the internal memory of
the target’s machine after the password scrambler terminated; and (2) Weak
Garbage-Collector Attacks, where the password itself (or a value derived from
the password using an efficient function) is written to the internal memory and
almost never overwritten during the runtime of the password scrambler. If a
password scrambler is vulnerable in either one of the attack models, it is likely
to significantly reduce the effort for testing a password candidate.

Up to now, there exist two basic strategies of how to design a memory-demanding
password scrambler:



Type-A: Allocating a huge amount of memory which is rarely overwritten.
Type-B: Allocating a reasonable amount of memory which is overwritten mul-

tiple times.

The primary goal of the former type of algorithms is to increase the cost of
dedicated password-cracking hardware, i.e., FPGAs and ASICs. However, algo-
rithms following this approach do not provide high resistance against garbage-
collector attacks, which are formally introduced in this work. The main goal of
the second approach is to thwart GPU-based attacks by forcing a high amount
of cache misses during the computation of the password hash. Naturally, algo-
rithms following this approach provide some kind of built-in robustness against
garbage-collector attacks.

Remark 1. For our theoretic consideration of the proposed attacks, we assume
a natural implementation of the algorithms, e.g., that some possible mentioned
overwriting of the internal state after the invocation of an algorithm is neglected
due to optimization.

2 (Weak) Garbage-Collector Attacks and their
Application to ROMix and scrypt

In this section we first provide a definition of our attack models, i.e., the Garbage-
Collector (GC) attack and the Weak Garbage-Collector (WGC) attack. For illus-
tration, we first show that ROMix (the core of scrypt [19]) is vulnerable against
a GC attack (this was already shown in [11], but without a formal definition of
the GC attack), and second, we show that scrypt is also vulnerable against a
WGC attack.

2.1 The (Weak) Garbage-Collector Attack

The basic idea of these attacks is to exploit the memory management of password
scramblers based on the handling of the internal state or some single password-
dependent value. More detailed, the goal of an adversary is to find a valid pass-
word candidate based on some knowledge gained from observing the memory
used by an algorithm, whereas the test for validity of the candidate requires
significantly less time/memory in comparison to the original algorithm. Next,
we formally define the term Garbage-Collector Attack.

Definition 1 (Garbage-Collector Attack). Let PSG(·) be a memory-con-
suming password scrambler that depends on a memory-cost parameter G and let
Q be a positive constant. Furthermore, let v denote the internal state of PSG(·)
after its termination. Let A be a computationally unbounded but always halting
adversary conducting a garbage-collector attack. We say that A is successful if
some knowledge about v reduces the runtime of A for testing a password can-
didate x from O(PSG(x)) to O(f(x)) with O(f(x)) ≪ O(PSG(x))/Q, ∀x ∈
{0, 1}∗.
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Algorithm 1 The algorithm scrypt [19] and its core operation ROMix.

scrypt

Input:
pwd {Password}
s {Salt}
G {Cost Parameter}

Output: x {Password Hash}
10: x← PBKDF2(pwd , s, 1, 1)
11: x← ROMix(x,G)
12: x← PBKDF2(pwd , x, 1, 1)
13: return x

ROMix

Input:
x {Initial State}
G {Cost Parameter}

Output: x {Hash value}
20: for i = 0, . . . , G− 1 do
21: vi ← x

22: x← H(x)
23: end for
24: for i = 0, . . . , G − 1 do
25: j ← x mod G

26: x← H(x⊕ vj)
27: end for
28: return x

In the following we define the Weak Garbage-Collector Attack (WGCA).

Definition 2 (Weak Garbage-Collector Attack). Let PSG(·) be a password
scrambler that depends on a memory-cost parameter G, and let F (·) be an un-
derlying function of PSG(·) that can be efficiently computed. We say that an
adversary A is successful in terms of a weak garbage-collector attack if a value
y = F (pwd) remains in memory during (almost) the entire runtime of PSG(pwd),
where pwd denotes the secret input.

An adversary that is capable of reading the internal memory of a password
scrambler during its invocation, gains knowledge about y. Thus, it can reduce the
effort for filtering invalid password candidates by just computing y′ = F (x) and
checking whether y = y′, where x denotes the current password candidate. Note
that the function F can also be given by the identity function. Then, the plain
password remains in memory, rendering WGC attacks trivial (see Section 2.2 for
a trivial WGC attack on scrypt).

2.2 (Weak) Garbage-Collector Attacks on scrypt

Garbage-Collector Attack on ROMix. Algorithm 1 describes the necessary
details of the scrypt password scrambler together with its core function ROMix.
The pre- and post-whitening steps are given by one call (each) of the standard-
ized key-derivation function PBKDF2 [15], which we consider as a single call to
a cryptographically secure hash function. The function ROMix takes the initial
state x and the memory-cost parameter G as inputs. First, ROMix initializes an
array v of size G ·n by iteratively applying a cryptographic hash function H (see
Lines 20-23), where n denotes the output size of H in bits. Second, ROMix ac-
cesses the internal state at randomly computed points j to update the password
hash (see Lines 24-27).
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It is easy to see that the value v0 is a plain hash (using PBKDF2) of the original
secret pwd (see Lines 10 and 21 for i = 0). Further, from the overall structure of
scrypt and ROMix it follows that the internal memory is written once (Lines 20-
23) but never overwritten . Thus, all values v0, . . . , vG−1 can be accessed by a
garbage-collector adversary A after the termination of scrypt. For each pass-
word candidates pwd ′, A can now simply compute x′ ← PBKDF2(pwd ′) and
check whether x′ = v0. If so, pwd

′ is a valid preimage. Thus, A can test each
possible candidate in O(1), rendering an attack against scrypt (or especially
ROMix) practical (and even memory-less).
As a possible countermeasure, one can simply overwrite v0, . . . , vG−1 after run-
ning ROMix. Nevertheless, this step might be removed by a compiler due to
optimization, since it is algorithmically ineffective.

Weak Garbage-Collector Attack on scrypt. In Line 12 of Algorithm 1,
scrypt invokes the key-derivation function PBKDF2 the second time using again
the password pwd as input again. Thus, pwd has to be stored in memory during
the entire invocation of scrypt, which implies that scrypt is vulnerable to WGC
attacks.

3 Overview

Before we present the tables containing the comparison of the candidates for the
Password Hashing Competition (PHC), we introduce the necessary notions (see
Table 1) to understand the tables.
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Identifier Description

Primitives/Structures

BC Block cipher
SC Stream cipher
PERM Keyless permutation
HF Hash function
BRG Bit-Reversal Graph
DBG Double-Butterfly Graph

General Properties

CIU Supports client-independent update
SR Supports server relief
KDF Usable as Key-Derivation Function (requires outputs to be pseudorandom)
FPO Using floating-point operations
Flexible Underlying primitive can be replaced
Iteration Algorithm is based on iterations/rounds

Security Properties

GCA Res. Resistant against garbage-collector attacks (see Definition 1)
WGCA Res. Resistant against weak garbage-collector attacks (see Definition 2)
SCA Res. Resistant against side-channel attacks.
ROM-port Special form of memory hardness [8].
Shortcut Is it possible to bypass the main (memory and time) effort of an algorithm by

knowing additional parameters, e.g., the Blum integers p and q for Makwa which
are used to compute the modulo n.

Table 1. Notations used in Tables 2, 3, and 4.
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Comments for Table 2. The values in the column ”Memory“ come from the authors recommendation for password hashing
or are marked as ‘◦‘ if no recommendation exists. The entry “A (CF)” denotes that only the compression function of algorithm
A is used. An entry A(XR) denotes that an algorithm A is reduced to X rounds. The scrypt password scrambler is just added
for comparison. If an algorithm can only be partially be computed in parallel, we marked the corresponding entry with ’part.’.
Note that POMELO and schvrch do not depend on an existing underlying primitive but on an own construction.

Algorithm Based On Iteration Memory Usage Parallel Underlying Primitive Underlying Mode
BC/SC/PERM HF

AntCrypt X 32 kB part. - SHA-512 -
ARGON AES X 1 kB - 1 GB X AES (5R) - -
battcrypt X 128 kB - 128 MB part. Blowfish-CBC SHA-512 -
Catena BRG/DBG X 8 MB part. - BLAKE2b -
CENTRIFUGE X 2 MB - AES-256 SHA-512 -

EARWORM X 2 GB (ROM) X AES (1R) SHA-256 PBKDF2 HMAC

Gambit Sponge X 50 MB - Keccakf - -
Lanarea DF X 256 B - - BLAKE2b -
Lyra2 Sponge X 400 MB - 1 GB - BLAKE2b (CF) -
Makwa Squarings X negl. X - SHA-256 HMAC

MCS PHS X negl. - - MCSSHA-8 -
ocrypt scrypt X 1 MB - 1 GB - ChaCha CubeHash -
Parallel X negl. X - SHA-512 -
PolyPassHash Shamir Sec. Sharing - negl. - AES SHA-256 -
POMELO X (8 KB, 8 GB) part. - - -

Pufferfish Blowfish/bcrypt X 4 - 16 kB - Blowfish SHA-512 HMAC
Rig BRG X 15 MB part. - BLAKE2b -
scrypt X 1 GB - Salsa20/8 - PBKDF2
schvrch X 8 MB part. - - -
Tortuga Sponge & rec. Feistel X ◦ Turtle - -

SkinnyCat BRG X ◦ - - SHA-*/BLAKE2* -
TwoCats BRG X ◦ X - SHA-*/BLAKE2* -
Yarn X ◦ part. BLAKE2b (CF), AES - -
yescrypt scrypt X 3 MB (RAM)/3 GB (ROM) part. Salsa20/8 SHA-256 PBKDF2 HMAC

Table 2. Overview of PHC Candidates and their general properties (Part 1).
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Comments for Table 3. Even if the authors of a scheme do not claim to
support client-independent update (CIU) or server relief (SR), we checked for
the possibility and marked the corresponding entry in the table with ’X’ or ’part.’
if possible or possible under certain requirements, respectively. Note that we say
that an algorithm does not support SR when it requires the whole state to be
transmitted to the server. Moreover, we say that an algorithm does not support
CIU if any additional information to the password hash itself is required. Note
that Catena refers to both instantiations, i.e., Catena-BRG and Catena-

DBG.

Algorithm CIU SR FPO Flexible

AntCrypt X - X part.
ARGON X X - X

battcrypt X - - part.
Catena X X - X

CENTRIFUGE - - - X

EARWORM - X - -
Gambit - X opt. part.
Lanarea DF - X - X

Lyra2 X X - part.
Makwa part. - - X

MCS PHS - X - part.
ocrypt - - - X

Parallel X X - X

PolyPassHash X - - X

POMELO X - - -

Pufferfish - X - part.
Rig X X - X

scrypt - - - X

schvrch - - - -
Tortuga - - - -

SkinnyCat - X - X

TwoCats X X - X

Yarn - X - -
yescrypt - X - X

Table 3. Overview of PHC Candidates and their general properties (Part 2).
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Comments for Table 4. The column “Type” specifies which type of a memory-demanding design a certain algorithm
satisfies. The types “A” and “B” are as described in Section 1 and marking an algorithm by “-” denotes that it is not designed
to be memory-demanding. An entry supplemented by ’∗’ (as for Memory-Hardness and Security Analysis), denotes that there
exists not sophisticated analysis or proofs for the given claim/assumption. For SCA Res., ’part.’ (partial) means that only one
or more parts (but not all) provide resistance against side-channel attacks.

Algorithm Type Memory-Hardness KDF GCA Res. WGCA Res. SCA Res. Security Analysis Shortcut

AntCrypt B X X X X X X
∗ -

ARGON B X X X X - X -
battcrypt B X X X - X X

∗ -
Catena-BRG B X X - X X X -
Catena-DBG B λ X X X X X -

CENTRIFUGE A X
∗ - - - X X

∗ -
EARWORM B ROM-port - X - X X -
Gambit B X

∗

X X X X X
∗ -

Lanarea DF B X
∗

X X X part. X
∗ -

Lyra2 B X X X X part. X -

Makwa - - X X X part. X X

MCS PHS - - X X X X - -
ocrypt B X

∗

X X X - X
∗ -

Parallel - - X X - X X
∗ -

PolyPassHash - - - - - - X X

POMELO B - - X X part. X
∗ -

Pufferfish B X
∗

X X X - X
∗ -

Rig B λ X X X X X -
scrypt A sequential X - - - X -
schvrch B - - X X X X

∗ -

Tortuga B X
∗

X X X X X
∗ -

SkinnyCat A sequential X - - part. X -
TwoCats B sequential X X X part. X -
Yarn B X

∗ - X - - X
∗ -

yescrypt A ROM-port, sequential X - - - X
∗ -

Table 4. Overview over the security properties of PHC candidates.
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Remark 2. Note that we do not claim completeness for Table 4. For example, we
defined a scheme not to be resistant against side-channel attacks if it maintains
a password-dependent memory-access pattern. Nevertheless, there exist several
other types of side-channel attacks such as those based on power or acoustic
analysis.

4 Resistance of PHC Candidates against (W)GC Attacks

In this section we briefly discuss potential weaknesses of each PHC candidate re-
garding to garbage-collector (GC) and weak-garbage collector (WGC) attacks or
argue why it provides resistance against such attacks. Note that we assume the
reader to be familiar with the internals of the candidates since we only concen-
trate on those parts of the candidates that are relevant regarding to GC/WGC
attacks.

AntCrypt [9]. The internal state of AntCrypt is initialized with the secret
pwd . During the hashing process, the state is overwritten multiple times (based
on the parameter outer rounds and inner rounds), which thwarts GC attacks.
Moreover, since pwd is used only to initialize the internal state, WGC attacks
are not applicable.

ARGON [3]. First, the internal state derived from pwd is the input to the
padding phase. After the padding phase, the internal state is overwritten by
applying the functions ShuffleSlices and SubGroups at least L times. Based
on this structure, and since pwd is used only to initialize the state, ARGON is
not vulnerable against GC/WGC attacks.

battcrypt [24]. Within battcrypt, the plain password is used only once, namely
to generate a value key = SHA-512(SHA-512(salt || pwd)). The value key is then
used to initialize the internal state, which is expanded afterwards. In the Work
phase, the internal state is overwritten t cost×m size times using password-
dependent indices. Thus, GC attacks are not applicable.

Note that the value key is used in the three phases Initialize blowfish, Initialize
data, and Finish, whereas it is overwritten in the phase Finish the first time.
Thus, key must remain in memory until the final phase, rendering the following
WGC attack possible: For each password candidates x and the known value salt,
compute key′ = SHA512(SHA512(salt || x)) and check whether key′ = key. If
so, mark x as a valid password candidate.

Catena [11]. Catena has two instantiations Catena-BRG and Catena-

DBG, which are based on a (G, λ)-Bit-Reversal Graph and a (G, λ)-Double-
Butterfly Graph, respectively. Both instantiations use an array of G elements
each as their internal state. This state is overwritten λ − 1 times for Catena-

BRG and (2 log2(G)−1)·λ+2 log2(G)−2 times for Catena-DBG. Hence, when
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considering Catena-BRG, a GC adversary with access to the state can reduce
the effort for testing a password candidate by a factor of 1/λ. When considering
Catena-DBG, the reduction of the computational cost of an adversary is neg-
ligible. The authors mention this fact by recommending Catena-DBG when
considering GC attacks.

For Catena-BRG as well as Catena-DBG, the password pwd is used only to
initialize the internal state. Thus, both instantiations provide resistance against
WGC attacks.

CENTRIFUGE [1]. The internal state M of size p mem×outlen byte is
initialized with a seed S derived from the password and the salt as follows:
S = H(sL || sR), where sL ← H(pwd || len(pwd)) and sR ← H(salt || len(salt)).
Furthermore, S is used as the initialization vector (IV ) and the key for the CFB
encryption. The internalM is written once and later only accessed in a password-
dependent manner. Thus, a GC adversary can launch the following attack:

1. receive the internal state M (or at least M [1]) from memory
2. for each password candidate x:

(a) initialization (seeding and S-box)
(b) compute the first table entry M ′[1] (during the build table step)
(c) check whether M ′[1] = M [1]

The final step of CENTRIFUGE is to encrypt the internal state, requiring the
key and the IV , which therefore must remain in memory during the invocation
of CENTRIFUGE. Thus, the following WGC attack is applicable:

1. Compute sR ← H(salt || len(salt))
2. For every password candidate x:

(a) Compute s′
L
← H(x || len(x)) and S′ = H(s′

L
|| sR), and compare if

S′ = IV
(b) If yes: mark x as a valid password candidate
(c) If no: go to Step 2

EARWORM [12]. EARWORM maintains an array called arena which con-
sists of 2m cost×L×W 128-bit blocks, whereW = 4 and L = 64 are recommended
by the authors. This read-only array is randomly initialized (using an additional
secret input which has to be constant within a given system) and used as AES
round keys. Since the values within this array do not depend on the secret pwd ,
knowledge about arena does not help any malicious garbage collector. Within
the main function of EARWORM (WORKUNIT), an internal state scratchpad
is updated multiple times using password-dependent accesses to arena. Thus, a
GC adversary cannot profit from knowledge about scratchpad, rendering GC at-
tacks not applicable.
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Within the function WORKUNIT, the value scratchpad tmpbuf is derived di-
rectly from the password as follows:

scratchpad tmpbuf ← EWPRF(pwd , 01 || salt, 16W ),

where EWPRF denotes PBKDF2HMAC-SHA256 with the first input denoting
the secret key. This value is updated only at the end of WORKUNIT using the
internal state. Thus, it has to be in memory during almost the whole invocation of
EARWORM, rendering the following WGC attack possible: For each password
candidate x and the known value salt, compute y = EWPRF(x, 01 || salt, 16W )
and check whether scratchpad tmpbuf = y. If so, mark x as a valid password
candidate.

Gambit [21]. Gambit bases on a duplex-sponge construction [2] maintaining
two internal states S and Mem, where S is used to subsequently update Mem.
First, password and salt are absorbed into the sponge and after one call to the
underlying permutation, the squeezed value is written to the internal state Mem
and processed r times (number of words in the ratio of S). The output after the
r steps is optionally XORed with an array lying in the ROM. After that, Mem
is absorbed into S again. This step is executed t times, where t denotes the time-
cost parameter. The size of Mem is given by m, the memory-cost parameter.
Continuously updating the states Mem and S thwarts GC attacks. Moreover,
since pwd is used only to initialize the state within the sponge construction,
WGC attacks are not applicable.

Lanarea DF [18]. Lanarea DF maintains a matrix (internal state) consisting of
16 · 16 ·m cost byte values, where m cost denotes the memory-cost parameter.
After the password-independent setup phase, the password is processed by the
internal pseudorandom function producing the array (h0, . . . , h31), which deter-
mines the positions on which the internal state is accessed during the core phase
(thus, allowing cache-timing attacks). In the core phase, the internal state is
overwritten t cost×m cost× 16 times, rendering GC attacks impossible. More-
over, the array (h0, . . . , h31) is overwritten t cost×m cost times which thwarts
WGC attacks.

Lyra2 [14]. The Lyra2 password scrambler (and KDF) is based on a duplex
sponge construction maintaining a state H , which is initialized with the pass-
word, the salt, and some tweak in the first step of its algorithm. The authors
indicate that the password can be overwritten from this point on, rendering
WGC attacks impossible. Moreover, Lyra2 maintains an internal state M , which
is overwritten (updated using values from the sponge state H) multiple times.
Thus, GC attacks are not applicable for Lyra2.

Makwa [22]. Makwa has not been designed to be a memory-demanding pass-
word scrambler. Its strength is based on a high number of squarings modulo a
composite (Blum) integer n. The plain (or hashed) password is used twice to ini-
tialize the internal state, which is then processed by squarings modulo n. Thus,
neither GC nor WGC attacks are applicable for Makwa.
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MCS PHS [17]. Depending on the size of the output, MCS PHS applies it-
erated hashing operations, reducing the output size of the hash function by one
byte in each iteration – starting from 64 bytes. Note that the memory-cost pa-
rameter m cost is used only to increase the size of the initial chaining value T0.
The secret input pwd is used once, namely when computing the value T0 and
can be deleted afterwards, rendering WGC attacks not applicable. Furthermore,
since the output of MCS PHS is computed by iteratively applying the underly-
ing hash function (without handling an internal state which has to be placed in
memory), GC attacks are not possible.

ocrypt [10]. The basic idea of ocrypt is similar to that of scrypt, besides the
fact that the random memory accesses are determined by the output of a stream
cipher (ChaCha) instead of a hash function cascade. The output of the stream
cipher determines which element of the internal state is updated, which consists
of 217+mcost 64-bit words. During the invocation of ocrypt, the password is used
only twice: (1) as input to CubeHash, generating the key for the stream cipher
and (2) to initialize the internal state. Neither the password nor the output of
CubeHash are used again after the initialization. Thus, ocrypt is not vulnerable
to WGC attacks.
The internal state is processed 217+tcost times, where in each step one word of
the state is updated. Since the indices of the array elements accessed depend
only on the password and not on the content, GC attacks are not possible by
observing the internal state after the invocation of ocrypt.

Remark 3. Note that the authors of ocrypt claim side-channel resistance since
the indices of the array elements are chosen in a password-independent way. But,
as the password (beyond other inputs) is used to derive the key of the underlying
stream cipher, this assumption does not hold, i.e., the output of the stream cipher
depends on the password, rendering (theoretical) cache-timing attacks possible.

Parallel [25]. Parallel has not been designed to be a memory-demanding pass-
word scrambler. Instead, it is highly optimized to be comuted in parallel. First,
a value key is derived from the secret input pwd and the salt by

key = SHA-512(SHA-512(salt) || pwd).

The value key is used (without being changed) during the Clear work phase
of Parallel. Since this phase defines the main effort for computing the password
hash, it is highly likely that a WGC adversary can gain knowledge about key.
Then, the following WGC attack is possible: For each password candidate x and
the known value salt, compute y = SHA-512(SHA-512(salt) || x) and check
whether key = y. If so, mark x as a valid password candidate. Since the internal
state is only given by the subsequently updated output of SHA-512, GC attacks
are not applicable for Parallel.

PolyPassHash [5]. PolyPassHash denotes a threshold system with the goal
to protect an individual password (hash) until a certain number of correct pass-
words (and their corresponding hashes) are known. Thus, it aims at protecting
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an individual password hash within a file containing a lot of password hashes,
rendering PolyPassHash not to be a password scrambler itself. The protection
lies in the fact that one cannot easily verify a target hash without knowing a min-
imum number of hashes (this technical approach is referred to as PolyHashing).
In the PolyHashing construction, one maintains a (k, n)-threshold cryptosystem,
e.g., Shamir Secret Sharing. Each password hash h(pwdi) is blinded by a share
s(i) for 1 ≤ i ≤ k ≤ n. The value zi = h(pwdi) ⊕ s(i) is stored in a so-called
PolyHashing store at index i. The shares s(i) are not stored on disk. But, to be
efficient, a legal party, e.g., a server of a social networking system, has to store
at least k shares in the RAM to on-the-fly compare incoming requests on-the-fly.
Thus, this system only provides security against adversaries which are only able
to read the hard disk but not the volatile memory (RAM).

Since the secret (of the threshold cryptosystem) or at least the k shares have
to be in memory, GC attacks are possible by just reading the corresponding
memory. The password itself is only hashed and blinded by s(i). Thus, if an
adversary is able to read the shares or the secret from memory, it can easily
filter wrong password candidates, i.e., makeing PolyPassHash vulnerable against
WGC attacks.

POMELO [27]. POMELO contains three update functions F (S, i), G(S, i, j),
and H(S, i), where S denotes the internal state and i and j the indices at which
the state is accessed. Those functions update at most two state words per invo-
cation. The functions F and G provide deterministic random-memory accesses
(determined by the cost parameter t cost and m cost), whereas the function
H provides random-memory accesses determined by the password, rendering
POMELO at least partially vulnerable to cache-time attacks. Since the password
is used only to initialize the state, which itself is overwritten about 22·t cost + 2
times, POMELO provides resistance against GC and WGC attacks.

Pufferfish [13]. The main memory used within Pufferfish is given by a two-
dimensional array consisting of 25+m cost 512-bit values, which is regularly ac-
cessed during the password hash generation. The first steps of Pufferfish are
given by hashing the password. The result is then overwritten 25+m cost + 3
times, rendering WGC attacks not possible. The state word containing the hash
of the password (S[0][0]) is overwritten 2t cost times. Thus, there does not exist
a shortcut for an adversary, rendering GC attacks impossible.

Rig [6]. Rig maintains two arrays a (sequential access) and k (bit-reversal
access). Both arrays are iteratively overwritten r · n times, where r denotes the
round parameter and n the iteration parameter. Thus, rendering Rig resistant
against GC attacks. Note that within the setup phase, a value α is computed by

α = H1(x) with x = pwd || len(pwd) || . . . ,

Since the first α (which is directly derived from the password) is only used during
the initialization phase, WGC attacks are not applicable.
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schvrch [26]. The password scrambler schvrch maintains an internal state of
256 · 64-bit words (2 kB), which is initialized with the password, salt and their
corresponding lengths, and the final output length. After this step, the password
can be overwritten in memory. This state is processed t cost times by a function
revolve(), which affects in each invocation all state words. Next, after applying a
function stir() (again, changing all state entries), it expands the state to m cost
times the state length. Each part (of size state length) is then processed to
update the internal state, producing the hash after each part was processed.
Thus, the state word initially containing the password is overwritten t cost ·
m cost times, rendering GC attacks impossible. Further, neither the password
nor a value directly derived from it is required during the invocation of schvrch,
which thwarts WGC attacks.

Tortuga [23]. GC and WGC attacks are not possible for Tortuga since the
password is absorbed to the underlying sponge structure, which is then processed
at least two times by the underlying keyed permutation (Turtle block cipher [4]),
and neither the password nor a value derived from it has to be in memory.

SkinnyCat and TwoCats [7]. SkinnyCat is a subset of the TwoCats scheme
optimized for implementation. Both algorithms maintain a 256-bit state state
and an array of 2m cost+8 32-bit values (mem). During the initialization, a value
PRK is computed as follows:

PRK = Hash(len(pwd), len(salt), . . . , pwd , salt).

The value PRK is used in the initialization phase and first overwritten in the
forelast step of SkinnyCat (when the function addIntoHash() is invoked). Thus,
an adversary that gains knowledge about the value PRK is able to launch the
following WGC attack: For each password candidates x and the known value
salt, compute PRK ′ = Hash(len(x), len(salt), . . . , x, salt) and check whether
PRK = PRK ′. If so, mark x as a valid password candidate.

Within TwoCats, the value PRK is overwritten at an early state of the hash
value generation. TwoCats maintains consists of a garlic application loop from
startMemCost = 0 to stopMemCost, where stopMemCost is a user-defined
value. In each iteration, the value PRK is overwritten, rendering WGC attacks
for TwoCats not possible.

Both SkinnyCat and TwoCats consist of two phases each. The first phase up-
dates the first half of the memory (early memory) mem[0, . . . ,memlen/(2 ·
blocklen)− 1], where the memory is accessed in a password-independent man-
ner. The second phase updates the second half of the memory mem[memlen/(2 ·
blocklen), . . . ,memlen/blocklen− 1], where the memory is accessed in a pass-
word-dependent manner. Thus, both schemes provide only partial resistance
against cache-timing attacks. For SkinnyCat, the early memory is never over-
written, rendering the following GC attack possible:
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1. Obtain mem[0, . . . ,memlen/(2 · blocklen)− 1] and PRK from memory
2. Create a state state′ and an array mem′ of the same size as state and mem,

respectively
3. Set fromAddr = slidingReverse(1) ·blocklen, prevAddr = 0, and toAddr =

blocklen
4. For each password candidate x:

(a) Compute PRK ′ as described using the password candidate x
(b) Initialize state′ and mem′ as prescribed using PRK ′

(c) Compute state′[0] = (state′[0] +mem′[1])⊕mem′[fromAddr ++]
(d) Compute state′[0] = ROTATE LEFT(state′[0], 8)
(e) Compute mem′[blocklen+ 1] = state′[0]
(f) Check whether mem′[blocklen+ 1] = mem[blocklen+ 1]
(g) If yes: mark x as a valid password candidate
(h) If no: go to Step 4.

Note that this attack does not work for TwoCats since an additional feature in
comparison to SkinnyCat is that the early memory is overwritten.

Yarn [16]. Yarn maintains two arrays state and memory, consisting of par and
2m cost 16-byte blocks, respectively. The array state is initialized using the salt.
Afterwards, state is processed using the BLAKE2b compression function with
the password pwd as message, resulting in an updated array state1. This array
has to be stored in memory since it is used as input to the final phse of Yarn. The
array state is expanded afterwards and further, it is used to initialize the array
memory. Next, memory is updated continuously. Both memory and state are
overwritten continuously. The array state1 is overwritten at the lastest in the
final phase of Yarn. Thus, GC attacks are not possible for Yarn. Nevertheless,
the array state1 is directly derived from pwd and stored until the final phase
occurs. Thus, the following WGC attack is possible:

1. Compute h ← Blake2b GenerateInitialState(outlen, salt, pers) as in
the first phase of Yarn

2. For each password candidate x:
(a) Compute h′ ← Blake2b ConsumeInput(h, x)
(b) Compute state1’← Truncate(h′, outlen) and check whether state1’ =

state1

yescrypt [20]. The yescrypt password scrambler maintains two lookup tables
V and V ROM , where V is located in the RAM and V ROM in the ROM. De-
pending on the flag YESCRYPT RW, the behaviour of the memory management in
RAM can be switched from “write once, read many” to “read-write”. Never-
theless, yescrypt does not completey overwrite the memory in RAM, rendering
similar GC attacks as for scrypt possible (see Section 2.2). But, such an attack
would require a higher effort in comparison the attack on scrypt since yescrypt
at least partially overwrites the RAM locations.
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When considering WGC attacks, one has to differ between two variants of
yescrypt depending whether it runs in the scrypt compatibility mode or not. In
scrypt compatibility mode, obviously the same WGC as for scrypt is applicable
(see Section 2.2). If not running in scrypt compatibility mode, yescrypt uses the
results of the initial call to PBKDF2 in the last step. Thus, the value which has
to remain in memory is given by HMAC-SHA-256(SHA-256(pwd), salt). Since
it is also possible to compute HMAC and SHA-256 efficiently, yescrypt does not
provide resistance against WGC attacks.

5 Conclusion

In this work we provided an overview of the first-round candidates of the Pass-
word Hashing Competition, which are not yet withdrawn. Further, we analyzed
each algorithm regarding to its vulnerability against garbage-collector and weak
garbage-collector attacks. Even if both attacks require access to the memory on
the target’s machine, they show a potential weakness, which should be taken
into consideration. As a results, we have shown GC attacks on Catena-BRG,
CENTRIFUGE, PolyPassHash, scrypt, SkinnyCat, and yescrypt. Additionally,
we have shown that WGC attacks are applicable to battcrypt, CENTRIFUGE,
EARWORM, Parallel, PolyPassHash, scrypt, SkinnyCat, Yarn, and yescrypt.
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